drm/nouveau: fix kernel-doc comments
[drm/drm-misc.git] / drivers / pwm / pwm-xilinx.c
blob52c24198280732b423c20e1df740fecb749d7860
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2021 Sean Anderson <sean.anderson@seco.com>
5 * Limitations:
6 * - When changing both duty cycle and period, we may end up with one cycle
7 * with the old duty cycle and the new period. This is because the counters
8 * may only be reloaded by first stopping them, or by letting them be
9 * automatically reloaded at the end of a cycle. If this automatic reload
10 * happens after we set TLR0 but before we set TLR1 then we will have a
11 * bad cycle. This could probably be fixed by reading TCR0 just before
12 * reprogramming, but I think it would add complexity for little gain.
13 * - Cannot produce 100% duty cycle by configuring the TLRs. This might be
14 * possible by stopping the counters at an appropriate point in the cycle,
15 * but this is not (yet) implemented.
16 * - Only produces "normal" output.
17 * - Always produces low output if disabled.
20 #include <clocksource/timer-xilinx.h>
21 #include <linux/clk.h>
22 #include <linux/clk-provider.h>
23 #include <linux/device.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/pwm.h>
28 #include <linux/regmap.h>
31 * The following functions are "common" to drivers for this device, and may be
32 * exported at a future date.
34 u32 xilinx_timer_tlr_cycles(struct xilinx_timer_priv *priv, u32 tcsr,
35 u64 cycles)
37 WARN_ON(cycles < 2 || cycles - 2 > priv->max);
39 if (tcsr & TCSR_UDT)
40 return cycles - 2;
41 return priv->max - cycles + 2;
44 unsigned int xilinx_timer_get_period(struct xilinx_timer_priv *priv,
45 u32 tlr, u32 tcsr)
47 u64 cycles;
49 if (tcsr & TCSR_UDT)
50 cycles = tlr + 2;
51 else
52 cycles = (u64)priv->max - tlr + 2;
54 /* cycles has a max of 2^32 + 2, so we can't overflow */
55 return DIV64_U64_ROUND_UP(cycles * NSEC_PER_SEC,
56 clk_get_rate(priv->clk));
60 * The idea here is to capture whether the PWM is actually running (e.g.
61 * because we or the bootloader set it up) and we need to be careful to ensure
62 * we don't cause a glitch. According to the data sheet, to enable the PWM we
63 * need to
65 * - Set both timers to generate mode (MDT=1)
66 * - Set both timers to PWM mode (PWMA=1)
67 * - Enable the generate out signals (GENT=1)
69 * In addition,
71 * - The timer must be running (ENT=1)
72 * - The timer must auto-reload TLR into TCR (ARHT=1)
73 * - We must not be in the process of loading TLR into TCR (LOAD=0)
74 * - Cascade mode must be disabled (CASC=0)
76 * If any of these differ from usual, then the PWM is either disabled, or is
77 * running in a mode that this driver does not support.
79 #define TCSR_PWM_SET (TCSR_GENT | TCSR_ARHT | TCSR_ENT | TCSR_PWMA)
80 #define TCSR_PWM_CLEAR (TCSR_MDT | TCSR_LOAD)
81 #define TCSR_PWM_MASK (TCSR_PWM_SET | TCSR_PWM_CLEAR)
83 static inline struct xilinx_timer_priv
84 *xilinx_pwm_chip_to_priv(struct pwm_chip *chip)
86 return pwmchip_get_drvdata(chip);
89 static bool xilinx_timer_pwm_enabled(u32 tcsr0, u32 tcsr1)
91 return ((TCSR_PWM_MASK | TCSR_CASC) & tcsr0) == TCSR_PWM_SET &&
92 (TCSR_PWM_MASK & tcsr1) == TCSR_PWM_SET;
95 static int xilinx_pwm_apply(struct pwm_chip *chip, struct pwm_device *unused,
96 const struct pwm_state *state)
98 struct xilinx_timer_priv *priv = xilinx_pwm_chip_to_priv(chip);
99 u32 tlr0, tlr1, tcsr0, tcsr1;
100 u64 period_cycles, duty_cycles;
101 unsigned long rate;
103 if (state->polarity != PWM_POLARITY_NORMAL)
104 return -EINVAL;
107 * To be representable by TLR, cycles must be between 2 and
108 * priv->max + 2. To enforce this we can reduce the cycles, but we may
109 * not increase them. Caveat emptor: while this does result in more
110 * predictable rounding, it may also result in a completely different
111 * duty cycle (% high time) than what was requested.
