accel/ivpu: Move recovery work to system_unbound_wq
[drm/drm-misc.git] / drivers / pinctrl / qcom / pinctrl-msm.c
blobec913c2e200f5fa584806667b9552b7e284e4fae
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2013, Sony Mobile Communications AB.
4 * Copyright (c) 2013, The Linux Foundation. All rights reserved.
5 */
7 #include <linux/delay.h>
8 #include <linux/err.h>
9 #include <linux/gpio/driver.h>
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/log2.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm.h>
17 #include <linux/firmware/qcom/qcom_scm.h>
18 #include <linux/reboot.h>
19 #include <linux/seq_file.h>
20 #include <linux/slab.h>
21 #include <linux/spinlock.h>
23 #include <linux/pinctrl/machine.h>
24 #include <linux/pinctrl/pinconf-generic.h>
25 #include <linux/pinctrl/pinconf.h>
26 #include <linux/pinctrl/pinmux.h>
28 #include <linux/soc/qcom/irq.h>
30 #include "../core.h"
31 #include "../pinconf.h"
32 #include "../pinctrl-utils.h"
34 #include "pinctrl-msm.h"
36 #define MAX_NR_GPIO 300
37 #define MAX_NR_TILES 4
38 #define PS_HOLD_OFFSET 0x820
40 /**
41 * struct msm_pinctrl - state for a pinctrl-msm device
42 * @dev: device handle.
43 * @pctrl: pinctrl handle.
44 * @chip: gpiochip handle.
45 * @desc: pin controller descriptor
46 * @restart_nb: restart notifier block.
47 * @irq: parent irq for the TLMM irq_chip.
48 * @intr_target_use_scm: route irq to application cpu using scm calls
49 * @lock: Spinlock to protect register resources as well
50 * as msm_pinctrl data structures.
51 * @enabled_irqs: Bitmap of currently enabled irqs.
52 * @dual_edge_irqs: Bitmap of irqs that need sw emulated dual edge
53 * detection.
54 * @skip_wake_irqs: Skip IRQs that are handled by wakeup interrupt controller
55 * @disabled_for_mux: These IRQs were disabled because we muxed away.
56 * @ever_gpio: This bit is set the first time we mux a pin to gpio_func.
57 * @soc: Reference to soc_data of platform specific data.
58 * @regs: Base addresses for the TLMM tiles.
59 * @phys_base: Physical base address
61 struct msm_pinctrl {
62 struct device *dev;
63 struct pinctrl_dev *pctrl;
64 struct gpio_chip chip;
65 struct pinctrl_desc desc;
66 struct notifier_block restart_nb;
68 int irq;
70 bool intr_target_use_scm;
72 raw_spinlock_t lock;
74 DECLARE_BITMAP(dual_edge_irqs, MAX_NR_GPIO);
75 DECLARE_BITMAP(enabled_irqs, MAX_NR_GPIO);
76 DECLARE_BITMAP(skip_wake_irqs, MAX_NR_GPIO);
77 DECLARE_BITMAP(disabled_for_mux, MAX_NR_GPIO);
78 DECLARE_BITMAP(ever_gpio, MAX_NR_GPIO);
80 const struct msm_pinctrl_soc_data *soc;
81 void __iomem *regs[MAX_NR_TILES];
82 u32 phys_base[MAX_NR_TILES];
85 #define MSM_ACCESSOR(name) \
86 static u32 msm_readl_##name(struct msm_pinctrl *pctrl, \
87 const struct msm_pingroup *g) \
88 { \
89 return readl(pctrl->regs[g->tile] + g->name##_reg); \
90 } \
91 static void msm_writel_##name(u32 val, struct msm_pinctrl *pctrl, \
92 const struct msm_pingroup *g) \
93 { \
94 writel(val, pctrl->regs[g->tile] + g->name##_reg); \
97 MSM_ACCESSOR(ctl)
98 MSM_ACCESSOR(io)
99 MSM_ACCESSOR(intr_cfg)
100 MSM_ACCESSOR(intr_status)
101 MSM_ACCESSOR(intr_target)
103 static void msm_ack_intr_status(struct msm_pinctrl *pctrl,
104 const struct msm_pingroup *g)
106 u32 val = g->intr_ack_high ? BIT(g->intr_status_bit) : 0;
108 msm_writel_intr_status(val, pctrl, g);
111 static int msm_get_groups_count(struct pinctrl_dev *pctldev)
113 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
115 return pctrl->soc->ngroups;
118 static const char *msm_get_group_name(struct pinctrl_dev *pctldev,
119 unsigned group)
121 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
123 return pctrl->soc->groups[group].grp.name;
126 static int msm_get_group_pins(struct pinctrl_dev *pctldev,
127 unsigned group,
128 const unsigned **pins,
129 unsigned *num_pins)
131 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
133 *pins = pctrl->soc->groups[group].grp.pins;
134 *num_pins = pctrl->soc->groups[group].grp.npins;
135 return 0;
138 static const struct pinctrl_ops msm_pinctrl_ops = {
139 .get_groups_count = msm_get_groups_count,
140 .get_group_name = msm_get_group_name,
141 .get_group_pins = msm_get_group_pins,
142 .dt_node_to_map = pinconf_generic_dt_node_to_map_group,
143 .dt_free_map = pinctrl_utils_free_map,
146 static int msm_pinmux_request(struct pinctrl_dev *pctldev, unsigned offset)
148 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
149 struct gpio_chip *chip = &pctrl->chip;
151 return gpiochip_line_is_valid(chip, offset) ? 0 : -EINVAL;
154 static int msm_get_functions_count(struct pinctrl_dev *pctldev)
156 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
158 return pctrl->soc->nfunctions;
161 static const char *msm_get_function_name(struct pinctrl_dev *pctldev,
162 unsigned function)
164 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
166 return pctrl->soc->functions[function].name;
169 static int msm_get_function_groups(struct pinctrl_dev *pctldev,
170 unsigned function,
171 const char * const **groups,
172 unsigned * const num_groups)
174 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
176 *groups = pctrl->soc->functions[function].groups;
177 *num_groups = pctrl->soc->functions[function].ngroups;
178 return 0;
181 static int msm_pinmux_set_mux(struct pinctrl_dev *pctldev,
182 unsigned function,
183 unsigned group)
185 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
186 struct gpio_chip *gc = &pctrl->chip;
187 unsigned int irq = irq_find_mapping(gc->irq.domain, group);
188 struct irq_data *d = irq_get_irq_data(irq);
189 unsigned int gpio_func = pctrl->soc->gpio_func;
190 unsigned int egpio_func = pctrl->soc->egpio_func;
191 const struct msm_pingroup *g;
192 unsigned long flags;
193 u32 val, mask;
194 int i;
196 g = &pctrl->soc->groups[group];
197 mask = GENMASK(g->mux_bit + order_base_2(g->nfuncs) - 1, g->mux_bit);
199 for (i = 0; i < g->nfuncs; i++) {
200 if (g->funcs[i] == function)
201 break;
204 if (WARN_ON(i == g->nfuncs))
205 return -EINVAL;
208 * If an GPIO interrupt is setup on this pin then we need special
209 * handling. Specifically interrupt detection logic will still see
210 * the pin twiddle even when we're muxed away.
