drm/rockchip: Don't change hdmi reference clock rate
[drm/drm-misc.git] / drivers / pci / hotplug / cpqphp_pci.c
blobef7534a3ca40ff7533238c970ef7119bab0452db
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Compaq Hot Plug Controller Driver
5 * Copyright (C) 1995,2001 Compaq Computer Corporation
6 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
7 * Copyright (C) 2001 IBM Corp.
9 * All rights reserved.
11 * Send feedback to <greg@kroah.com>
15 #define pr_fmt(fmt) "cpqphp: " fmt
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/printk.h>
20 #include <linux/types.h>
21 #include <linux/slab.h>
22 #include <linux/workqueue.h>
23 #include <linux/proc_fs.h>
24 #include <linux/pci.h>
25 #include <linux/pci_hotplug.h>
26 #include "../pci.h"
27 #include "cpqphp.h"
28 #include "cpqphp_nvram.h"
31 u8 cpqhp_nic_irq;
32 u8 cpqhp_disk_irq;
34 static u16 unused_IRQ;
37 * detect_HRT_floating_pointer
39 * find the Hot Plug Resource Table in the specified region of memory.
42 static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end)
44 void __iomem *fp;
45 void __iomem *endp;
46 u8 temp1, temp2, temp3, temp4;
47 int status = 0;
49 endp = (end - sizeof(struct hrt) + 1);
51 for (fp = begin; fp <= endp; fp += 16) {
52 temp1 = readb(fp + SIG0);
53 temp2 = readb(fp + SIG1);
54 temp3 = readb(fp + SIG2);
55 temp4 = readb(fp + SIG3);
56 if (temp1 == '$' &&
57 temp2 == 'H' &&
58 temp3 == 'R' &&
59 temp4 == 'T') {
60 status = 1;
61 break;
65 if (!status)
66 fp = NULL;
68 dbg("Discovered Hotplug Resource Table at %p\n", fp);
69 return fp;
73 int cpqhp_configure_device(struct controller *ctrl, struct pci_func *func)
75 struct pci_bus *child;
76 int num;
78 pci_lock_rescan_remove();
80 if (func->pci_dev == NULL)
81 func->pci_dev = pci_get_domain_bus_and_slot(0, func->bus,
82 PCI_DEVFN(func->device,
83 func->function));
85 /* No pci device, we need to create it then */
86 if (func->pci_dev == NULL) {
87 dbg("INFO: pci_dev still null\n");
89 num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function));
90 if (num)
91 pci_bus_add_devices(ctrl->pci_dev->bus);
93 func->pci_dev = pci_get_domain_bus_and_slot(0, func->bus,
94 PCI_DEVFN(func->device,
95 func->function));
96 if (func->pci_dev == NULL) {
97 dbg("ERROR: pci_dev still null\n");
98 goto out;
102 if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
103 pci_hp_add_bridge(func->pci_dev);
104 child = func->pci_dev->subordinate;
105 if (child)
106 pci_bus_add_devices(child);
109 pci_dev_put(func->pci_dev);
111 out:
112 pci_unlock_rescan_remove();
113 return 0;
117 int cpqhp_unconfigure_device(struct pci_func *func)
119 int j;
121 dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function);
123 pci_lock_rescan_remove();
124 for (j = 0; j < 8 ; j++) {
125 struct pci_dev *temp = pci_get_domain_bus_and_slot(0,
126 func->bus,
127 PCI_DEVFN(func->device,
128 j));
129 if (temp) {
130 pci_dev_put(temp);
131 pci_stop_and_remove_bus_device(temp);
134 pci_unlock_rescan_remove();
135 return 0;
139 * cpqhp_set_irq
141 * @bus_num: bus number of PCI device
142 * @dev_num: device number of PCI device
143 * @slot: pointer to u8 where slot number will be returned
145 int cpqhp_set_irq(u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
147 int rc = 0;
149 if (cpqhp_legacy_mode) {
150 struct pci_dev *fakedev;
151 struct pci_bus *fakebus;
152 u16 temp_word;
154 fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL);
155 fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL);
156 if (!fakedev || !fakebus) {
157 kfree(fakedev);
158 kfree(fakebus);
159 return -ENOMEM;
162 fakedev->devfn = dev_num << 3;
163 fakedev->bus = fakebus;
164 fakebus->number = bus_num;
165 dbg("%s: dev %d, bus %d, pin %d, num %d\n",
166 __func__, dev_num, bus_num, int_pin, irq_num);
167 rc = pcibios_set_irq_routing(fakedev, int_pin - 1, irq_num);
168 kfree(fakedev);
169 kfree(fakebus);
170 dbg("%s: rc %d\n", __func__, rc);
171 if (!rc)
172 return !rc;
174 /* set the Edge Level Control Register (ELCR) */
175 temp_word = inb(0x4d0);
176 temp_word |= inb(0x4d1) << 8;
178 temp_word |= 0x01 << irq_num;
180 /* This should only be for x86 as it sets the Edge Level
181 * Control Register
183 outb((u8)(temp_word & 0xFF), 0x4d0);
184 outb((u8)((temp_word & 0xFF00) >> 8), 0x4d1);
185 rc = 0;
188 return rc;
192 static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 *dev_num)
194 u16 tdevice;
195 u32 work;
196 int ret = -1;
198 ctrl->pci_bus->number = bus_num;
200 for (tdevice = 0; tdevice < 0xFF; tdevice++) {
201 /* Scan for access first */
202 if (!pci_bus_read_dev_vendor_id(ctrl->pci_bus, tdevice, &work, 0))
203 continue;
204 ret = pci_bus_read_config_dword(ctrl->pci_bus, tdevice, PCI_CLASS_REVISION, &work);
205 if (ret)
206 continue;
207 dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
208 /* Yep we got one. Not a bridge ? */
209 if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
210 *dev_num = tdevice;
211 dbg("found it !\n");
212 return 0;
213 } else {
215 * XXX: Code whose debug printout indicated
216 * recursion to buses underneath bridges might be
217 * necessary was removed because it never did
218 * any recursion.
