1 // SPDX-License-Identifier: GPL-2.0-only
2 // Copyright 2017 Broadcom
6 #include <linux/module.h>
7 #include <linux/mod_devicetable.h>
8 #include <linux/platform_device.h>
9 #include <linux/ptp_clock_kernel.h>
10 #include <linux/types.h>
12 #define DTE_NCO_LOW_TIME_REG 0x00
13 #define DTE_NCO_TIME_REG 0x04
14 #define DTE_NCO_OVERFLOW_REG 0x08
15 #define DTE_NCO_INC_REG 0x0c
17 #define DTE_NCO_SUM2_MASK 0xffffffff
18 #define DTE_NCO_SUM2_SHIFT 4ULL
20 #define DTE_NCO_SUM3_MASK 0xff
21 #define DTE_NCO_SUM3_SHIFT 36ULL
22 #define DTE_NCO_SUM3_WR_SHIFT 8
24 #define DTE_NCO_TS_WRAP_MASK 0xfff
25 #define DTE_NCO_TS_WRAP_LSHIFT 32
27 #define DTE_NCO_INC_DEFAULT 0x80000000
28 #define DTE_NUM_REGS_TO_RESTORE 4
30 /* Full wrap around is 44bits in ns (~4.887 hrs) */
31 #define DTE_WRAP_AROUND_NSEC_SHIFT 44
34 #define DTE_NCO_MAX_NS 0xFFFFFFFFFFFLL
36 /* 125MHz with 3.29 reg cfg */
37 #define DTE_PPB_ADJ(ppb) (u32)(div64_u64((((u64)abs(ppb) * BIT(28)) +\
38 62500000ULL), 125000000ULL))
40 /* ptp dte priv structure */
43 struct ptp_clock
*ptp_clk
;
44 struct ptp_clock_info caps
;
49 u32 reg_val
[DTE_NUM_REGS_TO_RESTORE
];
52 static void dte_write_nco(void __iomem
*regs
, s64 ns
)
56 sum2
= (u32
)((ns
>> DTE_NCO_SUM2_SHIFT
) & DTE_NCO_SUM2_MASK
);
57 /* compensate for ignoring sum1 */
58 if (sum2
!= DTE_NCO_SUM2_MASK
)
61 /* to write sum3, bits [15:8] needs to be written */
62 sum3
= (u32
)(((ns
>> DTE_NCO_SUM3_SHIFT
) & DTE_NCO_SUM3_MASK
) <<
63 DTE_NCO_SUM3_WR_SHIFT
);
65 writel(0, (regs
+ DTE_NCO_LOW_TIME_REG
));
66 writel(sum2
, (regs
+ DTE_NCO_TIME_REG
));
67 writel(sum3
, (regs
+ DTE_NCO_OVERFLOW_REG
));
70 static s64
dte_read_nco(void __iomem
*regs
)
76 * ignoring sum1 (4 bits) gives a 16ns resolution, which
77 * works due to the async register read.
