1 // SPDX-License-Identifier: GPL-2.0-only
5 * ARM performance counter support.
7 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
10 * This code is based on the sparc64 perf event code, which is in turn based
13 #define pr_fmt(fmt) "hw perfevents: " fmt
15 #include <linux/bitmap.h>
16 #include <linux/cpumask.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
27 #include <asm/irq_regs.h>
29 static int armpmu_count_irq_users(const int irq
);
32 void (*enable_pmuirq
)(unsigned int irq
);
33 void (*disable_pmuirq
)(unsigned int irq
);
34 void (*free_pmuirq
)(unsigned int irq
, int cpu
, void __percpu
*devid
);
37 static void armpmu_free_pmuirq(unsigned int irq
, int cpu
, void __percpu
*devid
)
39 free_irq(irq
, per_cpu_ptr(devid
, cpu
));
42 static const struct pmu_irq_ops pmuirq_ops
= {
43 .enable_pmuirq
= enable_irq
,
44 .disable_pmuirq
= disable_irq_nosync
,
45 .free_pmuirq
= armpmu_free_pmuirq
48 static void armpmu_free_pmunmi(unsigned int irq
, int cpu
, void __percpu
*devid
)
50 free_nmi(irq
, per_cpu_ptr(devid
, cpu
));
53 static const struct pmu_irq_ops pmunmi_ops
= {
54 .enable_pmuirq
= enable_nmi
,
55 .disable_pmuirq
= disable_nmi_nosync
,
56 .free_pmuirq
= armpmu_free_pmunmi
59 static void armpmu_enable_percpu_pmuirq(unsigned int irq
)
61 enable_percpu_irq(irq
, IRQ_TYPE_NONE
);
64 static void armpmu_free_percpu_pmuirq(unsigned int irq
, int cpu
,
67 if (armpmu_count_irq_users(irq
) == 1)
68 free_percpu_irq(irq
, devid
);
71 static const struct pmu_irq_ops percpu_pmuirq_ops
= {
72 .enable_pmuirq
= armpmu_enable_percpu_pmuirq
,
73 .disable_pmuirq
= disable_percpu_irq
,
74 .free_pmuirq
= armpmu_free_percpu_pmuirq
77 static void armpmu_enable_percpu_pmunmi(unsigned int irq
)
79 if (!prepare_percpu_nmi(irq
))
80 enable_percpu_nmi(irq
, IRQ_TYPE_NONE
);
83 static void armpmu_disable_percpu_pmunmi(unsigned int irq
)
85 disable_percpu_nmi(irq
);
86 teardown_percpu_nmi(irq
);
89 static void armpmu_free_percpu_pmunmi(unsigned int irq
, int cpu
,
92 if (armpmu_count_irq_users(irq
) == 1)
93 free_percpu_nmi(irq
, devid
);
96 static const struct pmu_irq_ops percpu_pmunmi_ops
= {
97 .enable_pmuirq
= armpmu_enable_percpu_pmunmi
,
98 .disable_pmuirq
= armpmu_disable_percpu_pmunmi
,
99 .free_pmuirq
= armpmu_free_percpu_pmunmi
102 static DEFINE_PER_CPU(struct arm_pmu
*, cpu_armpmu
);
103 static DEFINE_PER_CPU(int, cpu_irq
);
104 static DEFINE_PER_CPU(const struct pmu_irq_ops
*, cpu_irq_ops
);
108 static inline u64
arm_pmu_event_max_period(struct perf_event
*event
)
110 if (event
->hw
.flags
& ARMPMU_EVT_64BIT
)
111 return GENMASK_ULL(63, 0);
112 else if (event
->hw
.flags
& ARMPMU_EVT_63BIT
)
113 return GENMASK_ULL(62, 0);
114 else if (event
->hw
.flags
& ARMPMU_EVT_47BIT
)
115 return GENMASK_ULL(46, 0);
117 return GENMASK_ULL(31, 0);
121 armpmu_map_cache_event(const unsigned (*cache_map
)
122 [PERF_COUNT_HW_CACHE_MAX
]
123 [PERF_COUNT_HW_CACHE_OP_MAX
]
124 [PERF_COUNT_HW_CACHE_RESULT_MAX
],
127 unsigned int cache_type
, cache_op
, cache_result
, ret
;
129 cache_type
= (config
>> 0) & 0xff;
130 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
133 cache_op
= (config
>> 8) & 0xff;
134 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
137 cache_result
= (config
>> 16) & 0xff;
138 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
144 ret
= (int)(*cache_map
)[cache_type
][cache_op
][cache_result
];
146 if (ret
== CACHE_OP_UNSUPPORTED
