dma-fence: Add some more fence-merge-unwrap tests
[drm/drm-misc.git] / drivers / regulator / core.c
blob8cb948a91e60d958c6b5ec97d736e6e3bf4b47eb
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c -- Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/reboot.h>
23 #include <linux/regmap.h>
24 #include <linux/regulator/of_regulator.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/regulator/coupler.h>
27 #include <linux/regulator/driver.h>
28 #include <linux/regulator/machine.h>
29 #include <linux/module.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/regulator.h>
34 #include "dummy.h"
35 #include "internal.h"
36 #include "regnl.h"
38 static DEFINE_WW_CLASS(regulator_ww_class);
39 static DEFINE_MUTEX(regulator_nesting_mutex);
40 static DEFINE_MUTEX(regulator_list_mutex);
41 static LIST_HEAD(regulator_map_list);
42 static LIST_HEAD(regulator_ena_gpio_list);
43 static LIST_HEAD(regulator_supply_alias_list);
44 static LIST_HEAD(regulator_coupler_list);
45 static bool has_full_constraints;
47 static struct dentry *debugfs_root;
50 * struct regulator_map
52 * Used to provide symbolic supply names to devices.
54 struct regulator_map {
55 struct list_head list;
56 const char *dev_name; /* The dev_name() for the consumer */
57 const char *supply;
58 struct regulator_dev *regulator;
62 * struct regulator_enable_gpio
64 * Management for shared enable GPIO pin
66 struct regulator_enable_gpio {
67 struct list_head list;
68 struct gpio_desc *gpiod;
69 u32 enable_count; /* a number of enabled shared GPIO */
70 u32 request_count; /* a number of requested shared GPIO */
74 * struct regulator_supply_alias
76 * Used to map lookups for a supply onto an alternative device.
78 struct regulator_supply_alias {
79 struct list_head list;
80 struct device *src_dev;
81 const char *src_supply;
82 struct device *alias_dev;
83 const char *alias_supply;
86 static int _regulator_is_enabled(struct regulator_dev *rdev);
87 static int _regulator_disable(struct regulator *regulator);
88 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
89 static int _regulator_get_current_limit(struct regulator_dev *rdev);
90 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91 static int _notifier_call_chain(struct regulator_dev *rdev,
92 unsigned long event, void *data);
93 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94 int min_uV, int max_uV);
95 static int regulator_balance_voltage(struct regulator_dev *rdev,
96 suspend_state_t state);
97 static struct regulator *create_regulator(struct regulator_dev *rdev,
98 struct device *dev,
99 const char *supply_name);
100 static void destroy_regulator(struct regulator *regulator);
101 static void _regulator_put(struct regulator *regulator);
103 const char *rdev_get_name(struct regulator_dev *rdev)
105 if (rdev->constraints && rdev->constraints->name)
106 return rdev->constraints->name;
107 else if (rdev->desc->name)
108 return rdev->desc->name;
109 else
110 return "";
112 EXPORT_SYMBOL_GPL(rdev_get_name);
114 static bool have_full_constraints(void)
116 return has_full_constraints || of_have_populated_dt();
119 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
121 if (!rdev->constraints) {
122 rdev_err(rdev, "no constraints\n");
123 return false;
126 if (rdev->constraints->valid_ops_mask & ops)
127 return true;
129 return false;
133 * regulator_lock_nested - lock a single regulator
134 * @rdev: regulator source
135 * @ww_ctx: w/w mutex acquire context
137 * This function can be called many times by one task on
138 * a single regulator and its mutex will be locked only
139 * once. If a task, which is calling this function is other
140 * than the one, which initially locked the mutex, it will
141 * wait on mutex.
143 * Return: 0 on success or a negative error number on failure.