220 ret = 0;
221 pr_warn("missing feature: bridge scan recursion not implemented\n");
226 return ret;
230 static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
232 int loop, len;
233 u32 work;
234 u8 tbus, tdevice, tslot;
236 len = cpqhp_routing_table_length();
237 for (loop = 0; loop < len; ++loop) {
238 tbus = cpqhp_routing_table->slots[loop].bus;
239 tdevice = cpqhp_routing_table->slots[loop].devfn;
240 tslot = cpqhp_routing_table->slots[loop].slot;
242 if (tslot == slot) {
243 *bus_num = tbus;
244 *dev_num = tdevice;
245 ctrl->pci_bus->number = tbus;
246 pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work);
247 if (!nobridge || PCI_POSSIBLE_ERROR(work))
248 return 0;
250 dbg("bus_num %d devfn %d\n", *bus_num, *dev_num);
251 pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work);
252 dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
254 if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
255 pci_bus_read_config_byte(ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus);
256 dbg("Scan bus for Non Bridge: bus %d\n", tbus);
257 if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) {
258 *bus_num = tbus;
259 return 0;
261 } else
262 return 0;
265 return -1;
269 int cpqhp_get_bus_dev(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot)
271 /* plain (bridges allowed) */
272 return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0);
276 /* More PCI configuration routines; this time centered around hotplug
277 * controller
282 * cpqhp_save_config
284 * Reads configuration for all slots in a PCI bus and saves info.
286 * Note: For non-hot plug buses, the slot # saved is the device #
288 * returns 0 if success
290 int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
292 long rc;
293 u8 class_code;
294 u8 header_type;
295 u32 ID;
296 u8 secondary_bus;
297 struct pci_func *new_slot;
298 int sub_bus;
299 int FirstSupported;
300 int LastSupported;
301 int max_functions;
302 int function;
303 u8 DevError;
304 int device = 0;
305 int cloop = 0;
306 int stop_it;
307 int index;
308 u16 devfn;
310 /* Decide which slots are supported */
312 if (is_hot_plug) {
314 * is_hot_plug is the slot mask
316 FirstSupported = is_hot_plug >> 4;
317 LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
318 } else {
319 FirstSupported = 0;
320 LastSupported = 0x1F;
323 /* Save PCI configuration space for all devices in supported slots */
324 ctrl->pci_bus->number = busnumber;
325 for (device = FirstSupported; device <= LastSupported; device++) {
326 ID = 0xFFFFFFFF;
327 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID);
329 if (ID == 0xFFFFFFFF) {
330 if (is_hot_plug) {
331 /* Setup slot structure with entry for empty
332 * slot
334 new_slot = cpqhp_slot_create(busnumber);
335 if (new_slot == NULL)
336 return 1;
338 new_slot->bus = (u8) busnumber;
339 new_slot->device = (u8) device;
340 new_slot->function = 0;
341 new_slot->is_a_board = 0;
342 new_slot->presence_save = 0;
343 new_slot->switch_save = 0;
345 continue;
348 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code);
349 if (rc)
350 return rc;
352 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type);
353 if (rc)
354 return rc;
356 /* If multi-function device, set max_functions to 8 */
357 if (header_type & PCI_HEADER_TYPE_MFD)
358 max_functions = 8;
359 else
360 max_functions = 1;
362 function = 0;
364 do {
365 DevError = 0;
366 if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
367 /* Recurse the subordinate bus
368 * get the subordinate bus number
370 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus);
371 if (rc) {
372 return rc;
373 } else {
374 sub_bus = (int) secondary_bus;
376 /* Save secondary bus cfg spc
377 * with this recursive call.