113 rate = clk_get_rate(priv->clk);
114 /* Avoid overflow */
115 period_cycles = min_t(u64, state->period, U32_MAX * NSEC_PER_SEC);
116 period_cycles = mul_u64_u32_div(period_cycles, rate, NSEC_PER_SEC);
117 period_cycles = min_t(u64, period_cycles, priv->max + 2);
118 if (period_cycles < 2)
119 return -ERANGE;
121 /* Same thing for duty cycles */
122 duty_cycles = min_t(u64, state->duty_cycle, U32_MAX * NSEC_PER_SEC);
123 duty_cycles = mul_u64_u32_div(duty_cycles, rate, NSEC_PER_SEC);
124 duty_cycles = min_t(u64, duty_cycles, priv->max + 2);
127 * If we specify 100% duty cycle, we will get 0% instead, so decrease
128 * the duty cycle count by one.
130 if (duty_cycles >= period_cycles)
131 duty_cycles = period_cycles - 1;
133 /* Round down to 0% duty cycle for unrepresentable duty cycles */
134 if (duty_cycles < 2)
135 duty_cycles = period_cycles;
137 regmap_read(priv->map, TCSR0, &tcsr0);
138 regmap_read(priv->map, TCSR1, &tcsr1);
139 tlr0 = xilinx_timer_tlr_cycles(priv, tcsr0, period_cycles);
140 tlr1 = xilinx_timer_tlr_cycles(priv, tcsr1, duty_cycles);
141 regmap_write(priv->map, TLR0, tlr0);
142 regmap_write(priv->map, TLR1, tlr1);
144 if (state->enabled) {
146 * If the PWM is already running, then the counters will be
147 * reloaded at the end of the current cycle.
149 if (!xilinx_timer_pwm_enabled(tcsr0, tcsr1)) {
150 /* Load TLR into TCR */
151 regmap_write(priv->map, TCSR0, tcsr0 | TCSR_LOAD);
152 regmap_write(priv->map, TCSR1, tcsr1 | TCSR_LOAD);
153 /* Enable timers all at once with ENALL */
154 tcsr0 = (TCSR_PWM_SET & ~TCSR_ENT) | (tcsr0 & TCSR_UDT);
155 tcsr1 = TCSR_PWM_SET | TCSR_ENALL | (tcsr1 & TCSR_UDT);
156 regmap_write(priv->map, TCSR0, tcsr0);
157 regmap_write(priv->map, TCSR1, tcsr1);
159 } else {
160 regmap_write(priv->map, TCSR0, 0);
161 regmap_write(priv->map, TCSR1, 0);
164 return 0;
167 static int xilinx_pwm_get_state(struct pwm_chip *chip,
168 struct pwm_device *unused,
169 struct pwm_state *state)
171 struct xilinx_timer_priv *priv = xilinx_pwm_chip_to_priv(chip);
172 u32 tlr0, tlr1, tcsr0, tcsr1;
174 regmap_read(priv->map, TLR0, &tlr0);
175 regmap_read(priv->map, TLR1, &tlr1);
176 regmap_read(priv->map, TCSR0, &tcsr0);
177 regmap_read(priv->map, TCSR1, &tcsr1);
178 state->period = xilinx_timer_get_period(priv, tlr0, tcsr0);
179 state->duty_cycle = xilinx_timer_get_period(priv, tlr1, tcsr1);
180 state->enabled = xilinx_timer_pwm_enabled(tcsr0, tcsr1);
181 state->polarity = PWM_POLARITY_NORMAL;
184 * 100% duty cycle results in constant low output. This may be (very)
185 * wrong if rate > 1 GHz, so fix this if you have such hardware :)
187 if (state->period == state->duty_cycle)
188 state->duty_cycle = 0;
190 return 0;
193 static const struct pwm_ops xilinx_pwm_ops = {
194 .apply = xilinx_pwm_apply,
195 .get_state = xilinx_pwm_get_state,
198 static const struct regmap_config xilinx_pwm_regmap_config = {
199 .reg_bits = 32,
