1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (C) 2021 Sean Anderson <sean.anderson@seco.com>
6 * - When changing both duty cycle and period, we may end up with one cycle
7 * with the old duty cycle and the new period. This is because the counters
8 * may only be reloaded by first stopping them, or by letting them be
9 * automatically reloaded at the end of a cycle. If this automatic reload
10 * happens after we set TLR0 but before we set TLR1 then we will have a
11 * bad cycle. This could probably be fixed by reading TCR0 just before
12 * reprogramming, but I think it would add complexity for little gain.
13 * - Cannot produce 100% duty cycle by configuring the TLRs. This might be
14 * possible by stopping the counters at an appropriate point in the cycle,
15 * but this is not (yet) implemented.
16 * - Only produces "normal" output.
17 * - Always produces low output if disabled.
20 #include <clocksource/timer-xilinx.h>
21 #include <linux/clk.h>
22 #include <linux/clk-provider.h>
23 #include <linux/device.h>
24 #include <linux/module.h>
26 #include <linux/platform_device.h>
27 #include <linux/pwm.h>
28 #include <linux/regmap.h>
31 * The following functions are "common" to drivers for this device, and may be
32 * exported at a future date.
34 u32
xilinx_timer_tlr_cycles(struct xilinx_timer_priv
*priv
, u32 tcsr
,
37 WARN_ON(cycles
< 2 || cycles
- 2 > priv
->max
);
41 return priv
->max
- cycles
+ 2;
44 unsigned int xilinx_timer_get_period(struct xilinx_timer_priv
*priv
,
52 cycles
= (u64
)priv
->max
- tlr
+ 2;
54 /* cycles has a max of 2^32 + 2, so we can't overflow */
55 return DIV64_U64_ROUND_UP(cycles
* NSEC_PER_SEC
,
56 clk_get_rate(priv
->clk
));
60 * The idea here is to capture whether the PWM is actually running (e.g.
61 * because we or the bootloader set it up) and we need to be careful to ensure
62 * we don't cause a glitch. According to the data sheet, to enable the PWM we
65 * - Set both timers to generate mode (MDT=1)
66 * - Set both timers to PWM mode (PWMA=1)
67 * - Enable the generate out signals (GENT=1)
71 * - The timer must be running (ENT=1)
72 * - The timer must auto-reload TLR into TCR (ARHT=1)
73 * - We must not be in the process of loading TLR into TCR (LOAD=0)
74 * - Cascade mode must be disabled (CASC=0)
76 * If any of these differ from usual, then the PWM is either disabled, or is
77 * running in a mode that this driver does not support.
79 #define TCSR_PWM_SET (TCSR_GENT | TCSR_ARHT | TCSR_ENT | TCSR_PWMA)
80 #define TCSR_PWM_CLEAR (TCSR_MDT | TCSR_LOAD)
81 #define TCSR_PWM_MASK (TCSR_PWM_SET | TCSR_PWM_CLEAR)
83 static inline struct xilinx_timer_priv
84 *xilinx_pwm_chip_to_priv(struct pwm_chip
*chip
)
86 return pwmchip_get_drvdata(chip
);
89 static bool xilinx_timer_pwm_enabled(u32 tcsr0
, u32 tcsr1
)
91 return ((TCSR_PWM_MASK
| TCSR_CASC
) & tcsr0
) == TCSR_PWM_SET
&&
92 (TCSR_PWM_MASK
& tcsr1
) == TCSR_PWM_SET
;
95 static int xilinx_pwm_apply(struct pwm_chip
*chip
, struct pwm_device
*unused
,
96 const struct pwm_state
*state
)
98 struct xilinx_timer_priv
*priv
= xilinx_pwm_chip_to_priv(chip
);
99 u32 tlr0
, tlr1
, tcsr0
, tcsr1
;
100 u64 period_cycles
, duty_cycles
;
103 if (state
->polarity
!= PWM_POLARITY_NORMAL
)
107 * To be representable by TLR, cycles must be between 2 and
108 * priv->max + 2. To enforce this we can reduce the cycles, but we may
109 * not increase them. Caveat emptor: while this does result in more
110 * predictable rounding, it may also result in a completely different
111 * duty cycle (% high time) than what was requested.