379 rc = cpqhp_save_config(ctrl, sub_bus, 0);
380 if (rc)
381 return rc;
382 ctrl->pci_bus->number = busnumber;
386 index = 0;
387 new_slot = cpqhp_slot_find(busnumber, device, index++);
388 while (new_slot &&
389 (new_slot->function != (u8) function))
390 new_slot = cpqhp_slot_find(busnumber, device, index++);
392 if (!new_slot) {
393 /* Setup slot structure. */
394 new_slot = cpqhp_slot_create(busnumber);
395 if (new_slot == NULL)
396 return 1;
399 new_slot->bus = (u8) busnumber;
400 new_slot->device = (u8) device;
401 new_slot->function = (u8) function;
402 new_slot->is_a_board = 1;
403 new_slot->switch_save = 0x10;
404 /* In case of unsupported board */
405 new_slot->status = DevError;
406 devfn = (new_slot->device << 3) | new_slot->function;
407 new_slot->pci_dev = pci_get_domain_bus_and_slot(0,
408 new_slot->bus, devfn);
410 for (cloop = 0; cloop < 0x20; cloop++) {
411 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop]));
412 if (rc)
413 return rc;
416 pci_dev_put(new_slot->pci_dev);
418 function++;
420 stop_it = 0;
422 /* this loop skips to the next present function
423 * reading in Class Code and Header type.
425 while ((function < max_functions) && (!stop_it)) {
426 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID);
427 if (ID == 0xFFFFFFFF) {
428 function++;
429 continue;
431 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code);
432 if (rc)
433 return rc;
435 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type);
436 if (rc)
437 return rc;
439 stop_it++;
442 } while (function < max_functions);
443 } /* End of FOR loop */
445 return 0;
450 * cpqhp_save_slot_config
452 * Saves configuration info for all PCI devices in a given slot
453 * including subordinate buses.
455 * returns 0 if success
457 int cpqhp_save_slot_config(struct controller *ctrl, struct pci_func *new_slot)
459 long rc;
460 u8 class_code;
461 u8 header_type;
462 u32 ID;
463 u8 secondary_bus;
464 int sub_bus;
465 int max_functions;
466 int function = 0;
467 int cloop;
468 int stop_it;
470 ID = 0xFFFFFFFF;
472 ctrl->pci_bus->number = new_slot->bus;
473 pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID);
475 if (ID == 0xFFFFFFFF)
476 return 2;
478 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code);
479 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type);
481 if (header_type & PCI_HEADER_TYPE_MFD)
482 max_functions = 8;
483 else
484 max_functions = 1;
486 while (function < max_functions) {
487 if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
488 /* Recurse the subordinate bus */
489 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus);
491 sub_bus = (int) secondary_bus;
493 /* Save the config headers for the secondary
494 * bus.
496 rc = cpqhp_save_config(ctrl, sub_bus, 0);
497 if (rc)
498 return(rc);
499 ctrl->pci_bus->number = new_slot->bus;
503 new_slot->status = 0;
505 for (cloop = 0; cloop < 0x20; cloop++)
506 pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop]));
508 function++;
510 stop_it = 0;
512 /* this loop skips to the next present function
513 * reading in the Class Code and the Header type.
515 while ((function < max_functions) && (!stop_it)) {
516 pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID);
518 if (ID == 0xFFFFFFFF)
519 function++;
520 else {
521 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code);
522 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type);
523 stop_it++;
529 return 0;
534 * cpqhp_save_base_addr_length
536 * Saves the length of all base address registers for the
537 * specified slot. this is for hot plug REPLACE
539 * returns 0 if success
541 int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func *func)
543 u8 cloop;
544 u8 header_type;
545 u8 secondary_bus;
546 u8 type;
547 int sub_bus;
548 u32 temp_register;
549 u32 base;
550 u32 rc;
551 struct pci_func *next;
552 int index = 0;
553 struct pci_bus *pci_bus = ctrl->pci_bus;
554 unsigned int devfn;
556 func = cpqhp_slot_find(func->bus, func->device, index++);
558 while (func != NULL) {
559 pci_bus->number = func->bus;
560 devfn = PCI_DEVFN(func->device, func->function);
562 /* Check for Bridge */
563 pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
565 if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
566 pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
568 sub_bus = (int) secondary_bus;
570 next = cpqhp_slot_list[sub_bus];
572 while (next != NULL) {
573 rc = cpqhp_save_base_addr_length(ctrl, next);
574 if (rc)
575 return rc;
577 next = next->next;
579 pci_bus->number = func->bus;
581 /* FIXME: this loop is duplicated in the non-bridge
582 * case. The two could be rolled together Figure out
583 * IO and memory base lengths
585 for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
586 temp_register = 0xFFFFFFFF;
587 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
588 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
589 /* If this register is implemented */
590 if (base) {
591 if (base & 0x01L) {
592 /* IO base
593 * set base = amount of IO space
594 * requested
596 base = base & 0xFFFFFFFE;
597 base = (~base) + 1;
599 type = 1;
600 } else {
601 /* memory base */
602 base = base & 0xFFFFFFF0;
603 base = (~base) + 1;
605 type = 0;
607 } else {
608 base = 0x0L;
609 type = 0;
612 /* Save information in slot structure */
613 func->base_length[(cloop - 0x10) >> 2] =
614 base;
615 func->base_type[(cloop - 0x10) >> 2] = type;
617 } /* End of base register loop */
619 } else if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) {
620 /* Figure out IO and memory base lengths */
621 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
622 temp_register = 0xFFFFFFFF;
623 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
624 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
626 /* If this register is implemented */
627 if (base) {
628 if (base & 0x01L) {
629 /* IO base
630 * base = amount of IO space
631 * requested
633 base = base & 0xFFFFFFFE;
634 base = (~base) + 1;
636 type = 1;
637 } else {
638 /* memory base
639 * base = amount of memory
640 * space requested
642 base = base & 0xFFFFFFF0;
643 base = (~base) + 1;
645 type = 0;
647 } else {
648 base = 0x0L;
649 type = 0;
652 /* Save information in slot structure */
653 func->base_length[(cloop - 0x10) >> 2] = base;
654 func->base_type[(cloop - 0x10) >> 2] = type;
656 } /* End of base register loop */
658 } else { /* Some other unknown header type */
661 /* find the next device in this slot */
662 func = cpqhp_slot_find(func->bus, func->device, index++);
665 return(0);
670 * cpqhp_save_used_resources
672 * Stores used resource information for existing boards. this is
673 * for boards that were in the system when this driver was loaded.