145 static inline int regulator_lock_nested(struct regulator_dev *rdev,
146 struct ww_acquire_ctx *ww_ctx)
148 bool lock = false;
149 int ret = 0;
151 mutex_lock(&regulator_nesting_mutex);
153 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
154 if (rdev->mutex_owner == current)
155 rdev->ref_cnt++;
156 else
157 lock = true;
159 if (lock) {
160 mutex_unlock(&regulator_nesting_mutex);
161 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
162 mutex_lock(&regulator_nesting_mutex);
164 } else {
165 lock = true;
168 if (lock && ret != -EDEADLK) {
169 rdev->ref_cnt++;
170 rdev->mutex_owner = current;
173 mutex_unlock(&regulator_nesting_mutex);
175 return ret;
179 * regulator_lock - lock a single regulator
180 * @rdev: regulator source
182 * This function can be called many times by one task on
183 * a single regulator and its mutex will be locked only
184 * once. If a task, which is calling this function is other
185 * than the one, which initially locked the mutex, it will
186 * wait on mutex.
188 static void regulator_lock(struct regulator_dev *rdev)
190 regulator_lock_nested(rdev, NULL);
194 * regulator_unlock - unlock a single regulator
195 * @rdev: regulator_source
197 * This function unlocks the mutex when the
198 * reference counter reaches 0.
200 static void regulator_unlock(struct regulator_dev *rdev)
202 mutex_lock(&regulator_nesting_mutex);
204 if (--rdev->ref_cnt == 0) {
205 rdev->mutex_owner = NULL;
206 ww_mutex_unlock(&rdev->mutex);
209 WARN_ON_ONCE(rdev->ref_cnt < 0);
211 mutex_unlock(&regulator_nesting_mutex);
215 * regulator_lock_two - lock two regulators
216 * @rdev1: first regulator
217 * @rdev2: second regulator
218 * @ww_ctx: w/w mutex acquire context
220 * Locks both rdevs using the regulator_ww_class.
222 static void regulator_lock_two(struct regulator_dev *rdev1,
223 struct regulator_dev *rdev2,
224 struct ww_acquire_ctx *ww_ctx)
226 struct regulator_dev *held, *contended;
227 int ret;
229 ww_acquire_init(ww_ctx, &regulator_ww_class);
231 /* Try to just grab both of them */
232 ret = regulator_lock_nested(rdev1, ww_ctx);
233 WARN_ON(ret);
234 ret = regulator_lock_nested(rdev2, ww_ctx);
235 if (ret != -EDEADLOCK) {
236 WARN_ON(ret);
237 goto exit;
240 held = rdev1;
241 contended = rdev2;
242 while (true) {
243 regulator_unlock(held);
245 ww_mutex_lock_slow(&contended->mutex, ww_ctx);
246 contended->ref_cnt++;
247 contended->mutex_owner = current;
248 swap(held, contended);
249 ret = regulator_lock_nested(contended, ww_ctx);
251 if (ret != -EDEADLOCK) {
252 WARN_ON(ret);
253 break;
257 exit:
258 ww_acquire_done(ww_ctx);
262 * regulator_unlock_two - unlock two regulators
263 * @rdev1: first regulator
264 * @rdev2: second regulator
265 * @ww_ctx: w/w mutex acquire context
267 * The inverse of regulator_lock_two().