113 rate
= clk_get_rate(priv
->clk
);
115 period_cycles
= min_t(u64
, state
->period
, U32_MAX
* NSEC_PER_SEC
);
116 period_cycles
= mul_u64_u32_div(period_cycles
, rate
, NSEC_PER_SEC
);
117 period_cycles
= min_t(u64
, period_cycles
, priv
->max
+ 2);
118 if (period_cycles
< 2)
121 /* Same thing for duty cycles */
122 duty_cycles
= min_t(u64
, state
->duty_cycle
, U32_MAX
* NSEC_PER_SEC
);
123 duty_cycles
= mul_u64_u32_div(duty_cycles
, rate
, NSEC_PER_SEC
);
124 duty_cycles
= min_t(u64
, duty_cycles
, priv
->max
+ 2);
127 * If we specify 100% duty cycle, we will get 0% instead, so decrease
128 * the duty cycle count by one.
130 if (duty_cycles
>= period_cycles
)
131 duty_cycles
= period_cycles
- 1;
133 /* Round down to 0% duty cycle for unrepresentable duty cycles */
135 duty_cycles
= period_cycles
;
137 regmap_read(priv
->map
, TCSR0
, &tcsr0
);
138 regmap_read(priv
->map
, TCSR1
, &tcsr1
);
139 tlr0
= xilinx_timer_tlr_cycles(priv
, tcsr0
, period_cycles
);
140 tlr1
= xilinx_timer_tlr_cycles(priv
, tcsr1
, duty_cycles
);
141 regmap_write(priv
->map
, TLR0
, tlr0
);
142 regmap_write(priv
->map
, TLR1
, tlr1
);
144 if (state
->enabled
) {
146 * If the PWM is already running, then the counters will be
147 * reloaded at the end of the current cycle.
149 if (!xilinx_timer_pwm_enabled(tcsr0
, tcsr1
)) {
150 /* Load TLR into TCR */
151 regmap_write(priv
->map
, TCSR0
, tcsr0
| TCSR_LOAD
);
152 regmap_write(priv
->map
, TCSR1
, tcsr1
| TCSR_LOAD
);
153 /* Enable timers all at once with ENALL */
154 tcsr0
= (TCSR_PWM_SET
& ~TCSR_ENT
) | (tcsr0
& TCSR_UDT
);
155 tcsr1
= TCSR_PWM_SET
| TCSR_ENALL
| (tcsr1
& TCSR_UDT
);
156 regmap_write(priv
->map
, TCSR0
, tcsr0
);
157 regmap_write(priv
->map
, TCSR1
, tcsr1
);
160 regmap_write(priv
->map
, TCSR0
, 0);
161 regmap_write(priv
->map
, TCSR1
, 0);
167 static int xilinx_pwm_get_state(struct pwm_chip
*chip
,
168 struct pwm_device
*unused
,
169 struct pwm_state
*state
)
171 struct xilinx_timer_priv
*priv
= xilinx_pwm_chip_to_priv(chip
);
172 u32 tlr0
, tlr1
, tcsr0
, tcsr1
;
174 regmap_read(priv
->map
, TLR0
, &tlr0
);
175 regmap_read(priv
->map
, TLR1
, &tlr1
);
176 regmap_read(priv
->map
, TCSR0
, &tcsr0
);
177 regmap_read(priv
->map
, TCSR1
, &tcsr1
);
178 state
->period
= xilinx_timer_get_period(priv
, tlr0
, tcsr0
);
179 state
->duty_cycle
= xilinx_timer_get_period(priv
, tlr1
, tcsr1
);
180 state
->enabled
= xilinx_timer_pwm_enabled(tcsr0
, tcsr1
);
181 state
->polarity
= PWM_POLARITY_NORMAL
;
184 * 100% duty cycle results in constant low output. This may be (very)
185 * wrong if rate > 1 GHz, so fix this if you have such hardware :)
187 if (state
->period
== state
->duty_cycle
)
188 state
->duty_cycle
= 0;
193 static const struct pwm_ops xilinx_pwm_ops
= {
194 .apply
= xilinx_pwm_apply
