1 // SPDX-License-Identifier: GPL-2.0-or-later
3 // core.c -- Voltage/Current Regulator framework.
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
22 #include <linux/reboot.h>
23 #include <linux/regmap.h>
24 #include <linux/regulator/of_regulator.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/regulator/coupler.h>
27 #include <linux/regulator/driver.h>
28 #include <linux/regulator/machine.h>
29 #include <linux/module.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/regulator.h>
38 static DEFINE_WW_CLASS(regulator_ww_class
);
39 static DEFINE_MUTEX(regulator_nesting_mutex
);
40 static DEFINE_MUTEX(regulator_list_mutex
);
41 static LIST_HEAD(regulator_map_list
);
42 static LIST_HEAD(regulator_ena_gpio_list
);
43 static LIST_HEAD(regulator_supply_alias_list
);
44 static LIST_HEAD(regulator_coupler_list
);
45 static bool has_full_constraints
;
47 static struct dentry
*debugfs_root
;
50 * struct regulator_map
52 * Used to provide symbolic supply names to devices.
54 struct regulator_map
{
55 struct list_head list
;
56 const char *dev_name
; /* The dev_name() for the consumer */
58 struct regulator_dev
*regulator
;
62 * struct regulator_enable_gpio
64 * Management for shared enable GPIO pin
66 struct regulator_enable_gpio
{
67 struct list_head list
;
68 struct gpio_desc
*gpiod
;
69 u32 enable_count
; /* a number of enabled shared GPIO */
70 u32 request_count
; /* a number of requested shared GPIO */
74 * struct regulator_supply_alias
76 * Used to map lookups for a supply onto an alternative device.
78 struct regulator_supply_alias
{
79 struct list_head list
;
80 struct device
*src_dev
;
81 const char *src_supply
;
82 struct device
*alias_dev
;
83 const char *alias_supply
;
86 static int _regulator_is_enabled(struct regulator_dev
*rdev
);
87 static int _regulator_disable(struct regulator
*regulator
);
88 static int _regulator_get_error_flags(struct regulator_dev
*rdev
, unsigned int *flags
);
89 static int _regulator_get_current_limit(struct regulator_dev
*rdev
);
90 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
);
91 static int _notifier_call_chain(struct regulator_dev
*rdev
,
92 unsigned long event
, void *data
);
93 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
94 int min_uV
, int max_uV
);
95 static int regulator_balance_voltage(struct regulator_dev
*rdev
,
96 suspend_state_t state
);
97 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
99 const char *supply_name
);
100 static void destroy_regulator(struct regulator
*regulator
);
101 static void _regulator_put(struct regulator
*regulator
);
103 const char *rdev_get_name(struct regulator_dev
*rdev
)
105 if (rdev
->constraints
&& rdev
->constraints
->name
)
106 return rdev
->constraints
->name
;
107 else if (rdev
->desc
->name
)
108 return rdev
->desc
->name
;
112 EXPORT_SYMBOL_GPL(rdev_get_name
);
114 static bool have_full_constraints(void)
116 return has_full_constraints
|| of_have_populated_dt();
119 static bool regulator_ops_is_valid(struct regulator_dev
*rdev
, int ops
)
121 if (!rdev
->constraints
) {
122 rdev_err(rdev
, "no constraints\n");
126 if (rdev
->constraints
->valid_ops_mask
& ops
)
133 * regulator_lock_nested - lock a single regulator
134 * @rdev: regulator source
135 * @ww_ctx: w/w mutex acquire context
137 * This function can be called many times by one task on
138 * a single regulator and its mutex will be locked only
139 * once. If a task, which is calling this function is other
140 * than the one, which initially locked the mutex, it will
143 * Return: 0 on success or a negative error number on failure.
145 static inline int regulator_lock_nested(struct regulator_dev
*rdev
,
146 struct ww_acquire_ctx
*ww_ctx
)
151 mutex_lock(®ulator_nesting_mutex
);
153 if (!ww_mutex_trylock(&rdev
->mutex
, ww_ctx
)) {
154 if (rdev
->mutex_owner
== current
)
160 mutex_unlock(®ulator_nesting_mutex
);
161 ret
= ww_mutex_lock(&rdev
->mutex
, ww_ctx
);
162 mutex_lock(®ulator_nesting_mutex
);
168 if (lock
&& ret
!= -EDEADLK
) {
170 rdev
->mutex_owner
= current
;
173 mutex_unlock(®ulator_nesting_mutex
);
179 * regulator_lock - lock a single regulator
180 * @rdev: regulator source
182 * This function can be called many times by one task on
183 * a single regulator and its mutex will be locked only
184 * once. If a task, which is calling this function is other
185 * than the one, which initially locked the mutex, it will
188 static void regulator_lock(struct regulator_dev
*rdev
)
190 regulator_lock_nested(rdev
, NULL
);
194 * regulator_unlock - unlock a single regulator
195 * @rdev: regulator_source
197 * This function unlocks the mutex when the
198 * reference counter reaches 0.
200 static void regulator_unlock(struct regulator_dev
*rdev
)
202 mutex_lock(®ulator_nesting_mutex
);
204 if (--rdev
->ref_cnt
== 0) {
205 rdev
->mutex_owner
= NULL
;
206 ww_mutex_unlock(&rdev
->mutex
);
209 WARN_ON_ONCE(rdev
->ref_cnt
< 0);
211 mutex_unlock(®ulator_nesting_mutex
);
215 * regulator_lock_two - lock two regulators
216 * @rdev1: first regulator
217 * @rdev2: second regulator
218 * @ww_ctx: w/w mutex acquire context
220 * Locks both rdevs using the regulator_ww_class.
222 static void regulator_lock_two(struct regulator_dev
*rdev1
,
223 struct regulator_dev
*rdev2
,
224 struct ww_acquire_ctx
*ww_ctx
)
226 struct regulator_dev
*held
, *contended
;
229 ww_acquire_init(ww_ctx
, ®ulator_ww_class
);
231 /* Try to just grab both of them */
232 ret
= regulator_lock_nested(rdev1
, ww_ctx
);
234 ret
= regulator_lock_nested(rdev2
, ww_ctx
);
235 if (ret
!= -EDEADLOCK
) {
243 regulator_unlock(held
);
245 ww_mutex_lock_slow(&contended
->mutex
, ww_ctx
);
246 contended
->ref_cnt
++;
247 contended
->mutex_owner
= current
;
248 swap(held
, contended
);
249 ret
= regulator_lock_nested(contended
, ww_ctx
);
251 if (ret
!= -EDEADLOCK
) {
258 ww_acquire_done(ww_ctx
);
262 * regulator_unlock_two - unlock two regulators
263 * @rdev1: first regulator
264 * @rdev2: second regulator
265 * @ww_ctx: w/w mutex acquire context
267 * The inverse of regulator_lock_two().
270 static void regulator_unlock_two(struct regulator_dev
*rdev1
,
271 struct regulator_dev
*rdev2
,
272 struct ww_acquire_ctx
*ww_ctx
)
274 regulator_unlock(rdev2
);
275 regulator_unlock(rdev1
);
276 ww_acquire_fini(ww_ctx
);
279 static bool regulator_supply_is_couple(struct regulator_dev
*rdev
)
281 struct regulator_dev
*c_rdev
;
284 for (i
= 1; i
< rdev
->coupling_desc
.n_coupled
; i
++) {
285 c_rdev
= rdev
->coupling_desc
.coupled_rdevs
[i
];
287 if (rdev
->supply
->rdev
== c_rdev
)
294 static void regulator_unlock_recursive(struct regulator_dev
*rdev
,
295 unsigned int n_coupled
)
297 struct regulator_dev
*c_rdev
, *supply_rdev
;
298 int i
, supply_n_coupled
;
300 for (i
= n_coupled
; i
> 0; i
--) {
301 c_rdev
= rdev
->coupling_desc
.coupled_rdevs
[i
- 1];
306 if (c_rdev
->supply
&& !regulator_supply_is_couple(c_rdev
)) {
307 supply_rdev
= c_rdev
->supply
->rdev
;
308 supply_n_coupled
= supply_rdev
->coupling_desc
.n_coupled
;
310 regulator_unlock_recursive(supply_rdev
,
314 regulator_unlock(c_rdev
);
318 static int regulator_lock_recursive(struct regulator_dev
*rdev
,
319 struct regulator_dev
**new_contended_rdev
,
320 struct regulator_dev
**old_contended_rdev
,
321 struct ww_acquire_ctx
*ww_ctx
)
323 struct regulator_dev
*c_rdev
;
326 for (i
= 0; i
< rdev
->coupling_desc
.n_coupled
; i
++) {
327 c_rdev
= rdev
->coupling_desc
.coupled_rdevs
[i
];
332 if (c_rdev
!= *old_contended_rdev
) {
333 err
= regulator_lock_nested(c_rdev
, ww_ctx
);
335 if (err
== -EDEADLK
) {
336 *new_contended_rdev
= c_rdev
;
340 /* shouldn't happen */
341 WARN_ON_ONCE(err
!= -EALREADY
);
344 *old_contended_rdev
= NULL
;
347 if (c_rdev
->supply
&& !regulator_supply_is_couple(c_rdev
)) {
348 err
= regulator_lock_recursive(c_rdev
->supply
->rdev
,
353 regulator_unlock(c_rdev
);
362 regulator_unlock_recursive(rdev
, i
);
368 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
370 * @rdev: regulator source
371 * @ww_ctx: w/w mutex acquire context
373 * Unlock all regulators related with rdev by coupling or supplying.
375 static void regulator_unlock_dependent(struct regulator_dev
*rdev
,
376 struct ww_acquire_ctx
*ww_ctx
)
378 regulator_unlock_recursive(rdev
, rdev
->coupling_desc
.n_coupled
);
379 ww_acquire_fini(ww_ctx
);
383 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
384 * @rdev: regulator source
385 * @ww_ctx: w/w mutex acquire context
387 * This function as a wrapper on regulator_lock_recursive(), which locks
388 * all regulators related with rdev by coupling or supplying.
390 static void regulator_lock_dependent(struct regulator_dev
*rdev
,
391 struct ww_acquire_ctx
*ww_ctx
)
393 struct regulator_dev
*new_contended_rdev
= NULL
;
394 struct regulator_dev
*old_contended_rdev
= NULL
;
397 mutex_lock(®ulator_list_mutex
);
399 ww_acquire_init(ww_ctx
, ®ulator_ww_class
);
402 if (new_contended_rdev
) {
403 ww_mutex_lock_slow(&new_contended_rdev
->mutex
, ww_ctx
);
404 old_contended_rdev
= new_contended_rdev
;
405 old_contended_rdev
->ref_cnt
++;
406 old_contended_rdev
->mutex_owner
= current
;
409 err
= regulator_lock_recursive(rdev
,
414 if (old_contended_rdev
)
415 regulator_unlock(old_contended_rdev
);
417 } while (err
== -EDEADLK
);
419 ww_acquire_done(ww_ctx
);
421 mutex_unlock(®ulator_list_mutex
);
424 /* Platform voltage constraint check */
425 int regulator_check_voltage(struct regulator_dev
*rdev
,
426 int *min_uV
, int *max_uV
)
428 BUG_ON(*min_uV
> *max_uV
);
430 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
431 rdev_err(rdev
, "voltage operation not allowed\n");
435 if (*max_uV
> rdev
->constraints
->max_uV
)
436 *max_uV
= rdev
->constraints
->max_uV
;
437 if (*min_uV
< rdev
->constraints
->min_uV
)
438 *min_uV
= rdev
->constraints
->min_uV
;
440 if (*min_uV
> *max_uV
) {
441 rdev_err(rdev
, "unsupportable voltage range: %d-%duV\n",
449 /* return 0 if the state is valid */
450 static int regulator_check_states(suspend_state_t state
)
452 return (state
> PM_SUSPEND_MAX
|| state
== PM_SUSPEND_TO_IDLE
);
455 /* Make sure we select a voltage that suits the needs of all
456 * regulator consumers
458 int regulator_check_consumers(struct regulator_dev
*rdev
,
459 int *min_uV
, int *max_uV
,
460 suspend_state_t state
)
462 struct regulator
*regulator
;
463 struct regulator_voltage
*voltage
;
465 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
466 voltage
= ®ulator
->voltage
[state
];
468 * Assume consumers that didn't say anything are OK
469 * with anything in the constraint range.
471 if (!voltage
->min_uV
&& !voltage
->max_uV
)
474 if (*max_uV
> voltage
->max_uV
)
475 *max_uV
= voltage
->max_uV
;
476 if (*min_uV
< voltage
->min_uV
)
477 *min_uV
= voltage
->min_uV
;
480 if (*min_uV
> *max_uV
) {
481 rdev_err(rdev
, "Restricting voltage, %u-%uuV\n",
489 /* current constraint check */
490 static int regulator_check_current_limit(struct regulator_dev
*rdev
,
491 int *min_uA
, int *max_uA
)
493 BUG_ON(*min_uA
> *max_uA
);
495 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_CURRENT
)) {
496 rdev_err(rdev
, "current operation not allowed\n");
500 if (*max_uA
> rdev
->constraints
->max_uA
&&
501 rdev
->constraints
->max_uA
)
502 *max_uA
= rdev
->constraints
->max_uA
;
503 if (*min_uA
< rdev
->constraints
->min_uA
)
504 *min_uA
= rdev
->constraints
->min_uA
;
506 if (*min_uA
> *max_uA
) {
507 rdev_err(rdev
, "unsupportable current range: %d-%duA\n",
515 /* operating mode constraint check */
516 static int regulator_mode_constrain(struct regulator_dev
*rdev
,
520 case REGULATOR_MODE_FAST
:
521 case REGULATOR_MODE_NORMAL
:
522 case REGULATOR_MODE_IDLE
:
523 case REGULATOR_MODE_STANDBY
:
526 rdev_err(rdev
, "invalid mode %x specified\n", *mode
);
530 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_MODE
)) {
531 rdev_err(rdev
, "mode operation not allowed\n");
535 /* The modes are bitmasks, the most power hungry modes having
536 * the lowest values. If the requested mode isn't supported
540 if (rdev
->constraints
->valid_modes_mask
& *mode
)
548 static inline struct regulator_state
*
549 regulator_get_suspend_state(struct regulator_dev
*rdev
, suspend_state_t state
)
551 if (rdev
->constraints
== NULL
)
555 case PM_SUSPEND_STANDBY
:
556 return &rdev
->constraints
->state_standby
;
558 return &rdev
->constraints
->state_mem
;
560 return &rdev
->constraints
->state_disk
;
566 static const struct regulator_state
*
567 regulator_get_suspend_state_check(struct regulator_dev
*rdev
, suspend_state_t state
)
569 const struct regulator_state
*rstate
;
571 rstate
= regulator_get_suspend_state(rdev
, state
);
575 /* If we have no suspend mode configuration don't set anything;
576 * only warn if the driver implements set_suspend_voltage or
577 * set_suspend_mode callback.
579 if (rstate
->enabled
!= ENABLE_IN_SUSPEND
&&
580 rstate
->enabled
!= DISABLE_IN_SUSPEND
) {
581 if (rdev
->desc
->ops
->set_suspend_voltage
||
582 rdev
->desc
->ops
->set_suspend_mode
)
583 rdev_warn(rdev
, "No configuration\n");
590 static ssize_t
microvolts_show(struct device
*dev
,
591 struct device_attribute
*attr
, char *buf
)
593 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
596 regulator_lock(rdev
);
597 uV
= regulator_get_voltage_rdev(rdev
);
598 regulator_unlock(rdev
);
602 return sprintf(buf
, "%d\n", uV
);
604 static DEVICE_ATTR_RO(microvolts
);
606 static ssize_t
microamps_show(struct device
*dev
,
607 struct device_attribute
*attr
, char *buf
)
609 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
611 return sprintf(buf
, "%d\n", _regulator_get_current_limit(rdev
));
613 static DEVICE_ATTR_RO(microamps
);
615 static ssize_t
name_show(struct device
*dev
, struct device_attribute
*attr
,
618 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
620 return sprintf(buf
, "%s\n", rdev_get_name(rdev
));
622 static DEVICE_ATTR_RO(name
);
624 static const char *regulator_opmode_to_str(int mode
)
627 case REGULATOR_MODE_FAST
:
629 case REGULATOR_MODE_NORMAL
:
631 case REGULATOR_MODE_IDLE
:
633 case REGULATOR_MODE_STANDBY
:
639 static ssize_t
regulator_print_opmode(char *buf
, int mode
)
641 return sprintf(buf
, "%s\n", regulator_opmode_to_str(mode
));
644 static ssize_t
opmode_show(struct device
*dev
,
645 struct device_attribute
*attr
, char *buf
)
647 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
649 return regulator_print_opmode(buf
, _regulator_get_mode(rdev
));
651 static DEVICE_ATTR_RO(opmode
);
653 static ssize_t
regulator_print_state(char *buf
, int state
)
656 return sprintf(buf
, "enabled\n");
658 return sprintf(buf
, "disabled\n");
660 return sprintf(buf
, "unknown\n");
663 static ssize_t
state_show(struct device
*dev
,
664 struct device_attribute
*attr
, char *buf
)
666 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
669 regulator_lock(rdev
);
670 ret
= regulator_print_state(buf
, _regulator_is_enabled(rdev
));
671 regulator_unlock(rdev
);
675 static DEVICE_ATTR_RO(state
);
677 static ssize_t
status_show(struct device
*dev
,
678 struct device_attribute
*attr
, char *buf
)
680 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
684 status
= rdev
->desc
->ops
->get_status(rdev
);
689 case REGULATOR_STATUS_OFF
:
692 case REGULATOR_STATUS_ON
:
695 case REGULATOR_STATUS_ERROR
:
698 case REGULATOR_STATUS_FAST
:
701 case REGULATOR_STATUS_NORMAL
:
704 case REGULATOR_STATUS_IDLE
:
707 case REGULATOR_STATUS_STANDBY
:
710 case REGULATOR_STATUS_BYPASS
:
713 case REGULATOR_STATUS_UNDEFINED
:
720 return sprintf(buf
, "%s\n", label
);
722 static DEVICE_ATTR_RO(status
);
724 static ssize_t
min_microamps_show(struct device
*dev
,
725 struct device_attribute
*attr
, char *buf
)
727 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
729 if (!rdev
->constraints
)
730 return sprintf(buf
, "constraint not defined\n");
732 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uA
);
734 static DEVICE_ATTR_RO(min_microamps
);
736 static ssize_t
max_microamps_show(struct device
*dev
,
737 struct device_attribute
*attr
, char *buf
)
739 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
741 if (!rdev
->constraints
)
742 return sprintf(buf
, "constraint not defined\n");
744 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uA
);
746 static DEVICE_ATTR_RO(max_microamps
);
748 static ssize_t
min_microvolts_show(struct device
*dev
,
749 struct device_attribute
*attr
, char *buf
)
751 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
753 if (!rdev
->constraints
)
754 return sprintf(buf
, "constraint not defined\n");
756 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uV
);
758 static DEVICE_ATTR_RO(min_microvolts
);
760 static ssize_t
max_microvolts_show(struct device
*dev
,
761 struct device_attribute
*attr
, char *buf
)
763 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
765 if (!rdev
->constraints
)
766 return sprintf(buf
, "constraint not defined\n");
768 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uV
);
770 static DEVICE_ATTR_RO(max_microvolts
);
772 static ssize_t
requested_microamps_show(struct device
*dev
,
773 struct device_attribute
*attr
, char *buf
)
775 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
776 struct regulator
*regulator
;
779 regulator_lock(rdev
);
780 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
781 if (regulator
->enable_count
)
782 uA
+= regulator
->uA_load
;
784 regulator_unlock(rdev
);
785 return sprintf(buf
, "%d\n", uA
);
787 static DEVICE_ATTR_RO(requested_microamps
);
789 static ssize_t
num_users_show(struct device
*dev
, struct device_attribute
*attr
,
792 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
793 return sprintf(buf
, "%d\n", rdev
->use_count
);
795 static DEVICE_ATTR_RO(num_users
);
797 static ssize_t
type_show(struct device
*dev
, struct device_attribute
*attr
,
800 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
802 switch (rdev
->desc
->type
) {
803 case REGULATOR_VOLTAGE
:
804 return sprintf(buf
, "voltage\n");
805 case REGULATOR_CURRENT
:
806 return sprintf(buf
, "current\n");
808 return sprintf(buf
, "unknown\n");
810 static DEVICE_ATTR_RO(type
);
812 static ssize_t
suspend_mem_microvolts_show(struct device
*dev
,
813 struct device_attribute
*attr
, char *buf
)
815 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
817 return sprintf(buf
, "%d\n", rdev
->constraints
->state_mem
.uV
);
819 static DEVICE_ATTR_RO(suspend_mem_microvolts
);
821 static ssize_t
suspend_disk_microvolts_show(struct device
*dev
,
822 struct device_attribute
*attr
, char *buf
)
824 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
826 return sprintf(buf
, "%d\n", rdev
->constraints
->state_disk
.uV
);
828 static DEVICE_ATTR_RO(suspend_disk_microvolts
);
830 static ssize_t
suspend_standby_microvolts_show(struct device
*dev
,
831 struct device_attribute
*attr
, char *buf
)
833 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
835 return sprintf(buf
, "%d\n", rdev
->constraints
->state_standby
.uV
);
837 static DEVICE_ATTR_RO(suspend_standby_microvolts
);
839 static ssize_t
suspend_mem_mode_show(struct device
*dev
,
840 struct device_attribute
*attr
, char *buf
)
842 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
844 return regulator_print_opmode(buf
,
845 rdev
->constraints
->state_mem
.mode
);
847 static DEVICE_ATTR_RO(suspend_mem_mode
);
849 static ssize_t
suspend_disk_mode_show(struct device
*dev
,
850 struct device_attribute
*attr
, char *buf
)
852 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
854 return regulator_print_opmode(buf
,
855 rdev
->constraints
->state_disk
.mode
);
857 static DEVICE_ATTR_RO(suspend_disk_mode
);
859 static ssize_t
suspend_standby_mode_show(struct device
*dev
,
860 struct device_attribute
*attr
, char *buf
)
862 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
864 return regulator_print_opmode(buf
,
865 rdev
->constraints
->state_standby
.mode
);
867 static DEVICE_ATTR_RO(suspend_standby_mode
);
869 static ssize_t
suspend_mem_state_show(struct device
*dev
,
870 struct device_attribute
*attr
, char *buf
)
872 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
874 return regulator_print_state(buf
,
875 rdev
->constraints
->state_mem
.enabled
);
877 static DEVICE_ATTR_RO(suspend_mem_state
);
879 static ssize_t
suspend_disk_state_show(struct device
*dev
,
880 struct device_attribute
*attr
, char *buf
)
882 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
884 return regulator_print_state(buf
,
885 rdev
->constraints
->state_disk
.enabled
);
887 static DEVICE_ATTR_RO(suspend_disk_state
);
889 static ssize_t
suspend_standby_state_show(struct device
*dev
,
890 struct device_attribute
*attr
, char *buf
)
892 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
894 return regulator_print_state(buf
,
895 rdev
->constraints
->state_standby
.enabled
);
897 static DEVICE_ATTR_RO(suspend_standby_state
);
899 static ssize_t
bypass_show(struct device
*dev
,
900 struct device_attribute
*attr
, char *buf
)
902 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
907 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypass
);
916 return sprintf(buf
, "%s\n", report
);
918 static DEVICE_ATTR_RO(bypass
);
920 #define REGULATOR_ERROR_ATTR(name, bit) \
921 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \
925 unsigned int flags; \
926 struct regulator_dev *rdev = dev_get_drvdata(dev); \
927 ret = _regulator_get_error_flags(rdev, &flags); \
930 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \
932 static DEVICE_ATTR_RO(name)
934 REGULATOR_ERROR_ATTR(under_voltage
, REGULATOR_ERROR_UNDER_VOLTAGE
);
935 REGULATOR_ERROR_ATTR(over_current
, REGULATOR_ERROR_OVER_CURRENT
);
936 REGULATOR_ERROR_ATTR(regulation_out
, REGULATOR_ERROR_REGULATION_OUT
);
937 REGULATOR_ERROR_ATTR(fail
, REGULATOR_ERROR_FAIL
);
938 REGULATOR_ERROR_ATTR(over_temp
, REGULATOR_ERROR_OVER_TEMP
);
939 REGULATOR_ERROR_ATTR(under_voltage_warn
, REGULATOR_ERROR_UNDER_VOLTAGE_WARN
);
940 REGULATOR_ERROR_ATTR(over_current_warn
, REGULATOR_ERROR_OVER_CURRENT_WARN
);
941 REGULATOR_ERROR_ATTR(over_voltage_warn
, REGULATOR_ERROR_OVER_VOLTAGE_WARN
);
942 REGULATOR_ERROR_ATTR(over_temp_warn
, REGULATOR_ERROR_OVER_TEMP_WARN
);
944 /* Calculate the new optimum regulator operating mode based on the new total
945 * consumer load. All locks held by caller
947 static int drms_uA_update(struct regulator_dev
*rdev
)
949 struct regulator
*sibling
;
950 int current_uA
= 0, output_uV
, input_uV
, err
;
954 * first check to see if we can set modes at all, otherwise just
955 * tell the consumer everything is OK.