212 * When we see a pin with an interrupt setup on it then we'll disable
213 * (mask) interrupts on it when we mux away until we mux back. Note
214 * that disable_irq() refcounts and interrupts are disabled as long as
215 * at least one disable_irq() has been called.
217 if (d && i != gpio_func &&
218 !test_and_set_bit(d->hwirq, pctrl->disabled_for_mux))
219 disable_irq(irq);
221 raw_spin_lock_irqsave(&pctrl->lock, flags);
223 val = msm_readl_ctl(pctrl, g);
226 * If this is the first time muxing to GPIO and the direction is
227 * output, make sure that we're not going to be glitching the pin
228 * by reading the current state of the pin and setting it as the
229 * output.
231 if (i == gpio_func && (val & BIT(g->oe_bit)) &&
232 !test_and_set_bit(group, pctrl->ever_gpio)) {
233 u32 io_val = msm_readl_io(pctrl, g);
235 if (io_val & BIT(g->in_bit)) {
236 if (!(io_val & BIT(g->out_bit)))
237 msm_writel_io(io_val | BIT(g->out_bit), pctrl, g);
238 } else {
239 if (io_val & BIT(g->out_bit))
240 msm_writel_io(io_val & ~BIT(g->out_bit), pctrl, g);
244 if (egpio_func && i == egpio_func) {
245 if (val & BIT(g->egpio_present))
246 val &= ~BIT(g->egpio_enable);
247 } else {
248 val &= ~mask;
249 val |= i << g->mux_bit;
250 /* Claim ownership of pin if egpio capable */
251 if (egpio_func && val & BIT(g->egpio_present))
252 val |= BIT(g->egpio_enable);
255 msm_writel_ctl(val, pctrl, g);
257 raw_spin_unlock_irqrestore(&pctrl->lock, flags);
259 if (d && i == gpio_func &&
260 test_and_clear_bit(d->hwirq, pctrl->disabled_for_mux)) {
262 * Clear interrupts detected while not GPIO since we only
263 * masked things.
265 if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs))
266 irq_chip_set_parent_state(d, IRQCHIP_STATE_PENDING, false);
267 else
268 msm_ack_intr_status(pctrl, g);
270 enable_irq(irq);
273 return 0;
276 static int msm_pinmux_request_gpio(struct pinctrl_dev *pctldev,
277 struct pinctrl_gpio_range *range,
278 unsigned offset)
280 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
281 const struct msm_pingroup *g = &pctrl->soc->groups[offset];
283 /* No funcs? Probably ACPI so can't do anything here */
284 if (!g->nfuncs)
285 return 0;
287 return msm_pinmux_set_mux(pctldev, g->funcs[pctrl->soc->gpio_func], offset);
290 static const struct pinmux_ops msm_pinmux_ops = {
291 .request = msm_pinmux_request,
292 .get_functions_count = msm_get_functions_count,
293 .get_function_name = msm_get_function_name,
294 .get_function_groups = msm_get_function_groups,
295 .gpio_request_enable = msm_pinmux_request_gpio,
296 .set_mux = msm_pinmux_set_mux,
299 static int msm_config_reg(struct msm_pinctrl *pctrl,
300 const struct msm_pingroup *g,
301 unsigned param,
302 unsigned *mask,
303 unsigned *bit)
305 switch (param) {
306 case PIN_CONFIG_BIAS_DISABLE:
307 case PIN_CONFIG_BIAS_PULL_DOWN:
308 case PIN_CONFIG_BIAS_BUS_HOLD:
309 case PIN_CONFIG_BIAS_PULL_UP:
310 *bit = g->pull_bit;
311 *mask = 3;
312 if (g->i2c_pull_bit)
313 *mask |= BIT(g->i2c_pull_bit) >> *bit;
314 break;
315 case PIN_CONFIG_DRIVE_OPEN_DRAIN:
316 *bit = g->od_bit;
317 *mask = 1;
318 break;
319 case PIN_CONFIG_DRIVE_STRENGTH:
320 *bit = g->drv_bit;
321 *mask = 7;
322 break;
323 case PIN_CONFIG_OUTPUT:
324 case PIN_CONFIG_INPUT_ENABLE:
325 case PIN_CONFIG_OUTPUT_ENABLE:
326 *bit = g->oe_bit;
327 *mask = 1;
328 break;
329 default:
330 return -ENOTSUPP;
333 return 0;
336 #define MSM_NO_PULL 0
337 #define MSM_PULL_DOWN 1
338 #define MSM_KEEPER 2
339 #define MSM_PULL_UP_NO_KEEPER 2
340 #define MSM_PULL_UP 3
341 #define MSM_I2C_STRONG_PULL_UP 2200
343 static unsigned msm_regval_to_drive(u32 val)
345 return (val + 1) * 2;
348 static int msm_config_group_get(struct pinctrl_dev *pctldev,
349 unsigned int group,
350 unsigned long *config)
352 const struct msm_pingroup *g;
353 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
354 unsigned param = pinconf_to_config_param(*config);
355 unsigned mask;
356 unsigned arg;
357 unsigned bit;
358 int ret;
359 u32 val;
361 /* Pin information can only be requested from valid pin groups */
362 if (!gpiochip_line_is_valid(&pctrl->chip, group))
363 return -EINVAL;
365 g = &pctrl->soc->groups[group];
367 ret = msm_config_reg(pctrl, g, param, &mask, &bit);
368 if (ret < 0)
369 return ret;
371 val = msm_readl_ctl(pctrl, g);
372 arg = (val >> bit) & mask;
374 /* Convert register value to pinconf value */
375 switch (param) {
376 case PIN_CONFIG_BIAS_DISABLE:
377 if (arg != MSM_NO_PULL)
378 return -EINVAL;
379 arg = 1;
380 break;
381 case PIN_CONFIG_BIAS_PULL_DOWN:
382 if (arg != MSM_PULL_DOWN)
383 return -EINVAL;
384 arg = 1;
385 break;
386 case PIN_CONFIG_BIAS_BUS_HOLD:
387 if (pctrl->soc->pull_no_keeper)
388 return -ENOTSUPP;
390 if (arg != MSM_KEEPER)
391 return -EINVAL;
392 arg = 1;
393 break;
394 case PIN_CONFIG_BIAS_PULL_UP:
395 if (pctrl->soc->pull_no_keeper)
396 arg = arg == MSM_PULL_UP_NO_KEEPER;
397 else if (arg & BIT(g->i2c_pull_bit))
398 arg = MSM_I2C_STRONG_PULL_UP;
399 else
400 arg = arg == MSM_PULL_UP;
401 if (!arg)
402 return -EINVAL;
403 break;
404 case PIN_CONFIG_DRIVE_OPEN_DRAIN:
405 /* Pin is not open-drain */
406 if (!arg)
407 return -EINVAL;
408 arg = 1;
409 break;
410 case PIN_CONFIG_DRIVE_STRENGTH:
411 arg = msm_regval_to_drive(arg);
412 break;
413 case PIN_CONFIG_OUTPUT:
414 /* Pin is not output */