270 static void regulator_unlock_two(struct regulator_dev *rdev1,
271 struct regulator_dev *rdev2,
272 struct ww_acquire_ctx *ww_ctx)
274 regulator_unlock(rdev2);
275 regulator_unlock(rdev1);
276 ww_acquire_fini(ww_ctx);
279 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
281 struct regulator_dev *c_rdev;
282 int i;
284 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
285 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
287 if (rdev->supply->rdev == c_rdev)
288 return true;
291 return false;
294 static void regulator_unlock_recursive(struct regulator_dev *rdev,
295 unsigned int n_coupled)
297 struct regulator_dev *c_rdev, *supply_rdev;
298 int i, supply_n_coupled;
300 for (i = n_coupled; i > 0; i--) {
301 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
303 if (!c_rdev)
304 continue;
306 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
307 supply_rdev = c_rdev->supply->rdev;
308 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
310 regulator_unlock_recursive(supply_rdev,
311 supply_n_coupled);
314 regulator_unlock(c_rdev);
318 static int regulator_lock_recursive(struct regulator_dev *rdev,
319 struct regulator_dev **new_contended_rdev,
320 struct regulator_dev **old_contended_rdev,
321 struct ww_acquire_ctx *ww_ctx)
323 struct regulator_dev *c_rdev;
324 int i, err;
326 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
327 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
329 if (!c_rdev)
330 continue;
332 if (c_rdev != *old_contended_rdev) {
333 err = regulator_lock_nested(c_rdev, ww_ctx);
334 if (err) {
335 if (err == -EDEADLK) {
336 *new_contended_rdev = c_rdev;
337 goto err_unlock;
340 /* shouldn't happen */
341 WARN_ON_ONCE(err != -EALREADY);
343 } else {
344 *old_contended_rdev = NULL;
347 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
348 err = regulator_lock_recursive(c_rdev->supply->rdev,
349 new_contended_rdev,
350 old_contended_rdev,
351 ww_ctx);
352 if (err) {
353 regulator_unlock(c_rdev);
354 goto err_unlock;
359 return 0;
361 err_unlock:
362 regulator_unlock_recursive(rdev, i);
364 return err;
368 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
369 * regulators
370 * @rdev: regulator source
371 * @ww_ctx: w/w mutex acquire context
373 * Unlock all regulators related with rdev by coupling or supplying.
375 static void regulator_unlock_dependent(struct regulator_dev *rdev,
376 struct ww_acquire_ctx *ww_ctx)
378 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
379 ww_acquire_fini(ww_ctx);
383 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
384 * @rdev: regulator source
385 * @ww_ctx: w/w mutex acquire context
387 * This function as a wrapper on regulator_lock_recursive(), which locks
388 * all regulators related with rdev by coupling or supplying.
390 static void regulator_lock_dependent(struct regulator_dev *rdev,
391 struct ww_acquire_ctx *ww_ctx)
393 struct regulator_dev *new_contended_rdev = NULL;
394 struct regulator_dev *old_contended_rdev = NULL;
395 int err;
397 mutex_lock(&regulator_list_mutex);
399 ww_acquire_init(ww_ctx, &regulator_ww_class);
401 do {
402 if (new_contended_rdev) {
403 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
404 old_contended_rdev = new_contended_rdev;
405 old_contended_rdev->ref_cnt++;
406 old_contended_rdev->mutex_owner = current;
409 err = regulator_lock_recursive(rdev,
410 &new_contended_rdev,
411 &old_contended_rdev,
412 ww_ctx);
414 if (old_contended_rdev)
415 regulator_unlock(old_contended_rdev);
417 } while (err == -EDEADLK);
419 ww_acquire_done(ww_ctx);
421 mutex_unlock(&regulator_list_mutex);
424 /* Platform voltage constraint check */
425 int regulator_check_voltage(struct regulator_dev *rdev,
426 int *min_uV, int *max_uV)
428 BUG_ON(*min_uV > *max_uV);
430 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
431 rdev_err(rdev, "voltage operation not allowed\n");
432 return -EPERM;
435 if (*max_uV > rdev->constraints->max_uV)
436 *max_uV = rdev->constraints->max_uV;
437 if (*min_uV < rdev->constraints->min_uV)
438 *min_uV = rdev->constraints->min_uV;
440 if (*min_uV > *max_uV) {
441 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
442 *min_uV, *max_uV);
443 return -EINVAL;
446 return 0;
449 /* return 0 if the state is valid */
450 static int regulator_check_states(suspend_state_t state)
452 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
455 /* Make sure we select a voltage that suits the needs of all
456 * regulator consumers
458 int regulator_check_consumers(struct regulator_dev *rdev,
459 int *min_uV, int *max_uV,
460 suspend_state_t state)
462 struct regulator *regulator;
463 struct regulator_voltage *voltage;
465 list_for_each_entry(regulator, &rdev->consumer_list, list) {
466 voltage = &regulator->voltage[state];
468 * Assume consumers that didn't say anything are OK
469 * with anything in the constraint range.