957 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_DRMS
)) {
958 rdev_dbg(rdev
, "DRMS operation not allowed\n");
962 if (!rdev
->desc
->ops
->get_optimum_mode
&&
963 !rdev
->desc
->ops
->set_load
)
966 if (!rdev
->desc
->ops
->set_mode
&&
967 !rdev
->desc
->ops
->set_load
)
970 /* calc total requested load */
971 list_for_each_entry(sibling
, &rdev
->consumer_list
, list
) {
972 if (sibling
->enable_count
)
973 current_uA
+= sibling
->uA_load
;
976 current_uA
+= rdev
->constraints
->system_load
;
978 if (rdev
->desc
->ops
->set_load
) {
979 /* set the optimum mode for our new total regulator load */
980 err
= rdev
->desc
->ops
->set_load(rdev
, current_uA
);
982 rdev_err(rdev
, "failed to set load %d: %pe\n",
983 current_uA
, ERR_PTR(err
));
986 * Unfortunately in some cases the constraints->valid_ops has
987 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
988 * That's not really legit but we won't consider it a fatal
989 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
992 if (!rdev
->constraints
->valid_modes_mask
) {
993 rdev_dbg(rdev
, "Can change modes; but no valid mode\n");
997 /* get output voltage */
998 output_uV
= regulator_get_voltage_rdev(rdev
);
1001 * Don't return an error; if regulator driver cares about
1002 * output_uV then it's up to the driver to validate.
1005 rdev_dbg(rdev
, "invalid output voltage found\n");
1007 /* get input voltage */
1010 input_uV
= regulator_get_voltage_rdev(rdev
->supply
->rdev
);
1012 input_uV
= rdev
->constraints
->input_uV
;
1015 * Don't return an error; if regulator driver cares about
1016 * input_uV then it's up to the driver to validate.
1019 rdev_dbg(rdev
, "invalid input voltage found\n");
1021 /* now get the optimum mode for our new total regulator load */
1022 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
, input_uV
,
1023 output_uV
, current_uA
);
1025 /* check the new mode is allowed */
1026 err
= regulator_mode_constrain(rdev
, &mode
);
1028 rdev_err(rdev
, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1029 current_uA
, input_uV
, output_uV
, ERR_PTR(err
));
1033 err
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
1035 rdev_err(rdev
, "failed to set optimum mode %x: %pe\n",
1036 mode
, ERR_PTR(err
));
1042 static int __suspend_set_state(struct regulator_dev
*rdev
,
1043 const struct regulator_state
*rstate
)
1047 if (rstate
->enabled
== ENABLE_IN_SUSPEND
&&
1048 rdev
->desc
->ops
->set_suspend_enable
)
1049 ret
= rdev
->desc
->ops
->set_suspend_enable(rdev
);
1050 else if (rstate
->enabled
== DISABLE_IN_SUSPEND
&&
1051 rdev
->desc
->ops
->set_suspend_disable
)
1052 ret
= rdev
->desc
->ops
->set_suspend_disable(rdev
);
1053 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1057 rdev_err(rdev
, "failed to enabled/disable: %pe\n", ERR_PTR(ret
));
1061 if (rdev
->desc
->ops
->set_suspend_voltage
&& rstate
->uV
> 0) {
1062 ret
= rdev
->desc
->ops
->set_suspend_voltage(rdev
, rstate
->uV
);
1064 rdev_err(rdev
, "failed to set voltage: %pe\n", ERR_PTR(ret
));
1069 if (rdev
->desc
->ops
->set_suspend_mode
&& rstate
->mode
> 0) {
1070 ret
= rdev
->desc
->ops
->set_suspend_mode(rdev
, rstate
->mode
);
1072 rdev_err(rdev
, "failed to set mode: %pe\n", ERR_PTR(ret
));
1080 static int suspend_set_initial_state(struct regulator_dev
*rdev
)
1082 const struct regulator_state
*rstate
;
1084 rstate
= regulator_get_suspend_state_check(rdev
,
1085 rdev
->constraints
->initial_state
);
1089 return __suspend_set_state(rdev
, rstate
);
1092 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1093 static void print_constraints_debug(struct regulator_dev
*rdev
)
1095 struct regulation_constraints
*constraints
= rdev
->constraints
;
1097 size_t len
= sizeof(buf
) - 1;
1101 if (constraints
->min_uV
&& constraints
->max_uV
) {
1102 if (constraints
->min_uV
== constraints
->max_uV
)
1103 count
+= scnprintf(buf
+ count
, len
- count
, "%d mV ",
1104 constraints
->min_uV
/ 1000);
1106 count
+= scnprintf(buf
+ count
, len
- count
,
1108 constraints
->min_uV
/ 1000,
1109 constraints
->max_uV
/ 1000);
1112 if (!constraints
->min_uV
||
1113 constraints
->min_uV
!= constraints
->max_uV
) {
1114 ret
= regulator_get_voltage_rdev(rdev
);
1116 count
+= scnprintf(buf
+ count
, len
- count
,
1117 "at %d mV ", ret
/ 1000);
1120 if (constraints
->uV_offset
)
1121 count
+= scnprintf(buf
+ count
, len
- count
, "%dmV offset ",
1122 constraints
->uV_offset
/ 1000);
1124 if (constraints
->min_uA
&& constraints
->max_uA
) {
1125 if (constraints
->min_uA
== constraints
->max_uA
)
1126 count
+= scnprintf(buf
+ count
, len
- count
, "%d mA ",
1127 constraints
->min_uA
/ 1000);
1129 count
+= scnprintf(buf
+ count
, len
- count
,
1131 constraints
->min_uA
/ 1000,
1132 constraints
->max_uA
/ 1000);
1135 if (!constraints
->min_uA
||
1136 constraints
->min_uA
!= constraints
->max_uA
) {
1137 ret
= _regulator_get_current_limit(rdev
);
1139 count
+= scnprintf(buf
+ count
, len
- count
,
1140 "at %d mA ", ret
/ 1000);
1143 if (constraints
->valid_modes_mask
& REGULATOR_MODE_FAST
)
1144 count
+= scnprintf(buf
+ count
, len
- count
, "fast ");
1145 if (constraints
->valid_modes_mask
& REGULATOR_MODE_NORMAL
)
1146 count
+= scnprintf(buf
+ count
, len
- count
, "normal ");
1147 if (constraints
->valid_modes_mask
& REGULATOR_MODE_IDLE
)
1148 count
+= scnprintf(buf
+ count
, len
- count
, "idle ");
1149 if (constraints
->valid_modes_mask
& REGULATOR_MODE_STANDBY
)
1150 count
+= scnprintf(buf
+ count
, len
- count
, "standby ");
1153 count
= scnprintf(buf
, len
, "no parameters");
1157 count
+= scnprintf(buf
+ count
, len
- count
, ", %s",
1158 _regulator_is_enabled(rdev
) ? "enabled" : "disabled");
1160 rdev_dbg(rdev
, "%s\n", buf
);
1162 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1163 static inline void print_constraints_debug(struct regulator_dev
*rdev
) {}
1164 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1166 static void print_constraints(struct regulator_dev
*rdev
)
1168 struct regulation_constraints
*constraints
= rdev
->constraints
;
1170 print_constraints_debug(rdev
);
1172 if ((constraints
->min_uV
!= constraints
->max_uV
) &&
1173 !regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
))
1175 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1178 static int machine_constraints_voltage(struct regulator_dev
*rdev
,
1179 struct regulation_constraints
*constraints
)
1181 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1184 /* do we need to apply the constraint voltage */
1185 if (rdev
->constraints
->apply_uV
&&
1186 rdev
->constraints
->min_uV
&& rdev
->constraints
->max_uV
) {
1187 int target_min
, target_max
;
1188 int current_uV
= regulator_get_voltage_rdev(rdev
);
1190 if (current_uV
== -ENOTRECOVERABLE
) {
1191 /* This regulator can't be read and must be initialized */
1192 rdev_info(rdev
, "Setting %d-%duV\n",
1193 rdev
->constraints
->min_uV
,
1194 rdev
->constraints
->max_uV
);
1195 _regulator_do_set_voltage(rdev
,
1196 rdev
->constraints
->min_uV
,
1197 rdev
->constraints
->max_uV
);
1198 current_uV
= regulator_get_voltage_rdev(rdev
);
1201 if (current_uV
< 0) {
1202 if (current_uV
!= -EPROBE_DEFER
)
1204 "failed to get the current voltage: %pe\n",
1205 ERR_PTR(current_uV
));
1210 * If we're below the minimum voltage move up to the
1211 * minimum voltage, if we're above the maximum voltage
1212 * then move down to the maximum.
1214 target_min
= current_uV
;
1215 target_max
= current_uV
;
1217 if (current_uV
< rdev
->constraints
->min_uV
) {
1218 target_min
= rdev
->constraints
->min_uV
;
1219 target_max
= rdev
->constraints
->min_uV
;
1222 if (current_uV
> rdev
->constraints
->max_uV
) {
1223 target_min
= rdev
->constraints
->max_uV
;
1224 target_max
= rdev
->constraints
->max_uV
;
1227 if (target_min
!= current_uV
|| target_max
!= current_uV
) {
1228 rdev_info(rdev
, "Bringing %duV into %d-%duV\n",
1229 current_uV
, target_min
, target_max
);
1230 ret
= _regulator_do_set_voltage(
1231 rdev
, target_min
, target_max
);
1234 "failed to apply %d-%duV constraint: %pe\n",
1235 target_min
, target_max
, ERR_PTR(ret
));
1241 /* constrain machine-level voltage specs to fit
1242 * the actual range supported by this regulator.
1244 if (ops
->list_voltage
&& rdev
->desc
->n_voltages
) {
1245 int count
= rdev
->desc
->n_voltages
;
1247 int min_uV
= INT_MAX
;
1248 int max_uV
= INT_MIN
;
1249 int cmin
= constraints
->min_uV
;
1250 int cmax
= constraints
->max_uV
;
1252 /* it's safe to autoconfigure fixed-voltage supplies
1253 * and the constraints are used by list_voltage.
1255 if (count
== 1 && !cmin
) {
1258 constraints
->min_uV
= cmin
;
1259 constraints
->max_uV
= cmax
;
1262 /* voltage constraints are optional */
1263 if ((cmin
== 0) && (cmax
== 0))
1266 /* else require explicit machine-level constraints */
1267 if (cmin
<= 0 || cmax
<= 0 || cmax
< cmin
) {
1268 rdev_err(rdev
, "invalid voltage constraints\n");
1272 /* no need to loop voltages if range is continuous */
1273 if (rdev
->desc
->continuous_voltage_range
)
1276 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1277 for (i
= 0; i
< count
; i
++) {
1280 value
= ops
->list_voltage(rdev
, i
);
1284 /* maybe adjust [min_uV..max_uV] */
1285 if (value
>= cmin
&& value
< min_uV
)
1287 if (value
<= cmax
&& value
> max_uV
)
1291 /* final: [min_uV..max_uV] valid iff constraints valid */
1292 if (max_uV
< min_uV
) {
1294 "unsupportable voltage constraints %u-%uuV\n",
1299 /* use regulator's subset of machine constraints */
1300 if (constraints
->min_uV
< min_uV
) {
1301 rdev_dbg(rdev
, "override min_uV, %d -> %d\n",
1302 constraints
->min_uV
, min_uV
);
1303 constraints
->min_uV
= min_uV
;
1305 if (constraints
->max_uV
> max_uV
) {
1306 rdev_dbg(rdev
, "override max_uV, %d -> %d\n",
1307 constraints
->max_uV
, max_uV
);
1308 constraints
->max_uV
= max_uV
;
1315 static int machine_constraints_current(struct regulator_dev
*rdev
,
1316 struct regulation_constraints
*constraints
)
1318 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1321 if (!constraints
->min_uA
&& !constraints
->max_uA
)
1324 if (constraints
->min_uA
> constraints
->max_uA
) {
1325 rdev_err(rdev
, "Invalid current constraints\n");
1329 if (!ops
->set_current_limit
|| !ops
->get_current_limit
) {
1330 rdev_warn(rdev
, "Operation of current configuration missing\n");
1334 /* Set regulator current in constraints range */
1335 ret
= ops
->set_current_limit(rdev
, constraints
->min_uA
,
1336 constraints
->max_uA
);
1338 rdev_err(rdev
, "Failed to set current constraint, %d\n", ret
);
1345 static int _regulator_do_enable(struct regulator_dev
*rdev
);
1347 static int notif_set_limit(struct regulator_dev
*rdev
,
1348 int (*set
)(struct regulator_dev
*, int, int, bool),
1349 int limit
, int severity
)
1353 if (limit
== REGULATOR_NOTIF_LIMIT_DISABLE
) {
1360 if (limit
== REGULATOR_NOTIF_LIMIT_ENABLE
)
1363 return set(rdev
, limit
, severity
, enable
);
1366 static int handle_notify_limits(struct regulator_dev
*rdev
,
1367 int (*set
)(struct regulator_dev
*, int, int, bool),
1368 struct notification_limit
*limits
)
1376 ret
= notif_set_limit(rdev
, set
, limits
->prot
,
1377 REGULATOR_SEVERITY_PROT
);
1382 ret
= notif_set_limit(rdev
, set
, limits
->err
,
1383 REGULATOR_SEVERITY_ERR
);
1388 ret
= notif_set_limit(rdev
, set
, limits
->warn
,
1389 REGULATOR_SEVERITY_WARN
);
1394 * set_machine_constraints - sets regulator constraints
1395 * @rdev: regulator source
1397 * Allows platform initialisation code to define and constrain
1398 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1399 * Constraints *must* be set by platform code in order for some
1400 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1403 * Return: 0 on success or a negative error number on failure.
1405 static int set_machine_constraints(struct regulator_dev
*rdev
)
1408 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1410 ret
= machine_constraints_voltage(rdev
, rdev
->constraints
);
1414 ret
= machine_constraints_current(rdev
, rdev
->constraints
);
1418 if (rdev
->constraints
->ilim_uA
&& ops
->set_input_current_limit
) {
1419 ret
= ops
->set_input_current_limit(rdev
,
1420 rdev
->constraints
->ilim_uA
);
1422 rdev_err(rdev
, "failed to set input limit: %pe\n", ERR_PTR(ret
));
1427 /* do we need to setup our suspend state */
1428 if (rdev
->constraints
->initial_state
) {
1429 ret
= suspend_set_initial_state(rdev
);
1431 rdev_err(rdev
, "failed to set suspend state: %pe\n", ERR_PTR(ret
));
1436 if (rdev
->constraints
->initial_mode
) {
1437 if (!ops
->set_mode
) {
1438 rdev_err(rdev
, "no set_mode operation\n");
1442 ret
= ops
->set_mode(rdev
, rdev
->constraints
->initial_mode
);
1444 rdev_err(rdev
, "failed to set initial mode: %pe\n", ERR_PTR(ret
));
1447 } else if (rdev
->constraints
->system_load
) {
1449 * We'll only apply the initial system load if an
1450 * initial mode wasn't specified.
1452 drms_uA_update(rdev
);
1455 if ((rdev
->constraints
->ramp_delay
|| rdev
->constraints
->ramp_disable
)
1456 && ops
->set_ramp_delay
) {
1457 ret
= ops
->set_ramp_delay(rdev
, rdev
->constraints
->ramp_delay
);
1459 rdev_err(rdev
, "failed to set ramp_delay: %pe\n", ERR_PTR(ret
));
1464 if (rdev
->constraints
->pull_down
&& ops
->set_pull_down
) {
1465 ret
= ops
->set_pull_down(rdev
);
1467 rdev_err(rdev
, "failed to set pull down: %pe\n", ERR_PTR(ret
));
1472 if (rdev
->constraints
->soft_start
&& ops
->set_soft_start
) {
1473 ret
= ops
->set_soft_start(rdev
);
1475 rdev_err(rdev
, "failed to set soft start: %pe\n", ERR_PTR(ret
));
1481 * Existing logic does not warn if over_current_protection is given as
1482 * a constraint but driver does not support that. I think we should
1483 * warn about this type of issues as it is possible someone changes
1484 * PMIC on board to another type - and the another PMIC's driver does
1485 * not support setting protection. Board composer may happily believe
1486 * the DT limits are respected - especially if the new PMIC HW also
1487 * supports protection but the driver does not. I won't change the logic
1488 * without hearing more experienced opinion on this though.
1490 * If warning is seen as a good idea then we can merge handling the
1491 * over-curret protection and detection and get rid of this special
1494 if (rdev
->constraints
->over_current_protection
1495 && ops
->set_over_current_protection
) {
1496 int lim
= rdev
->constraints
->over_curr_limits
.prot
;
1498 ret
= ops
->set_over_current_protection(rdev
, lim
,
1499 REGULATOR_SEVERITY_PROT
,
1502 rdev_err(rdev
, "failed to set over current protection: %pe\n",
1508 if (rdev
->constraints
->over_current_detection
)
1509 ret
= handle_notify_limits(rdev
,
1510 ops
->set_over_current_protection
,
1511 &rdev
->constraints
->over_curr_limits
);
1513 if (ret
!= -EOPNOTSUPP
) {
1514 rdev_err(rdev
, "failed to set over current limits: %pe\n",
1519 "IC does not support requested over-current limits\n");
1522 if (rdev
->constraints
->over_voltage_detection
)
1523 ret
= handle_notify_limits(rdev
,
1524 ops
->set_over_voltage_protection
,
1525 &rdev
->constraints
->over_voltage_limits
);
1527 if (ret
!= -EOPNOTSUPP
) {
1528 rdev_err(rdev
, "failed to set over voltage limits %pe\n",
1533 "IC does not support requested over voltage limits\n");
1536 if (rdev
->constraints
->under_voltage_detection
)
1537 ret
= handle_notify_limits(rdev
,
1538 ops
->set_under_voltage_protection
,
1539 &rdev
->constraints
->under_voltage_limits
);
1541 if (ret
!= -EOPNOTSUPP
) {
1542 rdev_err(rdev
, "failed to set under voltage limits %pe\n",
1547 "IC does not support requested under voltage limits\n");
1550 if (rdev
->constraints
->over_temp_detection
)
1551 ret
= handle_notify_limits(rdev
,
1552 ops
->set_thermal_protection
,
1553 &rdev
->constraints
->temp_limits
);
1555 if (ret
!= -EOPNOTSUPP
) {
1556 rdev_err(rdev
, "failed to set temperature limits %pe\n",
1561 "IC does not support requested temperature limits\n");
1564 if (rdev
->constraints
->active_discharge
&& ops
->set_active_discharge
) {
1565 bool ad_state
= (rdev
->constraints
->active_discharge
==
1566 REGULATOR_ACTIVE_DISCHARGE_ENABLE
) ? true : false;
1568 ret
= ops
->set_active_discharge(rdev
, ad_state
);
1570 rdev_err(rdev
, "failed to set active discharge: %pe\n", ERR_PTR(ret
));
1576 * If there is no mechanism for controlling the regulator then
1577 * flag it as always_on so we don't end up duplicating checks
1578 * for this so much. Note that we could control the state of
1579 * a supply to control the output on a regulator that has no
1582 if (!rdev
->ena_pin
&& !ops
->enable
) {
1583 if (rdev
->supply_name
&& !rdev
->supply
)
1584 return -EPROBE_DEFER
;
1587 rdev
->constraints
->always_on
=
1588 rdev
->supply
->rdev
->constraints
->always_on
;
1590 rdev
->constraints
->always_on
= true;
1593 /* If the constraints say the regulator should be on at this point
1594 * and we have control then make sure it is enabled.
1596 if (rdev
->constraints
->always_on
|| rdev
->constraints
->boot_on
) {
1597 /* If we want to enable this regulator, make sure that we know
1598 * the supplying regulator.
1600 if (rdev
->supply_name
&& !rdev
->supply
)
1601 return -EPROBE_DEFER
;
1603 /* If supplying regulator has already been enabled,
1604 * it's not intended to have use_count increment
1605 * when rdev is only boot-on.
1608 (rdev
->constraints
->always_on
||
1609 !regulator_is_enabled(rdev
->supply
))) {
1610 ret
= regulator_enable(rdev
->supply
);
1612 _regulator_put(rdev
->supply
);
1613 rdev
->supply
= NULL
;
1618 ret
= _regulator_do_enable(rdev
);
1619 if (ret
< 0 && ret
!= -EINVAL
) {
1620 rdev_err(rdev
, "failed to enable: %pe\n", ERR_PTR(ret
));
1624 if (rdev
->constraints
->always_on
)
1626 } else if (rdev
->desc
->off_on_delay
) {
1627 rdev
->last_off
= ktime_get();
1630 print_constraints(rdev
);
1635 * set_supply - set regulator supply regulator
1636 * @rdev: regulator (locked)
1637 * @supply_rdev: supply regulator (locked))
1639 * Called by platform initialisation code to set the supply regulator for this
1640 * regulator. This ensures that a regulators supply will also be enabled by the
1641 * core if it's child is enabled.