415 if (!arg)
416 return -EINVAL;
418 val = msm_readl_io(pctrl, g);
419 arg = !!(val & BIT(g->in_bit));
420 break;
421 case PIN_CONFIG_OUTPUT_ENABLE:
422 if (!arg)
423 return -EINVAL;
424 break;
425 default:
426 return -ENOTSUPP;
429 *config = pinconf_to_config_packed(param, arg);
431 return 0;
434 static int msm_config_group_set(struct pinctrl_dev *pctldev,
435 unsigned group,
436 unsigned long *configs,
437 unsigned num_configs)
439 const struct msm_pingroup *g;
440 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
441 unsigned long flags;
442 unsigned param;
443 unsigned mask;
444 unsigned arg;
445 unsigned bit;
446 int ret;
447 u32 val;
448 int i;
450 g = &pctrl->soc->groups[group];
452 for (i = 0; i < num_configs; i++) {
453 param = pinconf_to_config_param(configs[i]);
454 arg = pinconf_to_config_argument(configs[i]);
456 ret = msm_config_reg(pctrl, g, param, &mask, &bit);
457 if (ret < 0)
458 return ret;
460 /* Convert pinconf values to register values */
461 switch (param) {
462 case PIN_CONFIG_BIAS_DISABLE:
463 arg = MSM_NO_PULL;
464 break;
465 case PIN_CONFIG_BIAS_PULL_DOWN:
466 arg = MSM_PULL_DOWN;
467 break;
468 case PIN_CONFIG_BIAS_BUS_HOLD:
469 if (pctrl->soc->pull_no_keeper)
470 return -ENOTSUPP;
472 arg = MSM_KEEPER;
473 break;
474 case PIN_CONFIG_BIAS_PULL_UP:
475 if (pctrl->soc->pull_no_keeper)
476 arg = MSM_PULL_UP_NO_KEEPER;
477 else if (g->i2c_pull_bit && arg == MSM_I2C_STRONG_PULL_UP)
478 arg = BIT(g->i2c_pull_bit) | MSM_PULL_UP;
479 else
480 arg = MSM_PULL_UP;
481 break;
482 case PIN_CONFIG_DRIVE_OPEN_DRAIN:
483 arg = 1;
484 break;
485 case PIN_CONFIG_DRIVE_STRENGTH:
486 /* Check for invalid values */
487 if (arg > 16 || arg < 2 || (arg % 2) != 0)
488 arg = -1;
489 else
490 arg = (arg / 2) - 1;
491 break;
492 case PIN_CONFIG_OUTPUT:
493 /* set output value */
494 raw_spin_lock_irqsave(&pctrl->lock, flags);
495 val = msm_readl_io(pctrl, g);
496 if (arg)
497 val |= BIT(g->out_bit);
498 else
499 val &= ~BIT(g->out_bit);
500 msm_writel_io(val, pctrl, g);
501 raw_spin_unlock_irqrestore(&pctrl->lock, flags);
503 /* enable output */
504 arg = 1;
505 break;
506 case PIN_CONFIG_INPUT_ENABLE:
508 * According to pinctrl documentation this should
509 * actually be a no-op.
511 * The docs are explicit that "this does not affect
512 * the pin's ability to drive output" but what we do
513 * here is to modify the output enable bit. Thus, to
514 * follow the docs we should remove that.
516 * The docs say that we should enable any relevant
517 * input buffer, but TLMM there is no input buffer that
518 * can be enabled/disabled. It's always on.
520 * The points above, explain why this _should_ be a
521 * no-op. However, for historical reasons and to
522 * support old device trees, we'll violate the docs
523 * and still affect the output.
525 * It should further be noted that this old historical
526 * behavior actually overrides arg to 0. That means
527 * that "input-enable" and "input-disable" in a device
528 * tree would _both_ disable the output. We'll
529 * continue to preserve this behavior as well since
530 * we have no other use for this attribute.
532 arg = 0;
533 break;
534 case PIN_CONFIG_OUTPUT_ENABLE:
535 arg = !!arg;
536 break;
537 default:
538 dev_err(pctrl->dev, "Unsupported config parameter: %x\n",
539 param);
540 return -EINVAL;
543 /* Range-check user-supplied value */
544 if (arg & ~mask) {
545 dev_err(pctrl->dev, "config %x: %x is invalid\n", param, arg);
546 return -EINVAL;
549 raw_spin_lock_irqsave(&pctrl->lock, flags);
550 val = msm_readl_ctl(pctrl, g);
551 val &= ~(mask << bit);
552 val |= arg << bit;
553 msm_writel_ctl(val, pctrl, g);
554 raw_spin_unlock_irqrestore(&pctrl->lock, flags);
557 return 0;
560 static const struct pinconf_ops msm_pinconf_ops = {
561 .is_generic = true,
562 .pin_config_group_get = msm_config_group_get,
563 .pin_config_group_set = msm_config_group_set,
566 static int msm_gpio_direction_input(struct gpio_chip *chip, unsigned offset)
568 const struct msm_pingroup *g;
569 struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
570 unsigned long flags;
571 u32 val;
573 g = &pctrl->soc->groups[offset];
575 raw_spin_lock_irqsave(&pctrl->lock, flags);
577 val = msm_readl_ctl(pctrl, g);
578 val &= ~BIT(g->oe_bit);
579 msm_writel_ctl(val, pctrl, g);
581 raw_spin_unlock_irqrestore(&pctrl->lock, flags);
583 return 0;
586 static int msm_gpio_direction_output(struct gpio_chip *chip, unsigned offset, int value)
588 const struct msm_pingroup *g;
589 struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
590 unsigned long flags;
591 u32 val;
593 g = &pctrl->soc->groups[offset];
595 raw_spin_lock_irqsave(&pctrl->lock, flags);
597 val = msm_readl_io(pctrl, g);
598 if (value)
599 val |= BIT(g->out_bit);
600 else
601 val &= ~BIT(g->out_bit);
602 msm_writel_io(val, pctrl, g);
604 val = msm_readl_ctl(pctrl, g);
605 val |= BIT(g->oe_bit);
606 msm_writel_ctl(val, pctrl, g);
608 raw_spin_unlock_irqrestore(&pctrl->lock, flags);
610 return 0;
613 static int msm_gpio_get_direction(struct gpio_chip *chip, unsigned int offset)
615 struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
616 const struct msm_pingroup *g;
617 u32 val;
619 g = &pctrl->soc->groups[offset];
621 val = msm_readl_ctl(pctrl, g);
623 return val & BIT(g->oe_bit) ? GPIO_LINE_DIRECTION_OUT :