471 if (!voltage->min_uV && !voltage->max_uV)
472 continue;
474 if (*max_uV > voltage->max_uV)
475 *max_uV = voltage->max_uV;
476 if (*min_uV < voltage->min_uV)
477 *min_uV = voltage->min_uV;
480 if (*min_uV > *max_uV) {
481 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
482 *min_uV, *max_uV);
483 return -EINVAL;
486 return 0;
489 /* current constraint check */
490 static int regulator_check_current_limit(struct regulator_dev *rdev,
491 int *min_uA, int *max_uA)
493 BUG_ON(*min_uA > *max_uA);
495 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
496 rdev_err(rdev, "current operation not allowed\n");
497 return -EPERM;
500 if (*max_uA > rdev->constraints->max_uA &&
501 rdev->constraints->max_uA)
502 *max_uA = rdev->constraints->max_uA;
503 if (*min_uA < rdev->constraints->min_uA)
504 *min_uA = rdev->constraints->min_uA;
506 if (*min_uA > *max_uA) {
507 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
508 *min_uA, *max_uA);
509 return -EINVAL;
512 return 0;
515 /* operating mode constraint check */
516 static int regulator_mode_constrain(struct regulator_dev *rdev,
517 unsigned int *mode)
519 switch (*mode) {
520 case REGULATOR_MODE_FAST:
521 case REGULATOR_MODE_NORMAL:
522 case REGULATOR_MODE_IDLE:
523 case REGULATOR_MODE_STANDBY:
524 break;
525 default:
526 rdev_err(rdev, "invalid mode %x specified\n", *mode);
527 return -EINVAL;
530 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
531 rdev_err(rdev, "mode operation not allowed\n");
532 return -EPERM;
535 /* The modes are bitmasks, the most power hungry modes having
536 * the lowest values. If the requested mode isn't supported
537 * try higher modes.
539 while (*mode) {
540 if (rdev->constraints->valid_modes_mask & *mode)
541 return 0;
542 *mode /= 2;
545 return -EINVAL;
548 static inline struct regulator_state *
549 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
551 if (rdev->constraints == NULL)
552 return NULL;
554 switch (state) {
555 case PM_SUSPEND_STANDBY:
556 return &rdev->constraints->state_standby;
557 case PM_SUSPEND_MEM:
558 return &rdev->constraints->state_mem;
559 case PM_SUSPEND_MAX:
560 return &rdev->constraints->state_disk;
561 default:
562 return NULL;
566 static const struct regulator_state *
567 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
569 const struct regulator_state *rstate;
571 rstate = regulator_get_suspend_state(rdev, state);
572 if (rstate == NULL)
573 return NULL;
575 /* If we have no suspend mode configuration don't set anything;
576 * only warn if the driver implements set_suspend_voltage or
577 * set_suspend_mode callback.