1643 * Return: 0 on success or a negative error number on failure.
1645 static int set_supply(struct regulator_dev
*rdev
,
1646 struct regulator_dev
*supply_rdev
)
1650 rdev_dbg(rdev
, "supplied by %s\n", rdev_get_name(supply_rdev
));
1652 if (!try_module_get(supply_rdev
->owner
))
1655 rdev
->supply
= create_regulator(supply_rdev
, &rdev
->dev
, "SUPPLY");
1656 if (rdev
->supply
== NULL
) {
1657 module_put(supply_rdev
->owner
);
1661 supply_rdev
->open_count
++;
1667 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1668 * @rdev: regulator source
1669 * @consumer_dev_name: dev_name() string for device supply applies to
1670 * @supply: symbolic name for supply
1672 * Allows platform initialisation code to map physical regulator
1673 * sources to symbolic names for supplies for use by devices. Devices
1674 * should use these symbolic names to request regulators, avoiding the
1675 * need to provide board-specific regulator names as platform data.
1677 * Return: 0 on success or a negative error number on failure.
1679 static int set_consumer_device_supply(struct regulator_dev
*rdev
,
1680 const char *consumer_dev_name
,
1683 struct regulator_map
*node
, *new_node
;
1689 if (consumer_dev_name
!= NULL
)
1694 new_node
= kzalloc(sizeof(struct regulator_map
), GFP_KERNEL
);
1695 if (new_node
== NULL
)
1698 new_node
->regulator
= rdev
;
1699 new_node
->supply
= supply
;
1702 new_node
->dev_name
= kstrdup(consumer_dev_name
, GFP_KERNEL
);
1703 if (new_node
->dev_name
== NULL
) {
1709 mutex_lock(®ulator_list_mutex
);
1710 list_for_each_entry(node
, ®ulator_map_list
, list
) {
1711 if (node
->dev_name
&& consumer_dev_name
) {
1712 if (strcmp(node
->dev_name
, consumer_dev_name
) != 0)
1714 } else if (node
->dev_name
|| consumer_dev_name
) {
1718 if (strcmp(node
->supply
, supply
) != 0)
1721 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1723 dev_name(&node
->regulator
->dev
),
1724 node
->regulator
->desc
->name
,
1726 dev_name(&rdev
->dev
), rdev_get_name(rdev
));
1730 list_add(&new_node
->list
, ®ulator_map_list
);
1731 mutex_unlock(®ulator_list_mutex
);
1736 mutex_unlock(®ulator_list_mutex
);
1737 kfree(new_node
->dev_name
);
1742 static void unset_regulator_supplies(struct regulator_dev
*rdev
)
1744 struct regulator_map
*node
, *n
;
1746 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
1747 if (rdev
== node
->regulator
) {
1748 list_del(&node
->list
);
1749 kfree(node
->dev_name
);
1755 #ifdef CONFIG_DEBUG_FS
1756 static ssize_t
constraint_flags_read_file(struct file
*file
,
1757 char __user
*user_buf
,
1758 size_t count
, loff_t
*ppos
)
1760 const struct regulator
*regulator
= file
->private_data
;
1761 const struct regulation_constraints
*c
= regulator
->rdev
->constraints
;
1768 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
1772 ret
= snprintf(buf
, PAGE_SIZE
,
1776 "ramp_disable: %u\n"
1779 "over_current_protection: %u\n",
1786 c
->over_current_protection
);
1788 ret
= simple_read_from_buffer(user_buf
, count
, ppos
, buf
, ret
);
1796 static const struct file_operations constraint_flags_fops
= {
1797 #ifdef CONFIG_DEBUG_FS
1798 .open
= simple_open
,
1799 .read
= constraint_flags_read_file
,
1800 .llseek
= default_llseek
,
1804 #define REG_STR_SIZE 64
1806 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
1808 const char *supply_name
)
1810 struct regulator
*regulator
;
1813 lockdep_assert_held_once(&rdev
->mutex
.base
);
1816 char buf
[REG_STR_SIZE
];
1819 size
= snprintf(buf
, REG_STR_SIZE
, "%s-%s",
1820 dev
->kobj
.name
, supply_name
);
1821 if (size
>= REG_STR_SIZE
)
1824 supply_name
= kstrdup(buf
, GFP_KERNEL
);
1825 if (supply_name
== NULL
)
1828 supply_name
= kstrdup_const(supply_name
, GFP_KERNEL
);
1829 if (supply_name
== NULL
)
1833 regulator
= kzalloc(sizeof(*regulator
), GFP_KERNEL
);
1834 if (regulator
== NULL
) {
1835 kfree_const(supply_name
);
1839 regulator
->rdev
= rdev
;
1840 regulator
->supply_name
= supply_name
;
1842 list_add(®ulator
->list
, &rdev
->consumer_list
);
1845 regulator
->dev
= dev
;
1847 /* Add a link to the device sysfs entry */
1848 err
= sysfs_create_link_nowarn(&rdev
->dev
.kobj
, &dev
->kobj
,
1851 rdev_dbg(rdev
, "could not add device link %s: %pe\n",
1852 dev
->kobj
.name
, ERR_PTR(err
));
1857 if (err
!= -EEXIST
) {
1858 regulator
->debugfs
= debugfs_create_dir(supply_name
, rdev
->debugfs
);
1859 if (IS_ERR(regulator
->debugfs
)) {
1860 rdev_dbg(rdev
, "Failed to create debugfs directory\n");
1861 regulator
->debugfs
= NULL
;
1865 if (regulator
->debugfs
) {
1866 debugfs_create_u32("uA_load", 0444, regulator
->debugfs
,
1867 ®ulator
->uA_load
);
1868 debugfs_create_u32("min_uV", 0444, regulator
->debugfs
,
1869 ®ulator
->voltage
[PM_SUSPEND_ON
].min_uV
);
1870 debugfs_create_u32("max_uV", 0444, regulator
->debugfs
,
1871 ®ulator
->voltage
[PM_SUSPEND_ON
].max_uV
);
1872 debugfs_create_file("constraint_flags", 0444, regulator
->debugfs
,
1873 regulator
, &constraint_flags_fops
);
1877 * Check now if the regulator is an always on regulator - if
1878 * it is then we don't need to do nearly so much work for
1879 * enable/disable calls.
1881 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
) &&
1882 _regulator_is_enabled(rdev
))
1883 regulator
->always_on
= true;
1888 static int _regulator_get_enable_time(struct regulator_dev
*rdev
)
1890 if (rdev
->constraints
&& rdev
->constraints
->enable_time
)
1891 return rdev
->constraints
->enable_time
;
1892 if (rdev
->desc
->ops
->enable_time
)
1893 return rdev
->desc
->ops
->enable_time(rdev
);
1894 return rdev
->desc
->enable_time
;
1897 static struct regulator_supply_alias
*regulator_find_supply_alias(
1898 struct device
*dev
, const char *supply
)
1900 struct regulator_supply_alias
*map
;
1902 list_for_each_entry(map
, ®ulator_supply_alias_list
, list
)
1903 if (map
->src_dev
== dev
&& strcmp(map
->src_supply
, supply
) == 0)
1909 static void regulator_supply_alias(struct device
**dev
, const char **supply
)
1911 struct regulator_supply_alias
*map
;
1913 map
= regulator_find_supply_alias(*dev
, *supply
);
1915 dev_dbg(*dev
, "Mapping supply %s to %s,%s\n",
1916 *supply
, map
->alias_supply
,
1917 dev_name(map
->alias_dev
));
1918 *dev
= map
->alias_dev
;
1919 *supply
= map
->alias_supply
;
1923 static int regulator_match(struct device
*dev
, const void *data
)
1925 struct regulator_dev
*r
= dev_to_rdev(dev
);
1927 return strcmp(rdev_get_name(r
), data
) == 0;
1930 static struct regulator_dev
*regulator_lookup_by_name(const char *name
)
1934 dev
= class_find_device(®ulator_class
, NULL
, name
, regulator_match
);
1936 return dev
? dev_to_rdev(dev
) : NULL
;
1940 * regulator_dev_lookup - lookup a regulator device.
1941 * @dev: device for regulator "consumer".
1942 * @supply: Supply name or regulator ID.
1944 * Return: pointer to &struct regulator_dev or ERR_PTR() encoded negative error number.
1946 * If successful, returns a struct regulator_dev that corresponds to the name
1947 * @supply and with the embedded struct device refcount incremented by one.
1948 * The refcount must be dropped by calling put_device().
1949 * On failure one of the following ERR_PTR() encoded values is returned:
1950 * -%ENODEV if lookup fails permanently, -%EPROBE_DEFER if lookup could succeed
1953 static struct regulator_dev
*regulator_dev_lookup(struct device
*dev
,
1956 struct regulator_dev
*r
= NULL
;
1957 struct regulator_map
*map
;
1958 const char *devname
= NULL
;
1960 regulator_supply_alias(&dev
, &supply
);
1962 /* first do a dt based lookup */
1963 if (dev_of_node(dev
)) {
1964 r
= of_regulator_dev_lookup(dev
, dev_of_node(dev
), supply
);
1967 if (PTR_ERR(r
) == -EPROBE_DEFER
)
1970 if (PTR_ERR(r
) == -ENODEV
)
1974 /* if not found, try doing it non-dt way */
1976 devname
= dev_name(dev
);
1978 mutex_lock(®ulator_list_mutex
);
1979 list_for_each_entry(map
, ®ulator_map_list
, list
) {
1980 /* If the mapping has a device set up it must match */
1981 if (map
->dev_name
&&
1982 (!devname
|| strcmp(map
->dev_name
, devname
)))
1985 if (strcmp(map
->supply
, supply
) == 0 &&
1986 get_device(&map
->regulator
->dev
)) {
1991 mutex_unlock(®ulator_list_mutex
);
1996 r
= regulator_lookup_by_name(supply
);
2000 return ERR_PTR(-ENODEV
);
2003 static int regulator_resolve_supply(struct regulator_dev
*rdev
)
2005 struct regulator_dev
*r
;
2006 struct device
*dev
= rdev
->dev
.parent
;
2007 struct ww_acquire_ctx ww_ctx
;
2010 /* No supply to resolve? */
2011 if (!rdev
->supply_name
)
2014 /* Supply already resolved? (fast-path without locking contention) */
2018 r
= regulator_dev_lookup(dev
, rdev
->supply_name
);
2022 /* Did the lookup explicitly defer for us? */
2023 if (ret
== -EPROBE_DEFER
)
2026 if (have_full_constraints()) {
2027 r
= dummy_regulator_rdev
;
2028 get_device(&r
->dev
);
2030 dev_err(dev
, "Failed to resolve %s-supply for %s\n",
2031 rdev
->supply_name
, rdev
->desc
->name
);
2032 ret
= -EPROBE_DEFER
;
2038 dev_err(dev
, "Supply for %s (%s) resolved to itself\n",
2039 rdev
->desc
->name
, rdev
->supply_name
);
2040 if (!have_full_constraints()) {
2044 r
= dummy_regulator_rdev
;
2045 get_device(&r
->dev
);
2049 * If the supply's parent device is not the same as the
2050 * regulator's parent device, then ensure the parent device
2051 * is bound before we resolve the supply, in case the parent
2052 * device get probe deferred and unregisters the supply.
2054 if (r
->dev
.parent
&& r
->dev
.parent
!= rdev
->dev
.parent
) {
2055 if (!device_is_bound(r
->dev
.parent
)) {
2056 put_device(&r
->dev
);
2057 ret
= -EPROBE_DEFER
;
2062 /* Recursively resolve the supply of the supply */
2063 ret
= regulator_resolve_supply(r
);
2065 put_device(&r
->dev
);
2070 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2071 * between rdev->supply null check and setting rdev->supply in
2072 * set_supply() from concurrent tasks.
2074 regulator_lock_two(rdev
, r
, &ww_ctx
);
2076 /* Supply just resolved by a concurrent task? */
2078 regulator_unlock_two(rdev
, r
, &ww_ctx
);
2079 put_device(&r
->dev
);
2083 ret
= set_supply(rdev
, r
);
2085 regulator_unlock_two(rdev
, r
, &ww_ctx
);
2086 put_device(&r
->dev
);
2090 regulator_unlock_two(rdev
, r
, &ww_ctx
);
2093 * In set_machine_constraints() we may have turned this regulator on
2094 * but we couldn't propagate to the supply if it hadn't been resolved
2097 if (rdev
->use_count
) {
2098 ret
= regulator_enable(rdev
->supply
);
2100 _regulator_put(rdev
->supply
);
2101 rdev
->supply
= NULL
;
2110 /* common pre-checks for regulator requests */
2111 int _regulator_get_common_check(struct device
*dev
, const char *id
,
2112 enum regulator_get_type get_type
)
2114 if (get_type
>= MAX_GET_TYPE
) {
2115 dev_err(dev
, "invalid type %d in %s\n", get_type
, __func__
);
2120 dev_err(dev
, "regulator request with no identifier\n");
2128 * _regulator_get_common - Common code for regulator requests
2129 * @rdev: regulator device pointer as returned by *regulator_dev_lookup()
2130 * Its reference count is expected to have been incremented.
2131 * @dev: device used for dev_printk messages
2132 * @id: Supply name or regulator ID
2133 * @get_type: enum regulator_get_type value corresponding to type of request
2135 * Returns: pointer to struct regulator corresponding to @rdev, or ERR_PTR()
2138 * This function should be chained with *regulator_dev_lookup() functions.
2140 struct regulator
*_regulator_get_common(struct regulator_dev
*rdev
, struct device
*dev
,
2141 const char *id
, enum regulator_get_type get_type
)
2143 struct regulator
*regulator
;
2144 struct device_link
*link
;
2148 ret
= PTR_ERR(rdev
);
2151 * If regulator_dev_lookup() fails with error other
2152 * than -ENODEV our job here is done, we simply return it.
2155 return ERR_PTR(ret
);
2157 if (!have_full_constraints()) {
2159 "incomplete constraints, dummy supplies not allowed (id=%s)\n", id
);
2160 return ERR_PTR(-ENODEV
);
2166 * Assume that a regulator is physically present and
2167 * enabled, even if it isn't hooked up, and just
2170 dev_warn(dev
, "supply %s not found, using dummy regulator\n", id
);
2171 rdev
= dummy_regulator_rdev
;
2172 get_device(&rdev
->dev
);
2177 "dummy supplies not allowed for exclusive requests (id=%s)\n", id
);
2181 return ERR_PTR(-ENODEV
);
2185 if (rdev
->exclusive
) {
2186 regulator
= ERR_PTR(-EPERM
);
2187 put_device(&rdev
->dev
);
2191 if (get_type
== EXCLUSIVE_GET
&& rdev
->open_count
) {
2192 regulator
= ERR_PTR(-EBUSY
);
2193 put_device(&rdev
->dev
);
2197 mutex_lock(®ulator_list_mutex
);
2198 ret
= (rdev
->coupling_desc
.n_resolved
!= rdev
->coupling_desc
.n_coupled
);
2199 mutex_unlock(®ulator_list_mutex
);
2202 regulator
= ERR_PTR(-EPROBE_DEFER
);
2203 put_device(&rdev
->dev
);
2207 ret
= regulator_resolve_supply(rdev
);
2209 regulator
= ERR_PTR(ret
);
2210 put_device(&rdev
->dev
);
2214 if (!try_module_get(rdev
->owner
)) {
2215 regulator
= ERR_PTR(-EPROBE_DEFER
);
2216 put_device(&rdev
->dev
);
2220 regulator_lock(rdev
);
2221 regulator
= create_regulator(rdev
, dev
, id
);
2222 regulator_unlock(rdev
);
2223 if (regulator
== NULL
) {
2224 regulator
= ERR_PTR(-ENOMEM
);
2225 module_put(rdev
->owner
);
2226 put_device(&rdev
->dev
);
2231 if (get_type
== EXCLUSIVE_GET
) {
2232 rdev
->exclusive
= 1;
2234 ret
= _regulator_is_enabled(rdev
);
2236 rdev
->use_count
= 1;
2237 regulator
->enable_count
= 1;
2239 /* Propagate the regulator state to its supply */
2241 ret
= regulator_enable(rdev
->supply
);
2243 destroy_regulator(regulator
);
2244 module_put(rdev
->owner
);
2245 put_device(&rdev
->dev
);
2246 return ERR_PTR(ret
);
2250 rdev
->use_count
= 0;
2251 regulator
->enable_count
= 0;
2255 link
= device_link_add(dev
, &rdev
->dev
, DL_FLAG_STATELESS
);
2256 if (!IS_ERR_OR_NULL(link
))
2257 regulator
->device_link
= true;
2262 /* Internal regulator request function */
2263 struct regulator
*_regulator_get(struct device
*dev
, const char *id
,
2264 enum regulator_get_type get_type
)
2266 struct regulator_dev
*rdev
;
2269 ret
= _regulator_get_common_check(dev
, id
, get_type
);
2271 return ERR_PTR(ret
);
2273 rdev
= regulator_dev_lookup(dev
, id
);
2274 return _regulator_get_common(rdev
, dev
, id
, get_type
);
2278 * regulator_get - lookup and obtain a reference to a regulator.
2279 * @dev: device for regulator "consumer"
2280 * @id: Supply name or regulator ID.
2282 * Use of supply names configured via set_consumer_device_supply() is
2283 * strongly encouraged. It is recommended that the supply name used
2284 * should match the name used for the supply and/or the relevant
2285 * device pins in the datasheet.
2287 * Return: Pointer to a &struct regulator corresponding to the regulator
2288 * producer, or an ERR_PTR() encoded negative error number.
2290 struct regulator
*regulator_get(struct device
*dev
, const char *id
)
2292 return _regulator_get(dev
, id
, NORMAL_GET
);
2294 EXPORT_SYMBOL_GPL(regulator_get
);
2297 * regulator_get_exclusive - obtain exclusive access to a regulator.
2298 * @dev: device for regulator "consumer"
2299 * @id: Supply name or regulator ID.
2301 * Other consumers will be unable to obtain this regulator while this
2302 * reference is held and the use count for the regulator will be
2303 * initialised to reflect the current state of the regulator.
2305 * This is intended for use by consumers which cannot tolerate shared
2306 * use of the regulator such as those which need to force the
2307 * regulator off for correct operation of the hardware they are
2310 * Use of supply names configured via set_consumer_device_supply() is
2311 * strongly encouraged. It is recommended that the supply name used
2312 * should match the name used for the supply and/or the relevant
2313 * device pins in the datasheet.
2315 * Return: Pointer to a &struct regulator corresponding to the regulator
2316 * producer, or an ERR_PTR() encoded negative error number.
2318 struct regulator
*regulator_get_exclusive(struct device
*dev
, const char *id
)
2320 return _regulator_get(dev
, id
, EXCLUSIVE_GET
);
2322 EXPORT_SYMBOL_GPL(regulator_get_exclusive
);
2325 * regulator_get_optional - obtain optional access to a regulator.
2326 * @dev: device for regulator "consumer"
2327 * @id: Supply name or regulator ID.
2329 * This is intended for use by consumers for devices which can have
2330 * some supplies unconnected in normal use, such as some MMC devices.
2331 * It can allow the regulator core to provide stub supplies for other
2332 * supplies requested using normal regulator_get() calls without
2333 * disrupting the operation of drivers that can handle absent
2336 * Use of supply names configured via set_consumer_device_supply() is
2337 * strongly encouraged. It is recommended that the supply name used
2338 * should match the name used for the supply and/or the relevant
2339 * device pins in the datasheet.
2341 * Return: Pointer to a &struct regulator corresponding to the regulator
2342 * producer, or an ERR_PTR() encoded negative error number.
2344 struct regulator
*regulator_get_optional(struct device
*dev
, const char *id
)
2346 return _regulator_get(dev
, id
, OPTIONAL_GET
);
2348 EXPORT_SYMBOL_GPL(regulator_get_optional
);
2350 static void destroy_regulator(struct regulator
*regulator
)
2352 struct regulator_dev
*rdev
= regulator
->rdev
;
2354 debugfs_remove_recursive(regulator
->debugfs
);
2356 if (regulator
->dev
) {
2357 if (regulator
->device_link
)
2358 device_link_remove(regulator
->dev
, &rdev
->dev
);
2360 /* remove any sysfs entries */
2361 sysfs_remove_link(&rdev
->dev
.kobj
, regulator
->supply_name
);
2364 regulator_lock(rdev
);
2365 list_del(®ulator
->list
);
2368 rdev
->exclusive
= 0;
2369 regulator_unlock(rdev
);
2371 kfree_const(regulator
->supply_name
);
2375 /* regulator_list_mutex lock held by regulator_put() */
2376 static void _regulator_put(struct regulator
*regulator
)
2378 struct regulator_dev
*rdev
;
2380 if (IS_ERR_OR_NULL(regulator
))
2383 lockdep_assert_held_once(®ulator_list_mutex
);
2385 /* Docs say you must disable before calling regulator_put() */
2386 WARN_ON(regulator
->enable_count
);
2388 rdev
= regulator
->rdev
;
2390 destroy_regulator(regulator
);
2392 module_put(rdev
->owner
);
2393 put_device(&rdev
->dev
);
2397 * regulator_put - "free" the regulator source
2398 * @regulator: regulator source
2400 * Note: drivers must ensure that all regulator_enable calls made on this
2401 * regulator source are balanced by regulator_disable calls prior to calling
2404 void regulator_put(struct regulator
*regulator
)
2406 mutex_lock(®ulator_list_mutex
);
2407 _regulator_put(regulator
);
2408 mutex_unlock(®ulator_list_mutex
);
2410 EXPORT_SYMBOL_GPL(regulator_put
);
2413 * regulator_register_supply_alias - Provide device alias for supply lookup
2415 * @dev: device that will be given as the regulator "consumer"
2416 * @id: Supply name or regulator ID
2417 * @alias_dev: device that should be used to lookup the supply
2418 * @alias_id: Supply name or regulator ID that should be used to lookup the
2421 * All lookups for id on dev will instead be conducted for alias_id on
2424 * Return: 0 on success or a negative error number on failure.
2426 int regulator_register_supply_alias(struct device
*dev
, const char *id
,
2427 struct device
*alias_dev
,
2428 const char *alias_id
)
2430 struct regulator_supply_alias
*map
;
2432 map
= regulator_find_supply_alias(dev
, id
);
2436 map
= kzalloc(sizeof(struct regulator_supply_alias
), GFP_KERNEL
);
2441 map
->src_supply
= id
;
2442 map
->alias_dev
= alias_dev
;
2443 map
->alias_supply
= alias_id
;
2445 list_add(&map
->list
, ®ulator_supply_alias_list
);
2447 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2448 id
, dev_name(dev
), alias_id
, dev_name(alias_dev
));
2452 EXPORT_SYMBOL_GPL(regulator_register_supply_alias
);
2455 * regulator_unregister_supply_alias - Remove device alias
2457 * @dev: device that will be given as the regulator "consumer"
2458 * @id: Supply name or regulator ID
2460 * Remove a lookup alias if one exists for id on dev.
