drm/nouveau: consume the return of large GSP message
[drm/drm-misc.git] / drivers / phy / qualcomm / phy-qcom-usb-hs-28nm.c
bloba52a9bf13b758d99c95786a8e9e8d1cbe2fe15bf
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2009-2018, Linux Foundation. All rights reserved.
4 * Copyright (c) 2018-2020, Linaro Limited
5 */
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/io.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/of.h>
13 #include <linux/of_graph.h>
14 #include <linux/phy/phy.h>
15 #include <linux/platform_device.h>
16 #include <linux/regulator/consumer.h>
17 #include <linux/reset.h>
18 #include <linux/slab.h>
20 /* PHY register and bit definitions */
21 #define PHY_CTRL_COMMON0 0x078
22 #define SIDDQ BIT(2)
23 #define PHY_IRQ_CMD 0x0d0
24 #define PHY_INTR_MASK0 0x0d4
25 #define PHY_INTR_CLEAR0 0x0dc
26 #define DPDM_MASK 0x1e
27 #define DP_1_0 BIT(4)
28 #define DP_0_1 BIT(3)
29 #define DM_1_0 BIT(2)
30 #define DM_0_1 BIT(1)
32 enum hsphy_voltage {
33 VOL_NONE,
34 VOL_MIN,
35 VOL_MAX,
36 VOL_NUM,
39 enum hsphy_vreg {
40 VDD,
41 VDDA_1P8,
42 VDDA_3P3,
43 VREG_NUM,
46 struct hsphy_init_seq {
47 int offset;
48 int val;
49 int delay;
52 struct hsphy_data {
53 const struct hsphy_init_seq *init_seq;
54 unsigned int init_seq_num;
57 struct hsphy_priv {
58 void __iomem *base;
59 struct clk_bulk_data *clks;
60 int num_clks;
61 struct reset_control *phy_reset;
62 struct reset_control *por_reset;
63 struct regulator_bulk_data vregs[VREG_NUM];
64 const struct hsphy_data *data;
65 enum phy_mode mode;
68 static int qcom_snps_hsphy_set_mode(struct phy *phy, enum phy_mode mode,
69 int submode)
71 struct hsphy_priv *priv = phy_get_drvdata(phy);
73 priv->mode = PHY_MODE_INVALID;
75 if (mode > 0)
76 priv->mode = mode;
78 return 0;
81 static void qcom_snps_hsphy_enable_hv_interrupts(struct hsphy_priv *priv)
83 u32 val;
85 /* Clear any existing interrupts before enabling the interrupts */
86 val = readb(priv->base + PHY_INTR_CLEAR0);
87 val |= DPDM_MASK;
88 writeb(val, priv->base + PHY_INTR_CLEAR0);
90 writeb(0x0, priv->base + PHY_IRQ_CMD);
91 usleep_range(200, 220);
92 writeb(0x1, priv->base + PHY_IRQ_CMD);
94 /* Make sure the interrupts are cleared */
95 usleep_range(200, 220);
97 val = readb(priv->base + PHY_INTR_MASK0);
98 switch (priv->mode) {
99 case PHY_MODE_USB_HOST_HS:
100 case PHY_MODE_USB_HOST_FS:
101 case PHY_MODE_USB_DEVICE_HS:
102 case PHY_MODE_USB_DEVICE_FS:
103 val |= DP_1_0 | DM_0_1;
104 break;
105 case PHY_MODE_USB_HOST_LS:
106 case PHY_MODE_USB_DEVICE_LS:
107 val |= DP_0_1 | DM_1_0;
108 break;
109 default:
110 /* No device connected */
111 val |= DP_0_1 | DM_0_1;
112 break;
114 writeb(val, priv->base + PHY_INTR_MASK0);
117 static void qcom_snps_hsphy_disable_hv_interrupts(struct hsphy_priv *priv)
119 u32 val;
121 val = readb(priv->base + PHY_INTR_MASK0);
122 val &= ~DPDM_MASK;
123 writeb(val, priv->base + PHY_INTR_MASK0);
125 /* Clear any pending interrupts */
126 val = readb(priv->base + PHY_INTR_CLEAR0);
127 val |= DPDM_MASK;
128 writeb(val, priv->base + PHY_INTR_CLEAR0);
130 writeb(0x0, priv->base + PHY_IRQ_CMD);
131 usleep_range(200, 220);
133 writeb(0x1, priv->base + PHY_IRQ_CMD);
134 usleep_range(200, 220);
137 static void qcom_snps_hsphy_enter_retention(struct hsphy_priv *priv)
139 u32 val;
141 val = readb(priv->base + PHY_CTRL_COMMON0);
142 val |= SIDDQ;
143 writeb(val, priv->base + PHY_CTRL_COMMON0);