79 sum3
= readl(regs
+ DTE_NCO_OVERFLOW_REG
) & DTE_NCO_SUM3_MASK
;
80 sum2
= readl(regs
+ DTE_NCO_TIME_REG
);
81 ns
= ((s64
)sum3
<< DTE_NCO_SUM3_SHIFT
) |
82 ((s64
)sum2
<< DTE_NCO_SUM2_SHIFT
);
87 static void dte_write_nco_delta(struct ptp_dte
*ptp_dte
, s64 delta
)
91 ns
= dte_read_nco(ptp_dte
->regs
);
93 /* handle wraparound conditions */
94 if ((delta
< 0) && (abs(delta
) > ns
)) {
95 if (ptp_dte
->ts_wrap_cnt
) {
96 ns
+= DTE_NCO_MAX_NS
+ delta
;
97 ptp_dte
->ts_wrap_cnt
--;
103 if (ns
> DTE_NCO_MAX_NS
) {
104 ptp_dte
->ts_wrap_cnt
++;
105 ns
-= DTE_NCO_MAX_NS
;
109 dte_write_nco(ptp_dte
->regs
, ns
);
111 ptp_dte
->ts_ovf_last
= (ns
>> DTE_NCO_TS_WRAP_LSHIFT
) &
112 DTE_NCO_TS_WRAP_MASK
;
115 static s64
dte_read_nco_with_ovf(struct ptp_dte
*ptp_dte
)
120 ns
= dte_read_nco(ptp_dte
->regs
);
122 /*Timestamp overflow: 8 LSB bits of sum3, 4 MSB bits of sum2 */
123 ts_ovf
= (ns
>> DTE_NCO_TS_WRAP_LSHIFT
) & DTE_NCO_TS_WRAP_MASK
;
125 /* Check for wrap around */
126 if (ts_ovf
< ptp_dte
->ts_ovf_last
)
127 ptp_dte
->ts_wrap_cnt
++;
129 ptp_dte
->ts_ovf_last
= ts_ovf
;
131 /* adjust for wraparounds */
132 ns
+= (s64
)(BIT_ULL(DTE_WRAP_AROUND_NSEC_SHIFT
) * ptp_dte
->ts_wrap_cnt
);
137 static int ptp_dte_adjfine(struct ptp_clock_info
*ptp
, long scaled_ppm
)
139 s32 ppb
= scaled_ppm_to_ppb(scaled_ppm
);
142 struct ptp_dte
*ptp_dte
= container_of(ptp
, struct ptp_dte
, caps
);
144 if (abs(ppb
) > ptp_dte
->caps
.max_adj
) {
145 dev_err(ptp_dte
->dev
, "ppb adj too big\n");
150 nco_incr
= DTE_NCO_INC_DEFAULT
- DTE_PPB_ADJ(ppb
);
152 nco_incr
= DTE_NCO_INC_DEFAULT
+ DTE_PPB_ADJ(ppb
);
154 spin_lock_irqsave(&ptp_dte
->lock
, flags
);
155 writel(nco_incr
, ptp_dte
->regs
+ DTE_NCO_INC_REG
);
156 spin_unlock_irqrestore(&ptp_dte
->lock
, flags
);
161 static int ptp_dte_adjtime(struct ptp_clock_info
*ptp
, s64 delta
)
164 struct ptp_dte
*ptp_dte
= container_of(ptp
, struct ptp_dte
, caps
);
166 spin_lock_irqsave(&ptp_dte
->lock
, flags
);
167 dte_write_nco_delta(ptp_dte
, delta
);
168 spin_unlock_irqrestore(&ptp_dte
->lock
, flags
);
173 static int ptp_dte_gettime(struct ptp_clock_info
*ptp
, struct timespec64
*ts
)
176 struct ptp_dte
*ptp_dte
= container_of(ptp
, struct ptp_dte
, caps
);
178 spin_lock_irqsave(&ptp_dte
->lock
, flags
);
179 *ts
= ns_to_timespec64(dte_read_nco_with_ovf(ptp_dte
));
180 spin_unlock_irqrestore(&ptp_dte
->lock
, flags
);
185 static int ptp_dte_settime(struct ptp_clock_info
*ptp
,
186 const struct timespec64
*ts
)
189 struct ptp_dte
*ptp_dte
= container_of(ptp
, struct ptp_dte
, caps
);
191 spin_lock_irqsave(&ptp_dte
->lock
, flags
);
193 /* Disable nco increment */
194 writel(0, ptp_dte
->regs
+ DTE_NCO_INC_REG
);
196 dte_write_nco(ptp_dte
->regs
, timespec64_to_ns(ts
));
198 /* reset overflow and wrap counter */
199 ptp_dte
->ts_ovf_last
= 0;
200 ptp_dte
->ts_wrap_cnt
= 0;
202 /* Enable nco increment */
203 writel(DTE_NCO_INC_DEFAULT