674 * this function is for hot plug ADD
676 * returns 0 if success
678 int cpqhp_save_used_resources(struct controller *ctrl, struct pci_func *func)
680 u8 cloop;
681 u8 header_type;
682 u8 secondary_bus;
683 u8 temp_byte;
684 u8 b_base;
685 u8 b_length;
686 u16 command;
687 u16 save_command;
688 u16 w_base;
689 u16 w_length;
690 u32 temp_register;
691 u32 save_base;
692 u32 base;
693 int index = 0;
694 struct pci_resource *mem_node;
695 struct pci_resource *p_mem_node;
696 struct pci_resource *io_node;
697 struct pci_resource *bus_node;
698 struct pci_bus *pci_bus = ctrl->pci_bus;
699 unsigned int devfn;
701 func = cpqhp_slot_find(func->bus, func->device, index++);
703 while ((func != NULL) && func->is_a_board) {
704 pci_bus->number = func->bus;
705 devfn = PCI_DEVFN(func->device, func->function);
707 /* Save the command register */
708 pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command);
710 /* disable card */
711 command = 0x00;
712 pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
714 /* Check for Bridge */
715 pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
717 if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
718 /* Clear Bridge Control Register */
719 command = 0x00;
720 pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
721 pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
722 pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte);
724 bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
725 if (!bus_node)
726 return -ENOMEM;
728 bus_node->base = secondary_bus;
729 bus_node->length = temp_byte - secondary_bus + 1;
731 bus_node->next = func->bus_head;
732 func->bus_head = bus_node;
734 /* Save IO base and Limit registers */
735 pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base);
736 pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length);
738 if ((b_base <= b_length) && (save_command & 0x01)) {
739 io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
740 if (!io_node)
741 return -ENOMEM;
743 io_node->base = (b_base & 0xF0) << 8;
744 io_node->length = (b_length - b_base + 0x10) << 8;
746 io_node->next = func->io_head;
747 func->io_head = io_node;
750 /* Save memory base and Limit registers */
751 pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base);
752 pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length);
754 if ((w_base <= w_length) && (save_command & 0x02)) {
755 mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
756 if (!mem_node)
757 return -ENOMEM;
759 mem_node->base = w_base << 16;
760 mem_node->length = (w_length - w_base + 0x10) << 16;
762 mem_node->next = func->mem_head;
763 func->mem_head = mem_node;
766 /* Save prefetchable memory base and Limit registers */
767 pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base);
768 pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length);
770 if ((w_base <= w_length) && (save_command & 0x02)) {
771 p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
772 if (!p_mem_node)
773 return -ENOMEM;
775 p_mem_node->base = w_base << 16;
776 p_mem_node->length = (w_length - w_base + 0x10) << 16;
778 p_mem_node->next = func->p_mem_head;
779 func->p_mem_head = p_mem_node;
781 /* Figure out IO and memory base lengths */
782 for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
783 pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
785 temp_register = 0xFFFFFFFF;
786 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
787 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
789 temp_register = base;
791 /* If this register is implemented */
792 if (base) {
793 if (((base & 0x03L) == 0x01)
794 && (save_command & 0x01)) {
795 /* IO base
796 * set temp_register = amount
797 * of IO space requested
799 temp_register = base & 0xFFFFFFFE;
800 temp_register = (~temp_register) + 1;
802 io_node = kmalloc(sizeof(*io_node),
803 GFP_KERNEL);
804 if (!io_node)
805 return -ENOMEM;
807 io_node->base =
808 save_base & (~0x03L);
809 io_node->length = temp_register;
811 io_node->next = func->io_head;
812 func->io_head = io_node;
813 } else
814 if (((base & 0x0BL) == 0x08)
815 && (save_command & 0x02)) {
816 /* prefetchable memory base */
817 temp_register = base & 0xFFFFFFF0;
818 temp_register = (~temp_register) + 1;