146 static void qcom_snps_hsphy_exit_retention(struct hsphy_priv *priv)
148 u32 val;
150 val = readb(priv->base + PHY_CTRL_COMMON0);
151 val &= ~SIDDQ;
152 writeb(val, priv->base + PHY_CTRL_COMMON0);
155 static int qcom_snps_hsphy_power_on(struct phy *phy)
157 struct hsphy_priv *priv = phy_get_drvdata(phy);
158 int ret;
160 ret = regulator_bulk_enable(VREG_NUM, priv->vregs);
161 if (ret)
162 return ret;
164 qcom_snps_hsphy_disable_hv_interrupts(priv);
165 qcom_snps_hsphy_exit_retention(priv);
167 return 0;
170 static int qcom_snps_hsphy_power_off(struct phy *phy)
172 struct hsphy_priv *priv = phy_get_drvdata(phy);
174 qcom_snps_hsphy_enter_retention(priv);
175 qcom_snps_hsphy_enable_hv_interrupts(priv);
176 regulator_bulk_disable(VREG_NUM, priv->vregs);
178 return 0;
181 static int qcom_snps_hsphy_reset(struct hsphy_priv *priv)
183 int ret;
185 ret = reset_control_assert(priv->phy_reset);
186 if (ret)
187 return ret;
189 usleep_range(10, 15);
191 ret = reset_control_deassert(priv->phy_reset);
192 if (ret)
193 return ret;
195 usleep_range(80, 100);
197 return 0;
200 static void qcom_snps_hsphy_init_sequence(struct hsphy_priv *priv)
202 const struct hsphy_data *data = priv->data;
203 const struct hsphy_init_seq *seq;
204 int i;
206 /* Device match data is optional. */
207 if (!data)
208 return;
210 seq = data->init_seq;
212 for (i = 0; i < data->init_seq_num; i++, seq++) {
213 writeb(seq->val, priv->base + seq->offset);
214 if (seq->delay)
215 usleep_range(seq->delay, seq->delay + 10);
219 static int qcom_snps_hsphy_por_reset(struct hsphy_priv *priv)
221 int ret;
223 ret = reset_control_assert(priv->por_reset);
224 if (ret)
225 return ret;
228 * The Femto PHY is POR reset in the following scenarios.
230 * 1. After overriding the parameter registers.
231 * 2. Low power mode exit from PHY retention.
233 * Ensure that SIDDQ is cleared before bringing the PHY
234 * out of reset.
236 qcom_snps_hsphy_exit_retention(priv);
239 * As per databook, 10 usec delay is required between
240 * PHY POR assert and de-assert.
242 usleep_range(10, 20);
243 ret = reset_control_deassert(priv->por_reset);
244 if (ret)
245 return ret;
248 * As per databook, it takes 75 usec for PHY to stabilize
249 * after the reset.
251 usleep_range(80, 100);
253 return 0;
256 static int qcom_snps_hsphy_init(struct phy *phy)
258 struct hsphy_priv *priv = phy_get_drvdata(phy);
259 int ret;
261 ret = clk_bulk_prepare_enable(priv->num_clks, priv->clks);
262 if (ret)
263 return ret;
265 ret = qcom_snps_hsphy_reset(priv);
266 if (ret)
267 goto disable_clocks;
269 qcom_snps_hsphy_init_sequence(priv);
271 ret = qcom_snps_hsphy_por_reset(priv);
272 if (ret)
273 goto disable_clocks;
275 return 0;
277 disable_clocks:
278 clk_bulk_disable_unprepare(priv->num_clks, priv->clks);
279 return ret;
282 static int qcom_snps_hsphy_exit(struct phy *phy)
284 struct hsphy_priv *priv = phy_get_drvdata(phy);
286 clk_bulk_disable_unprepare(priv->num_clks, priv->clks);
288 return 0;
291 static const struct phy_ops qcom_snps_hsphy_ops = {
292 .init = qcom_snps_hsphy_init,
293 .exit = qcom_snps_hsphy_exit,
294 .power_on = qcom_snps_hsphy_power_on,
295 .power_off = qcom_snps_hsphy_power_off,
296 .set_mode = qcom_snps_hsphy_set_mode,
297 .owner = THIS_MODULE,
300 static const char * const qcom_snps_hsphy_clks[] = {
301 "ref",
302 "ahb",
303 "sleep",