2462 void regulator_unregister_supply_alias(struct device
*dev
, const char *id
)
2464 struct regulator_supply_alias
*map
;
2466 map
= regulator_find_supply_alias(dev
, id
);
2468 list_del(&map
->list
);
2472 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias
);
2475 * regulator_bulk_register_supply_alias - register multiple aliases
2477 * @dev: device that will be given as the regulator "consumer"
2478 * @id: List of supply names or regulator IDs
2479 * @alias_dev: device that should be used to lookup the supply
2480 * @alias_id: List of supply names or regulator IDs that should be used to
2482 * @num_id: Number of aliases to register
2484 * This helper function allows drivers to register several supply
2485 * aliases in one operation. If any of the aliases cannot be
2486 * registered any aliases that were registered will be removed
2487 * before returning to the caller.
2489 * Return: 0 on success or a negative error number on failure.
2491 int regulator_bulk_register_supply_alias(struct device
*dev
,
2492 const char *const *id
,
2493 struct device
*alias_dev
,
2494 const char *const *alias_id
,
2500 for (i
= 0; i
< num_id
; ++i
) {
2501 ret
= regulator_register_supply_alias(dev
, id
[i
], alias_dev
,
2511 "Failed to create supply alias %s,%s -> %s,%s\n",
2512 id
[i
], dev_name(dev
), alias_id
[i
], dev_name(alias_dev
));
2515 regulator_unregister_supply_alias(dev
, id
[i
]);
2519 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias
);
2522 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2524 * @dev: device that will be given as the regulator "consumer"
2525 * @id: List of supply names or regulator IDs
2526 * @num_id: Number of aliases to unregister
2528 * This helper function allows drivers to unregister several supply
2529 * aliases in one operation.
2531 void regulator_bulk_unregister_supply_alias(struct device
*dev
,
2532 const char *const *id
,
2537 for (i
= 0; i
< num_id
; ++i
)
2538 regulator_unregister_supply_alias(dev
, id
[i
]);
2540 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias
);
2543 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2544 static int regulator_ena_gpio_request(struct regulator_dev
*rdev
,
2545 const struct regulator_config
*config
)
2547 struct regulator_enable_gpio
*pin
, *new_pin
;
2548 struct gpio_desc
*gpiod
;
2550 gpiod
= config
->ena_gpiod
;
2551 new_pin
= kzalloc(sizeof(*new_pin
), GFP_KERNEL
);
2553 mutex_lock(®ulator_list_mutex
);
2555 list_for_each_entry(pin
, ®ulator_ena_gpio_list
, list
) {
2556 if (pin
->gpiod
== gpiod
) {
2557 rdev_dbg(rdev
, "GPIO is already used\n");
2558 goto update_ena_gpio_to_rdev
;
2562 if (new_pin
== NULL
) {
2563 mutex_unlock(®ulator_list_mutex
);
2571 list_add(&pin
->list
, ®ulator_ena_gpio_list
);
2573 update_ena_gpio_to_rdev
:
2574 pin
->request_count
++;
2575 rdev
->ena_pin
= pin
;
2577 mutex_unlock(®ulator_list_mutex
);
2583 static void regulator_ena_gpio_free(struct regulator_dev
*rdev
)
2585 struct regulator_enable_gpio
*pin
, *n
;
2590 /* Free the GPIO only in case of no use */
2591 list_for_each_entry_safe(pin
, n
, ®ulator_ena_gpio_list
, list
) {
2592 if (pin
!= rdev
->ena_pin
)
2595 if (--pin
->request_count
)
2598 gpiod_put(pin
->gpiod
);
2599 list_del(&pin
->list
);
2604 rdev
->ena_pin
= NULL
;
2608 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2609 * @rdev: regulator_dev structure
2610 * @enable: enable GPIO at initial use?
2612 * GPIO is enabled in case of initial use. (enable_count is 0)
2613 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2615 * Return: 0 on success or a negative error number on failure.
2617 static int regulator_ena_gpio_ctrl(struct regulator_dev
*rdev
, bool enable
)
2619 struct regulator_enable_gpio
*pin
= rdev
->ena_pin
;
2625 /* Enable GPIO at initial use */
2626 if (pin
->enable_count
== 0)
2627 gpiod_set_value_cansleep(pin
->gpiod
, 1);
2629 pin
->enable_count
++;
2631 if (pin
->enable_count
> 1) {
2632 pin
->enable_count
--;
2636 /* Disable GPIO if not used */
2637 if (pin
->enable_count
<= 1) {
2638 gpiod_set_value_cansleep(pin
->gpiod
, 0);
2639 pin
->enable_count
= 0;
2647 * _regulator_check_status_enabled - check if regulator status can be
2648 * interpreted as "regulator is enabled"
2649 * @rdev: the regulator device to check
2652 * * 1 - if status shows regulator is in enabled state
2653 * * 0 - if not enabled state
2654 * * Error Value - as received from ops->get_status()
2656 static inline int _regulator_check_status_enabled(struct regulator_dev
*rdev
)
2658 int ret
= rdev
->desc
->ops
->get_status(rdev
);
2661 rdev_info(rdev
, "get_status returned error: %d\n", ret
);
2666 case REGULATOR_STATUS_OFF
:
2667 case REGULATOR_STATUS_ERROR
:
2668 case REGULATOR_STATUS_UNDEFINED
:
2675 static int _regulator_do_enable(struct regulator_dev
*rdev
)
2679 /* Query before enabling in case configuration dependent. */
2680 ret
= _regulator_get_enable_time(rdev
);
2684 rdev_warn(rdev
, "enable_time() failed: %pe\n", ERR_PTR(ret
));
2688 trace_regulator_enable(rdev_get_name(rdev
));
2690 if (rdev
->desc
->off_on_delay
) {
2691 /* if needed, keep a distance of off_on_delay from last time
2692 * this regulator was disabled.
2694 ktime_t end
= ktime_add_us(rdev
->last_off
, rdev
->desc
->off_on_delay
);
2695 s64 remaining
= ktime_us_delta(end
, ktime_get_boottime());
2701 if (rdev
->ena_pin
) {
2702 if (!rdev
->ena_gpio_state
) {
2703 ret
= regulator_ena_gpio_ctrl(rdev
, true);
2706 rdev
->ena_gpio_state
= 1;
2708 } else if (rdev
->desc
->ops
->enable
) {
2709 ret
= rdev
->desc
->ops
->enable(rdev
);
2716 /* Allow the regulator to ramp; it would be useful to extend
2717 * this for bulk operations so that the regulators can ramp
2720 trace_regulator_enable_delay(rdev_get_name(rdev
));
2722 /* If poll_enabled_time is set, poll upto the delay calculated
2723 * above, delaying poll_enabled_time uS to check if the regulator
2724 * actually got enabled.
2725 * If the regulator isn't enabled after our delay helper has expired,
2726 * return -ETIMEDOUT.
2728 if (rdev
->desc
->poll_enabled_time
) {
2729 int time_remaining
= delay
;
2731 while (time_remaining
> 0) {
2732 fsleep(rdev
->desc
->poll_enabled_time
);
2734 if (rdev
->desc
->ops
->get_status
) {
2735 ret
= _regulator_check_status_enabled(rdev
);
2740 } else if (rdev
->desc
->ops
->is_enabled(rdev
))
2743 time_remaining
-= rdev
->desc
->poll_enabled_time
;
2746 if (time_remaining
<= 0) {
2747 rdev_err(rdev
, "Enabled check timed out\n");
2754 trace_regulator_enable_complete(rdev_get_name(rdev
));
2760 * _regulator_handle_consumer_enable - handle that a consumer enabled
2761 * @regulator: regulator source
2763 * Some things on a regulator consumer (like the contribution towards total
2764 * load on the regulator) only have an effect when the consumer wants the
2765 * regulator enabled. Explained in example with two consumers of the same
2767 * consumer A: set_load(100); => total load = 0
2768 * consumer A: regulator_enable(); => total load = 100
2769 * consumer B: set_load(1000); => total load = 100
2770 * consumer B: regulator_enable(); => total load = 1100
2771 * consumer A: regulator_disable(); => total_load = 1000
2773 * This function (together with _regulator_handle_consumer_disable) is
2774 * responsible for keeping track of the refcount for a given regulator consumer
2775 * and applying / unapplying these things.
2777 * Return: 0 on success or negative error number on failure.
2779 static int _regulator_handle_consumer_enable(struct regulator
*regulator
)
2782 struct regulator_dev
*rdev
= regulator
->rdev
;
2784 lockdep_assert_held_once(&rdev
->mutex
.base
);
2786 regulator
->enable_count
++;
2787 if (regulator
->uA_load
&& regulator
->enable_count
== 1) {
2788 ret
= drms_uA_update(rdev
);
2790 regulator
->enable_count
--;
2798 * _regulator_handle_consumer_disable - handle that a consumer disabled
2799 * @regulator: regulator source
2801 * The opposite of _regulator_handle_consumer_enable().
2803 * Return: 0 on success or a negative error number on failure.
2805 static int _regulator_handle_consumer_disable(struct regulator
*regulator
)
2807 struct regulator_dev
*rdev
= regulator
->rdev
;
2809 lockdep_assert_held_once(&rdev
->mutex
.base
);
2811 if (!regulator
->enable_count
) {
2812 rdev_err(rdev
, "Underflow of regulator enable count\n");
2816 regulator
->enable_count
--;
2817 if (regulator
->uA_load
&& regulator
->enable_count
== 0)
2818 return drms_uA_update(rdev
);
2823 /* locks held by regulator_enable() */
2824 static int _regulator_enable(struct regulator
*regulator
)
2826 struct regulator_dev
*rdev
= regulator
->rdev
;
2829 lockdep_assert_held_once(&rdev
->mutex
.base
);
2831 if (rdev
->use_count
== 0 && rdev
->supply
) {
2832 ret
= _regulator_enable(rdev
->supply
);
2837 /* balance only if there are regulators coupled */
2838 if (rdev
->coupling_desc
.n_coupled
> 1) {
2839 ret
= regulator_balance_voltage(rdev
, PM_SUSPEND_ON
);
2841 goto err_disable_supply
;
2844 ret
= _regulator_handle_consumer_enable(regulator
);
2846 goto err_disable_supply
;
2848 if (rdev
->use_count
== 0) {
2850 * The regulator may already be enabled if it's not switchable
2853 ret
= _regulator_is_enabled(rdev
);
2854 if (ret
== -EINVAL
|| ret
== 0) {
2855 if (!regulator_ops_is_valid(rdev
,
2856 REGULATOR_CHANGE_STATUS
)) {
2858 goto err_consumer_disable
;
2861 ret
= _regulator_do_enable(rdev
);
2863 goto err_consumer_disable
;
2865 _notifier_call_chain(rdev
, REGULATOR_EVENT_ENABLE
,
2867 } else if (ret
< 0) {
2868 rdev_err(rdev
, "is_enabled() failed: %pe\n", ERR_PTR(ret
));
2869 goto err_consumer_disable
;
2871 /* Fallthrough on positive return values - already enabled */
2874 if (regulator
->enable_count
== 1)
2879 err_consumer_disable
:
2880 _regulator_handle_consumer_disable(regulator
);
2883 if (rdev
->use_count
== 0 && rdev
->supply
)
2884 _regulator_disable(rdev
->supply
);
2890 * regulator_enable - enable regulator output
2891 * @regulator: regulator source
2893 * Request that the regulator be enabled with the regulator output at
2894 * the predefined voltage or current value. Calls to regulator_enable()
2895 * must be balanced with calls to regulator_disable().
2897 * NOTE: the output value can be set by other drivers, boot loader or may be
2898 * hardwired in the regulator.
2900 * Return: 0 on success or a negative error number on failure.
2902 int regulator_enable(struct regulator
*regulator
)
2904 struct regulator_dev
*rdev
= regulator
->rdev
;
2905 struct ww_acquire_ctx ww_ctx
;
2908 regulator_lock_dependent(rdev
, &ww_ctx
);
2909 ret
= _regulator_enable(regulator
);
2910 regulator_unlock_dependent(rdev
, &ww_ctx
);
2914 EXPORT_SYMBOL_GPL(regulator_enable
);
2916 static int _regulator_do_disable(struct regulator_dev
*rdev
)
2920 trace_regulator_disable(rdev_get_name(rdev
));
2922 if (rdev
->ena_pin
) {
2923 if (rdev
->ena_gpio_state
) {
2924 ret
= regulator_ena_gpio_ctrl(rdev
, false);
2927 rdev
->ena_gpio_state
= 0;
2930 } else if (rdev
->desc
->ops
->disable
) {
2931 ret
= rdev
->desc
->ops
->disable(rdev
);
2936 if (rdev
->desc
->off_on_delay
)
2937 rdev
->last_off
= ktime_get_boottime();
2939 trace_regulator_disable_complete(rdev_get_name(rdev
));
2944 /* locks held by regulator_disable() */
2945 static int _regulator_disable(struct regulator
*regulator
)
2947 struct regulator_dev
*rdev
= regulator
->rdev
;
2950 lockdep_assert_held_once(&rdev
->mutex
.base
);
2952 if (WARN(regulator
->enable_count
== 0,
2953 "unbalanced disables for %s\n", rdev_get_name(rdev
)))
2956 if (regulator
->enable_count
== 1) {
2957 /* disabling last enable_count from this regulator */
2958 /* are we the last user and permitted to disable ? */
2959 if (rdev
->use_count
== 1 &&
2960 (rdev
->constraints
&& !rdev
->constraints
->always_on
)) {
2962 /* we are last user */
2963 if (regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
)) {
2964 ret
= _notifier_call_chain(rdev
,
2965 REGULATOR_EVENT_PRE_DISABLE
,
2967 if (ret
& NOTIFY_STOP_MASK
)
2970 ret
= _regulator_do_disable(rdev
);
2972 rdev_err(rdev
, "failed to disable: %pe\n", ERR_PTR(ret
));
2973 _notifier_call_chain(rdev
,
2974 REGULATOR_EVENT_ABORT_DISABLE
,
2978 _notifier_call_chain(rdev
, REGULATOR_EVENT_DISABLE
,
2982 rdev
->use_count
= 0;
2983 } else if (rdev
->use_count
> 1) {
2989 ret
= _regulator_handle_consumer_disable(regulator
);
2991 if (ret
== 0 && rdev
->coupling_desc
.n_coupled
> 1)
2992 ret
= regulator_balance_voltage(rdev
, PM_SUSPEND_ON
);
2994 if (ret
== 0 && rdev
->use_count
== 0 && rdev
->supply
)
2995 ret
= _regulator_disable(rdev
->supply
);
3001 * regulator_disable - disable regulator output
3002 * @regulator: regulator source
3004 * Disable the regulator output voltage or current. Calls to
3005 * regulator_enable() must be balanced with calls to
3006 * regulator_disable().
3008 * NOTE: this will only disable the regulator output if no other consumer
3009 * devices have it enabled, the regulator device supports disabling and
3010 * machine constraints permit this operation.
3012 * Return: 0 on success or a negative error number on failure.
3014 int regulator_disable(struct regulator
*regulator
)
3016 struct regulator_dev
*rdev
= regulator
->rdev
;
3017 struct ww_acquire_ctx ww_ctx
;
3020 regulator_lock_dependent(rdev
, &ww_ctx
);
3021 ret
= _regulator_disable(regulator
);
3022 regulator_unlock_dependent(rdev
, &ww_ctx
);
3026 EXPORT_SYMBOL_GPL(regulator_disable
);
3028 /* locks held by regulator_force_disable() */
3029 static int _regulator_force_disable(struct regulator_dev
*rdev
)
3033 lockdep_assert_held_once(&rdev
->mutex
.base
);
3035 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
3036 REGULATOR_EVENT_PRE_DISABLE
, NULL
);
3037 if (ret
& NOTIFY_STOP_MASK
)
3040 ret
= _regulator_do_disable(rdev
);
3042 rdev_err(rdev
, "failed to force disable: %pe\n", ERR_PTR(ret
));
3043 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
3044 REGULATOR_EVENT_ABORT_DISABLE
, NULL
);
3048 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
3049 REGULATOR_EVENT_DISABLE
, NULL
);
3055 * regulator_force_disable - force disable regulator output
3056 * @regulator: regulator source
3058 * Forcibly disable the regulator output voltage or current.
3059 * NOTE: this *will* disable the regulator output even if other consumer
3060 * devices have it enabled. This should be used for situations when device
3061 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3063 * Return: 0 on success or a negative error number on failure.
3065 int regulator_force_disable(struct regulator
*regulator
)
3067 struct regulator_dev
*rdev
= regulator
->rdev
;
3068 struct ww_acquire_ctx ww_ctx
;
3071 regulator_lock_dependent(rdev
, &ww_ctx
);
3073 ret
= _regulator_force_disable(regulator
->rdev
);
3075 if (rdev
->coupling_desc
.n_coupled
> 1)
3076 regulator_balance_voltage(rdev
, PM_SUSPEND_ON
);
3078 if (regulator
->uA_load
) {
3079 regulator
->uA_load
= 0;
3080 ret
= drms_uA_update(rdev
);
3083 if (rdev
->use_count
!= 0 && rdev
->supply
)
3084 _regulator_disable(rdev
->supply
);
3086 regulator_unlock_dependent(rdev
, &ww_ctx
);
3090 EXPORT_SYMBOL_GPL(regulator_force_disable
);
3092 static void regulator_disable_work(struct work_struct
*work
)
3094 struct regulator_dev
*rdev
= container_of(work
, struct regulator_dev
,
3096 struct ww_acquire_ctx ww_ctx
;
3098 struct regulator
*regulator
;
3099 int total_count
= 0;
3101 regulator_lock_dependent(rdev
, &ww_ctx
);
3104 * Workqueue functions queue the new work instance while the previous
3105 * work instance is being processed. Cancel the queued work instance
3106 * as the work instance under processing does the job of the queued
3109 cancel_delayed_work(&rdev
->disable_work
);
3111 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
3112 count
= regulator
->deferred_disables
;
3117 total_count
+= count
;
3118 regulator
->deferred_disables
= 0;
3120 for (i
= 0; i
< count
; i
++) {
3121 ret
= _regulator_disable(regulator
);
3123 rdev_err(rdev
, "Deferred disable failed: %pe\n",
3127 WARN_ON(!total_count
);
3129 if (rdev
->coupling_desc
.n_coupled
> 1)
3130 regulator_balance_voltage(rdev
, PM_SUSPEND_ON
);
3132 regulator_unlock_dependent(rdev
, &ww_ctx
);
3136 * regulator_disable_deferred - disable regulator output with delay
3137 * @regulator: regulator source
3138 * @ms: milliseconds until the regulator is disabled
3140 * Execute regulator_disable() on the regulator after a delay. This
3141 * is intended for use with devices that require some time to quiesce.
3143 * NOTE: this will only disable the regulator output if no other consumer
3144 * devices have it enabled, the regulator device supports disabling and
3145 * machine constraints permit this operation.
3147 * Return: 0 on success or a negative error number on failure.
3149 int regulator_disable_deferred(struct regulator
*regulator
, int ms
)
3151 struct regulator_dev
*rdev
= regulator
->rdev
;
3154 return regulator_disable(regulator
);
3156 regulator_lock(rdev
);
3157 regulator
->deferred_disables
++;
3158 mod_delayed_work(system_power_efficient_wq
, &rdev
->disable_work
,
3159 msecs_to_jiffies(ms
));
3160 regulator_unlock(rdev
);
3164 EXPORT_SYMBOL_GPL(regulator_disable_deferred
);
3166 static int _regulator_is_enabled(struct regulator_dev
*rdev
)
3168 /* A GPIO control always takes precedence */
3170 return rdev
->ena_gpio_state
;
3172 /* If we don't know then assume that the regulator is always on */
3173 if (!rdev
->desc
->ops
->is_enabled
)
3176 return rdev
->desc
->ops
->is_enabled(rdev
);
3179 static int _regulator_list_voltage(struct regulator_dev
*rdev
,
3180 unsigned selector
, int lock
)
3182 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3185 if (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1 && !selector
)
3186 return rdev
->desc
->fixed_uV
;
3188 if (ops
->list_voltage
) {
3189 if (selector
>= rdev
->desc
->n_voltages
)
3191 if (selector
< rdev
->desc
->linear_min_sel
)
3194 regulator_lock(rdev
);
3195 ret
= ops
->list_voltage(rdev
, selector
);
3197 regulator_unlock(rdev
);
3198 } else if (rdev
->is_switch
&& rdev
->supply
) {
3199 ret
= _regulator_list_voltage(rdev
->supply
->rdev
,
3206 if (ret
< rdev
->constraints
->min_uV
)
3208 else if (ret
> rdev
->constraints
->max_uV
)
3216 * regulator_is_enabled - is the regulator output enabled
3217 * @regulator: regulator source
3219 * Note that the device backing this regulator handle can have multiple
3220 * users, so it might be enabled even if regulator_enable() was never
3221 * called for this particular source.
3223 * Return: Positive if the regulator driver backing the source/client
3224 * has requested that the device be enabled, zero if it hasn't,
3225 * else a negative error number.
3227 int regulator_is_enabled(struct regulator
*regulator
)
3231 if (regulator
->always_on
)
3234 regulator_lock(regulator
->rdev
);
3235 ret
= _regulator_is_enabled(regulator
->rdev
);
3236 regulator_unlock(regulator
->rdev
);
3240 EXPORT_SYMBOL_GPL(regulator_is_enabled
);
3243 * regulator_count_voltages - count regulator_list_voltage() selectors
3244 * @regulator: regulator source
3246 * Return: Number of selectors for @regulator, or negative error number.
3248 * Selectors are numbered starting at zero, and typically correspond to
3249 * bitfields in hardware registers.
3251 int regulator_count_voltages(struct regulator
*regulator
)
3253 struct regulator_dev
*rdev
= regulator
->rdev
;
3255 if (rdev
->desc
->n_voltages
)
3256 return rdev
->desc
->n_voltages
;
3258 if (!rdev
->is_switch
|| !rdev
->supply
)
3261 return regulator_count_voltages(rdev
->supply
);
3263 EXPORT_SYMBOL_GPL(regulator_count_voltages
);
3266 * regulator_list_voltage - enumerate supported voltages
3267 * @regulator: regulator source
3268 * @selector: identify voltage to list
3269 * Context: can sleep
3271 * Return: Voltage for @selector that can be passed to regulator_set_voltage(),
3272 * 0 if @selector can't be used on this system, or a negative error
3273 * number on failure.
3275 int regulator_list_voltage(struct regulator
*regulator
, unsigned selector
)
3277 return _regulator_list_voltage(regulator
->rdev
, selector
, 1);
3279 EXPORT_SYMBOL_GPL(regulator_list_voltage
);
3282 * regulator_get_regmap - get the regulator's register map
3283 * @regulator: regulator source
3285 * Return: Pointer to the &struct regmap for @regulator, or ERR_PTR()
3286 * encoded -%EOPNOTSUPP if @regulator doesn't use regmap.