579 if (rstate->enabled != ENABLE_IN_SUSPEND &&
580 rstate->enabled != DISABLE_IN_SUSPEND) {
581 if (rdev->desc->ops->set_suspend_voltage ||
582 rdev->desc->ops->set_suspend_mode)
583 rdev_warn(rdev, "No configuration\n");
584 return NULL;
587 return rstate;
590 static ssize_t microvolts_show(struct device *dev,
591 struct device_attribute *attr, char *buf)
593 struct regulator_dev *rdev = dev_get_drvdata(dev);
594 int uV;
596 regulator_lock(rdev);
597 uV = regulator_get_voltage_rdev(rdev);
598 regulator_unlock(rdev);
600 if (uV < 0)
601 return uV;
602 return sprintf(buf, "%d\n", uV);
604 static DEVICE_ATTR_RO(microvolts);
606 static ssize_t microamps_show(struct device *dev,
607 struct device_attribute *attr, char *buf)
609 struct regulator_dev *rdev = dev_get_drvdata(dev);
611 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
613 static DEVICE_ATTR_RO(microamps);
615 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
616 char *buf)
618 struct regulator_dev *rdev = dev_get_drvdata(dev);
620 return sprintf(buf, "%s\n", rdev_get_name(rdev));
622 static DEVICE_ATTR_RO(name);
624 static const char *regulator_opmode_to_str(int mode)
626 switch (mode) {
627 case REGULATOR_MODE_FAST:
628 return "fast";
629 case REGULATOR_MODE_NORMAL:
630 return "normal";
631 case REGULATOR_MODE_IDLE:
632 return "idle";
633 case REGULATOR_MODE_STANDBY:
634 return "standby";
636 return "unknown";
639 static ssize_t regulator_print_opmode(char *buf, int mode)
641 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
644 static ssize_t opmode_show(struct device *dev,
645 struct device_attribute *attr, char *buf)
647 struct regulator_dev *rdev = dev_get_drvdata(dev);
649 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
651 static DEVICE_ATTR_RO(opmode);
653 static ssize_t regulator_print_state(char *buf, int state)
655 if (state > 0)
656 return sprintf(buf, "enabled\n");
657 else if (state == 0)
658 return sprintf(buf, "disabled\n");
659 else
660 return sprintf(buf, "unknown\n");
663 static ssize_t state_show(struct device *dev,
664 struct device_attribute *attr, char *buf)
666 struct regulator_dev *rdev = dev_get_drvdata(dev);
667 ssize_t ret;
669 regulator_lock(rdev);
670 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
671 regulator_unlock(rdev);
673 return ret;
675 static DEVICE_ATTR_RO(state);
677 static ssize_t status_show(struct device *dev,
678 struct device_attribute *attr, char *buf)
680 struct regulator_dev *rdev = dev_get_drvdata(dev);
681 int status;
682 char *label;
684 status = rdev->desc->ops->get_status(rdev);
685 if (status < 0)
686 return status;
688 switch (status) {
689 case REGULATOR_STATUS_OFF:
690 label = "off";
691 break;
692 case REGULATOR_STATUS_ON:
693 label = "on";
694 break;
695 case REGULATOR_STATUS_ERROR:
696 label = "error";
697 break;
698 case REGULATOR_STATUS_FAST:
699 label = "fast";
700 break;
701 case REGULATOR_STATUS_NORMAL:
702 label = "normal";
703 break;
704 case REGULATOR_STATUS_IDLE:
705 label = "idle";
706 break;
707 case REGULATOR_STATUS_STANDBY:
708 label = "standby";
709 break;
710 case REGULATOR_STATUS_BYPASS:
711 label = "bypass";
712 break;
713 case REGULATOR_STATUS_UNDEFINED:
714 label = "undefined";
715 break;
716 default:
717 return -ERANGE;
720 return sprintf(buf, "%s\n", label);
722 static DEVICE_ATTR_RO(status);
724 static ssize_t min_microamps_show(struct device *dev,
725 struct device_attribute *attr, char *buf)
727 struct regulator_dev *rdev = dev_get_drvdata(dev);
729 if (!rdev->constraints)
730 return sprintf(buf, "constraint not defined\n");
732 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
734 static DEVICE_ATTR_RO(min_microamps);
736 static ssize_t max_microamps_show(struct device *dev,
737 struct device_attribute *attr, char *buf)
739 struct regulator_dev *rdev = dev_get_drvdata(dev);
741 if (!rdev->constraints)
742 return sprintf(buf, "constraint not defined\n");
744 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