624 GPIO_LINE_DIRECTION_IN;
627 static int msm_gpio_get(struct gpio_chip *chip, unsigned offset)
629 const struct msm_pingroup *g;
630 struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
631 u32 val;
633 g = &pctrl->soc->groups[offset];
635 val = msm_readl_io(pctrl, g);
636 return !!(val & BIT(g->in_bit));
639 static void msm_gpio_set(struct gpio_chip *chip, unsigned offset, int value)
641 const struct msm_pingroup *g;
642 struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
643 unsigned long flags;
644 u32 val;
646 g = &pctrl->soc->groups[offset];
648 raw_spin_lock_irqsave(&pctrl->lock, flags);
650 val = msm_readl_io(pctrl, g);
651 if (value)
652 val |= BIT(g->out_bit);
653 else
654 val &= ~BIT(g->out_bit);
655 msm_writel_io(val, pctrl, g);
657 raw_spin_unlock_irqrestore(&pctrl->lock, flags);
660 #ifdef CONFIG_DEBUG_FS
662 static void msm_gpio_dbg_show_one(struct seq_file *s,
663 struct pinctrl_dev *pctldev,
664 struct gpio_chip *chip,
665 unsigned offset,
666 unsigned gpio)
668 const struct msm_pingroup *g;
669 struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
670 unsigned func;
671 int is_out;
672 int drive;
673 int pull;
674 int val;
675 int egpio_enable;
676 u32 ctl_reg, io_reg;
678 static const char * const pulls_keeper[] = {
679 "no pull",
680 "pull down",
681 "keeper",
682 "pull up"
685 static const char * const pulls_no_keeper[] = {
686 "no pull",
687 "pull down",
688 "pull up",
691 if (!gpiochip_line_is_valid(chip, offset))
692 return;
694 g = &pctrl->soc->groups[offset];
695 ctl_reg = msm_readl_ctl(pctrl, g);
696 io_reg = msm_readl_io(pctrl, g);
698 is_out = !!(ctl_reg & BIT(g->oe_bit));
699 func = (ctl_reg >> g->mux_bit) & 7;
700 drive = (ctl_reg >> g->drv_bit) & 7;
701 pull = (ctl_reg >> g->pull_bit) & 3;
702 egpio_enable = 0;
703 if (pctrl->soc->egpio_func && ctl_reg & BIT(g->egpio_present))
704 egpio_enable = !(ctl_reg & BIT(g->egpio_enable));
706 if (is_out)
707 val = !!(io_reg & BIT(g->out_bit));
708 else
709 val = !!(io_reg & BIT(g->in_bit));
711 if (egpio_enable) {
712 seq_printf(s, " %-8s: egpio\n", g->grp.name);
713 return;
716 seq_printf(s, " %-8s: %-3s", g->grp.name, is_out ? "out" : "in");
717 seq_printf(s, " %-4s func%d", val ? "high" : "low", func);
718 seq_printf(s, " %dmA", msm_regval_to_drive(drive));
719 if (pctrl->soc->pull_no_keeper)
720 seq_printf(s, " %s", pulls_no_keeper[pull]);
721 else
722 seq_printf(s, " %s", pulls_keeper[pull]);
723 seq_puts(s, "\n");
726 static void msm_gpio_dbg_show(struct seq_file *s, struct gpio_chip *chip)
728 unsigned gpio = chip->base;
729 unsigned i;
731 for (i = 0; i < chip->ngpio; i++, gpio++)
732 msm_gpio_dbg_show_one(s, NULL, chip, i, gpio);
735 #else
736 #define msm_gpio_dbg_show NULL
737 #endif
739 static int msm_gpio_init_valid_mask(struct gpio_chip *gc,
740 unsigned long *valid_mask,
741 unsigned int ngpios)
743 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
744 int ret;
745 unsigned int len, i;
746 const int *reserved = pctrl->soc->reserved_gpios;
747 u16 *tmp;
749 /* Remove driver-provided reserved GPIOs from valid_mask */
750 if (reserved) {
751 for (i = 0; reserved[i] >= 0; i++) {
752 if (i >= ngpios || reserved[i] >= ngpios) {
753 dev_err(pctrl->dev, "invalid list of reserved GPIOs\n");
754 return -EINVAL;
756 clear_bit(reserved[i], valid_mask);
759 return 0;
762 /* The number of GPIOs in the ACPI tables */
763 len = ret = device_property_count_u16(pctrl->dev, "gpios");
764 if (ret < 0)
765 return 0;
767 if (ret > ngpios)
768 return -EINVAL;
770 tmp = kmalloc_array(len, sizeof(*tmp), GFP_KERNEL);
771 if (!tmp)
772 return -ENOMEM;
774 ret = device_property_read_u16_array(pctrl->dev, "gpios", tmp, len);
775 if (ret < 0) {
776 dev_err(pctrl->dev, "could not read list of GPIOs\n");
777 goto out;
780 bitmap_zero(valid_mask, ngpios);
781 for (i = 0; i < len; i++)
782 set_bit(tmp[i], valid_mask);
784 out:
785 kfree(tmp);
786 return ret;
789 static const struct gpio_chip msm_gpio_template = {
790 .direction_input = msm_gpio_direction_input,
791 .direction_output = msm_gpio_direction_output,
792 .get_direction = msm_gpio_get_direction,
793 .get = msm_gpio_get,
794 .set = msm_gpio_set,
795 .request = gpiochip_generic_request,
796 .free = gpiochip_generic_free,
797 .dbg_show = msm_gpio_dbg_show,
800 /* For dual-edge interrupts in software, since some hardware has no
801 * such support:
803 * At appropriate moments, this function may be called to flip the polarity
804 * settings of both-edge irq lines to try and catch the next edge.
806 * The attempt is considered successful if:
807 * - the status bit goes high, indicating that an edge was caught, or
808 * - the input value of the gpio doesn't change during the attempt.
809 * If the value changes twice during the process, that would cause the first
810 * test to fail but would force the second, as two opposite
811 * transitions would cause a detection no matter the polarity setting.
813 * The do-loop tries to sledge-hammer closed the timing hole between
814 * the initial value-read and the polarity-write - if the line value changes
815 * during that window, an interrupt is lost, the new polarity setting is
816 * incorrect, and the first success test will fail, causing a retry.
818 * Algorithm comes from Google's msmgpio driver.