3288 struct regmap
*regulator_get_regmap(struct regulator
*regulator
)
3290 struct regmap
*map
= regulator
->rdev
->regmap
;
3292 return map
? map
: ERR_PTR(-EOPNOTSUPP
);
3294 EXPORT_SYMBOL_GPL(regulator_get_regmap
);
3297 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3298 * @regulator: regulator source
3299 * @vsel_reg: voltage selector register, output parameter
3300 * @vsel_mask: mask for voltage selector bitfield, output parameter
3302 * Returns the hardware register offset and bitmask used for setting the
3303 * regulator voltage. This might be useful when configuring voltage-scaling
3304 * hardware or firmware that can make I2C requests behind the kernel's back,
3307 * Return: 0 on success, or -%EOPNOTSUPP if the regulator does not support
3308 * voltage selectors.
3310 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3311 * and 0 is returned, otherwise a negative error number is returned.
3313 int regulator_get_hardware_vsel_register(struct regulator
*regulator
,
3315 unsigned *vsel_mask
)
3317 struct regulator_dev
*rdev
= regulator
->rdev
;
3318 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3320 if (ops
->set_voltage_sel
!= regulator_set_voltage_sel_regmap
)
3323 *vsel_reg
= rdev
->desc
->vsel_reg
;
3324 *vsel_mask
= rdev
->desc
->vsel_mask
;
3328 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register
);
3331 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3332 * @regulator: regulator source
3333 * @selector: identify voltage to list
3335 * Converts the selector to a hardware-specific voltage selector that can be
3336 * directly written to the regulator registers. The address of the voltage
3337 * register can be determined by calling @regulator_get_hardware_vsel_register.
3339 * Return: 0 on success, -%EINVAL if the selector is outside the supported
3340 * range, or -%EOPNOTSUPP if the regulator does not support voltage
3343 int regulator_list_hardware_vsel(struct regulator
*regulator
,
3346 struct regulator_dev
*rdev
= regulator
->rdev
;
3347 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3349 if (selector
>= rdev
->desc
->n_voltages
)
3351 if (selector
< rdev
->desc
->linear_min_sel
)
3353 if (ops
->set_voltage_sel
!= regulator_set_voltage_sel_regmap
)
3358 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel
);
3361 * regulator_hardware_enable - access the HW for enable/disable regulator
3362 * @regulator: regulator source
3363 * @enable: true for enable, false for disable
3365 * Request that the regulator be enabled/disabled with the regulator output at
3366 * the predefined voltage or current value.
3368 * Return: 0 on success or a negative error number on failure.
3370 int regulator_hardware_enable(struct regulator
*regulator
, bool enable
)
3372 struct regulator_dev
*rdev
= regulator
->rdev
;
3373 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3374 int ret
= -EOPNOTSUPP
;
3376 if (!rdev
->exclusive
|| !ops
|| !ops
->enable
|| !ops
->disable
)
3380 ret
= ops
->enable(rdev
);
3382 ret
= ops
->disable(rdev
);
3386 EXPORT_SYMBOL_GPL(regulator_hardware_enable
);
3389 * regulator_get_linear_step - return the voltage step size between VSEL values
3390 * @regulator: regulator source
3392 * Return: The voltage step size between VSEL values for linear regulators,
3393 * or 0 if the regulator isn't a linear regulator.
3395 unsigned int regulator_get_linear_step(struct regulator
*regulator
)
3397 struct regulator_dev
*rdev
= regulator
->rdev
;
3399 return rdev
->desc
->uV_step
;
3401 EXPORT_SYMBOL_GPL(regulator_get_linear_step
);
3404 * regulator_is_supported_voltage - check if a voltage range can be supported
3406 * @regulator: Regulator to check.
3407 * @min_uV: Minimum required voltage in uV.
3408 * @max_uV: Maximum required voltage in uV.
3410 * Return: 1 if the voltage range is supported, 0 if not, or a negative error
3411 * number if @regulator's voltage can't be changed and voltage readback
3414 int regulator_is_supported_voltage(struct regulator
*regulator
,
3415 int min_uV
, int max_uV
)
3417 struct regulator_dev
*rdev
= regulator
->rdev
;
3418 int i
, voltages
, ret
;
3420 /* If we can't change voltage check the current voltage */
3421 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
3422 ret
= regulator_get_voltage(regulator
);
3424 return min_uV
<= ret
&& ret
<= max_uV
;
3429 /* Any voltage within constrains range is fine? */
3430 if (rdev
->desc
->continuous_voltage_range
)
3431 return min_uV
>= rdev
->constraints
->min_uV
&&
3432 max_uV
<= rdev
->constraints
->max_uV
;
3434 ret
= regulator_count_voltages(regulator
);
3439 for (i
= 0; i
< voltages
; i
++) {
3440 ret
= regulator_list_voltage(regulator
, i
);
3442 if (ret
>= min_uV
&& ret
<= max_uV
)
3448 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage
);
3450 static int regulator_map_voltage(struct regulator_dev
*rdev
, int min_uV
,
3453 const struct regulator_desc
*desc
= rdev
->desc
;
3455 if (desc
->ops
->map_voltage
)
3456 return desc
->ops
->map_voltage(rdev
, min_uV
, max_uV
);
3458 if (desc
->ops
->list_voltage
== regulator_list_voltage_linear
)
3459 return regulator_map_voltage_linear(rdev
, min_uV
, max_uV
);
3461 if (desc
->ops
->list_voltage
== regulator_list_voltage_linear_range
)
3462 return regulator_map_voltage_linear_range(rdev
, min_uV
, max_uV
);
3464 if (desc
->ops
->list_voltage
==
3465 regulator_list_voltage_pickable_linear_range
)
3466 return regulator_map_voltage_pickable_linear_range(rdev
,
3469 return regulator_map_voltage_iterate(rdev
, min_uV
, max_uV
);
3472 static int _regulator_call_set_voltage(struct regulator_dev
*rdev
,
3473 int min_uV
, int max_uV
,
3476 struct pre_voltage_change_data data
;
3479 data
.old_uV
= regulator_get_voltage_rdev(rdev
);
3480 data
.min_uV
= min_uV
;
3481 data
.max_uV
= max_uV
;
3482 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE
,
3484 if (ret
& NOTIFY_STOP_MASK
)
3487 ret
= rdev
->desc
->ops
->set_voltage(rdev
, min_uV
, max_uV
, selector
);
3491 _notifier_call_chain(rdev
, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE
,
3492 (void *)data
.old_uV
);
3497 static int _regulator_call_set_voltage_sel(struct regulator_dev
*rdev
,
3498 int uV
, unsigned selector
)
3500 struct pre_voltage_change_data data
;
3503 data
.old_uV
= regulator_get_voltage_rdev(rdev
);
3506 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE
,
3508 if (ret
& NOTIFY_STOP_MASK
)
3511 ret
= rdev
->desc
->ops
->set_voltage_sel(rdev
, selector
);
3515 _notifier_call_chain(rdev
, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE
,
3516 (void *)data
.old_uV
);
3521 static int _regulator_set_voltage_sel_step(struct regulator_dev
*rdev
,
3522 int uV
, int new_selector
)
3524 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3525 int diff
, old_sel
, curr_sel
, ret
;
3527 /* Stepping is only needed if the regulator is enabled. */
3528 if (!_regulator_is_enabled(rdev
))
3531 if (!ops
->get_voltage_sel
)
3534 old_sel
= ops
->get_voltage_sel(rdev
);
3538 diff
= new_selector
- old_sel
;
3540 return 0; /* No change needed. */
3544 for (curr_sel
= old_sel
+ rdev
->desc
->vsel_step
;
3545 curr_sel
< new_selector
;
3546 curr_sel
+= rdev
->desc
->vsel_step
) {
3548 * Call the callback directly instead of using
3549 * _regulator_call_set_voltage_sel() as we don't
3550 * want to notify anyone yet. Same in the branch
3553 ret
= ops
->set_voltage_sel(rdev
, curr_sel
);
3558 /* Stepping down. */
3559 for (curr_sel
= old_sel
- rdev
->desc
->vsel_step
;
3560 curr_sel
> new_selector
;
3561 curr_sel
-= rdev
->desc
->vsel_step
) {
3562 ret
= ops
->set_voltage_sel(rdev
, curr_sel
);
3569 /* The final selector will trigger the notifiers. */
3570 return _regulator_call_set_voltage_sel(rdev
, uV
, new_selector
);
3574 * At least try to return to the previous voltage if setting a new
3577 (void)ops
->set_voltage_sel(rdev
, old_sel
);
3581 static int _regulator_set_voltage_time(struct regulator_dev
*rdev
,
3582 int old_uV
, int new_uV
)
3584 unsigned int ramp_delay
= 0;
3586 if (rdev
->constraints
->ramp_delay
)
3587 ramp_delay
= rdev
->constraints
->ramp_delay
;
3588 else if (rdev
->desc
->ramp_delay
)
3589 ramp_delay
= rdev
->desc
->ramp_delay
;
3590 else if (rdev
->constraints
->settling_time
)
3591 return rdev
->constraints
->settling_time
;
3592 else if (rdev
->constraints
->settling_time_up
&&
3594 return rdev
->constraints
->settling_time_up
;
3595 else if (rdev
->constraints
->settling_time_down
&&
3597 return rdev
->constraints
->settling_time_down
;
3599 if (ramp_delay
== 0)
3602 return DIV_ROUND_UP(abs(new_uV
- old_uV
), ramp_delay
);
3605 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
3606 int min_uV
, int max_uV
)
3611 unsigned int selector
;
3612 int old_selector
= -1;
3613 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3614 int old_uV
= regulator_get_voltage_rdev(rdev
);
3616 trace_regulator_set_voltage(rdev_get_name(rdev
), min_uV
, max_uV
);
3618 min_uV
+= rdev
->constraints
->uV_offset
;
3619 max_uV
+= rdev
->constraints
->uV_offset
;
3622 * If we can't obtain the old selector there is not enough
3623 * info to call set_voltage_time_sel().
3625 if (_regulator_is_enabled(rdev
) &&
3626 ops
->set_voltage_time_sel
&& ops
->get_voltage_sel
) {
3627 old_selector
= ops
->get_voltage_sel(rdev
);
3628 if (old_selector
< 0)
3629 return old_selector
;
3632 if (ops
->set_voltage
) {
3633 ret
= _regulator_call_set_voltage(rdev
, min_uV
, max_uV
,
3637 if (ops
->list_voltage
)
3638 best_val
= ops
->list_voltage(rdev
,
3641 best_val
= regulator_get_voltage_rdev(rdev
);
3644 } else if (ops
->set_voltage_sel
) {
3645 ret
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
3647 best_val
= ops
->list_voltage(rdev
, ret
);
3648 if (min_uV
<= best_val
&& max_uV
>= best_val
) {
3650 if (old_selector
== selector
)
3652 else if (rdev
->desc
->vsel_step
)
3653 ret
= _regulator_set_voltage_sel_step(
3654 rdev
, best_val
, selector
);
3656 ret
= _regulator_call_set_voltage_sel(
3657 rdev
, best_val
, selector
);
3669 if (ops
->set_voltage_time_sel
) {
3671 * Call set_voltage_time_sel if successfully obtained
3674 if (old_selector
>= 0 && old_selector
!= selector
)
3675 delay
= ops
->set_voltage_time_sel(rdev
, old_selector
,
3678 if (old_uV
!= best_val
) {
3679 if (ops
->set_voltage_time
)
3680 delay
= ops
->set_voltage_time(rdev
, old_uV
,
3683 delay
= _regulator_set_voltage_time(rdev
,
3690 rdev_warn(rdev
, "failed to get delay: %pe\n", ERR_PTR(delay
));
3694 /* Insert any necessary delays */
3697 if (best_val
>= 0) {
3698 unsigned long data
= best_val
;
3700 _notifier_call_chain(rdev
, REGULATOR_EVENT_VOLTAGE_CHANGE
,
3705 trace_regulator_set_voltage_complete(rdev_get_name(rdev
), best_val
);
3710 static int _regulator_do_set_suspend_voltage(struct regulator_dev
*rdev
,
3711 int min_uV
, int max_uV
, suspend_state_t state
)
3713 struct regulator_state
*rstate
;
3716 rstate
= regulator_get_suspend_state(rdev
, state
);
3720 if (min_uV
< rstate
->min_uV
)
3721 min_uV
= rstate
->min_uV
;
3722 if (max_uV
> rstate
->max_uV
)
3723 max_uV
= rstate
->max_uV
;
3725 sel
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
3729 uV
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
3730 if (uV
>= min_uV
&& uV
<= max_uV
)
3736 static int regulator_set_voltage_unlocked(struct regulator
*regulator
,
3737 int min_uV
, int max_uV
,
3738 suspend_state_t state
)
3740 struct regulator_dev
*rdev
= regulator
->rdev
;
3741 struct regulator_voltage
*voltage
= ®ulator
->voltage
[state
];
3743 int old_min_uV
, old_max_uV
;
3746 /* If we're setting the same range as last time the change
3747 * should be a noop (some cpufreq implementations use the same
3748 * voltage for multiple frequencies, for example).
3750 if (voltage
->min_uV
== min_uV
&& voltage
->max_uV
== max_uV
)
3753 /* If we're trying to set a range that overlaps the current voltage,
3754 * return successfully even though the regulator does not support
3755 * changing the voltage.
3757 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
3758 current_uV
= regulator_get_voltage_rdev(rdev
);
3759 if (min_uV
<= current_uV
&& current_uV
<= max_uV
) {
3760 voltage
->min_uV
= min_uV
;
3761 voltage
->max_uV
= max_uV
;
3767 if (!rdev
->desc
->ops
->set_voltage
&&
3768 !rdev
->desc
->ops
->set_voltage_sel
) {
3773 /* constraints check */
3774 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
3778 /* restore original values in case of error */
3779 old_min_uV
= voltage
->min_uV
;
3780 old_max_uV
= voltage
->max_uV
;
3781 voltage
->min_uV
= min_uV
;
3782 voltage
->max_uV
= max_uV
;
3784 /* for not coupled regulators this will just set the voltage */
3785 ret
= regulator_balance_voltage(rdev
, state
);
3787 voltage
->min_uV
= old_min_uV
;
3788 voltage
->max_uV
= old_max_uV
;
3795 int regulator_set_voltage_rdev(struct regulator_dev
*rdev
, int min_uV
,
3796 int max_uV
, suspend_state_t state
)
3798 int best_supply_uV
= 0;
3799 int supply_change_uV
= 0;
3803 regulator_ops_is_valid(rdev
->supply
->rdev
,
3804 REGULATOR_CHANGE_VOLTAGE
) &&
3805 (rdev
->desc
->min_dropout_uV
|| !(rdev
->desc
->ops
->get_voltage
||
3806 rdev
->desc
->ops
->get_voltage_sel
))) {
3807 int current_supply_uV
;
3810 selector
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
3816 best_supply_uV
= _regulator_list_voltage(rdev
, selector
, 0);
3817 if (best_supply_uV
< 0) {
3818 ret
= best_supply_uV
;
3822 best_supply_uV
+= rdev
->desc
->min_dropout_uV
;
3824 current_supply_uV
= regulator_get_voltage_rdev(rdev
->supply
->rdev
);
3825 if (current_supply_uV
< 0) {
3826 ret
= current_supply_uV
;
3830 supply_change_uV
= best_supply_uV
- current_supply_uV
;
3833 if (supply_change_uV
> 0) {
3834 ret
= regulator_set_voltage_unlocked(rdev
->supply
,
3835 best_supply_uV
, INT_MAX
, state
);
3837 dev_err(&rdev
->dev
, "Failed to increase supply voltage: %pe\n",
3843 if (state
== PM_SUSPEND_ON
)
3844 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
3846 ret
= _regulator_do_set_suspend_voltage(rdev
, min_uV
,
3851 if (supply_change_uV
< 0) {
3852 ret
= regulator_set_voltage_unlocked(rdev
->supply
,
3853 best_supply_uV
, INT_MAX
, state
);
3855 dev_warn(&rdev
->dev
, "Failed to decrease supply voltage: %pe\n",
3857 /* No need to fail here */
3864 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev
);
3866 static int regulator_limit_voltage_step(struct regulator_dev
*rdev
,
3867 int *current_uV
, int *min_uV
)
3869 struct regulation_constraints
*constraints
= rdev
->constraints
;
3871 /* Limit voltage change only if necessary */
3872 if (!constraints
->max_uV_step
|| !_regulator_is_enabled(rdev
))
3875 if (*current_uV
< 0) {
3876 *current_uV
= regulator_get_voltage_rdev(rdev
);
3878 if (*current_uV
< 0)
3882 if (abs(*current_uV
- *min_uV
) <= constraints
->max_uV_step
)
3885 /* Clamp target voltage within the given step */
3886 if (*current_uV
< *min_uV
)
3887 *min_uV
= min(*current_uV
+ constraints
->max_uV_step
,
3890 *min_uV
= max(*current_uV
- constraints
->max_uV_step
,
3896 static int regulator_get_optimal_voltage(struct regulator_dev
*rdev
,
3898 int *min_uV
, int *max_uV
,
3899 suspend_state_t state
,
3902 struct coupling_desc
*c_desc
= &rdev
->coupling_desc
;
3903 struct regulator_dev
**c_rdevs
= c_desc
->coupled_rdevs
;
3904 struct regulation_constraints
*constraints
= rdev
->constraints
;
3905 int desired_min_uV
= 0, desired_max_uV
= INT_MAX
;
3906 int max_current_uV
= 0, min_current_uV
= INT_MAX
;
3907 int highest_min_uV
= 0, target_uV
, possible_uV
;
3908 int i
, ret
, max_spread
;
3914 * If there are no coupled regulators, simply set the voltage
3915 * demanded by consumers.
3917 if (n_coupled
== 1) {
3919 * If consumers don't provide any demands, set voltage
3922 desired_min_uV
= constraints
->min_uV
;
3923 desired_max_uV
= constraints
->max_uV
;
3925 ret
= regulator_check_consumers(rdev
,
3927 &desired_max_uV
, state
);
3936 /* Find highest min desired voltage */
3937 for (i
= 0; i
< n_coupled
; i
++) {
3939 int tmp_max
= INT_MAX
;
3941 lockdep_assert_held_once(&c_rdevs
[i
]->mutex
.base
);
3943 ret
= regulator_check_consumers(c_rdevs
[i
],
3949 ret
= regulator_check_voltage(c_rdevs
[i
], &tmp_min
, &tmp_max
);
3953 highest_min_uV
= max(highest_min_uV
, tmp_min
);
3956 desired_min_uV
= tmp_min
;
3957 desired_max_uV
= tmp_max
;
3961 max_spread
= constraints
->max_spread
[0];
3964 * Let target_uV be equal to the desired one if possible.
3965 * If not, set it to minimum voltage, allowed by other coupled
3968 target_uV
= max(desired_min_uV
, highest_min_uV
- max_spread
);
3971 * Find min and max voltages, which currently aren't violating
3974 for (i
= 1; i
< n_coupled
; i
++) {
3977 if (!_regulator_is_enabled(c_rdevs
[i
]))
3980 tmp_act
= regulator_get_voltage_rdev(c_rdevs
[i
]);
3984 min_current_uV
= min(tmp_act
, min_current_uV
);
3985 max_current_uV
= max(tmp_act
, max_current_uV
);
3988 /* There aren't any other regulators enabled */
3989 if (max_current_uV
== 0) {
3990 possible_uV
= target_uV
;
3993 * Correct target voltage, so as it currently isn't
3994 * violating max_spread
3996 possible_uV
= max(target_uV
, max_current_uV
- max_spread
);
3997 possible_uV
= min(possible_uV
, min_current_uV
+ max_spread
);
4000 if (possible_uV
> desired_max_uV
)
4003 done
= (possible_uV
== target_uV
);
4004 desired_min_uV
= possible_uV
;
4007 /* Apply max_uV_step constraint if necessary */
4008 if (state
== PM_SUSPEND_ON
) {
4009 ret
= regulator_limit_voltage_step(rdev
, current_uV
,
4018 /* Set current_uV if wasn't done earlier in the code and if necessary */
4019 if (n_coupled
> 1 && *current_uV
== -1) {
4021 if (_regulator_is_enabled(rdev
)) {
4022 ret
= regulator_get_voltage_rdev(rdev
);
4028 *current_uV
= desired_min_uV
;
4032 *min_uV
= desired_min_uV
;
4033 *max_uV
= desired_max_uV
;
4038 int regulator_do_balance_voltage(struct regulator_dev
*rdev
,
4039 suspend_state_t state
, bool skip_coupled
)
4041 struct regulator_dev
**c_rdevs
;
4042 struct regulator_dev
*best_rdev
;
4043 struct coupling_desc
*c_desc
= &rdev
->coupling_desc
;
4044 int i
, ret
, n_coupled
, best_min_uV
, best_max_uV
, best_c_rdev
;
4045 unsigned int delta
, best_delta
;
4046 unsigned long c_rdev_done
= 0;
4047 bool best_c_rdev_done
;
4049 c_rdevs
= c_desc
->coupled_rdevs
;
4050 n_coupled
= skip_coupled
? 1 : c_desc
->n_coupled
;
4053 * Find the best possible voltage change on each loop. Leave the loop
4054 * if there isn't any possible change.
4057 best_c_rdev_done
= false;
4065 * Find highest difference between optimal voltage
4066 * and current voltage.
4068 for (i
= 0; i
< n_coupled
; i
++) {
4070 * optimal_uV is the best voltage that can be set for
4071 * i-th regulator at the moment without violating
4072 * max_spread constraint in order to balance
4073 * the coupled voltages.
4075 int optimal_uV
= 0, optimal_max_uV
= 0, current_uV
= 0;
4077 if (test_bit(i
, &c_rdev_done
))
4080 ret
= regulator_get_optimal_voltage(c_rdevs
[i
],
4088 delta
= abs(optimal_uV
- current_uV
);
4090 if (delta
&& best_delta
<= delta
) {
4091 best_c_rdev_done
= ret
;
4093 best_rdev
= c_rdevs
[i
];
4094 best_min_uV
= optimal_uV
;
4095 best_max_uV
= optimal_max_uV
;
4100 /* Nothing to change, return successfully */
4106 ret
= regulator_set_voltage_rdev(best_rdev
, best_min_uV
,
4107 best_max_uV
, state
);
4112 if (best_c_rdev_done
)
4113 set_bit(best_c_rdev
, &c_rdev_done
);
4115 } while (n_coupled
> 1);
4121 static int regulator_balance_voltage(struct regulator_dev
*rdev
,
4122 suspend_state_t state
)
4124 struct coupling_desc
*c_desc
= &rdev
->coupling_desc
;
4125 struct regulator_coupler
*coupler
= c_desc
->coupler
;
4126 bool skip_coupled
= false;
4129 * If system is in a state other than PM_SUSPEND_ON, don't check
4130 * other coupled regulators.