,
195 .get_state
= xilinx_pwm_get_state
,
198 static const struct regmap_config xilinx_pwm_regmap_config
= {
202 .val_format_endian
= REGMAP_ENDIAN_LITTLE
,
203 .max_register
= TCR1
,
206 static int xilinx_pwm_probe(struct platform_device
*pdev
)
209 struct device
*dev
= &pdev
->dev
;
210 struct device_node
*np
= dev
->of_node
;
211 struct xilinx_timer_priv
*priv
;
212 struct pwm_chip
*chip
;
213 u32 pwm_cells
, one_timer
, width
;
216 /* If there are no PWM cells, this binding is for a timer */
217 ret
= of_property_read_u32(np
, "#pwm-cells", &pwm_cells
);
221 return dev_err_probe(dev
, ret
, "could not read #pwm-cells\n");
223 chip
= devm_pwmchip_alloc(dev
, 1, sizeof(*priv
));
225 return PTR_ERR(chip
);
226 priv
= xilinx_pwm_chip_to_priv(chip
);
228 regs
= devm_platform_ioremap_resource(pdev
, 0);
230 return PTR_ERR(regs
);
232 priv
->map
= devm_regmap_init_mmio(dev
, regs
,
233 &xilinx_pwm_regmap_config
);
234 if (IS_ERR(priv
->map
))
235 return dev_err_probe(dev
, PTR_ERR(priv
->map
),
236 "Could not create regmap\n");
238 ret
= of_property_read_u32(np
, "xlnx,one-timer-only", &one_timer
);
240 return dev_err_probe(dev
, ret
,
241 "Could not read xlnx,one-timer-only\n");
244 return dev_err_probe(dev
, -EINVAL
,
245 "Two timers required for PWM mode\n");
247 ret
= of_property_read_u32(np
, "xlnx,count-width", &width
);
251 return dev_err_probe(dev
, ret
,
252 "Could not read xlnx,count-width\n");
254 if (width
!= 8 && width
!= 16 && width
!= 32)
255 return dev_err_probe(dev
, -EINVAL
,
256 "Invalid counter width %d\n", width
);
257 priv
->max
= BIT_ULL(width
) - 1;
260 * The polarity of the Generate Out signals must be active high for PWM
261 * mode to work. We could determine this from the device tree, but
262 * alas, such properties are not allowed to be used.
265 priv
->clk
= devm_clk_get_enabled(dev
, "s_axi_aclk");
266 if (IS_ERR(priv
->clk
))
267 return dev_err_probe(dev
, PTR_ERR(priv
->clk
),
268 "Could not get clock\n");
270 ret
= devm_clk_rate_exclusive_get(dev
, priv
->clk
);
272 return dev_err_probe(dev
, ret
,
273 "Failed to lock clock rate\n");
275 chip
->ops
= &xilinx_pwm_ops
;
276 ret
= devm_pwmchip_add(dev
, chip
);
278 return dev_err_probe(dev
, ret
, "Could not register PWM chip\n");
283 static const struct of_device_id xilinx_pwm_of_match
[] = {
284 { .compatible
= "xlnx,xps-timer-1.00.a", },
287 MODULE_DEVICE_TABLE(of
, xilinx_pwm_of_match
);
289 static struct platform_driver xilinx_pwm_driver
= {
290 .probe
= xilinx_pwm_probe
,
292 .name
= "xilinx-pwm",
293 .of_match_table
= of_match_ptr(xilinx_pwm_of_match
),
296 module_platform_driver(xilinx_pwm_driver
);
298 MODULE_ALIAS("platform:xilinx-pwm");
299 MODULE_DESCRIPTION("PWM driver for Xilinx LogiCORE IP AXI Timer");
300 MODULE_LICENSE("GPL");