820 static void msm_gpio_update_dual_edge_pos(struct msm_pinctrl *pctrl,
821 const struct msm_pingroup *g,
822 struct irq_data *d)
824 int loop_limit = 100;
825 unsigned val, val2, intstat;
826 unsigned pol;
828 do {
829 val = msm_readl_io(pctrl, g) & BIT(g->in_bit);
831 pol = msm_readl_intr_cfg(pctrl, g);
832 pol ^= BIT(g->intr_polarity_bit);
833 msm_writel_intr_cfg(pol, pctrl, g);
835 val2 = msm_readl_io(pctrl, g) & BIT(g->in_bit);
836 intstat = msm_readl_intr_status(pctrl, g);
837 if (intstat || (val == val2))
838 return;
839 } while (loop_limit-- > 0);
840 dev_err(pctrl->dev, "dual-edge irq failed to stabilize, %#08x != %#08x\n",
841 val, val2);
844 static void msm_gpio_irq_mask(struct irq_data *d)
846 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
847 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
848 const struct msm_pingroup *g;
849 unsigned long flags;
850 u32 val;
852 if (d->parent_data)
853 irq_chip_mask_parent(d);
855 if (test_bit(d->hwirq, pctrl->skip_wake_irqs))
856 return;
858 g = &pctrl->soc->groups[d->hwirq];
860 raw_spin_lock_irqsave(&pctrl->lock, flags);
862 val = msm_readl_intr_cfg(pctrl, g);
864 * There are two bits that control interrupt forwarding to the CPU. The
865 * RAW_STATUS_EN bit causes the level or edge sensed on the line to be
866 * latched into the interrupt status register when the hardware detects
867 * an irq that it's configured for (either edge for edge type or level
868 * for level type irq). The 'non-raw' status enable bit causes the
869 * hardware to assert the summary interrupt to the CPU if the latched
870 * status bit is set. There's a bug though, the edge detection logic
871 * seems to have a problem where toggling the RAW_STATUS_EN bit may
872 * cause the status bit to latch spuriously when there isn't any edge
873 * so we can't touch that bit for edge type irqs and we have to keep
874 * the bit set anyway so that edges are latched while the line is masked.
876 * To make matters more complicated, leaving the RAW_STATUS_EN bit
877 * enabled all the time causes level interrupts to re-latch into the
878 * status register because the level is still present on the line after
879 * we ack it. We clear the raw status enable bit during mask here and
880 * set the bit on unmask so the interrupt can't latch into the hardware
881 * while it's masked.
883 if (irqd_get_trigger_type(d) & IRQ_TYPE_LEVEL_MASK)
884 val &= ~BIT(g->intr_raw_status_bit);
886 val &= ~BIT(g->intr_enable_bit);
887 msm_writel_intr_cfg(val, pctrl, g);
889 clear_bit(d->hwirq, pctrl->enabled_irqs);
891 raw_spin_unlock_irqrestore(&pctrl->lock, flags);
894 static void msm_gpio_irq_unmask(struct irq_data *d)
896 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
897 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
898 const struct msm_pingroup *g;
899 unsigned long flags;
900 u32 val;
902 if (d->parent_data)
903 irq_chip_unmask_parent(d);
905 if (test_bit(d->hwirq, pctrl->skip_wake_irqs))
906 return;
908 g = &pctrl->soc->groups[d->hwirq];
910 raw_spin_lock_irqsave(&pctrl->lock, flags);
912 val = msm_readl_intr_cfg(pctrl, g);
913 val |= BIT(g->intr_raw_status_bit);
914 val |= BIT(g->intr_enable_bit);
915 msm_writel_intr_cfg(val, pctrl, g);
917 set_bit(d->hwirq, pctrl->enabled_irqs);
919 raw_spin_unlock_irqrestore(&pctrl->lock, flags);
922 static void msm_gpio_irq_enable(struct irq_data *d)
924 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
925 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
927 gpiochip_enable_irq(gc, d->hwirq);
929 if (d->parent_data)
930 irq_chip_enable_parent(d);
932 if (!test_bit(d->hwirq, pctrl->skip_wake_irqs))
933 msm_gpio_irq_unmask(d);
936 static void msm_gpio_irq_disable(struct irq_data *d)
938 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
939 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
941 if (d->parent_data)
942 irq_chip_disable_parent(d);
944 if (!test_bit(d->hwirq, pctrl->skip_wake_irqs))
945 msm_gpio_irq_mask(d);
947 gpiochip_disable_irq(gc, d->hwirq);
951 * msm_gpio_update_dual_edge_parent() - Prime next edge for IRQs handled by parent.
952 * @d: The irq dta.
954 * This is much like msm_gpio_update_dual_edge_pos() but for IRQs that are
955 * normally handled by the parent irqchip. The logic here is slightly
956 * different due to what's easy to do with our parent, but in principle it's
957 * the same.
959 static void msm_gpio_update_dual_edge_parent(struct irq_data *d)
961 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
962 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
963 const struct msm_pingroup *g = &pctrl->soc->groups[d->hwirq];
964 int loop_limit = 100;
965 unsigned int val;
966 unsigned int type;
968 /* Read the value and make a guess about what edge we need to catch */
969 val = msm_readl_io(pctrl, g) & BIT(g->in_bit);
970 type = val ? IRQ_TYPE_EDGE_FALLING : IRQ_TYPE_EDGE_RISING;
972 do {
973 /* Set the parent to catch the next edge */
974 irq_chip_set_type_parent(d, type);
977 * Possibly the line changed between when we last read "val"
978 * (and decided what edge we needed) and when set the edge.
979 * If the value didn't change (or changed and then changed
980 * back) then we're done.
982 val = msm_readl_io(pctrl, g) & BIT(g->in_bit);
983 if (type == IRQ_TYPE_EDGE_RISING) {
984 if (!val)
985 return;
986 type = IRQ_TYPE_EDGE_FALLING;
987 } else if (type == IRQ_TYPE_EDGE_FALLING) {
988 if (val)
989 return;
990 type = IRQ_TYPE_EDGE_RISING;
992 } while (loop_limit-- > 0);
993 dev_warn_once(pctrl->dev, "dual-edge irq failed to stabilize\n");
996 static void msm_gpio_irq_ack(struct irq_data *d)
998 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
999 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1000 const struct msm_pingroup *g;
1001 unsigned long flags;
1003 if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) {
1004 if (test_bit(d->hwirq, pctrl->dual_edge_irqs))
1005 msm_gpio_update_dual_edge_parent(d);
1006 return;
1009 g = &pctrl->soc->groups[d->hwirq];
1011 raw_spin_lock_irqsave(&pctrl->lock, flags);
1013 msm_ack_intr_status(pctrl, g);
1015 if (test_bit(d->hwirq, pctrl->dual_edge_irqs))
1016 msm_gpio_update_dual_edge_pos(pctrl, g, d);
1018 raw_spin_unlock_irqrestore(&pctrl->lock, flags);
1021 static void msm_gpio_irq_eoi(struct irq_data *d)
1023 d = d->parent_data;
1025 if (d)
1026 d->chip->irq_eoi(d);
1029 static bool msm_gpio_needs_dual_edge_parent_workaround(struct irq_data *d,
1030 unsigned int type)
1032 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1033 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1035 return type == IRQ_TYPE_EDGE_BOTH &&
1036 pctrl->soc->wakeirq_dual_edge_errata && d->parent_data &&
1037 test_bit(d->hwirq, pctrl->skip_wake_irqs);
1040 static int msm_gpio_irq_set_type(struct irq_data *d, unsigned int type)
1042 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1043 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1044 const struct msm_pingroup *g;
1045 u32 intr_target_mask = GENMASK(2, 0);
1046 unsigned long flags;
1047 bool was_enabled;
1048 u32 val;
1050 if (msm_gpio_needs_dual_edge_parent_workaround(d, type)) {
1051 set_bit(d->hwirq, pctrl->dual_edge_irqs);
1052 irq_set_handler_locked(d, handle_fasteoi_ack_irq);
1053 msm_gpio_update_dual_edge_parent(d);
1054 return 0;
1057 if (d->parent_data)
1058 irq_chip_set_type_parent(d, type);
1060 if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) {
1061 clear_bit(d->hwirq, pctrl->dual_edge_irqs);
1062 irq_set_handler_locked(d, handle_fasteoi_irq);
1063 return 0;
1066 g = &pctrl->soc->groups[d->hwirq];
1068 raw_spin_lock_irqsave(&pctrl->lock, flags);
1071 * For hw without possibility of detecting both edges
1073 if (g->intr_detection_width == 1 && type == IRQ_TYPE_EDGE_BOTH)
1074 set_bit(d->hwirq, pctrl->dual_edge_irqs);
1075 else
1076 clear_bit(d->hwirq, pctrl->dual_edge_irqs);
1078 /* Route interrupts to application cpu.