)
153 armpmu_map_hw_event(const unsigned (*event_map
)[PERF_COUNT_HW_MAX
], u64 config
)
157 if (config
>= PERF_COUNT_HW_MAX
)
163 mapping
= (*event_map
)[config
];
164 return mapping
== HW_OP_UNSUPPORTED
? -ENOENT
: mapping
;
168 armpmu_map_raw_event(u32 raw_event_mask
, u64 config
)
170 return (int)(config
& raw_event_mask
);
174 armpmu_map_event(struct perf_event
*event
,
175 const unsigned (*event_map
)[PERF_COUNT_HW_MAX
],
176 const unsigned (*cache_map
)
177 [PERF_COUNT_HW_CACHE_MAX
]
178 [PERF_COUNT_HW_CACHE_OP_MAX
]
179 [PERF_COUNT_HW_CACHE_RESULT_MAX
],
182 u64 config
= event
->attr
.config
;
183 int type
= event
->attr
.type
;
185 if (type
== event
->pmu
->type
)
186 return armpmu_map_raw_event(raw_event_mask
, config
);
189 case PERF_TYPE_HARDWARE
:
190 return armpmu_map_hw_event(event_map
, config
);
191 case PERF_TYPE_HW_CACHE
:
192 return armpmu_map_cache_event(cache_map
, config
);
194 return armpmu_map_raw_event(raw_event_mask
, config
);
200 int armpmu_event_set_period(struct perf_event
*event
)
202 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
203 struct hw_perf_event
*hwc
= &event
->hw
;
204 s64 left
= local64_read(&hwc
->period_left
);
205 s64 period
= hwc
->sample_period
;
209 max_period
= arm_pmu_event_max_period(event
);
210 if (unlikely(left
<= -period
)) {
212 local64_set(&hwc
->period_left
, left
);
213 hwc
->last_period
= period
;
217 if (unlikely(left
<= 0)) {
219 local64_set(&hwc
->period_left
, left
);
220 hwc
->last_period
= period
;
225 * Limit the maximum period to prevent the counter value
226 * from overtaking the one we are about to program. In
227 * effect we are reducing max_period to account for
228 * interrupt latency (and we are being very conservative).
230 if (left
> (max_period
>> 1))
231 left
= (max_period
>> 1);
233 local64_set(&hwc
->prev_count
, (u64
)-left
);
235 armpmu
->write_counter(event
, (u64
)(-left
) & max_period
);
237 perf_event_update_userpage(event
);
242 u64
armpmu_event_update(struct perf_event
*event
)
244 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
245 struct hw_perf_event
*hwc
= &event
->hw
;
246 u64 delta
, prev_raw_count
, new_raw_count
;
247 u64 max_period
= arm_pmu_event_max_period(event
);
250 prev_raw_count
= local64_read(&hwc
->prev_count
);
251 new_raw_count
= armpmu
->read_counter(event
);
253 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
254 new_raw_count
) != prev_raw_count
)
257 delta
= (new_raw_count
- prev_raw_count
) & max_period
;
259 local64_add(delta
, &event
->count
);
260 local64_sub(delta
, &hwc
->period_left
);
262 return new_raw_count
;
266 armpmu_read(struct perf_event
*event
)
268 armpmu_event_update(event
);
272 armpmu_stop(struct perf_event
*event
, int flags
)
274 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
275 struct hw_perf_event
*hwc
= &event
->hw
;
278 * ARM pmu always has to update the counter, so ignore
279 * PERF_EF_UPDATE, see comments in armpmu_start().
281 if (!(hwc
->state
& PERF_HES_STOPPED
)) {
282 armpmu
->disable(event
);
283 armpmu_event_update(event
);
284 hwc
->state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
288 static void armpmu_start(struct perf_event
*event
, int flags
)
290 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
291 struct hw_perf_event
*hwc
= &event
->hw
;
294 * ARM pmu always has to reprogram the period, so ignore
295 * PERF_EF_RELOAD, see the comment below.