820 p_mem_node = kmalloc(sizeof(*p_mem_node),
821 GFP_KERNEL);
822 if (!p_mem_node)
823 return -ENOMEM;
825 p_mem_node->base = save_base & (~0x0FL);
826 p_mem_node->length = temp_register;
828 p_mem_node->next = func->p_mem_head;
829 func->p_mem_head = p_mem_node;
830 } else
831 if (((base & 0x0BL) == 0x00)
832 && (save_command & 0x02)) {
833 /* prefetchable memory base */
834 temp_register = base & 0xFFFFFFF0;
835 temp_register = (~temp_register) + 1;
837 mem_node = kmalloc(sizeof(*mem_node),
838 GFP_KERNEL);
839 if (!mem_node)
840 return -ENOMEM;
842 mem_node->base = save_base & (~0x0FL);
843 mem_node->length = temp_register;
845 mem_node->next = func->mem_head;
846 func->mem_head = mem_node;
847 } else
848 return(1);
850 } /* End of base register loop */
851 /* Standard header */
852 } else if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) {
853 /* Figure out IO and memory base lengths */
854 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
855 pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
857 temp_register = 0xFFFFFFFF;
858 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
859 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
861 temp_register = base;
863 /* If this register is implemented */
864 if (base) {
865 if (((base & 0x03L) == 0x01)
866 && (save_command & 0x01)) {
867 /* IO base
868 * set temp_register = amount
869 * of IO space requested
871 temp_register = base & 0xFFFFFFFE;
872 temp_register = (~temp_register) + 1;
874 io_node = kmalloc(sizeof(*io_node),
875 GFP_KERNEL);
876 if (!io_node)
877 return -ENOMEM;
879 io_node->base = save_base & (~0x01L);
880 io_node->length = temp_register;
882 io_node->next = func->io_head;
883 func->io_head = io_node;
884 } else
885 if (((base & 0x0BL) == 0x08)
886 && (save_command & 0x02)) {
887 /* prefetchable memory base */
888 temp_register = base & 0xFFFFFFF0;
889 temp_register = (~temp_register) + 1;
891 p_mem_node = kmalloc(sizeof(*p_mem_node),
892 GFP_KERNEL);
893 if (!p_mem_node)
894 return -ENOMEM;
896 p_mem_node->base = save_base & (~0x0FL);
897 p_mem_node->length = temp_register;
899 p_mem_node->next = func->p_mem_head;
900 func->p_mem_head = p_mem_node;
901 } else
902 if (((base & 0x0BL) == 0x00)
903 && (save_command & 0x02)) {
904 /* prefetchable memory base */
905 temp_register = base & 0xFFFFFFF0;
906 temp_register = (~temp_register) + 1;
908 mem_node = kmalloc(sizeof(*mem_node),
909 GFP_KERNEL);
910 if (!mem_node)
911 return -ENOMEM;
913 mem_node->base = save_base & (~0x0FL);
914 mem_node->length = temp_register;
916 mem_node->next = func->mem_head;
917 func->mem_head = mem_node;
918 } else
919 return(1);
921 } /* End of base register loop */
924 /* find the next device in this slot */
925 func = cpqhp_slot_find(func->bus, func->device, index++);
928 return 0;
933 * cpqhp_configure_board
935 * Copies saved configuration information to one slot.
936 * this is called recursively for bridge devices.
937 * this is for hot plug REPLACE!
939 * returns 0 if success
941 int cpqhp_configure_board(struct controller *ctrl, struct pci_func *func)
943 int cloop;
944 u8 header_type;
945 u8 secondary_bus;
946 int sub_bus;
947 struct pci_func *next;
948 u32 temp;
949 u32 rc;
950 int index = 0;
951 struct pci_bus *pci_bus = ctrl->pci_bus;
952 unsigned int devfn;
954 func = cpqhp_slot_find(func->bus, func->device, index++);
956 while (func != NULL) {
957 pci_bus->number = func->bus;
958 devfn = PCI_DEVFN(func->device, func->function);
960 /* Start at the top of config space so that the control
961 * registers are programmed last
963 for (cloop = 0x3C; cloop > 0; cloop -= 4)
964 pci_bus_write_config_dword(pci_bus, devfn, cloop, func->config_space[cloop >> 2]);
966 pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
968 /* If this is a bridge device, restore subordinate devices */
969 if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
970 pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
972 sub_bus = (int) secondary_bus;
974 next = cpqhp_slot_list[sub_bus];
976 while (next != NULL) {
977 rc = cpqhp_configure_board(ctrl, next);
978 if (rc)
979 return rc;
981 next = next->next;
983 } else {
985 /* Check all the base Address Registers to make sure
986 * they are the same. If not, the board is different.