200 .reg_stride = 4,
201 .val_bits = 32,
202 .val_format_endian = REGMAP_ENDIAN_LITTLE,
203 .max_register = TCR1,
206 static int xilinx_pwm_probe(struct platform_device *pdev)
208 int ret;
209 struct device *dev = &pdev->dev;
210 struct device_node *np = dev->of_node;
211 struct xilinx_timer_priv *priv;
212 struct pwm_chip *chip;
213 u32 pwm_cells, one_timer, width;
214 void __iomem *regs;
216 /* If there are no PWM cells, this binding is for a timer */
217 ret = of_property_read_u32(np, "#pwm-cells", &pwm_cells);
218 if (ret == -EINVAL)
219 return -ENODEV;
220 if (ret)
221 return dev_err_probe(dev, ret, "could not read #pwm-cells\n");
223 chip = devm_pwmchip_alloc(dev, 1, sizeof(*priv));
224 if (IS_ERR(chip))
225 return PTR_ERR(chip);
226 priv = xilinx_pwm_chip_to_priv(chip);
228 regs = devm_platform_ioremap_resource(pdev, 0);
229 if (IS_ERR(regs))
230 return PTR_ERR(regs);
232 priv->map = devm_regmap_init_mmio(dev, regs,
233 &xilinx_pwm_regmap_config);
234 if (IS_ERR(priv->map))
235 return dev_err_probe(dev, PTR_ERR(priv->map),
236 "Could not create regmap\n");
238 ret = of_property_read_u32(np, "xlnx,one-timer-only", &one_timer);
239 if (ret)
240 return dev_err_probe(dev, ret,
241 "Could not read xlnx,one-timer-only\n");
243 if (one_timer)
244 return dev_err_probe(dev, -EINVAL,
245 "Two timers required for PWM mode\n");
247 ret = of_property_read_u32(np, "xlnx,count-width", &width);
248 if (ret == -EINVAL)
249 width = 32;
250 else if (ret)
251 return dev_err_probe(dev, ret,
252 "Could not read xlnx,count-width\n");
254 if (width != 8 && width != 16 && width != 32)
255 return dev_err_probe(dev, -EINVAL,
256 "Invalid counter width %d\n", width);
257 priv->max = BIT_ULL(width) - 1;
260 * The polarity of the Generate Out signals must be active high for PWM
261 * mode to work. We could determine this from the device tree, but
262 * alas, such properties are not allowed to be used.
265 priv->clk = devm_clk_get_enabled(dev, "s_axi_aclk");
266 if (IS_ERR(priv->clk))
267 return dev_err_probe(dev, PTR_ERR(priv->clk),
268 "Could not get clock\n");
270 ret = devm_clk_rate_exclusive_get(dev, priv->clk);
271 if (ret)
272 return dev_err_probe(dev, ret,
273 "Failed to lock clock rate\n");
275 chip->ops = &xilinx_pwm_ops;
276 ret = devm_pwmchip_add(dev, chip);
277 if (ret)
278 return dev_err_probe(dev, ret, "Could not register PWM chip\n");
280 return 0;
283 static const struct of_device_id xilinx_pwm_of_match[] = {
284 { .compatible = "xlnx,xps-timer-1.00.a", },
287 MODULE_DEVICE_TABLE(of, xilinx_pwm_of_match);
289 static struct platform_driver xilinx_pwm_driver = {
290 .probe = xilinx_pwm_probe,
291 .driver = {
292 .name = "xilinx-pwm",
293 .of_match_table = of_match_ptr(xilinx_pwm_of_match),
296 module_platform_driver(xilinx_pwm_driver);
298 MODULE_ALIAS("platform:xilinx-pwm");
299 MODULE_DESCRIPTION("PWM driver for Xilinx LogiCORE IP AXI Timer");
300 MODULE_LICENSE("GPL");