297 if (flags
& PERF_EF_RELOAD
)
298 WARN_ON_ONCE(!(hwc
->state
& PERF_HES_UPTODATE
));
302 * Set the period again. Some counters can't be stopped, so when we
303 * were stopped we simply disabled the IRQ source and the counter
304 * may have been left counting. If we don't do this step then we may
305 * get an interrupt too soon or *way* too late if the overflow has
306 * happened since disabling.
308 armpmu_event_set_period(event
);
309 armpmu
->enable(event
);
313 armpmu_del(struct perf_event
*event
, int flags
)
315 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
316 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
317 struct hw_perf_event
*hwc
= &event
->hw
;
320 armpmu_stop(event
, PERF_EF_UPDATE
);
321 hw_events
->events
[idx
] = NULL
;
322 armpmu
->clear_event_idx(hw_events
, event
);
323 perf_event_update_userpage(event
);
324 /* Clear the allocated counter */
329 armpmu_add(struct perf_event
*event
, int flags
)
331 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
332 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
333 struct hw_perf_event
*hwc
= &event
->hw
;
336 /* An event following a process won't be stopped earlier */
337 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
340 /* If we don't have a space for the counter then finish early. */
341 idx
= armpmu
->get_event_idx(hw_events
, event
);
346 * If there is an event in the counter we are going to use then make
347 * sure it is disabled.
350 armpmu
->disable(event
);
351 hw_events
->events
[idx
] = event
;
353 hwc
->state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
354 if (flags
& PERF_EF_START
)
355 armpmu_start(event
, PERF_EF_RELOAD
);
357 /* Propagate our changes to the userspace mapping. */
358 perf_event_update_userpage(event
);
364 validate_event(struct pmu
*pmu
, struct pmu_hw_events
*hw_events
,
365 struct perf_event
*event
)
367 struct arm_pmu
*armpmu
;
369 if (is_software_event(event
))
373 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
374 * core perf code won't check that the pmu->ctx == leader->ctx
375 * until after pmu->event_init(event).
377 if (event
->pmu
!= pmu
)
380 if (event
->state
< PERF_EVENT_STATE_OFF
)
383 if (event
->state
== PERF_EVENT_STATE_OFF
&& !event
->attr
.enable_on_exec
)
386 armpmu
= to_arm_pmu(event
->pmu
);
387 return armpmu
->get_event_idx(hw_events
, event
) >= 0;
391 validate_group(struct perf_event
*event
)
393 struct perf_event
*sibling
, *leader
= event
->group_leader
;
394 struct pmu_hw_events fake_pmu
;
397 * Initialise the fake PMU. We only need to populate the
398 * used_mask for the purposes of validation.
400 memset(&fake_pmu
.used_mask
, 0, sizeof(fake_pmu
.used_mask
));
402 if (!validate_event(event
->pmu
, &fake_pmu
, leader
))
408 for_each_sibling_event(sibling
, leader
) {
409 if (!validate_event(event
->pmu
, &fake_pmu
, sibling
))
413 if (!validate_event(event
->pmu
, &fake_pmu
, event
))
419 static irqreturn_t
armpmu_dispatch_irq(int irq
, void *dev
)
421 struct arm_pmu
*armpmu
;
423 u64 start_clock
, finish_clock
;
426 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
427 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
428 * do any necessary shifting, we just need to perform the first
431 armpmu
= *(void **)dev
;
432 if (WARN_ON_ONCE(!armpmu
))
435 start_clock
= sched_clock();
436 ret
= armpmu
->handle_irq(armpmu
);
437 finish_clock
= sched_clock();
439 perf_sample_event_took(finish_clock
- start_clock
);
444 __hw_perf_event_init(struct perf_event
*event
)
446 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
447 struct hw_perf_event
*hwc
= &event
->hw
;
451 mapping
= armpmu
->map_event(event
);
454 pr_debug("event %x:%llx not supported\n", event
->attr
.type
,
460 * We don't assign an index until we actually place the event onto
461 * hardware. Use -1 to signify that we haven't decided where to put it
462 * yet. For SMP systems, each core has it's own PMU so we can't do any
463 * clever allocation or constraints checking at this point.