4132 if (state
!= PM_SUSPEND_ON
)
4133 skip_coupled
= true;
4135 if (c_desc
->n_resolved
< c_desc
->n_coupled
) {
4136 rdev_err(rdev
, "Not all coupled regulators registered\n");
4140 /* Invoke custom balancer for customized couplers */
4141 if (coupler
&& coupler
->balance_voltage
)
4142 return coupler
->balance_voltage(coupler
, rdev
, state
);
4144 return regulator_do_balance_voltage(rdev
, state
, skip_coupled
);
4148 * regulator_set_voltage - set regulator output voltage
4149 * @regulator: regulator source
4150 * @min_uV: Minimum required voltage in uV
4151 * @max_uV: Maximum acceptable voltage in uV
4153 * Sets a voltage regulator to the desired output voltage. This can be set
4154 * during any regulator state. IOW, regulator can be disabled or enabled.
4156 * If the regulator is enabled then the voltage will change to the new value
4157 * immediately otherwise if the regulator is disabled the regulator will
4158 * output at the new voltage when enabled.
4160 * NOTE: If the regulator is shared between several devices then the lowest
4161 * request voltage that meets the system constraints will be used.
4162 * Regulator system constraints must be set for this regulator before
4163 * calling this function otherwise this call will fail.
4165 * Return: 0 on success or a negative error number on failure.
4167 int regulator_set_voltage(struct regulator
*regulator
, int min_uV
, int max_uV
)
4169 struct ww_acquire_ctx ww_ctx
;
4172 regulator_lock_dependent(regulator
->rdev
, &ww_ctx
);
4174 ret
= regulator_set_voltage_unlocked(regulator
, min_uV
, max_uV
,
4177 regulator_unlock_dependent(regulator
->rdev
, &ww_ctx
);
4181 EXPORT_SYMBOL_GPL(regulator_set_voltage
);
4183 static inline int regulator_suspend_toggle(struct regulator_dev
*rdev
,
4184 suspend_state_t state
, bool en
)
4186 struct regulator_state
*rstate
;
4188 rstate
= regulator_get_suspend_state(rdev
, state
);
4192 if (!rstate
->changeable
)
4195 rstate
->enabled
= (en
) ? ENABLE_IN_SUSPEND
: DISABLE_IN_SUSPEND
;
4200 int regulator_suspend_enable(struct regulator_dev
*rdev
,
4201 suspend_state_t state
)
4203 return regulator_suspend_toggle(rdev
, state
, true);
4205 EXPORT_SYMBOL_GPL(regulator_suspend_enable
);
4207 int regulator_suspend_disable(struct regulator_dev
*rdev
,
4208 suspend_state_t state
)
4210 struct regulator
*regulator
;
4211 struct regulator_voltage
*voltage
;
4214 * if any consumer wants this regulator device keeping on in
4215 * suspend states, don't set it as disabled.
4217 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
4218 voltage
= ®ulator
->voltage
[state
];
4219 if (voltage
->min_uV
|| voltage
->max_uV
)
4223 return regulator_suspend_toggle(rdev
, state
, false);
4225 EXPORT_SYMBOL_GPL(regulator_suspend_disable
);
4227 static int _regulator_set_suspend_voltage(struct regulator
*regulator
,
4228 int min_uV
, int max_uV
,
4229 suspend_state_t state
)
4231 struct regulator_dev
*rdev
= regulator
->rdev
;
4232 struct regulator_state
*rstate
;
4234 rstate
= regulator_get_suspend_state(rdev
, state
);
4238 if (rstate
->min_uV
== rstate
->max_uV
) {
4239 rdev_err(rdev
, "The suspend voltage can't be changed!\n");
4243 return regulator_set_voltage_unlocked(regulator
, min_uV
, max_uV
, state
);
4246 int regulator_set_suspend_voltage(struct regulator
*regulator
, int min_uV
,
4247 int max_uV
, suspend_state_t state
)
4249 struct ww_acquire_ctx ww_ctx
;
4252 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4253 if (regulator_check_states(state
) || state
== PM_SUSPEND_ON
)
4256 regulator_lock_dependent(regulator
->rdev
, &ww_ctx
);
4258 ret
= _regulator_set_suspend_voltage(regulator
, min_uV
,
4261 regulator_unlock_dependent(regulator
->rdev
, &ww_ctx
);
4265 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage
);
4268 * regulator_set_voltage_time - get raise/fall time
4269 * @regulator: regulator source
4270 * @old_uV: starting voltage in microvolts
4271 * @new_uV: target voltage in microvolts
4273 * Provided with the starting and ending voltage, this function attempts to
4274 * calculate the time in microseconds required to rise or fall to this new
4277 * Return: ramp time in microseconds, or a negative error number if calculation failed.
4279 int regulator_set_voltage_time(struct regulator
*regulator
,
4280 int old_uV
, int new_uV
)
4282 struct regulator_dev
*rdev
= regulator
->rdev
;
4283 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
4289 if (ops
->set_voltage_time
)
4290 return ops
->set_voltage_time(rdev
, old_uV
, new_uV
);
4291 else if (!ops
->set_voltage_time_sel
)
4292 return _regulator_set_voltage_time(rdev
, old_uV
, new_uV
);
4294 /* Currently requires operations to do this */
4295 if (!ops
->list_voltage
|| !rdev
->desc
->n_voltages
)
4298 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
4299 /* We only look for exact voltage matches here */
4300 if (i
< rdev
->desc
->linear_min_sel
)
4303 if (old_sel
>= 0 && new_sel
>= 0)
4306 voltage
= regulator_list_voltage(regulator
, i
);
4311 if (voltage
== old_uV
)
4313 if (voltage
== new_uV
)
4317 if (old_sel
< 0 || new_sel
< 0)
4320 return ops
->set_voltage_time_sel(rdev
, old_sel
, new_sel
);
4322 EXPORT_SYMBOL_GPL(regulator_set_voltage_time
);
4325 * regulator_set_voltage_time_sel - get raise/fall time
4326 * @rdev: regulator source device
4327 * @old_selector: selector for starting voltage
4328 * @new_selector: selector for target voltage
4330 * Provided with the starting and target voltage selectors, this function
4331 * returns time in microseconds required to rise or fall to this new voltage
4333 * Drivers providing ramp_delay in regulation_constraints can use this as their
4334 * set_voltage_time_sel() operation.
4336 * Return: ramp time in microseconds, or a negative error number if calculation failed.
4338 int regulator_set_voltage_time_sel(struct regulator_dev
*rdev
,
4339 unsigned int old_selector
,
4340 unsigned int new_selector
)
4342 int old_volt
, new_volt
;
4345 if (!rdev
->desc
->ops
->list_voltage
)
4348 old_volt
= rdev
->desc
->ops
->list_voltage(rdev
, old_selector
);
4349 new_volt
= rdev
->desc
->ops
->list_voltage(rdev
, new_selector
);
4351 if (rdev
->desc
->ops
->set_voltage_time
)
4352 return rdev
->desc
->ops
->set_voltage_time(rdev
, old_volt
,
4355 return _regulator_set_voltage_time(rdev
, old_volt
, new_volt
);
4357 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel
);
4359 int regulator_sync_voltage_rdev(struct regulator_dev
*rdev
)
4363 regulator_lock(rdev
);
4365 if (!rdev
->desc
->ops
->set_voltage
&&
4366 !rdev
->desc
->ops
->set_voltage_sel
) {
4371 /* balance only, if regulator is coupled */
4372 if (rdev
->coupling_desc
.n_coupled
> 1)
4373 ret
= regulator_balance_voltage(rdev
, PM_SUSPEND_ON
);
4378 regulator_unlock(rdev
);
4383 * regulator_sync_voltage - re-apply last regulator output voltage
4384 * @regulator: regulator source
4386 * Re-apply the last configured voltage. This is intended to be used
4387 * where some external control source the consumer is cooperating with
4388 * has caused the configured voltage to change.
4390 * Return: 0 on success or a negative error number on failure.
4392 int regulator_sync_voltage(struct regulator
*regulator
)
4394 struct regulator_dev
*rdev
= regulator
->rdev
;
4395 struct regulator_voltage
*voltage
= ®ulator
->voltage
[PM_SUSPEND_ON
];
4396 int ret
, min_uV
, max_uV
;
4398 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
))
4401 regulator_lock(rdev
);
4403 if (!rdev
->desc
->ops
->set_voltage
&&
4404 !rdev
->desc
->ops
->set_voltage_sel
) {
4409 /* This is only going to work if we've had a voltage configured. */
4410 if (!voltage
->min_uV
&& !voltage
->max_uV
) {
4415 min_uV
= voltage
->min_uV
;
4416 max_uV
= voltage
->max_uV
;
4418 /* This should be a paranoia check... */
4419 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
4423 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
, 0);
4427 /* balance only, if regulator is coupled */
4428 if (rdev
->coupling_desc
.n_coupled
> 1)
4429 ret
= regulator_balance_voltage(rdev
, PM_SUSPEND_ON
);
4431 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
4434 regulator_unlock(rdev
);
4437 EXPORT_SYMBOL_GPL(regulator_sync_voltage
);
4439 int regulator_get_voltage_rdev(struct regulator_dev
*rdev
)
4444 if (rdev
->desc
->ops
->get_bypass
) {
4445 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypassed
);
4449 /* if bypassed the regulator must have a supply */
4450 if (!rdev
->supply
) {
4452 "bypassed regulator has no supply!\n");
4453 return -EPROBE_DEFER
;
4456 return regulator_get_voltage_rdev(rdev
->supply
->rdev
);
4460 if (rdev
->desc
->ops
->get_voltage_sel
) {
4461 sel
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
4464 ret
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
4465 } else if (rdev
->desc
->ops
->get_voltage
) {
4466 ret
= rdev
->desc
->ops
->get_voltage(rdev
);
4467 } else if (rdev
->desc
->ops
->list_voltage
) {
4468 ret
= rdev
->desc
->ops
->list_voltage(rdev
, 0);
4469 } else if (rdev
->desc
->fixed_uV
&& (rdev
->desc
->n_voltages
== 1)) {
4470 ret
= rdev
->desc
->fixed_uV
;
4471 } else if (rdev
->supply
) {
4472 ret
= regulator_get_voltage_rdev(rdev
->supply
->rdev
);
4473 } else if (rdev
->supply_name
) {
4474 return -EPROBE_DEFER
;
4481 return ret
- rdev
->constraints
->uV_offset
;
4483 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev
);
4486 * regulator_get_voltage - get regulator output voltage
4487 * @regulator: regulator source
4489 * Return: Current regulator voltage in uV, or a negative error number on failure.
4491 * NOTE: If the regulator is disabled it will return the voltage value. This
4492 * function should not be used to determine regulator state.
4494 int regulator_get_voltage(struct regulator
*regulator
)
4496 struct ww_acquire_ctx ww_ctx
;
4499 regulator_lock_dependent(regulator
->rdev
, &ww_ctx
);
4500 ret
= regulator_get_voltage_rdev(regulator
->rdev
);
4501 regulator_unlock_dependent(regulator
->rdev
, &ww_ctx
);
4505 EXPORT_SYMBOL_GPL(regulator_get_voltage
);
4508 * regulator_set_current_limit - set regulator output current limit
4509 * @regulator: regulator source
4510 * @min_uA: Minimum supported current in uA
4511 * @max_uA: Maximum supported current in uA
4513 * Sets current sink to the desired output current. This can be set during
4514 * any regulator state. IOW, regulator can be disabled or enabled.
4516 * If the regulator is enabled then the current will change to the new value
4517 * immediately otherwise if the regulator is disabled the regulator will
4518 * output at the new current when enabled.
4520 * NOTE: Regulator system constraints must be set for this regulator before
4521 * calling this function otherwise this call will fail.
4523 * Return: 0 on success or a negative error number on failure.
4525 int regulator_set_current_limit(struct regulator
*regulator
,
4526 int min_uA
, int max_uA
)
4528 struct regulator_dev
*rdev
= regulator
->rdev
;
4531 regulator_lock(rdev
);
4534 if (!rdev
->desc
->ops
->set_current_limit
) {
4539 /* constraints check */
4540 ret
= regulator_check_current_limit(rdev
, &min_uA
, &max_uA
);
4544 ret
= rdev
->desc
->ops
->set_current_limit(rdev
, min_uA
, max_uA
);
4546 regulator_unlock(rdev
);
4549 EXPORT_SYMBOL_GPL(regulator_set_current_limit
);
4551 static int _regulator_get_current_limit_unlocked(struct regulator_dev
*rdev
)
4554 if (!rdev
->desc
->ops
->get_current_limit
)
4557 return rdev
->desc
->ops
->get_current_limit(rdev
);
4560 static int _regulator_get_current_limit(struct regulator_dev
*rdev
)
4564 regulator_lock(rdev
);
4565 ret
= _regulator_get_current_limit_unlocked(rdev
);
4566 regulator_unlock(rdev
);
4572 * regulator_get_current_limit - get regulator output current
4573 * @regulator: regulator source
4575 * Return: Current supplied by the specified current sink in uA,
4576 * or a negative error number on failure.
4578 * NOTE: If the regulator is disabled it will return the current value. This
4579 * function should not be used to determine regulator state.
4581 int regulator_get_current_limit(struct regulator
*regulator
)
4583 return _regulator_get_current_limit(regulator
->rdev
);
4585 EXPORT_SYMBOL_GPL(regulator_get_current_limit
);
4588 * regulator_set_mode - set regulator operating mode
4589 * @regulator: regulator source
4590 * @mode: operating mode - one of the REGULATOR_MODE constants
4592 * Set regulator operating mode to increase regulator efficiency or improve
4593 * regulation performance.
4595 * NOTE: Regulator system constraints must be set for this regulator before
4596 * calling this function otherwise this call will fail.
4598 * Return: 0 on success or a negative error number on failure.
4600 int regulator_set_mode(struct regulator
*regulator
, unsigned int mode
)
4602 struct regulator_dev
*rdev
= regulator
->rdev
;
4604 int regulator_curr_mode
;
4606 regulator_lock(rdev
);
4609 if (!rdev
->desc
->ops
->set_mode
) {
4614 /* return if the same mode is requested */
4615 if (rdev
->desc
->ops
->get_mode
) {
4616 regulator_curr_mode
= rdev
->desc
->ops
->get_mode(rdev
);
4617 if (regulator_curr_mode
== mode
) {
4623 /* constraints check */
4624 ret
= regulator_mode_constrain(rdev
, &mode
);
4628 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
4630 regulator_unlock(rdev
);
4633 EXPORT_SYMBOL_GPL(regulator_set_mode
);
4635 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev
*rdev
)
4638 if (!rdev
->desc
->ops
->get_mode
)
4641 return rdev
->desc
->ops
->get_mode(rdev
);
4644 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
)
4648 regulator_lock(rdev
);
4649 ret
= _regulator_get_mode_unlocked(rdev
);
4650 regulator_unlock(rdev
);
4656 * regulator_get_mode - get regulator operating mode
4657 * @regulator: regulator source
4659 * Get the current regulator operating mode.
4661 * Return: Current operating mode as %REGULATOR_MODE_* values,
4662 * or a negative error number on failure.
4664 unsigned int regulator_get_mode(struct regulator
*regulator
)
4666 return _regulator_get_mode(regulator
->rdev
);
4668 EXPORT_SYMBOL_GPL(regulator_get_mode
);
4670 static int rdev_get_cached_err_flags(struct regulator_dev
*rdev
)
4674 if (rdev
->use_cached_err
) {
4675 spin_lock(&rdev
->err_lock
);
4676 ret
= rdev
->cached_err
;
4677 spin_unlock(&rdev
->err_lock
);
4682 static int _regulator_get_error_flags(struct regulator_dev
*rdev
,
4683 unsigned int *flags
)
4685 int cached_flags
, ret
= 0;
4687 regulator_lock(rdev
);
4689 cached_flags
= rdev_get_cached_err_flags(rdev
);
4691 if (rdev
->desc
->ops
->get_error_flags
)
4692 ret
= rdev
->desc
->ops
->get_error_flags(rdev
, flags
);
4693 else if (!rdev
->use_cached_err
)
4696 *flags
|= cached_flags
;
4698 regulator_unlock(rdev
);
4704 * regulator_get_error_flags - get regulator error information
4705 * @regulator: regulator source
4706 * @flags: pointer to store error flags
4708 * Get the current regulator error information.
4710 * Return: 0 on success or a negative error number on failure.
4712 int regulator_get_error_flags(struct regulator
*regulator
,
4713 unsigned int *flags
)
4715 return _regulator_get_error_flags(regulator
->rdev
, flags
);
4717 EXPORT_SYMBOL_GPL(regulator_get_error_flags
);
4720 * regulator_set_load - set regulator load
4721 * @regulator: regulator source
4722 * @uA_load: load current
4724 * Notifies the regulator core of a new device load. This is then used by
4725 * DRMS (if enabled by constraints) to set the most efficient regulator
4726 * operating mode for the new regulator loading.
4728 * Consumer devices notify their supply regulator of the maximum power
4729 * they will require (can be taken from device datasheet in the power
4730 * consumption tables) when they change operational status and hence power
4731 * state. Examples of operational state changes that can affect power
4732 * consumption are :-
4734 * o Device is opened / closed.
4735 * o Device I/O is about to begin or has just finished.
4736 * o Device is idling in between work.
4738 * This information is also exported via sysfs to userspace.
4740 * DRMS will sum the total requested load on the regulator and change
4741 * to the most efficient operating mode if platform constraints allow.
4743 * NOTE: when a regulator consumer requests to have a regulator
4744 * disabled then any load that consumer requested no longer counts
4745 * toward the total requested load. If the regulator is re-enabled
4746 * then the previously requested load will start counting again.
4748 * If a regulator is an always-on regulator then an individual consumer's
4749 * load will still be removed if that consumer is fully disabled.
4751 * Return: 0 on success or a negative error number on failure.
4753 int regulator_set_load(struct regulator
*regulator
, int uA_load
)
4755 struct regulator_dev
*rdev
= regulator
->rdev
;
4759 regulator_lock(rdev
);
4760 old_uA_load
= regulator
->uA_load
;
4761 regulator
->uA_load
= uA_load
;
4762 if (regulator
->enable_count
&& old_uA_load
!= uA_load
) {
4763 ret
= drms_uA_update(rdev
);
4765 regulator
->uA_load
= old_uA_load
;
4767 regulator_unlock(rdev
);
4771 EXPORT_SYMBOL_GPL(regulator_set_load
);
4774 * regulator_allow_bypass - allow the regulator to go into bypass mode
4776 * @regulator: Regulator to configure
4777 * @enable: enable or disable bypass mode
4779 * Allow the regulator to go into bypass mode if all other consumers
4780 * for the regulator also enable bypass mode and the machine
4781 * constraints allow this. Bypass mode means that the regulator is
4782 * simply passing the input directly to the output with no regulation.
4784 * Return: 0 on success or if changing bypass is not possible, or
4785 * a negative error number on failure.
4787 int regulator_allow_bypass(struct regulator
*regulator
, bool enable
)
4789 struct regulator_dev
*rdev
= regulator
->rdev
;
4790 const char *name
= rdev_get_name(rdev
);
4793 if (!rdev
->desc
->ops
->set_bypass
)
4796 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_BYPASS
))
4799 regulator_lock(rdev
);
4801 if (enable
&& !regulator
->bypass
) {
4802 rdev
->bypass_count
++;
4804 if (rdev
->bypass_count
== rdev
->open_count
) {
4805 trace_regulator_bypass_enable(name
);
4807 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
4809 rdev
->bypass_count
--;
4811 trace_regulator_bypass_enable_complete(name
);
4814 } else if (!enable
&& regulator
->bypass
) {
4815 rdev
->bypass_count
--;
4817 if (rdev
->bypass_count
!= rdev
->open_count
) {
4818 trace_regulator_bypass_disable(name
);
4820 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
4822 rdev
->bypass_count
++;
4824 trace_regulator_bypass_disable_complete(name
);
4829 regulator
->bypass
= enable
;
4831 regulator_unlock(rdev
);
4835 EXPORT_SYMBOL_GPL(regulator_allow_bypass
);
4838 * regulator_register_notifier - register regulator event notifier
4839 * @regulator: regulator source
4840 * @nb: notifier block
4842 * Register notifier block to receive regulator events.
4844 * Return: 0 on success or a negative error number on failure.
4846 int regulator_register_notifier(struct regulator
*regulator
,
4847 struct notifier_block
*nb
)
4849 return blocking_notifier_chain_register(®ulator
->rdev
->notifier
,
4852 EXPORT_SYMBOL_GPL(regulator_register_notifier
);
4855 * regulator_unregister_notifier - unregister regulator event notifier
4856 * @regulator: regulator source
4857 * @nb: notifier block
4859 * Unregister regulator event notifier block.
4861 * Return: 0 on success or a negative error number on failure.
4863 int regulator_unregister_notifier(struct regulator
*regulator
,
4864 struct notifier_block
*nb
)
4866 return blocking_notifier_chain_unregister(®ulator
->rdev
->notifier
,
4869 EXPORT_SYMBOL_GPL(regulator_unregister_notifier
);
4871 /* notify regulator consumers and downstream regulator consumers.
4872 * Note mutex must be held by caller.
4874 static int _notifier_call_chain(struct regulator_dev
*rdev
,
4875 unsigned long event
, void *data
)
4877 /* call rdev chain first */
4878 int ret
= blocking_notifier_call_chain(&rdev
->notifier
, event
, data
);
4880 if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS
)) {
4881 struct device
*parent
= rdev
->dev
.parent
;
4882 const char *rname
= rdev_get_name(rdev
);
4885 /* Avoid duplicate debugfs directory names */
4886 if (parent
&& rname
== rdev
->desc
->name
) {
4887 snprintf(name
, sizeof(name
), "%s-%s", dev_name(parent
),
4891 reg_generate_netlink_event(rname
, event
);
4897 int _regulator_bulk_get(struct device
*dev
, int num_consumers
,
4898 struct regulator_bulk_data
*consumers
, enum regulator_get_type get_type
)
4903 for (i
= 0; i
< num_consumers
; i
++)
4904 consumers
[i
].consumer
= NULL
;
4906 for (i
= 0; i
< num_consumers
; i
++) {
4907 consumers
[i
].consumer
= _regulator_get(dev
,
4908 consumers
[i
].supply
, get_type
);
4909 if (IS_ERR(consumers
[i
].consumer
)) {
4910 ret
= dev_err_probe(dev
, PTR_ERR(consumers
[i
].consumer
),
4911 "Failed to get supply '%s'",
4912 consumers
[i
].supply
);
4913 consumers
[i
].consumer
= NULL
;
4917 if (consumers
[i
].init_load_uA
> 0) {
4918 ret
= regulator_set_load(consumers
[i
].consumer
,
4919 consumers
[i
].init_load_uA
);
4931 regulator_put(consumers
[i
].consumer
);
4937 * regulator_bulk_get - get multiple regulator consumers
4939 * @dev: Device to supply
4940 * @num_consumers: Number of consumers to register
4941 * @consumers: Configuration of consumers; clients are stored here.