1079 * With intr_target_use_scm interrupts are routed to
1080 * application cpu using scm calls.
1082 if (g->intr_target_width)
1083 intr_target_mask = GENMASK(g->intr_target_width - 1, 0);
1085 if (pctrl->intr_target_use_scm) {
1086 u32 addr = pctrl->phys_base[0] + g->intr_target_reg;
1087 int ret;
1089 qcom_scm_io_readl(addr, &val);
1090 val &= ~(intr_target_mask << g->intr_target_bit);
1091 val |= g->intr_target_kpss_val << g->intr_target_bit;
1093 ret = qcom_scm_io_writel(addr, val);
1094 if (ret)
1095 dev_err(pctrl->dev,
1096 "Failed routing %lu interrupt to Apps proc",
1097 d->hwirq);
1098 } else {
1099 val = msm_readl_intr_target(pctrl, g);
1100 val &= ~(intr_target_mask << g->intr_target_bit);
1101 val |= g->intr_target_kpss_val << g->intr_target_bit;
1102 msm_writel_intr_target(val, pctrl, g);
1105 /* Update configuration for gpio.
1106 * RAW_STATUS_EN is left on for all gpio irqs. Due to the
1107 * internal circuitry of TLMM, toggling the RAW_STATUS
1108 * could cause the INTR_STATUS to be set for EDGE interrupts.
1110 val = msm_readl_intr_cfg(pctrl, g);
1111 was_enabled = val & BIT(g->intr_raw_status_bit);
1112 val |= BIT(g->intr_raw_status_bit);
1113 if (g->intr_detection_width == 2) {
1114 val &= ~(3 << g->intr_detection_bit);
1115 val &= ~(1 << g->intr_polarity_bit);
1116 switch (type) {
1117 case IRQ_TYPE_EDGE_RISING:
1118 val |= 1 << g->intr_detection_bit;
1119 val |= BIT(g->intr_polarity_bit);
1120 break;
1121 case IRQ_TYPE_EDGE_FALLING:
1122 val |= 2 << g->intr_detection_bit;
1123 val |= BIT(g->intr_polarity_bit);
1124 break;
1125 case IRQ_TYPE_EDGE_BOTH:
1126 val |= 3 << g->intr_detection_bit;
1127 val |= BIT(g->intr_polarity_bit);
1128 break;
1129 case IRQ_TYPE_LEVEL_LOW:
1130 break;
1131 case IRQ_TYPE_LEVEL_HIGH:
1132 val |= BIT(g->intr_polarity_bit);
1133 break;
1135 } else if (g->intr_detection_width == 1) {
1136 val &= ~(1 << g->intr_detection_bit);
1137 val &= ~(1 << g->intr_polarity_bit);
1138 switch (type) {
1139 case IRQ_TYPE_EDGE_RISING:
1140 val |= BIT(g->intr_detection_bit);
1141 val |= BIT(g->intr_polarity_bit);
1142 break;
1143 case IRQ_TYPE_EDGE_FALLING:
1144 val |= BIT(g->intr_detection_bit);
1145 break;
1146 case IRQ_TYPE_EDGE_BOTH:
1147 val |= BIT(g->intr_detection_bit);
1148 val |= BIT(g->intr_polarity_bit);
1149 break;
1150 case IRQ_TYPE_LEVEL_LOW:
1151 break;
1152 case IRQ_TYPE_LEVEL_HIGH:
1153 val |= BIT(g->intr_polarity_bit);
1154 break;
1156 } else {
1157 BUG();
1159 msm_writel_intr_cfg(val, pctrl, g);
1162 * The first time we set RAW_STATUS_EN it could trigger an interrupt.
1163 * Clear the interrupt. This is safe because we have
1164 * IRQCHIP_SET_TYPE_MASKED.
1166 if (!was_enabled)
1167 msm_ack_intr_status(pctrl, g);
1169 if (test_bit(d->hwirq, pctrl->dual_edge_irqs))
1170 msm_gpio_update_dual_edge_pos(pctrl, g, d);
1172 raw_spin_unlock_irqrestore(&pctrl->lock, flags);
1174 if (type & (IRQ_TYPE_LEVEL_LOW | IRQ_TYPE_LEVEL_HIGH))
1175 irq_set_handler_locked(d, handle_level_irq);
1176 else if (type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_EDGE_RISING))
1177 irq_set_handler_locked(d, handle_edge_irq);
1179 return 0;
1182 static int msm_gpio_irq_set_wake(struct irq_data *d, unsigned int on)
1184 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1185 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1188 * While they may not wake up when the TLMM is powered off,
1189 * some GPIOs would like to wakeup the system from suspend
1190 * when TLMM is powered on. To allow that, enable the GPIO
1191 * summary line to be wakeup capable at GIC.
1193 if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs))
1194 return irq_chip_set_wake_parent(d, on);
1196 return irq_set_irq_wake(pctrl->irq, on);
1199 static int msm_gpio_irq_reqres(struct irq_data *d)
1201 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1202 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1203 const struct msm_pingroup *g = &pctrl->soc->groups[d->hwirq];
1204 unsigned long flags;
1205 int ret;
1207 if (!try_module_get(gc->owner))
1208 return -ENODEV;
1210 ret = msm_pinmux_request_gpio(pctrl->pctrl, NULL, d->hwirq);
1211 if (ret)
1212 goto out;
1213 msm_gpio_direction_input(gc, d->hwirq);
1215 if (gpiochip_lock_as_irq(gc, d->hwirq)) {
1216 dev_err(gc->parent,
1217 "unable to lock HW IRQ %lu for IRQ\n",
1218 d->hwirq);
1219 ret = -EINVAL;
1220 goto out;
1224 * The disable / clear-enable workaround we do in msm_pinmux_set_mux()
1225 * only works if disable is not lazy since we only clear any bogus
1226 * interrupt in hardware. Explicitly mark the interrupt as UNLAZY.
1228 irq_set_status_flags(d->irq, IRQ_DISABLE_UNLAZY);
1231 * If the wakeup_enable bit is present and marked as available for the
1232 * requested GPIO, it should be enabled when the GPIO is marked as
1233 * wake irq in order to allow the interrupt event to be transfered to
1234 * the PDC HW.