466 hwc
->config_base
= 0;
471 * Check whether we need to exclude the counter from certain modes.
473 if (armpmu
->set_event_filter
) {
474 ret
= armpmu
->set_event_filter(hwc
, &event
->attr
);
480 * Store the event encoding into the config_base field.
482 hwc
->config_base
|= (unsigned long)mapping
;
484 if (!is_sampling_event(event
)) {
486 * For non-sampling runs, limit the sample_period to half
487 * of the counter width. That way, the new counter value
488 * is far less likely to overtake the previous one unless
489 * you have some serious IRQ latency issues.
491 hwc
->sample_period
= arm_pmu_event_max_period(event
) >> 1;
492 hwc
->last_period
= hwc
->sample_period
;
493 local64_set(&hwc
->period_left
, hwc
->sample_period
);
496 return validate_group(event
);
499 static int armpmu_event_init(struct perf_event
*event
)
501 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
504 * Reject CPU-affine events for CPUs that are of a different class to
505 * that which this PMU handles. Process-following events (where
506 * event->cpu == -1) can be migrated between CPUs, and thus we have to
507 * reject them later (in armpmu_add) if they're scheduled on a
508 * different class of CPU.
510 if (event
->cpu
!= -1 &&
511 !cpumask_test_cpu(event
->cpu
, &armpmu
->supported_cpus
))
514 /* does not support taken branch sampling */
515 if (has_branch_stack(event
))
518 return __hw_perf_event_init(event
);
521 static void armpmu_enable(struct pmu
*pmu
)
523 struct arm_pmu
*armpmu
= to_arm_pmu(pmu
);
524 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
525 bool enabled
= !bitmap_empty(hw_events
->used_mask
, ARMPMU_MAX_HWEVENTS
);
527 /* For task-bound events we may be called on other CPUs */
528 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
532 armpmu
->start(armpmu
);
535 static void armpmu_disable(struct pmu
*pmu
)
537 struct arm_pmu
*armpmu
= to_arm_pmu(pmu
);
539 /* For task-bound events we may be called on other CPUs */
540 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
543 armpmu
->stop(armpmu
);
547 * In heterogeneous systems, events are specific to a particular
548 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
549 * the same microarchitecture.
551 static bool armpmu_filter(struct pmu
*pmu
, int cpu
)
553 struct arm_pmu
*armpmu
= to_arm_pmu(pmu
);
554 return !cpumask_test_cpu(cpu
, &armpmu
->supported_cpus
);
557 static ssize_t
cpus_show(struct device
*dev
,
558 struct device_attribute
*attr
, char *buf
)
560 struct arm_pmu
*armpmu
= to_arm_pmu(dev_get_drvdata(dev
));
561 return cpumap_print_to_pagebuf(true, buf
, &armpmu
->supported_cpus
);
564 static DEVICE_ATTR_RO(cpus
);
566 static struct attribute
*armpmu_common_attrs
[] = {
571 static const struct attribute_group armpmu_common_attr_group
= {
572 .attrs
= armpmu_common_attrs
,
575 static int armpmu_count_irq_users(const int irq
)
579 for_each_possible_cpu(cpu
) {
580 if (per_cpu(cpu_irq
, cpu
) == irq
)
587 static const struct pmu_irq_ops
*armpmu_find_irq_ops(int irq
)
589 const struct pmu_irq_ops
*ops
= NULL
;
592 for_each_possible_cpu(cpu
) {
593 if (per_cpu(cpu_irq
, cpu
) != irq
)
596 ops
= per_cpu(cpu_irq_ops
, cpu
);
604 void armpmu_free_irq(int irq
, int cpu
)
606 if (per_cpu(cpu_irq
, cpu
) == 0)
608 if (WARN_ON(irq
!= per_cpu(cpu_irq
, cpu
)))
611 per_cpu(cpu_irq_ops
, cpu
)->free_pmuirq(irq
, cpu
, &cpu_armpmu
);
613 per_cpu(cpu_irq
, cpu
) = 0;