, ptp_dte
->regs
+ DTE_NCO_INC_REG
);
205 spin_unlock_irqrestore(&ptp_dte
->lock
, flags
);
210 static int ptp_dte_enable(struct ptp_clock_info
*ptp
,
211 struct ptp_clock_request
*rq
, int on
)
216 static const struct ptp_clock_info ptp_dte_caps
= {
217 .owner
= THIS_MODULE
,
218 .name
= "DTE PTP timer",
223 .adjfine
= ptp_dte_adjfine
,
224 .adjtime
= ptp_dte_adjtime
,
225 .gettime64
= ptp_dte_gettime
,
226 .settime64
= ptp_dte_settime
,
227 .enable
= ptp_dte_enable
,
230 static int ptp_dte_probe(struct platform_device
*pdev
)
232 struct ptp_dte
*ptp_dte
;
233 struct device
*dev
= &pdev
->dev
;
235 ptp_dte
= devm_kzalloc(dev
, sizeof(struct ptp_dte
), GFP_KERNEL
);
239 ptp_dte
->regs
= devm_platform_ioremap_resource(pdev
, 0);
240 if (IS_ERR(ptp_dte
->regs
))
241 return PTR_ERR(ptp_dte
->regs
);
243 spin_lock_init(&ptp_dte
->lock
);
246 ptp_dte
->caps
= ptp_dte_caps
;
247 ptp_dte
->ptp_clk
= ptp_clock_register(&ptp_dte
->caps
, &pdev
->dev
);
248 if (IS_ERR(ptp_dte
->ptp_clk
)) {
250 "%s: Failed to register ptp clock\n", __func__
);
251 return PTR_ERR(ptp_dte
->ptp_clk
);
254 platform_set_drvdata(pdev
, ptp_dte
);
256 dev_info(dev
, "ptp clk probe done\n");
261 static void ptp_dte_remove(struct platform_device
*pdev
)
263 struct ptp_dte
*ptp_dte
= platform_get_drvdata(pdev
);
266 ptp_clock_unregister(ptp_dte
->ptp_clk
);
268 for (i
= 0; i
< DTE_NUM_REGS_TO_RESTORE
; i
++)
269 writel(0, ptp_dte
->regs
+ (i
* sizeof(u32
)));
272 #ifdef CONFIG_PM_SLEEP
273 static int ptp_dte_suspend(struct device
*dev
)
275 struct ptp_dte
*ptp_dte
= dev_get_drvdata(dev
);
278 for (i
= 0; i
< DTE_NUM_REGS_TO_RESTORE
; i
++) {
279 ptp_dte
->reg_val
[i
] =
280 readl(ptp_dte
->regs
+ (i
* sizeof(u32
)));
283 /* disable the nco */
284 writel(0, ptp_dte
->regs
+ DTE_NCO_INC_REG
);
289 static int ptp_dte_resume(struct device
*dev
)
291 struct ptp_dte
*ptp_dte
= dev_get_drvdata(dev
);
294 for (i
= 0; i
< DTE_NUM_REGS_TO_RESTORE
; i
++) {
295 if ((i
* sizeof(u32
)) != DTE_NCO_OVERFLOW_REG
)
296 writel(ptp_dte
->reg_val
[i
],
297 (ptp_dte
->regs
+ (i
* sizeof(u32
))));
299 writel(((ptp_dte
->reg_val
[i
] &
300 DTE_NCO_SUM3_MASK
) << DTE_NCO_SUM3_WR_SHIFT
),
301 (ptp_dte
->regs
+ (i
* sizeof(u32
))));
307 static const struct dev_pm_ops ptp_dte_pm_ops
= {
308 .suspend
= ptp_dte_suspend
,
309 .resume
= ptp_dte_resume
312 #define PTP_DTE_PM_OPS (&ptp_dte_pm_ops)
314 #define PTP_DTE_PM_OPS NULL
317 static const struct of_device_id ptp_dte_of_match
[] = {
318 { .compatible
= "brcm,ptp-dte", },
321 MODULE_DEVICE_TABLE(of
, ptp_dte_of_match
);
323 static struct platform_driver ptp_dte_driver
= {
326 .pm
= PTP_DTE_PM_OPS
,
327 .of_match_table
= ptp_dte_of_match
,
329 .probe
= ptp_dte_probe
,
330 .remove
= ptp_dte_remove
,
332 module_platform_driver(ptp_dte_driver
);
334 MODULE_AUTHOR("Broadcom");
335 MODULE_DESCRIPTION("Broadcom DTE PTP Clock driver");
336 MODULE_LICENSE("GPL v2");