989 for (cloop = 16; cloop < 40; cloop += 4) {
990 pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp);
992 if (temp != func->config_space[cloop >> 2]) {
993 dbg("Config space compare failure!!! offset = %x\n", cloop);
994 dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
995 dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]);
996 return 1;
1001 func->configured = 1;
1003 func = cpqhp_slot_find(func->bus, func->device, index++);
1006 return 0;
1011 * cpqhp_valid_replace
1013 * this function checks to see if a board is the same as the
1014 * one it is replacing. this check will detect if the device's
1015 * vendor or device id's are the same
1017 * returns 0 if the board is the same nonzero otherwise
1019 int cpqhp_valid_replace(struct controller *ctrl, struct pci_func *func)
1021 u8 cloop;
1022 u8 header_type;
1023 u8 secondary_bus;
1024 u8 type;
1025 u32 temp_register = 0;
1026 u32 base;
1027 u32 rc;
1028 struct pci_func *next;
1029 int index = 0;
1030 struct pci_bus *pci_bus = ctrl->pci_bus;
1031 unsigned int devfn;
1033 if (!func->is_a_board)
1034 return(ADD_NOT_SUPPORTED);
1036 func = cpqhp_slot_find(func->bus, func->device, index++);
1038 while (func != NULL) {
1039 pci_bus->number = func->bus;
1040 devfn = PCI_DEVFN(func->device, func->function);
1042 pci_bus_read_config_dword(pci_bus, devfn, PCI_VENDOR_ID, &temp_register);
1044 /* No adapter present */
1045 if (temp_register == 0xFFFFFFFF)
1046 return(NO_ADAPTER_PRESENT);
1048 if (temp_register != func->config_space[0])
1049 return(ADAPTER_NOT_SAME);
1051 /* Check for same revision number and class code */
1052 pci_bus_read_config_dword(pci_bus, devfn, PCI_CLASS_REVISION, &temp_register);
1054 /* Adapter not the same */
1055 if (temp_register != func->config_space[0x08 >> 2])
1056 return(ADAPTER_NOT_SAME);
1058 /* Check for Bridge */
1059 pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
1061 if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
1062 /* In order to continue checking, we must program the
1063 * bus registers in the bridge to respond to accesses
1064 * for its subordinate bus(es)
1067 temp_register = func->config_space[0x18 >> 2];
1068 pci_bus_write_config_dword(pci_bus, devfn, PCI_PRIMARY_BUS, temp_register);
1070 secondary_bus = (temp_register >> 8) & 0xFF;
1072 next = cpqhp_slot_list[secondary_bus];
1074 while (next != NULL) {
1075 rc = cpqhp_valid_replace(ctrl, next);
1076 if (rc)
1077 return rc;
1079 next = next->next;
1083 /* Check to see if it is a standard config header */
1084 else if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) {
1085 /* Check subsystem vendor and ID */
1086 pci_bus_read_config_dword(pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register);
1088 if (temp_register != func->config_space[0x2C >> 2]) {
1089 /* If it's a SMART-2 and the register isn't
1090 * filled in, ignore the difference because
1091 * they just have an old rev of the firmware
1093 if (!((func->config_space[0] == 0xAE100E11)
1094 && (temp_register == 0x00L)))
1095 return(ADAPTER_NOT_SAME);
1097 /* Figure out IO and memory base lengths */
1098 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
1099 temp_register = 0xFFFFFFFF;
1100 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
1101 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
1103 /* If this register is implemented */
1104 if (base) {
1105 if (base & 0x01L) {
1106 /* IO base
1107 * set base = amount of IO
1108 * space requested
1110 base = base & 0xFFFFFFFE;
1111 base = (~base) + 1;
1113 type = 1;
1114 } else {
1115 /* memory base */
1116 base = base & 0xFFFFFFF0;
1117 base = (~base) + 1;
1119 type = 0;
1121 } else {
1122 base = 0x0L;
1123 type = 0;
1126 /* Check information in slot structure */
1127 if (func->base_length[(cloop - 0x10) >> 2] != base)
1128 return(ADAPTER_NOT_SAME);
1130 if (func->base_type[(cloop - 0x10) >> 2] != type)
1131 return(ADAPTER_NOT_SAME);
1133 } /* End of base register loop */
1135 } /* End of (type 0 config space) else */
1136 else {
1137 /* this is not a type 0 or 1 config space header so
1138 * we don't know how to do it
1140 return(DEVICE_TYPE_NOT_SUPPORTED);
1143 /* Get the next function */
1144 func = cpqhp_slot_find(func->bus, func->device, index++);
1148 return 0;
1153 * cpqhp_find_available_resources
1155 * Finds available memory, IO, and IRQ resources for programming
1156 * devices which may be added to the system
1157 * this function is for hot plug ADD!