4943 * This helper function allows drivers to get several regulator
4944 * consumers in one operation. If any of the regulators cannot be
4945 * acquired then any regulators that were allocated will be freed
4946 * before returning to the caller.
4948 * Return: 0 on success or a negative error number on failure.
4950 int regulator_bulk_get(struct device
*dev
, int num_consumers
,
4951 struct regulator_bulk_data
*consumers
)
4953 return _regulator_bulk_get(dev
, num_consumers
, consumers
, NORMAL_GET
);
4955 EXPORT_SYMBOL_GPL(regulator_bulk_get
);
4957 static void regulator_bulk_enable_async(void *data
, async_cookie_t cookie
)
4959 struct regulator_bulk_data
*bulk
= data
;
4961 bulk
->ret
= regulator_enable(bulk
->consumer
);
4965 * regulator_bulk_enable - enable multiple regulator consumers
4967 * @num_consumers: Number of consumers
4968 * @consumers: Consumer data; clients are stored here.
4970 * This convenience API allows consumers to enable multiple regulator
4971 * clients in a single API call. If any consumers cannot be enabled
4972 * then any others that were enabled will be disabled again prior to
4975 * Return: 0 on success or a negative error number on failure.
4977 int regulator_bulk_enable(int num_consumers
,
4978 struct regulator_bulk_data
*consumers
)
4980 ASYNC_DOMAIN_EXCLUSIVE(async_domain
);
4984 for (i
= 0; i
< num_consumers
; i
++) {
4985 async_schedule_domain(regulator_bulk_enable_async
,
4986 &consumers
[i
], &async_domain
);
4989 async_synchronize_full_domain(&async_domain
);
4991 /* If any consumer failed we need to unwind any that succeeded */
4992 for (i
= 0; i
< num_consumers
; i
++) {
4993 if (consumers
[i
].ret
!= 0) {
4994 ret
= consumers
[i
].ret
;
5002 for (i
= 0; i
< num_consumers
; i
++) {
5003 if (consumers
[i
].ret
< 0)
5004 pr_err("Failed to enable %s: %pe\n", consumers
[i
].supply
,
5005 ERR_PTR(consumers
[i
].ret
));
5007 regulator_disable(consumers
[i
].consumer
);
5012 EXPORT_SYMBOL_GPL(regulator_bulk_enable
);
5015 * regulator_bulk_disable - disable multiple regulator consumers
5017 * @num_consumers: Number of consumers
5018 * @consumers: Consumer data; clients are stored here.
5020 * This convenience API allows consumers to disable multiple regulator
5021 * clients in a single API call. If any consumers cannot be disabled
5022 * then any others that were disabled will be enabled again prior to
5025 * Return: 0 on success or a negative error number on failure.
5027 int regulator_bulk_disable(int num_consumers
,
5028 struct regulator_bulk_data
*consumers
)
5033 for (i
= num_consumers
- 1; i
>= 0; --i
) {
5034 ret
= regulator_disable(consumers
[i
].consumer
);
5042 pr_err("Failed to disable %s: %pe\n", consumers
[i
].supply
, ERR_PTR(ret
));
5043 for (++i
; i
< num_consumers
; ++i
) {
5044 r
= regulator_enable(consumers
[i
].consumer
);
5046 pr_err("Failed to re-enable %s: %pe\n",
5047 consumers
[i
].supply
, ERR_PTR(r
));
5052 EXPORT_SYMBOL_GPL(regulator_bulk_disable
);
5055 * regulator_bulk_force_disable - force disable multiple regulator consumers
5057 * @num_consumers: Number of consumers
5058 * @consumers: Consumer data; clients are stored here.
5060 * This convenience API allows consumers to forcibly disable multiple regulator
5061 * clients in a single API call.
5062 * NOTE: This should be used for situations when device damage will
5063 * likely occur if the regulators are not disabled (e.g. over temp).
5064 * Although regulator_force_disable function call for some consumers can
5065 * return error numbers, the function is called for all consumers.
5067 * Return: 0 on success or a negative error number on failure.
5069 int regulator_bulk_force_disable(int num_consumers
,
5070 struct regulator_bulk_data
*consumers
)
5075 for (i
= 0; i
< num_consumers
; i
++) {
5077 regulator_force_disable(consumers
[i
].consumer
);
5079 /* Store first error for reporting */
5080 if (consumers
[i
].ret
&& !ret
)
5081 ret
= consumers
[i
].ret
;
5086 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable
);
5089 * regulator_bulk_free - free multiple regulator consumers
5091 * @num_consumers: Number of consumers
5092 * @consumers: Consumer data; clients are stored here.
5094 * This convenience API allows consumers to free multiple regulator
5095 * clients in a single API call.
5097 void regulator_bulk_free(int num_consumers
,
5098 struct regulator_bulk_data
*consumers
)
5102 for (i
= 0; i
< num_consumers
; i
++) {
5103 regulator_put(consumers
[i
].consumer
);
5104 consumers
[i
].consumer
= NULL
;
5107 EXPORT_SYMBOL_GPL(regulator_bulk_free
);
5110 * regulator_handle_critical - Handle events for system-critical regulators.
5111 * @rdev: The regulator device.
5112 * @event: The event being handled.
5114 * This function handles critical events such as under-voltage, over-current,
5115 * and unknown errors for regulators deemed system-critical. On detecting such
5116 * events, it triggers a hardware protection shutdown with a defined timeout.
5118 static void regulator_handle_critical(struct regulator_dev
*rdev
,
5119 unsigned long event
)
5121 const char *reason
= NULL
;
5123 if (!rdev
->constraints
->system_critical
)
5127 case REGULATOR_EVENT_UNDER_VOLTAGE
:
5128 reason
= "System critical regulator: voltage drop detected";
5130 case REGULATOR_EVENT_OVER_CURRENT
:
5131 reason
= "System critical regulator: over-current detected";
5133 case REGULATOR_EVENT_FAIL
:
5134 reason
= "System critical regulator: unknown error";
5140 hw_protection_shutdown(reason
,
5141 rdev
->constraints
->uv_less_critical_window_ms
);
5145 * regulator_notifier_call_chain - call regulator event notifier
5146 * @rdev: regulator source
5147 * @event: notifier block
5148 * @data: callback-specific data.
5150 * Called by regulator drivers to notify clients a regulator event has
5153 * Return: %NOTIFY_DONE.
5155 int regulator_notifier_call_chain(struct regulator_dev
*rdev
,
5156 unsigned long event
, void *data
)
5158 regulator_handle_critical(rdev
, event
);
5160 _notifier_call_chain(rdev
, event
, data
);
5164 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain
);
5167 * regulator_mode_to_status - convert a regulator mode into a status
5169 * @mode: Mode to convert
5171 * Convert a regulator mode into a status.
5173 * Return: %REGULATOR_STATUS_* value corresponding to given mode.
5175 int regulator_mode_to_status(unsigned int mode
)
5178 case REGULATOR_MODE_FAST
:
5179 return REGULATOR_STATUS_FAST
;
5180 case REGULATOR_MODE_NORMAL
:
5181 return REGULATOR_STATUS_NORMAL
;
5182 case REGULATOR_MODE_IDLE
:
5183 return REGULATOR_STATUS_IDLE
;
5184 case REGULATOR_MODE_STANDBY
:
5185 return REGULATOR_STATUS_STANDBY
;
5187 return REGULATOR_STATUS_UNDEFINED
;
5190 EXPORT_SYMBOL_GPL(regulator_mode_to_status
);
5192 static struct attribute
*regulator_dev_attrs
[] = {
5193 &dev_attr_name
.attr
,
5194 &dev_attr_num_users
.attr
,
5195 &dev_attr_type
.attr
,
5196 &dev_attr_microvolts
.attr
,
5197 &dev_attr_microamps
.attr
,
5198 &dev_attr_opmode
.attr
,
5199 &dev_attr_state
.attr
,
5200 &dev_attr_status
.attr
,
5201 &dev_attr_bypass
.attr
,
5202 &dev_attr_requested_microamps
.attr
,
5203 &dev_attr_min_microvolts
.attr
,
5204 &dev_attr_max_microvolts
.attr
,
5205 &dev_attr_min_microamps
.attr
,
5206 &dev_attr_max_microamps
.attr
,
5207 &dev_attr_under_voltage
.attr
,
5208 &dev_attr_over_current
.attr
,
5209 &dev_attr_regulation_out
.attr
,
5210 &dev_attr_fail
.attr
,
5211 &dev_attr_over_temp
.attr
,
5212 &dev_attr_under_voltage_warn
.attr
,
5213 &dev_attr_over_current_warn
.attr
,
5214 &dev_attr_over_voltage_warn
.attr
,
5215 &dev_attr_over_temp_warn
.attr
,
5216 &dev_attr_suspend_standby_state
.attr
,
5217 &dev_attr_suspend_mem_state
.attr
,
5218 &dev_attr_suspend_disk_state
.attr
,
5219 &dev_attr_suspend_standby_microvolts
.attr
,
5220 &dev_attr_suspend_mem_microvolts
.attr
,
5221 &dev_attr_suspend_disk_microvolts
.attr
,
5222 &dev_attr_suspend_standby_mode
.attr
,
5223 &dev_attr_suspend_mem_mode
.attr
,
5224 &dev_attr_suspend_disk_mode
.attr
,
5229 * To avoid cluttering sysfs (and memory) with useless state, only
5230 * create attributes that can be meaningfully displayed.
5232 static umode_t
regulator_attr_is_visible(struct kobject
*kobj
,
5233 struct attribute
*attr
, int idx
)
5235 struct device
*dev
= kobj_to_dev(kobj
);
5236 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5237 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
5238 umode_t mode
= attr
->mode
;
5240 /* these three are always present */
5241 if (attr
== &dev_attr_name
.attr
||
5242 attr
== &dev_attr_num_users
.attr
||
5243 attr
== &dev_attr_type
.attr
)
5246 /* some attributes need specific methods to be displayed */
5247 if (attr
== &dev_attr_microvolts
.attr
) {
5248 if ((ops
->get_voltage
&& ops
->get_voltage(rdev
) >= 0) ||
5249 (ops
->get_voltage_sel
&& ops
->get_voltage_sel(rdev
) >= 0) ||
5250 (ops
->list_voltage
&& ops
->list_voltage(rdev
, 0) >= 0) ||
5251 (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1))
5256 if (attr
== &dev_attr_microamps
.attr
)
5257 return ops
->get_current_limit
? mode
: 0;
5259 if (attr
== &dev_attr_opmode
.attr
)
5260 return ops
->get_mode
? mode
: 0;
5262 if (attr
== &dev_attr_state
.attr
)
5263 return (rdev
->ena_pin
|| ops
->is_enabled
) ? mode
: 0;
5265 if (attr
== &dev_attr_status
.attr
)
5266 return ops
->get_status
? mode
: 0;
5268 if (attr
== &dev_attr_bypass
.attr
)
5269 return ops
->get_bypass
? mode
: 0;
5271 if (attr
== &dev_attr_under_voltage
.attr
||
5272 attr
== &dev_attr_over_current
.attr
||
5273 attr
== &dev_attr_regulation_out
.attr
||
5274 attr
== &dev_attr_fail
.attr
||
5275 attr
== &dev_attr_over_temp
.attr
||
5276 attr
== &dev_attr_under_voltage_warn
.attr
||
5277 attr
== &dev_attr_over_current_warn
.attr
||
5278 attr
== &dev_attr_over_voltage_warn
.attr
||
5279 attr
== &dev_attr_over_temp_warn
.attr
)
5280 return ops
->get_error_flags
? mode
: 0;
5282 /* constraints need specific supporting methods */
5283 if (attr
== &dev_attr_min_microvolts
.attr
||
5284 attr
== &dev_attr_max_microvolts
.attr
)
5285 return (ops
->set_voltage
|| ops
->set_voltage_sel
) ? mode
: 0;
5287 if (attr
== &dev_attr_min_microamps
.attr
||
5288 attr
== &dev_attr_max_microamps
.attr
)
5289 return ops
->set_current_limit
? mode
: 0;
5291 if (attr
== &dev_attr_suspend_standby_state
.attr
||
5292 attr
== &dev_attr_suspend_mem_state
.attr
||
5293 attr
== &dev_attr_suspend_disk_state
.attr
)
5296 if (attr
== &dev_attr_suspend_standby_microvolts
.attr
||
5297 attr
== &dev_attr_suspend_mem_microvolts
.attr
||
5298 attr
== &dev_attr_suspend_disk_microvolts
.attr
)
5299 return ops
->set_suspend_voltage
? mode
: 0;
5301 if (attr
== &dev_attr_suspend_standby_mode
.attr
||
5302 attr
== &dev_attr_suspend_mem_mode
.attr
||
5303 attr
== &dev_attr_suspend_disk_mode
.attr
)
5304 return ops
->set_suspend_mode
? mode
: 0;
5309 static const struct attribute_group regulator_dev_group
= {
5310 .attrs
= regulator_dev_attrs
,
5311 .is_visible
= regulator_attr_is_visible
,
5314 static const struct attribute_group
*regulator_dev_groups
[] = {
5315 ®ulator_dev_group
,
5319 static void regulator_dev_release(struct device
*dev
)
5321 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
5323 debugfs_remove_recursive(rdev
->debugfs
);
5324 kfree(rdev
->constraints
);
5325 of_node_put(rdev
->dev
.of_node
);
5329 static void rdev_init_debugfs(struct regulator_dev
*rdev
)
5331 struct device
*parent
= rdev
->dev
.parent
;
5332 const char *rname
= rdev_get_name(rdev
);
5333 char name
[NAME_MAX
];
5335 /* Avoid duplicate debugfs directory names */
5336 if (parent
&& rname
== rdev
->desc
->name
) {
5337 snprintf(name
, sizeof(name
), "%s-%s", dev_name(parent
),
5342 rdev
->debugfs
= debugfs_create_dir(rname
, debugfs_root
);
5343 if (IS_ERR(rdev
->debugfs
))
5344 rdev_dbg(rdev
, "Failed to create debugfs directory\n");
5346 debugfs_create_u32("use_count", 0444, rdev
->debugfs
,
5348 debugfs_create_u32("open_count", 0444, rdev
->debugfs
,
5350 debugfs_create_u32("bypass_count", 0444, rdev
->debugfs
,
5351 &rdev
->bypass_count
);
5354 static int regulator_register_resolve_supply(struct device
*dev
, void *data
)
5356 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5358 if (regulator_resolve_supply(rdev
))
5359 rdev_dbg(rdev
, "unable to resolve supply\n");
5364 int regulator_coupler_register(struct regulator_coupler
*coupler
)
5366 mutex_lock(®ulator_list_mutex
);
5367 list_add_tail(&coupler
->list
, ®ulator_coupler_list
);
5368 mutex_unlock(®ulator_list_mutex
);
5373 static struct regulator_coupler
*
5374 regulator_find_coupler(struct regulator_dev
*rdev
)
5376 struct regulator_coupler
*coupler
;
5380 * Note that regulators are appended to the list and the generic
5381 * coupler is registered first, hence it will be attached at last
5384 list_for_each_entry_reverse(coupler
, ®ulator_coupler_list
, list
) {
5385 err
= coupler
->attach_regulator(coupler
, rdev
);
5387 if (!coupler
->balance_voltage
&&
5388 rdev
->coupling_desc
.n_coupled
> 2)
5389 goto err_unsupported
;
5395 return ERR_PTR(err
);
5403 return ERR_PTR(-EINVAL
);
5406 if (coupler
->detach_regulator
)
5407 coupler
->detach_regulator(coupler
, rdev
);
5410 "Voltage balancing for multiple regulator couples is unimplemented\n");
5412 return ERR_PTR(-EPERM
);
5415 static void regulator_resolve_coupling(struct regulator_dev
*rdev
)
5417 struct regulator_coupler
*coupler
= rdev
->coupling_desc
.coupler
;
5418 struct coupling_desc
*c_desc
= &rdev
->coupling_desc
;
5419 int n_coupled
= c_desc
->n_coupled
;
5420 struct regulator_dev
*c_rdev
;
5423 for (i
= 1; i
< n_coupled
; i
++) {
5424 /* already resolved */
5425 if (c_desc
->coupled_rdevs
[i
])
5428 c_rdev
= of_parse_coupled_regulator(rdev
, i
- 1);
5433 if (c_rdev
->coupling_desc
.coupler
!= coupler
) {
5434 rdev_err(rdev
, "coupler mismatch with %s\n",
5435 rdev_get_name(c_rdev
));
5439 c_desc
->coupled_rdevs
[i
] = c_rdev
;
5440 c_desc
->n_resolved
++;
5442 regulator_resolve_coupling(c_rdev
);
5446 static void regulator_remove_coupling(struct regulator_dev
*rdev
)
5448 struct regulator_coupler
*coupler
= rdev
->coupling_desc
.coupler
;
5449 struct coupling_desc
*__c_desc
, *c_desc
= &rdev
->coupling_desc
;
5450 struct regulator_dev
*__c_rdev
, *c_rdev
;
5451 unsigned int __n_coupled
, n_coupled
;
5455 n_coupled
= c_desc
->n_coupled
;
5457 for (i
= 1; i
< n_coupled
; i
++) {
5458 c_rdev
= c_desc
->coupled_rdevs
[i
];
5463 regulator_lock(c_rdev
);
5465 __c_desc
= &c_rdev
->coupling_desc
;
5466 __n_coupled
= __c_desc
->n_coupled
;
5468 for (k
= 1; k
< __n_coupled
; k
++) {
5469 __c_rdev
= __c_desc
->coupled_rdevs
[k
];
5471 if (__c_rdev
== rdev
) {
5472 __c_desc
->coupled_rdevs
[k
] = NULL
;
5473 __c_desc
->n_resolved
--;
5478 regulator_unlock(c_rdev
);
5480 c_desc
->coupled_rdevs
[i
] = NULL
;
5481 c_desc
->n_resolved
--;
5484 if (coupler
&& coupler
->detach_regulator
) {
5485 err
= coupler
->detach_regulator(coupler
, rdev
);
5487 rdev_err(rdev
, "failed to detach from coupler: %pe\n",
5491 kfree(rdev
->coupling_desc
.coupled_rdevs
);
5492 rdev
->coupling_desc
.coupled_rdevs
= NULL
;
5495 static int regulator_init_coupling(struct regulator_dev
*rdev
)
5497 struct regulator_dev
**coupled
;
5498 int err
, n_phandles
;
5500 if (!IS_ENABLED(CONFIG_OF
))
5503 n_phandles
= of_get_n_coupled(rdev
);
5505 coupled
= kcalloc(n_phandles
+ 1, sizeof(*coupled
), GFP_KERNEL
);
5509 rdev
->coupling_desc
.coupled_rdevs
= coupled
;
5512 * Every regulator should always have coupling descriptor filled with
5513 * at least pointer to itself.
5515 rdev
->coupling_desc
.coupled_rdevs
[0] = rdev
;
5516 rdev
->coupling_desc
.n_coupled
= n_phandles
+ 1;
5517 rdev
->coupling_desc
.n_resolved
++;
5519 /* regulator isn't coupled */
5520 if (n_phandles
== 0)
5523 if (!of_check_coupling_data(rdev
))
5526 mutex_lock(®ulator_list_mutex
);
5527 rdev
->coupling_desc
.coupler
= regulator_find_coupler(rdev
);
5528 mutex_unlock(®ulator_list_mutex
);
5530 if (IS_ERR(rdev
->coupling_desc
.coupler
)) {
5531 err
= PTR_ERR(rdev
->coupling_desc
.coupler
);
5532 rdev_err(rdev
, "failed to get coupler: %pe\n", ERR_PTR(err
));
5539 static int generic_coupler_attach(struct regulator_coupler
*coupler
,
5540 struct regulator_dev
*rdev
)
5542 if (rdev
->coupling_desc
.n_coupled
> 2) {
5544 "Voltage balancing for multiple regulator couples is unimplemented\n");
5548 if (!rdev
->constraints
->always_on
) {
5550 "Coupling of a non always-on regulator is unimplemented\n");
5557 static struct regulator_coupler generic_regulator_coupler
= {
5558 .attach_regulator
= generic_coupler_attach
,
5562 * regulator_register - register regulator
5563 * @dev: the device that drive the regulator
5564 * @regulator_desc: regulator to register
5565 * @cfg: runtime configuration for regulator
5567 * Called by regulator drivers to register a regulator.
5569 * Return: Pointer to a valid &struct regulator_dev on success or
5570 * an ERR_PTR() encoded negative error number on failure.
5572 struct regulator_dev
*
5573 regulator_register(struct device
*dev
,
5574 const struct regulator_desc
*regulator_desc
,
5575 const struct regulator_config
*cfg
)
5577 const struct regulator_init_data
*init_data
;
5578 struct regulator_config
*config
= NULL
;
5579 static atomic_t regulator_no
= ATOMIC_INIT(-1);
5580 struct regulator_dev
*rdev
;
5581 bool dangling_cfg_gpiod
= false;
5582 bool dangling_of_gpiod
= false;
5584 bool resolved_early
= false;
5587 return ERR_PTR(-EINVAL
);
5589 dangling_cfg_gpiod
= true;
5590 if (regulator_desc
== NULL
) {
5595 WARN_ON(!dev
|| !cfg
->dev
);
5597 if (regulator_desc
->name
== NULL
|| regulator_desc
->ops
== NULL
) {
5602 if (regulator_desc
->type
!= REGULATOR_VOLTAGE
&&
5603 regulator_desc
->type
!= REGULATOR_CURRENT
) {
5608 /* Only one of each should be implemented */
5609 WARN_ON(regulator_desc
->ops
->get_voltage
&&
5610 regulator_desc
->ops
->get_voltage_sel
);
5611 WARN_ON(regulator_desc
->ops
->set_voltage
&&
5612 regulator_desc
->ops
->set_voltage_sel
);
5614 /* If we're using selectors we must implement list_voltage. */
5615 if (regulator_desc
->ops
->get_voltage_sel
&&
5616 !regulator_desc
->ops
->list_voltage
) {
5620 if (regulator_desc
->ops
->set_voltage_sel
&&
5621 !regulator_desc
->ops
->list_voltage
) {
5626 rdev
= kzalloc(sizeof(struct regulator_dev
), GFP_KERNEL
);
5631 device_initialize(&rdev
->dev
);
5632 dev_set_drvdata(&rdev
->dev
, rdev
);
5633 rdev
->dev
.class = ®ulator_class
;
5634 spin_lock_init(&rdev
->err_lock
);
5637 * Duplicate the config so the driver could override it after
5638 * parsing init data.
5640 config
= kmemdup(cfg
, sizeof(*cfg
), GFP_KERNEL
);
5641 if (config
== NULL
) {
5646 if (config
->init_data
) {
5648 * Providing of_match means the framework is expected to parse
5649 * DT to get the init_data. This would conflict with provided
5650 * init_data, if set. Warn if it happens.