614 per_cpu(cpu_irq_ops
, cpu
) = NULL
;
617 int armpmu_request_irq(int irq
, int cpu
)
620 const irq_handler_t handler
= armpmu_dispatch_irq
;
621 const struct pmu_irq_ops
*irq_ops
;
626 if (!irq_is_percpu_devid(irq
)) {
627 unsigned long irq_flags
;
629 err
= irq_force_affinity(irq
, cpumask_of(cpu
));
631 if (err
&& num_possible_cpus() > 1) {
632 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
637 irq_flags
= IRQF_PERCPU
|
638 IRQF_NOBALANCING
| IRQF_NO_AUTOEN
|
641 err
= request_nmi(irq
, handler
, irq_flags
, "arm-pmu",
642 per_cpu_ptr(&cpu_armpmu
, cpu
));
644 /* If cannot get an NMI, get a normal interrupt */
646 err
= request_irq(irq
, handler
, irq_flags
, "arm-pmu",
647 per_cpu_ptr(&cpu_armpmu
, cpu
));
648 irq_ops
= &pmuirq_ops
;
651 irq_ops
= &pmunmi_ops
;
653 } else if (armpmu_count_irq_users(irq
) == 0) {
654 err
= request_percpu_nmi(irq
, handler
, "arm-pmu", &cpu_armpmu
);
656 /* If cannot get an NMI, get a normal interrupt */
658 err
= request_percpu_irq(irq
, handler
, "arm-pmu",
660 irq_ops
= &percpu_pmuirq_ops
;
663 irq_ops
= &percpu_pmunmi_ops
;
666 /* Per cpudevid irq was already requested by another CPU */
667 irq_ops
= armpmu_find_irq_ops(irq
);
669 if (WARN_ON(!irq_ops
))
676 per_cpu(cpu_irq
, cpu
) = irq
;
677 per_cpu(cpu_irq_ops
, cpu
) = irq_ops
;
681 pr_err("unable to request IRQ%d for ARM PMU counters\n", irq
);
685 static int armpmu_get_cpu_irq(struct arm_pmu
*pmu
, int cpu
)
687 struct pmu_hw_events __percpu
*hw_events
= pmu
->hw_events
;
688 return per_cpu(hw_events
->irq
, cpu
);
691 bool arm_pmu_irq_is_nmi(void)
697 * PMU hardware loses all context when a CPU goes offline.
698 * When a CPU is hotplugged back in, since some hardware registers are
699 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
700 * junk values out of them.
702 static int arm_perf_starting_cpu(unsigned int cpu
, struct hlist_node
*node
)
704 struct arm_pmu
*pmu
= hlist_entry_safe(node
, struct arm_pmu
, node
);
707 if (!cpumask_test_cpu(cpu
, &pmu
->supported_cpus
))
712 per_cpu(cpu_armpmu
, cpu
) = pmu
;
714 irq
= armpmu_get_cpu_irq(pmu
, cpu
);
716 per_cpu(cpu_irq_ops
, cpu
)->enable_pmuirq(irq
);
721 static int arm_perf_teardown_cpu(unsigned int cpu
, struct hlist_node
*node
)
723 struct arm_pmu
*pmu
= hlist_entry_safe(node
, struct arm_pmu
, node
);
726 if (!cpumask_test_cpu(cpu
, &pmu
->supported_cpus
))
729 irq
= armpmu_get_cpu_irq(pmu
, cpu
);
731 per_cpu(cpu_irq_ops
, cpu
)->disable_pmuirq(irq
);
733 per_cpu(cpu_armpmu
, cpu
) = NULL
;
739 static void cpu_pm_pmu_setup(struct arm_pmu
*armpmu
, unsigned long cmd
)
741 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
742 struct perf_event
*event
;
745 for_each_set_bit(idx
, armpmu
->cntr_mask
, ARMPMU_MAX_HWEVENTS
) {
746 event
= hw_events
->events
[idx
];
753 * Stop and update the counter
755 armpmu_stop(event
, PERF_EF_UPDATE
);
758 case CPU_PM_ENTER_FAILED
:
760 * Restore and enable the counter.
762 armpmu_start(event
, PERF_EF_RELOAD
);
770 static int cpu_pm_pmu_notify(struct notifier_block
*b
, unsigned long cmd
,
773 struct arm_pmu
*armpmu
= container_of(b
, struct arm_pmu
, cpu_pm_nb
);
774 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
775 bool enabled
= !bitmap_empty(hw_events
->used_mask
, ARMPMU_MAX_HWEVENTS
);
777 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
781 * Always reset the PMU registers on power-up even if
782 * there are no events running.