1159 * returns 0 if success
1161 int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start)
1163 u8 temp;
1164 u8 populated_slot;
1165 u8 bridged_slot;
1166 void __iomem *one_slot;
1167 void __iomem *rom_resource_table;
1168 struct pci_func *func = NULL;
1169 int i = 10, index;
1170 u32 temp_dword, rc;
1171 struct pci_resource *mem_node;
1172 struct pci_resource *p_mem_node;
1173 struct pci_resource *io_node;
1174 struct pci_resource *bus_node;
1176 rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff);
1177 dbg("rom_resource_table = %p\n", rom_resource_table);
1179 if (rom_resource_table == NULL)
1180 return -ENODEV;
1182 /* Sum all resources and setup resource maps */
1183 unused_IRQ = readl(rom_resource_table + UNUSED_IRQ);
1184 dbg("unused_IRQ = %x\n", unused_IRQ);
1186 temp = 0;
1187 while (unused_IRQ) {
1188 if (unused_IRQ & 1) {
1189 cpqhp_disk_irq = temp;
1190 break;
1192 unused_IRQ = unused_IRQ >> 1;
1193 temp++;
1196 dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
1197 unused_IRQ = unused_IRQ >> 1;
1198 temp++;
1200 while (unused_IRQ) {
1201 if (unused_IRQ & 1) {
1202 cpqhp_nic_irq = temp;
1203 break;
1205 unused_IRQ = unused_IRQ >> 1;
1206 temp++;
1209 dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
1210 unused_IRQ = readl(rom_resource_table + PCIIRQ);
1212 temp = 0;
1214 if (!cpqhp_nic_irq)
1215 cpqhp_nic_irq = ctrl->cfgspc_irq;
1217 if (!cpqhp_disk_irq)
1218 cpqhp_disk_irq = ctrl->cfgspc_irq;
1220 dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
1222 rc = compaq_nvram_load(rom_start, ctrl);
1223 if (rc)
1224 return rc;
1226 one_slot = rom_resource_table + sizeof(struct hrt);
1228 i = readb(rom_resource_table + NUMBER_OF_ENTRIES);
1229 dbg("number_of_entries = %d\n", i);
1231 if (!readb(one_slot + SECONDARY_BUS))
1232 return 1;
1234 dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1236 while (i && readb(one_slot + SECONDARY_BUS)) {
1237 u8 dev_func = readb(one_slot + DEV_FUNC);
1238 u8 primary_bus = readb(one_slot + PRIMARY_BUS);
1239 u8 secondary_bus = readb(one_slot + SECONDARY_BUS);
1240 u8 max_bus = readb(one_slot + MAX_BUS);
1241 u16 io_base = readw(one_slot + IO_BASE);
1242 u16 io_length = readw(one_slot + IO_LENGTH);
1243 u16 mem_base = readw(one_slot + MEM_BASE);
1244 u16 mem_length = readw(one_slot + MEM_LENGTH);
1245 u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE);
1246 u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH);
1248 dbg("%2.2x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x |%2.2x %2.2x %2.2x\n",
1249 dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
1250 primary_bus, secondary_bus, max_bus);
1252 /* If this entry isn't for our controller's bus, ignore it */
1253 if (primary_bus != ctrl->bus) {
1254 i--;
1255 one_slot += sizeof(struct slot_rt);
1256 continue;
1258 /* find out if this entry is for an occupied slot */
1259 ctrl->pci_bus->number = primary_bus;
1260 pci_bus_read_config_dword(ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword);
1261 dbg("temp_D_word = %x\n", temp_dword);
1263 if (temp_dword != 0xFFFFFFFF) {
1264 index = 0;
1265 func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0);
1267 while (func && (func->function != (dev_func & 0x07))) {
1268 dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
1269 func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++);
1272 /* If we can't find a match, skip this table entry */
1273 if (!func) {
1274 i--;
1275 one_slot += sizeof(struct slot_rt);
1276 continue;
1278 /* this may not work and shouldn't be used */
1279 if (secondary_bus != primary_bus)
1280 bridged_slot = 1;
1281 else
1282 bridged_slot = 0;
1284 populated_slot = 1;
1285 } else {
1286 populated_slot = 0;
1287 bridged_slot = 0;
1291 /* If we've got a valid IO base, use it */
1293 temp_dword = io_base + io_length;
1295 if ((io_base) && (temp_dword < 0x10000)) {
1296 io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
1297 if (!io_node)
1298 return -ENOMEM;
1300 io_node->base = io_base;
1301 io_node->length = io_length;
1303 dbg("found io_node(base, length) = %x, %x\n",
1304 io_node->base, io_node->length);
1305 dbg("populated slot =%d \n", populated_slot);
1306 if (!populated_slot) {
1307 io_node->next = ctrl->io_head;
1308 ctrl->io_head = io_node;
1309 } else {
1310 io_node->next = func->io_head;
1311 func->io_head = io_node;
1315 /* If we've got a valid memory base, use it */
1316 temp_dword = mem_base + mem_length;
1317 if ((mem_base) && (temp_dword < 0x10000)) {
1318 mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
1319 if (!mem_node)
1320 return -ENOMEM;
1322 mem_node->base = mem_base << 16;
1324 mem_node->length = mem_length << 16;
1326 dbg("found mem_node(base, length) = %x, %x\n",
1327 mem_node->base, mem_node->length);
1328 dbg("populated slot =%d \n", populated_slot);
1329 if (!populated_slot) {
1330 mem_node->next = ctrl->mem_head;