5652 if (regulator_desc
->of_match
)
5653 dev_warn(dev
, "Using provided init data - OF match ignored\n");
5655 init_data
= config
->init_data
;
5656 rdev
->dev
.of_node
= of_node_get(config
->of_node
);
5659 init_data
= regulator_of_get_init_data(dev
, regulator_desc
,
5661 &rdev
->dev
.of_node
);
5664 * Sometimes not all resources are probed already so we need to
5665 * take that into account. This happens most the time if the
5666 * ena_gpiod comes from a gpio extender or something else.
5668 if (PTR_ERR(init_data
) == -EPROBE_DEFER
) {
5669 ret
= -EPROBE_DEFER
;
5674 * We need to keep track of any GPIO descriptor coming from the
5675 * device tree until we have handled it over to the core. If the
5676 * config that was passed in to this function DOES NOT contain a
5677 * descriptor, and the config after this call DOES contain a
5678 * descriptor, we definitely got one from parsing the device
5681 if (!cfg
->ena_gpiod
&& config
->ena_gpiod
)
5682 dangling_of_gpiod
= true;
5685 ww_mutex_init(&rdev
->mutex
, ®ulator_ww_class
);
5686 rdev
->reg_data
= config
->driver_data
;
5687 rdev
->owner
= regulator_desc
->owner
;
5688 rdev
->desc
= regulator_desc
;
5690 rdev
->regmap
= config
->regmap
;
5691 else if (dev_get_regmap(dev
, NULL
))
5692 rdev
->regmap
= dev_get_regmap(dev
, NULL
);
5693 else if (dev
->parent
)
5694 rdev
->regmap
= dev_get_regmap(dev
->parent
, NULL
);
5695 INIT_LIST_HEAD(&rdev
->consumer_list
);
5696 INIT_LIST_HEAD(&rdev
->list
);
5697 BLOCKING_INIT_NOTIFIER_HEAD(&rdev
->notifier
);
5698 INIT_DELAYED_WORK(&rdev
->disable_work
, regulator_disable_work
);
5700 if (init_data
&& init_data
->supply_regulator
)
5701 rdev
->supply_name
= init_data
->supply_regulator
;
5702 else if (regulator_desc
->supply_name
)
5703 rdev
->supply_name
= regulator_desc
->supply_name
;
5705 /* register with sysfs */
5706 rdev
->dev
.parent
= config
->dev
;
5707 dev_set_name(&rdev
->dev
, "regulator.%lu",
5708 (unsigned long) atomic_inc_return(®ulator_no
));
5710 /* set regulator constraints */
5712 rdev
->constraints
= kmemdup(&init_data
->constraints
,
5713 sizeof(*rdev
->constraints
),
5716 rdev
->constraints
= kzalloc(sizeof(*rdev
->constraints
),
5718 if (!rdev
->constraints
) {
5723 if (regulator_desc
->init_cb
) {
5724 ret
= regulator_desc
->init_cb(rdev
, config
);
5729 if ((rdev
->supply_name
&& !rdev
->supply
) &&
5730 (rdev
->constraints
->always_on
||
5731 rdev
->constraints
->boot_on
)) {
5732 ret
= regulator_resolve_supply(rdev
);
5734 rdev_dbg(rdev
, "unable to resolve supply early: %pe\n",
5737 resolved_early
= true;
5740 if (config
->ena_gpiod
) {
5741 ret
= regulator_ena_gpio_request(rdev
, config
);
5743 rdev_err(rdev
, "Failed to request enable GPIO: %pe\n",
5747 /* The regulator core took over the GPIO descriptor */
5748 dangling_cfg_gpiod
= false;
5749 dangling_of_gpiod
= false;
5752 ret
= set_machine_constraints(rdev
);
5753 if (ret
== -EPROBE_DEFER
&& !resolved_early
) {
5754 /* Regulator might be in bypass mode and so needs its supply
5755 * to set the constraints
5757 /* FIXME: this currently triggers a chicken-and-egg problem
5758 * when creating -SUPPLY symlink in sysfs to a regulator
5759 * that is just being created
5761 rdev_dbg(rdev
, "will resolve supply early: %s\n",
5763 ret
= regulator_resolve_supply(rdev
);
5765 ret
= set_machine_constraints(rdev
);
5767 rdev_dbg(rdev
, "unable to resolve supply early: %pe\n",
5773 ret
= regulator_init_coupling(rdev
);
5777 /* add consumers devices */
5779 for (i
= 0; i
< init_data
->num_consumer_supplies
; i
++) {
5780 ret
= set_consumer_device_supply(rdev
,
5781 init_data
->consumer_supplies
[i
].dev_name
,
5782 init_data
->consumer_supplies
[i
].supply
);
5784 dev_err(dev
, "Failed to set supply %s\n",
5785 init_data
->consumer_supplies
[i
].supply
);
5786 goto unset_supplies
;
5791 if (!rdev
->desc
->ops
->get_voltage
&&
5792 !rdev
->desc
->ops
->list_voltage
&&
5793 !rdev
->desc
->fixed_uV
)
5794 rdev
->is_switch
= true;
5796 ret
= device_add(&rdev
->dev
);
5798 goto unset_supplies
;
5800 rdev_init_debugfs(rdev
);
5802 /* try to resolve regulators coupling since a new one was registered */
5803 mutex_lock(®ulator_list_mutex
);
5804 regulator_resolve_coupling(rdev
);
5805 mutex_unlock(®ulator_list_mutex
);
5807 /* try to resolve regulators supply since a new one was registered */
5808 class_for_each_device(®ulator_class
, NULL
, NULL
,
5809 regulator_register_resolve_supply
);
5814 mutex_lock(®ulator_list_mutex
);
5815 unset_regulator_supplies(rdev
);
5816 regulator_remove_coupling(rdev
);
5817 mutex_unlock(®ulator_list_mutex
);
5819 regulator_put(rdev
->supply
);
5820 kfree(rdev
->coupling_desc
.coupled_rdevs
);
5821 mutex_lock(®ulator_list_mutex
);
5822 regulator_ena_gpio_free(rdev
);
5823 mutex_unlock(®ulator_list_mutex
);
5825 if (dangling_of_gpiod
)
5826 gpiod_put(config
->ena_gpiod
);
5828 put_device(&rdev
->dev
);
5830 if (dangling_cfg_gpiod
)
5831 gpiod_put(cfg
->ena_gpiod
);
5832 return ERR_PTR(ret
);
5834 EXPORT_SYMBOL_GPL(regulator_register
);
5837 * regulator_unregister - unregister regulator
5838 * @rdev: regulator to unregister
5840 * Called by regulator drivers to unregister a regulator.
5842 void regulator_unregister(struct regulator_dev
*rdev
)
5848 while (rdev
->use_count
--)
5849 regulator_disable(rdev
->supply
);
5850 regulator_put(rdev
->supply
);
5853 flush_work(&rdev
->disable_work
.work
);
5855 mutex_lock(®ulator_list_mutex
);
5857 WARN_ON(rdev
->open_count
);
5858 regulator_remove_coupling(rdev
);
5859 unset_regulator_supplies(rdev
);
5860 list_del(&rdev
->list
);
5861 regulator_ena_gpio_free(rdev
);
5862 device_unregister(&rdev
->dev
);
5864 mutex_unlock(®ulator_list_mutex
);
5866 EXPORT_SYMBOL_GPL(regulator_unregister
);
5868 #ifdef CONFIG_SUSPEND
5870 * regulator_suspend - prepare regulators for system wide suspend
5871 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5873 * Configure each regulator with it's suspend operating parameters for state.
5875 * Return: 0 on success or a negative error number on failure.
5877 static int regulator_suspend(struct device
*dev
)
5879 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5880 suspend_state_t state
= pm_suspend_target_state
;
5882 const struct regulator_state
*rstate
;
5884 rstate
= regulator_get_suspend_state_check(rdev
, state
);
5888 regulator_lock(rdev
);
5889 ret
= __suspend_set_state(rdev
, rstate
);
5890 regulator_unlock(rdev
);
5895 static int regulator_resume(struct device
*dev
)
5897 suspend_state_t state
= pm_suspend_target_state
;
5898 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5899 struct regulator_state
*rstate
;
5902 rstate
= regulator_get_suspend_state(rdev
, state
);
5906 /* Avoid grabbing the lock if we don't need to */
5907 if (!rdev
->desc
->ops
->resume
)
5910 regulator_lock(rdev
);
5912 if (rstate
->enabled
== ENABLE_IN_SUSPEND
||
5913 rstate
->enabled
== DISABLE_IN_SUSPEND
)
5914 ret
= rdev
->desc
->ops
->resume(rdev
);
5916 regulator_unlock(rdev
);
5920 #else /* !CONFIG_SUSPEND */
5922 #define regulator_suspend NULL
5923 #define regulator_resume NULL
5925 #endif /* !CONFIG_SUSPEND */
5928 static const struct dev_pm_ops __maybe_unused regulator_pm_ops
= {
5929 .suspend
= regulator_suspend
,
5930 .resume
= regulator_resume
,
5934 const struct class regulator_class
= {
5935 .name
= "regulator",
5936 .dev_release
= regulator_dev_release
,
5937 .dev_groups
= regulator_dev_groups
,
5939 .pm
= ®ulator_pm_ops
,
5943 * regulator_has_full_constraints - the system has fully specified constraints
5945 * Calling this function will cause the regulator API to disable all
5946 * regulators which have a zero use count and don't have an always_on
5947 * constraint in a late_initcall.
5949 * The intention is that this will become the default behaviour in a
5950 * future kernel release so users are encouraged to use this facility
5953 void regulator_has_full_constraints(void)
5955 has_full_constraints
= 1;
5957 EXPORT_SYMBOL_GPL(regulator_has_full_constraints
);
5960 * rdev_get_drvdata - get rdev regulator driver data
5963 * Get rdev regulator driver private data. This call can be used in the
5964 * regulator driver context.
5966 * Return: Pointer to regulator driver private data.
5968 void *rdev_get_drvdata(struct regulator_dev
*rdev
)
5970 return rdev
->reg_data
;
5972 EXPORT_SYMBOL_GPL(rdev_get_drvdata
);
5975 * regulator_get_drvdata - get regulator driver data
5976 * @regulator: regulator
5978 * Get regulator driver private data. This call can be used in the consumer
5979 * driver context when non API regulator specific functions need to be called.
5981 * Return: Pointer to regulator driver private data.
5983 void *regulator_get_drvdata(struct regulator
*regulator
)
5985 return regulator
->rdev
->reg_data
;
5987 EXPORT_SYMBOL_GPL(regulator_get_drvdata
);
5990 * regulator_set_drvdata - set regulator driver data
5991 * @regulator: regulator
5994 void regulator_set_drvdata(struct regulator
*regulator
, void *data
)
5996 regulator
->rdev
->reg_data
= data
;
5998 EXPORT_SYMBOL_GPL(regulator_set_drvdata
);
6001 * rdev_get_id - get regulator ID
6004 * Return: Regulator ID for @rdev.
6006 int rdev_get_id(struct regulator_dev
*rdev
)
6008 return rdev
->desc
->id
;
6010 EXPORT_SYMBOL_GPL(rdev_get_id
);
6012 struct device
*rdev_get_dev(struct regulator_dev
*rdev
)
6016 EXPORT_SYMBOL_GPL(rdev_get_dev
);
6018 struct regmap
*rdev_get_regmap(struct regulator_dev
*rdev
)
6020 return rdev
->regmap
;
6022 EXPORT_SYMBOL_GPL(rdev_get_regmap
);
6024 void *regulator_get_init_drvdata(struct regulator_init_data
*reg_init_data
)
6026 return reg_init_data
->driver_data
;
6028 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata
);
6030 #ifdef CONFIG_DEBUG_FS
6031 static int supply_map_show(struct seq_file
*sf
, void *data
)
6033 struct regulator_map
*map
;
6035 list_for_each_entry(map
, ®ulator_map_list
, list
) {
6036 seq_printf(sf
, "%s -> %s.%s\n",
6037 rdev_get_name(map
->regulator
), map
->dev_name
,
6043 DEFINE_SHOW_ATTRIBUTE(supply_map
);
6045 struct summary_data
{
6047 struct regulator_dev
*parent
;
6051 static void regulator_summary_show_subtree(struct seq_file
*s
,
6052 struct regulator_dev
*rdev
,
6055 static int regulator_summary_show_children(struct device
*dev
, void *data
)
6057 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
6058 struct summary_data
*summary_data
= data
;
6060 if (rdev
->supply
&& rdev
->supply
->rdev
== summary_data
->parent
)
6061 regulator_summary_show_subtree(summary_data
->s
, rdev
,
6062 summary_data
->level
+ 1);
6067 static void regulator_summary_show_subtree(struct seq_file
*s
,
6068 struct regulator_dev
*rdev
,
6071 struct regulation_constraints
*c
;
6072 struct regulator
*consumer
;
6073 struct summary_data summary_data
;
6074 unsigned int opmode
;
6079 opmode
= _regulator_get_mode_unlocked(rdev
);
6080 seq_printf(s
, "%*s%-*s %3d %4d %6d %7s ",
6082 30 - level
* 3, rdev_get_name(rdev
),
6083 rdev
->use_count
, rdev
->open_count
, rdev
->bypass_count
,
6084 regulator_opmode_to_str(opmode
));
6086 seq_printf(s
, "%5dmV ", regulator_get_voltage_rdev(rdev
) / 1000);
6087 seq_printf(s
, "%5dmA ",
6088 _regulator_get_current_limit_unlocked(rdev
) / 1000);
6090 c
= rdev
->constraints
;
6092 switch (rdev
->desc
->type
) {
6093 case REGULATOR_VOLTAGE
:
6094 seq_printf(s
, "%5dmV %5dmV ",
6095 c
->min_uV
/ 1000, c
->max_uV
/ 1000);
6097 case REGULATOR_CURRENT
:
6098 seq_printf(s
, "%5dmA %5dmA ",
6099 c
->min_uA
/ 1000, c
->max_uA
/ 1000);
6106 list_for_each_entry(consumer
, &rdev
->consumer_list
, list
) {
6107 if (consumer
->dev
&& consumer
->dev
->class == ®ulator_class
)
6110 seq_printf(s
, "%*s%-*s ",
6111 (level
+ 1) * 3 + 1, "",
6112 30 - (level
+ 1) * 3,
6113 consumer
->supply_name
? consumer
->supply_name
:
6114 consumer
->dev
? dev_name(consumer
->dev
) : "deviceless");
6116 switch (rdev
->desc
->type
) {
6117 case REGULATOR_VOLTAGE
:
6118 seq_printf(s
, "%3d %33dmA%c%5dmV %5dmV",
6119 consumer
->enable_count
,
6120 consumer
->uA_load
/ 1000,
6121 consumer
->uA_load
&& !consumer
->enable_count
?
6123 consumer
->voltage
[PM_SUSPEND_ON
].min_uV
/ 1000,
6124 consumer
->voltage
[PM_SUSPEND_ON
].max_uV
/ 1000);
6126 case REGULATOR_CURRENT
:
6134 summary_data
.level
= level
;
6135 summary_data
.parent
= rdev
;
6137 class_for_each_device(®ulator_class
, NULL
, &summary_data
,
6138 regulator_summary_show_children
);
6141 struct summary_lock_data
{
6142 struct ww_acquire_ctx
*ww_ctx
;
6143 struct regulator_dev
**new_contended_rdev
;
6144 struct regulator_dev
**old_contended_rdev
;
6147 static int regulator_summary_lock_one(struct device
*dev
, void *data
)
6149 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
6150 struct summary_lock_data
*lock_data
= data
;
6153 if (rdev
!= *lock_data
->old_contended_rdev
) {
6154 ret
= regulator_lock_nested(rdev
, lock_data
->ww_ctx
);
6156 if (ret
== -EDEADLK
)
6157 *lock_data
->new_contended_rdev
= rdev
;
6161 *lock_data
->old_contended_rdev
= NULL
;
6167 static int regulator_summary_unlock_one(struct device
*dev
, void *data
)
6169 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
6170 struct summary_lock_data
*lock_data
= data
;
6173 if (rdev
== *lock_data
->new_contended_rdev
)
6177 regulator_unlock(rdev
);
6182 static int regulator_summary_lock_all(struct ww_acquire_ctx
*ww_ctx
,
6183 struct regulator_dev
**new_contended_rdev
,
6184 struct regulator_dev
**old_contended_rdev
)
6186 struct summary_lock_data lock_data
;
6189 lock_data
.ww_ctx
= ww_ctx
;
6190 lock_data
.new_contended_rdev
= new_contended_rdev
;
6191 lock_data
.old_contended_rdev
= old_contended_rdev
;
6193 ret
= class_for_each_device(®ulator_class
, NULL
, &lock_data
,
6194 regulator_summary_lock_one
);
6196 class_for_each_device(®ulator_class
, NULL
, &lock_data
,
6197 regulator_summary_unlock_one
);
6202 static void regulator_summary_lock(struct ww_acquire_ctx
*ww_ctx
)
6204 struct regulator_dev
*new_contended_rdev
= NULL
;
6205 struct regulator_dev
*old_contended_rdev
= NULL
;
6208 mutex_lock(®ulator_list_mutex
);
6210 ww_acquire_init(ww_ctx
, ®ulator_ww_class
);
6213 if (new_contended_rdev
) {
6214 ww_mutex_lock_slow(&new_contended_rdev
->mutex
, ww_ctx
);
6215 old_contended_rdev
= new_contended_rdev
;
6216 old_contended_rdev
->ref_cnt
++;
6217 old_contended_rdev
->mutex_owner
= current
;
6220 err
= regulator_summary_lock_all(ww_ctx
,
6221 &new_contended_rdev
,
6222 &old_contended_rdev
);
6224 if (old_contended_rdev
)
6225 regulator_unlock(old_contended_rdev
);
6227 } while (err
== -EDEADLK
);
6229 ww_acquire_done(ww_ctx
);
6232 static void regulator_summary_unlock(struct ww_acquire_ctx
*ww_ctx
)
6234 class_for_each_device(®ulator_class
, NULL
, NULL
,
6235 regulator_summary_unlock_one
);
6236 ww_acquire_fini(ww_ctx
);
6238 mutex_unlock(®ulator_list_mutex
);
6241 static int regulator_summary_show_roots(struct device
*dev
, void *data
)
6243 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
6244 struct seq_file
*s
= data
;
6247 regulator_summary_show_subtree(s
, rdev
, 0);
6252 static int regulator_summary_show(struct seq_file
*s
, void *data
)
6254 struct ww_acquire_ctx ww_ctx
;
6256 seq_puts(s
, " regulator use open bypass opmode voltage current min max\n");
6257 seq_puts(s
, "---------------------------------------------------------------------------------------\n");
6259 regulator_summary_lock(&ww_ctx
);
6261 class_for_each_device(®ulator_class
, NULL
, s
,
6262 regulator_summary_show_roots
);
6264 regulator_summary_unlock(&ww_ctx
);
6268 DEFINE_SHOW_ATTRIBUTE(regulator_summary
);
6269 #endif /* CONFIG_DEBUG_FS */
6271 static int __init
regulator_init(void)
6275 ret
= class_register(®ulator_class
);
6277 debugfs_root
= debugfs_create_dir("regulator", NULL
);
6278 if (IS_ERR(debugfs_root
))
6279 pr_debug("regulator: Failed to create debugfs directory\n");
6281 #ifdef CONFIG_DEBUG_FS
6282 debugfs_create_file("supply_map", 0444, debugfs_root
, NULL
,
6285 debugfs_create_file("regulator_summary", 0444, debugfs_root
,
6286 NULL
, ®ulator_summary_fops
);
6288 regulator_dummy_init();
6290 regulator_coupler_register(&generic_regulator_coupler
);
6295 /* init early to allow our consumers to complete system booting */
6296 core_initcall(regulator_init
);
6298 static int regulator_late_cleanup(struct device
*dev
, void *data
)
6300 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
6301 struct regulation_constraints
*c
= rdev
->constraints
;
6304 if (c
&& c
->always_on
)
6307 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
))
6310 regulator_lock(rdev
);
6312 if (rdev
->use_count
)
6315 /* If reading the status failed, assume that it's off. */
6316 if (_regulator_is_enabled(rdev
) <= 0)
6319 if (have_full_constraints()) {
6320 /* We log since this may kill the system if it goes
6323 rdev_info(rdev
, "disabling\n");
6324 ret
= _regulator_do_disable(rdev
);
6326 rdev_err(rdev
, "couldn't disable: %pe\n", ERR_PTR(ret
));
6328 /* The intention is that in future we will
6329 * assume that full constraints are provided
6330 * so warn even if we aren't going to do
6333 rdev_warn(rdev
, "incomplete constraints, leaving on\n");
6337 regulator_unlock(rdev
);
6342 static bool regulator_ignore_unused
;
6343 static int __init
regulator_ignore_unused_setup(char *__unused
)
6345 regulator_ignore_unused
= true;
6348 __setup("regulator_ignore_unused", regulator_ignore_unused_setup
);
6350 static void regulator_init_complete_work_function(struct work_struct
*work
)
6353 * Regulators may had failed to resolve their input supplies
6354 * when were registered, either because the input supply was
6355 * not registered yet or because its parent device was not
6356 * bound yet. So attempt to resolve the input supplies for
6357 * pending regulators before trying to disable unused ones.
6359 class_for_each_device(®ulator_class
, NULL
, NULL
,
6360 regulator_register_resolve_supply
);
6363 * For debugging purposes, it may be useful to prevent unused
6364 * regulators from being disabled.
6366 if (regulator_ignore_unused
) {
6367 pr_warn("regulator: Not disabling unused regulators\n");
6371 /* If we have a full configuration then disable any regulators
6372 * we have permission to change the status for and which are
6373 * not in use or always_on. This is effectively the default
6374 * for DT and ACPI as they have full constraints.
6376 class_for_each_device(®ulator_class
, NULL
, NULL
,
6377 regulator_late_cleanup
);
6380 static DECLARE_DELAYED_WORK(regulator_init_complete_work
,
6381 regulator_init_complete_work_function
);
6383 static int __init
regulator_init_complete(void)
6386 * Since DT doesn't provide an idiomatic mechanism for
6387 * enabling full constraints and since it's much more natural
6388 * with DT to provide them just assume that a DT enabled
6389 * system has full constraints.
6391 if (of_have_populated_dt())
6392 has_full_constraints
= true;
6395 * We punt completion for an arbitrary amount of time since
6396 * systems like distros will load many drivers from userspace
6397 * so consumers might not always be ready yet, this is
6398 * particularly an issue with laptops where this might bounce
6399 * the display off then on. Ideally we'd get a notification
6400 * from userspace when this happens but we don't so just wait
6401 * a bit and hope we waited long enough. It'd be better if
6402 * we'd only do this on systems that need it, and a kernel
6403 * command line option might be useful.
6405 schedule_delayed_work(®ulator_init_complete_work
,
6406 msecs_to_jiffies(30000));
6410 late_initcall_sync(regulator_init_complete
);