784 if (cmd
== CPU_PM_EXIT
&& armpmu
->reset
)
785 armpmu
->reset(armpmu
);
792 armpmu
->stop(armpmu
);
793 cpu_pm_pmu_setup(armpmu
, cmd
);
796 case CPU_PM_ENTER_FAILED
:
797 cpu_pm_pmu_setup(armpmu
, cmd
);
798 armpmu
->start(armpmu
);
807 static int cpu_pm_pmu_register(struct arm_pmu
*cpu_pmu
)
809 cpu_pmu
->cpu_pm_nb
.notifier_call
= cpu_pm_pmu_notify
;
810 return cpu_pm_register_notifier(&cpu_pmu
->cpu_pm_nb
);
813 static void cpu_pm_pmu_unregister(struct arm_pmu
*cpu_pmu
)
815 cpu_pm_unregister_notifier(&cpu_pmu
->cpu_pm_nb
);
818 static inline int cpu_pm_pmu_register(struct arm_pmu
*cpu_pmu
) { return 0; }
819 static inline void cpu_pm_pmu_unregister(struct arm_pmu
*cpu_pmu
) { }
822 static int cpu_pmu_init(struct arm_pmu
*cpu_pmu
)
826 err
= cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING
,
831 err
= cpu_pm_pmu_register(cpu_pmu
);
838 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING
,
844 static void cpu_pmu_destroy(struct arm_pmu
*cpu_pmu
)
846 cpu_pm_pmu_unregister(cpu_pmu
);
847 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING
,
851 struct arm_pmu
*armpmu_alloc(void)
856 pmu
= kzalloc(sizeof(*pmu
), GFP_KERNEL
);
860 pmu
->hw_events
= alloc_percpu_gfp(struct pmu_hw_events
, GFP_KERNEL
);
861 if (!pmu
->hw_events
) {
862 pr_info("failed to allocate per-cpu PMU data.\n");
866 pmu
->pmu
= (struct pmu
) {
867 .pmu_enable
= armpmu_enable
,
868 .pmu_disable
= armpmu_disable
,
869 .event_init
= armpmu_event_init
,
872 .start
= armpmu_start
,
875 .filter
= armpmu_filter
,
876 .attr_groups
= pmu
->attr_groups
,
878 * This is a CPU PMU potentially in a heterogeneous
879 * configuration (e.g. big.LITTLE) so
880 * PERF_PMU_CAP_EXTENDED_HW_TYPE is required to open
881 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE events on a
884 .capabilities
= PERF_PMU_CAP_EXTENDED_REGS
|
885 PERF_PMU_CAP_EXTENDED_HW_TYPE
,
888 pmu
->attr_groups
[ARMPMU_ATTR_GROUP_COMMON
] =
889 &armpmu_common_attr_group
;
891 for_each_possible_cpu(cpu
) {
892 struct pmu_hw_events
*events
;
894 events
= per_cpu_ptr(pmu
->hw_events
, cpu
);
895 events
->percpu_pmu
= pmu
;
906 void armpmu_free(struct arm_pmu
*pmu
)
908 free_percpu(pmu
->hw_events
);
912 int armpmu_register(struct arm_pmu
*pmu
)
916 ret
= cpu_pmu_init(pmu
);
920 if (!pmu
->set_event_filter
)
921 pmu
->pmu
.capabilities
|= PERF_PMU_CAP_NO_EXCLUDE
;
923 ret
= perf_pmu_register(&pmu
->pmu
, pmu
->name
, -1);
927 pr_info("enabled with %s PMU driver, %d (%*pb) counters available%s\n",
928 pmu
->name
, bitmap_weight(pmu
->cntr_mask
, ARMPMU_MAX_HWEVENTS
),
929 ARMPMU_MAX_HWEVENTS
, &pmu
->cntr_mask
,
930 has_nmi
? ", using NMIs" : "");
932 kvm_host_pmu_init(pmu
);
937 cpu_pmu_destroy(pmu
);
941 static int arm_pmu_hp_init(void)
945 ret
= cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING
,
946 "perf/arm/pmu:starting",
947 arm_perf_starting_cpu
,
948 arm_perf_teardown_cpu
);
950 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
954 subsys_initcall(arm_pmu_hp_init
);