1331 ctrl->mem_head = mem_node;
1332 } else {
1333 mem_node->next = func->mem_head;
1334 func->mem_head = mem_node;
1338 /* If we've got a valid prefetchable memory base, and
1339 * the base + length isn't greater than 0xFFFF
1341 temp_dword = pre_mem_base + pre_mem_length;
1342 if ((pre_mem_base) && (temp_dword < 0x10000)) {
1343 p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
1344 if (!p_mem_node)
1345 return -ENOMEM;
1347 p_mem_node->base = pre_mem_base << 16;
1349 p_mem_node->length = pre_mem_length << 16;
1350 dbg("found p_mem_node(base, length) = %x, %x\n",
1351 p_mem_node->base, p_mem_node->length);
1352 dbg("populated slot =%d \n", populated_slot);
1354 if (!populated_slot) {
1355 p_mem_node->next = ctrl->p_mem_head;
1356 ctrl->p_mem_head = p_mem_node;
1357 } else {
1358 p_mem_node->next = func->p_mem_head;
1359 func->p_mem_head = p_mem_node;
1363 /* If we've got a valid bus number, use it
1364 * The second condition is to ignore bus numbers on
1365 * populated slots that don't have PCI-PCI bridges
1367 if (secondary_bus && (secondary_bus != primary_bus)) {
1368 bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
1369 if (!bus_node)
1370 return -ENOMEM;
1372 bus_node->base = secondary_bus;
1373 bus_node->length = max_bus - secondary_bus + 1;
1374 dbg("found bus_node(base, length) = %x, %x\n",
1375 bus_node->base, bus_node->length);
1376 dbg("populated slot =%d \n", populated_slot);
1377 if (!populated_slot) {
1378 bus_node->next = ctrl->bus_head;
1379 ctrl->bus_head = bus_node;
1380 } else {
1381 bus_node->next = func->bus_head;
1382 func->bus_head = bus_node;
1386 i--;
1387 one_slot += sizeof(struct slot_rt);
1390 /* If all of the following fail, we don't have any resources for
1391 * hot plug add
1393 rc = 1;
1394 rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1395 rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1396 rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1397 rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1399 return rc;
1404 * cpqhp_return_board_resources
1406 * this routine returns all resources allocated to a board to
1407 * the available pool.
1409 * returns 0 if success
1411 int cpqhp_return_board_resources(struct pci_func *func, struct resource_lists *resources)
1413 int rc = 0;
1414 struct pci_resource *node;
1415 struct pci_resource *t_node;
1416 dbg("%s\n", __func__);
1418 if (!func)
1419 return 1;
1421 node = func->io_head;
1422 func->io_head = NULL;
1423 while (node) {
1424 t_node = node->next;
1425 return_resource(&(resources->io_head), node);
1426 node = t_node;
1429 node = func->mem_head;
1430 func->mem_head = NULL;
1431 while (node) {
1432 t_node = node->next;
1433 return_resource(&(resources->mem_head), node);
1434 node = t_node;
1437 node = func->p_mem_head;
1438 func->p_mem_head = NULL;
1439 while (node) {
1440 t_node = node->next;
1441 return_resource(&(resources->p_mem_head), node);
1442 node = t_node;
1445 node = func->bus_head;
1446 func->bus_head = NULL;
1447 while (node) {
1448 t_node = node->next;
1449 return_resource(&(resources->bus_head), node);
1450 node = t_node;
1453 rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head));
1454 rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head));
1455 rc |= cpqhp_resource_sort_and_combine(&(resources->io_head));
1456 rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head));
1458 return rc;
1463 * cpqhp_destroy_resource_list
1465 * Puts node back in the resource list pointed to by head
1467 void cpqhp_destroy_resource_list(struct resource_lists *resources)
1469 struct pci_resource *res, *tres;
1471 res = resources->io_head;
1472 resources->io_head = NULL;
1474 while (res) {
1475 tres = res;
1476 res = res->next;
1477 kfree(tres);
1480 res = resources->mem_head;
1481 resources->mem_head = NULL;
1483 while (res) {
1484 tres = res;
1485 res = res->next;
1486 kfree(tres);
1489 res = resources->p_mem_head;
1490 resources->p_mem_head = NULL;
1492 while (res) {
1493 tres = res;
1494 res = res->next;
1495 kfree(tres);
1498 res = resources->bus_head;
1499 resources->bus_head = NULL;
1501 while (res) {
1502 tres = res;
1503 res = res->next;
1504 kfree(tres);
1510 * cpqhp_destroy_board_resources
1512 * Puts node back in the resource list pointed to by head
1514 void cpqhp_destroy_board_resources(struct pci_func *func)
1516 struct pci_resource *res, *tres;
1518 res = func->io_head;
1519 func->io_head = NULL;
1521 while (res) {
1522 tres = res;
1523 res = res->next;
1524 kfree(tres);
1527 res = func->mem_head;
1528 func->mem_head = NULL;
1530 while (res) {
1531 tres = res;
1532 res = res->next;
1533 kfree(tres);
1536 res = func->p_mem_head;
1537 func->p_mem_head = NULL;
1539 while (res) {
1540 tres = res;
1541 res = res->next;
1542 kfree(tres);
1545 res = func->bus_head;
1546 func->bus_head = NULL;
1548 while (res) {
1549 tres = res;
1550 res = res->next;
1551 kfree(tres);