306 static int qcom_snps_hsphy_probe(struct platform_device *pdev)
308 struct device *dev = &pdev->dev;
309 struct phy_provider *provider;
310 struct hsphy_priv *priv;
311 struct phy *phy;
312 int ret;
313 int i;
315 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
316 if (!priv)
317 return -ENOMEM;
319 priv->base = devm_platform_ioremap_resource(pdev, 0);
320 if (IS_ERR(priv->base))
321 return PTR_ERR(priv->base);
323 priv->num_clks = ARRAY_SIZE(qcom_snps_hsphy_clks);
324 priv->clks = devm_kcalloc(dev, priv->num_clks, sizeof(*priv->clks),
325 GFP_KERNEL);
326 if (!priv->clks)
327 return -ENOMEM;
329 for (i = 0; i < priv->num_clks; i++)
330 priv->clks[i].id = qcom_snps_hsphy_clks[i];
332 ret = devm_clk_bulk_get(dev, priv->num_clks, priv->clks);
333 if (ret)
334 return ret;
336 priv->phy_reset = devm_reset_control_get_exclusive(dev, "phy");
337 if (IS_ERR(priv->phy_reset))
338 return PTR_ERR(priv->phy_reset);
340 priv->por_reset = devm_reset_control_get_exclusive(dev, "por");
341 if (IS_ERR(priv->por_reset))
342 return PTR_ERR(priv->por_reset);
344 priv->vregs[VDD].supply = "vdd";
345 priv->vregs[VDDA_1P8].supply = "vdda1p8";
346 priv->vregs[VDDA_3P3].supply = "vdda3p3";
348 ret = devm_regulator_bulk_get(dev, VREG_NUM, priv->vregs);
349 if (ret)
350 return ret;
352 /* Get device match data */
353 priv->data = device_get_match_data(dev);
355 phy = devm_phy_create(dev, dev->of_node, &qcom_snps_hsphy_ops);
356 if (IS_ERR(phy))
357 return PTR_ERR(phy);
359 phy_set_drvdata(phy, priv);
361 provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
362 if (IS_ERR(provider))
363 return PTR_ERR(provider);
365 ret = regulator_set_load(priv->vregs[VDDA_1P8].consumer, 19000);
366 if (ret < 0)
367 return ret;
369 ret = regulator_set_load(priv->vregs[VDDA_3P3].consumer, 16000);
370 if (ret < 0)
371 goto unset_1p8_load;
373 return 0;
375 unset_1p8_load:
376 regulator_set_load(priv->vregs[VDDA_1P8].consumer, 0);
378 return ret;
382 * The macro is used to define an initialization sequence. Each tuple
383 * is meant to program 'value' into phy register at 'offset' with 'delay'
384 * in us followed.
386 #define HSPHY_INIT_CFG(o, v, d) { .offset = o, .val = v, .delay = d, }
388 static const struct hsphy_init_seq init_seq_femtophy[] = {
389 HSPHY_INIT_CFG(0xc0, 0x01, 0),
390 HSPHY_INIT_CFG(0xe8, 0x0d, 0),
391 HSPHY_INIT_CFG(0x74, 0x12, 0),
392 HSPHY_INIT_CFG(0x98, 0x63, 0),
393 HSPHY_INIT_CFG(0x9c, 0x03, 0),
394 HSPHY_INIT_CFG(0xa0, 0x1d, 0),
395 HSPHY_INIT_CFG(0xa4, 0x03, 0),
396 HSPHY_INIT_CFG(0x8c, 0x23, 0),
397 HSPHY_INIT_CFG(0x78, 0x08, 0),
398 HSPHY_INIT_CFG(0x7c, 0xdc, 0),
399 HSPHY_INIT_CFG(0x90, 0xe0, 20),
400 HSPHY_INIT_CFG(0x74, 0x10, 0),
401 HSPHY_INIT_CFG(0x90, 0x60, 0),
404 static const struct hsphy_data hsphy_data_femtophy = {
405 .init_seq = init_seq_femtophy,
406 .init_seq_num = ARRAY_SIZE(init_seq_femtophy),
409 static const struct of_device_id qcom_snps_hsphy_match[] = {
410 { .compatible = "qcom,usb-hs-28nm-femtophy", .data = &hsphy_data_femtophy, },
411 { },
413 MODULE_DEVICE_TABLE(of, qcom_snps_hsphy_match);
415 static struct platform_driver qcom_snps_hsphy_driver = {
416 .probe = qcom_snps_hsphy_probe,
417 .driver = {
418 .name = "qcom,usb-hs-28nm-phy",
419 .of_match_table = qcom_snps_hsphy_match,
422 module_platform_driver(qcom_snps_hsphy_driver);
424 MODULE_DESCRIPTION("Qualcomm 28nm Hi-Speed USB PHY driver");
425 MODULE_LICENSE("GPL v2");