1235 * While the name implies only the wakeup event, it's also required for
1236 * the interrupt event.
1238 if (test_bit(d->hwirq, pctrl->skip_wake_irqs) && g->intr_wakeup_present_bit) {
1239 u32 intr_cfg;
1241 raw_spin_lock_irqsave(&pctrl->lock, flags);
1243 intr_cfg = msm_readl_intr_cfg(pctrl, g);
1244 if (intr_cfg & BIT(g->intr_wakeup_present_bit)) {
1245 intr_cfg |= BIT(g->intr_wakeup_enable_bit);
1246 msm_writel_intr_cfg(intr_cfg, pctrl, g);
1249 raw_spin_unlock_irqrestore(&pctrl->lock, flags);
1252 return 0;
1253 out:
1254 module_put(gc->owner);
1255 return ret;
1258 static void msm_gpio_irq_relres(struct irq_data *d)
1260 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1261 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1262 const struct msm_pingroup *g = &pctrl->soc->groups[d->hwirq];
1263 unsigned long flags;
1265 /* Disable the wakeup_enable bit if it has been set in msm_gpio_irq_reqres() */
1266 if (test_bit(d->hwirq, pctrl->skip_wake_irqs) && g->intr_wakeup_present_bit) {
1267 u32 intr_cfg;
1269 raw_spin_lock_irqsave(&pctrl->lock, flags);
1271 intr_cfg = msm_readl_intr_cfg(pctrl, g);
1272 if (intr_cfg & BIT(g->intr_wakeup_present_bit)) {
1273 intr_cfg &= ~BIT(g->intr_wakeup_enable_bit);
1274 msm_writel_intr_cfg(intr_cfg, pctrl, g);
1277 raw_spin_unlock_irqrestore(&pctrl->lock, flags);
1280 gpiochip_unlock_as_irq(gc, d->hwirq);
1281 module_put(gc->owner);
1284 static int msm_gpio_irq_set_affinity(struct irq_data *d,
1285 const struct cpumask *dest, bool force)
1287 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1288 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1290 if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs))
1291 return irq_chip_set_affinity_parent(d, dest, force);
1293 return -EINVAL;
1296 static int msm_gpio_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1298 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1299 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1301 if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs))
1302 return irq_chip_set_vcpu_affinity_parent(d, vcpu_info);
1304 return -EINVAL;
1307 static void msm_gpio_irq_handler(struct irq_desc *desc)
1309 struct gpio_chip *gc = irq_desc_get_handler_data(desc);
1310 const struct msm_pingroup *g;
1311 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1312 struct irq_chip *chip = irq_desc_get_chip(desc);
1313 int handled = 0;
1314 u32 val;
1315 int i;
1317 chained_irq_enter(chip, desc);
1320 * Each pin has it's own IRQ status register, so use
1321 * enabled_irq bitmap to limit the number of reads.
1323 for_each_set_bit(i, pctrl->enabled_irqs, pctrl->chip.ngpio) {
1324 g = &pctrl->soc->groups[i];
1325 val = msm_readl_intr_status(pctrl, g);
1326 if (val & BIT(g->intr_status_bit)) {
1327 generic_handle_domain_irq(gc->irq.domain, i);
1328 handled++;
1332 /* No interrupts were flagged */
1333 if (handled == 0)
1334 handle_bad_irq(desc);
1336 chained_irq_exit(chip, desc);
1339 static int msm_gpio_wakeirq(struct gpio_chip *gc,
1340 unsigned int child,
1341 unsigned int child_type,
1342 unsigned int *parent,
1343 unsigned int *parent_type)
1345 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1346 const struct msm_gpio_wakeirq_map *map;
1347 int i;
1349 *parent = GPIO_NO_WAKE_IRQ;
1350 *parent_type = IRQ_TYPE_EDGE_RISING;
1352 for (i = 0; i < pctrl->soc->nwakeirq_map; i++) {
1353 map = &pctrl->soc->wakeirq_map[i];
1354 if (map->gpio == child) {
1355 *parent = map->wakeirq;
1356 break;
1360 return 0;
1363 static bool msm_gpio_needs_valid_mask(struct msm_pinctrl *pctrl)
1365 if (pctrl->soc->reserved_gpios)
1366 return true;
1368 return device_property_count_u16(pctrl->dev, "gpios") > 0;
1371 static const struct irq_chip msm_gpio_irq_chip = {
1372 .name = "msmgpio",
1373 .irq_enable = msm_gpio_irq_enable,
1374 .irq_disable = msm_gpio_irq_disable,
1375 .irq_mask = msm_gpio_irq_mask,
1376 .irq_unmask = msm_gpio_irq_unmask,
1377 .irq_ack = msm_gpio_irq_ack,
1378 .irq_eoi = msm_gpio_irq_eoi,
1379 .irq_set_type = msm_gpio_irq_set_type,
1380 .irq_set_wake = msm_gpio_irq_set_wake,
1381 .irq_request_resources = msm_gpio_irq_reqres,
1382 .irq_release_resources = msm_gpio_irq_relres,
1383 .irq_set_affinity = msm_gpio_irq_set_affinity,
1384 .irq_set_vcpu_affinity = msm_gpio_irq_set_vcpu_affinity,
1385 .flags = (IRQCHIP_MASK_ON_SUSPEND |
1386 IRQCHIP_SET_TYPE_MASKED |
1387 IRQCHIP_ENABLE_WAKEUP_ON_SUSPEND |
1388 IRQCHIP_IMMUTABLE),
1391 static int msm_gpio_init(struct msm_pinctrl *pctrl)
1393 struct gpio_chip *chip;
1394 struct gpio_irq_chip *girq;
1395 int i, ret;
1396 unsigned gpio, ngpio = pctrl->soc->ngpios;
1397 struct device_node *np;
1398 bool skip;
1400 if (WARN_ON(ngpio > MAX_NR_GPIO))
1401 return -EINVAL;
1403 chip = &pctrl->chip;
1404 chip->base = -1;
1405 chip->ngpio = ngpio;
1406 chip->label = dev_name(pctrl->dev);
1407 chip->parent = pctrl->dev;
1408 chip->owner = THIS_MODULE;
1409 if (msm_gpio_needs_valid_mask(pctrl))
1410 chip->init_valid_mask = msm_gpio_init_valid_mask;
1412 np = of_parse_phandle(pctrl->dev->of_node, "wakeup-parent", 0);
1413 if (np) {
1414 chip->irq.parent_domain = irq_find_matching_host(np,
1415 DOMAIN_BUS_WAKEUP);
1416 of_node_put(np);
1417 if (!chip->irq.parent_domain)
1418 return -EPROBE_DEFER;
1419 chip->irq.child_to_parent_hwirq = msm_gpio_wakeirq;
1421 * Let's skip handling the GPIOs, if the parent irqchip
1422 * is handling the direct connect IRQ of the GPIO.
1424 skip = irq_domain_qcom_handle_wakeup(chip->irq.parent_domain);
1425 for (i = 0; skip && i < pctrl->soc->nwakeirq_map; i++) {
1426 gpio = pctrl->soc->wakeirq_map[i].gpio;
1427 set_bit(gpio, pctrl->skip_wake_irqs);
1431 girq = &chip->irq;
1432 gpio_irq_chip_set_chip(girq, &msm_gpio_irq_chip);
1433 girq->parent_handler = msm_gpio_irq_handler;
1434 girq->fwnode = dev_fwnode(pctrl->dev);
1435 girq->num_parents = 1;
1436 girq->parents = devm_kcalloc(pctrl->dev, 1, sizeof(*girq->parents),
1437 GFP_KERNEL);
1438 if (!girq->parents)
1439 return -ENOMEM;
1440 girq->default_type = IRQ_TYPE_NONE;
1441 girq->handler = handle_bad_irq;
1442 girq->parents[0] = pctrl->irq;
1444 ret = gpiochip_add_data(&pctrl->chip, pctrl);
1445 if (ret) {
1446 dev_err(pctrl->dev, "Failed register gpiochip\n");
1447 return ret;
1451 * For DeviceTree-supported systems, the gpio core checks the
1452 * pinctrl's device node for the "gpio-ranges" property.
1453 * If it is present, it takes care of adding the pin ranges
1454 * for the driver. In this case the driver can skip ahead.
1456 * In order to remain compatible with older, existing DeviceTree
1457 * files which don't set the "gpio-ranges" property or systems that
1458 * utilize ACPI the driver has to call gpiochip_add_pin_range().
1460 if (!of_property_present(pctrl->dev->of_node, "gpio-ranges")) {
1461 ret = gpiochip_add_pin_range(&pctrl->chip,
1462 dev_name(pctrl->dev), 0, 0, chip->ngpio);
1463 if (ret) {
1464 dev_err(pctrl->dev, "Failed to add pin range\n");
1465 gpiochip_remove(&pctrl->chip);
1466 return ret;
1470 return 0;
1473 static int msm_ps_hold_restart(struct notifier_block *nb, unsigned long action,
1474 void *data)
1476 struct msm_pinctrl *pctrl = container_of(nb, struct msm_pinctrl, restart_nb);
1478 writel(0, pctrl->regs[0] + PS_HOLD_OFFSET);
1479 mdelay(1000);
1480 return NOTIFY_DONE;
1483 static struct msm_pinctrl *poweroff_pctrl;
1485 static void msm_ps_hold_poweroff(void)
1487 msm_ps_hold_restart(&poweroff_pctrl->restart_nb, 0, NULL);
1490 static void msm_pinctrl_setup_pm_reset(struct msm_pinctrl *pctrl)
1492 int i;
1493 const struct pinfunction *func = pctrl->soc->functions;
1495 for (i = 0; i < pctrl->soc->nfunctions; i++)
1496 if (!strcmp(func[i].name, "ps_hold")) {
1497 pctrl->restart_nb.notifier_call = msm_ps_hold_restart;
1498 pctrl->restart_nb.priority = 128;
1499 if (register_restart_handler(&pctrl->restart_nb))
1500 dev_err(pctrl->dev,
1501 "failed to setup restart handler.\n");
1502 poweroff_pctrl = pctrl;
1503 pm_power_off = msm_ps_hold_poweroff;
1504 break;
1508 static __maybe_unused int msm_pinctrl_suspend(struct device *dev)
1510 struct msm_pinctrl *pctrl = dev_get_drvdata(dev);
1512 return pinctrl_force_sleep(pctrl->pctrl);
1515 static __maybe_unused int msm_pinctrl_resume(struct device *dev)
1517 struct msm_pinctrl *pctrl = dev_get_drvdata(dev);
1519 return pinctrl_force_default(pctrl->pctrl);
1522 SIMPLE_DEV_PM_OPS(msm_pinctrl_dev_pm_ops, msm_pinctrl_suspend,
1523 msm_pinctrl_resume);
1525 EXPORT_SYMBOL(msm_pinctrl_dev_pm_ops);
1527 int msm_pinctrl_probe(struct platform_device *pdev,
1528 const struct msm_pinctrl_soc_data *soc_data)
1530 struct msm_pinctrl *pctrl;
1531 struct resource *res;
1532 int ret;
1533 int i;
1535 pctrl = devm_kzalloc(&pdev->dev, sizeof(*pctrl), GFP_KERNEL);
1536 if (!pctrl)
1537 return -ENOMEM;
1539 pctrl->dev = &pdev->dev;
1540 pctrl->soc = soc_data;
1541 pctrl->chip = msm_gpio_template;
1542 pctrl->intr_target_use_scm = of_device_is_compatible(
1543 pctrl->dev->of_node,
1544 "qcom,ipq8064-pinctrl");
1546 raw_spin_lock_init(&pctrl->lock);
1548 if (soc_data->tiles) {
1549 for (i = 0; i < soc_data->ntiles; i++) {
1550 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1551 soc_data->tiles[i]);
1552 pctrl->regs[i] = devm_ioremap_resource(&pdev->dev, res);
1553 if (IS_ERR(pctrl->regs[i]))
1554 return PTR_ERR(pctrl->regs[i]);
1556 } else {
1557 pctrl->regs[0] = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1558 if (IS_ERR(pctrl->regs[0]))
1559 return PTR_ERR(pctrl->regs[0]);
1561 pctrl->phys_base[0] = res->start;
1564 msm_pinctrl_setup_pm_reset(pctrl);
1566 pctrl->irq = platform_get_irq(pdev, 0);
1567 if (pctrl->irq < 0)
1568 return pctrl->irq;
1570 pctrl->desc.owner = THIS_MODULE;
1571 pctrl->desc.pctlops = &msm_pinctrl_ops;
1572 pctrl->desc.pmxops = &msm_pinmux_ops;
1573 pctrl->desc.confops = &msm_pinconf_ops;
1574 pctrl->desc.name = dev_name(&pdev->dev);
1575 pctrl->desc.pins = pctrl->soc->pins;
1576 pctrl->desc.npins = pctrl->soc->npins;
1578 pctrl->pctrl = devm_pinctrl_register(&pdev->dev, &pctrl->desc, pctrl);
1579 if (IS_ERR(pctrl->pctrl)) {
1580 dev_err(&pdev->dev, "Couldn't register pinctrl driver\n");
1581 return PTR_ERR(pctrl->pctrl);
1584 ret = msm_gpio_init(pctrl);
1585 if (ret)
1586 return ret;
1588 platform_set_drvdata(pdev, pctrl);
1590 dev_dbg(&pdev->dev, "Probed Qualcomm pinctrl driver\n");
1592 return 0;
1594 EXPORT_SYMBOL(msm_pinctrl_probe);
1596 void msm_pinctrl_remove(struct platform_device *pdev)
1598 struct msm_pinctrl *pctrl = platform_get_drvdata(pdev);
1600 gpiochip_remove(&pctrl->chip);
1602 unregister_restart_handler(&pctrl->restart_nb);
1604 EXPORT_SYMBOL(msm_pinctrl_remove);
1606 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. TLMM driver");
1607 MODULE_LICENSE("GPL v2");