746 static DEVICE_ATTR_RO(max_microamps);
748 static ssize_t min_microvolts_show(struct device *dev,
749 struct device_attribute *attr, char *buf)
751 struct regulator_dev *rdev = dev_get_drvdata(dev);
753 if (!rdev->constraints)
754 return sprintf(buf, "constraint not defined\n");
756 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
758 static DEVICE_ATTR_RO(min_microvolts);
760 static ssize_t max_microvolts_show(struct device *dev,
761 struct device_attribute *attr, char *buf)
763 struct regulator_dev *rdev = dev_get_drvdata(dev);
765 if (!rdev->constraints)
766 return sprintf(buf, "constraint not defined\n");
768 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
770 static DEVICE_ATTR_RO(max_microvolts);
772 static ssize_t requested_microamps_show(struct device *dev,
773 struct device_attribute *attr, char *buf)
775 struct regulator_dev *rdev = dev_get_drvdata(dev);
776 struct regulator *regulator;
777 int uA = 0;
779 regulator_lock(rdev);
780 list_for_each_entry(regulator, &rdev->consumer_list, list) {
781 if (regulator->enable_count)
782 uA += regulator->uA_load;
784 regulator_unlock(rdev);
785 return sprintf(buf, "%d\n", uA);
787 static DEVICE_ATTR_RO(requested_microamps);
789 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
790 char *buf)
792 struct regulator_dev *rdev = dev_get_drvdata(dev);
793 return sprintf(buf, "%d\n", rdev->use_count);
795 static DEVICE_ATTR_RO(num_users);
797 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
798 char *buf)
800 struct regulator_dev *rdev = dev_get_drvdata(dev);
802 switch (rdev->desc->type) {
803 case REGULATOR_VOLTAGE:
804 return sprintf(buf, "voltage\n");
805 case REGULATOR_CURRENT:
806 return sprintf(buf, "current\n");
808 return sprintf(buf, "unknown\n");
810 static DEVICE_ATTR_RO(type);
812 static ssize_t suspend_mem_microvolts_show(struct device *dev,
813 struct device_attribute *attr, char *buf)
815 struct regulator_dev *rdev = dev_get_drvdata(dev);
817 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
819 static DEVICE_ATTR_RO(suspend_mem_microvolts);
821 static ssize_t suspend_disk_microvolts_show(struct device *dev,
822 struct device_attribute *attr, char *buf)
824 struct regulator_dev *rdev = dev_get_drvdata(dev);
826 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
828 static DEVICE_ATTR_RO(suspend_disk_microvolts);
830 static ssize_t suspend_standby_microvolts_show(struct device *dev,
831 struct device_attribute *attr, char *buf)
833 struct regulator_dev *rdev = dev_get_drvdata(dev);
835 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
837 static DEVICE_ATTR_RO(suspend_standby_microvolts);
839 static ssize_t suspend_mem_mode_show(struct device *dev,
840 struct device_attribute *attr, char *buf)
842 struct regulator_dev *rdev = dev_get_drvdata(dev);
844 return regulator_print_opmode(buf,
845 rdev->constraints->state_mem.mode);
847 static DEVICE_ATTR_RO(suspend_mem_mode);
849 static ssize_t suspend_disk_mode_show(struct device *dev,
850 struct device_attribute *attr, char *buf)
852 struct regulator_dev *rdev = dev_get_drvdata(dev);
854 return regulator_print_opmode(buf,
855 rdev->constraints->state_disk.mode);
857 static DEVICE_ATTR_RO(suspend_disk_mode);
859 static ssize_t suspend_standby_mode_show(struct device *dev,
860 struct device_attribute *attr, char *buf)
862 struct regulator_dev *rdev = dev_get_drvdata(dev);
864 return regulator_print_opmode(buf,
865 rdev->constraints->state_standby.mode);
867 static DEVICE_ATTR_RO(suspend_standby_mode);
869 static ssize_t suspend_mem_state_show(struct device *dev,
870 struct device_attribute *attr, char *buf)
872 struct regulator_dev *rdev = dev_get_drvdata(dev);
874 return regulator_print_state(buf,
875 rdev->constraints->state_mem.enabled);
877 static DEVICE_ATTR_RO(suspend_mem_state);
879 static ssize_t suspend_disk_state_show(struct device *dev,
880 struct device_attribute *attr, char *buf)
882 struct regulator_dev *rdev = dev_get_drvdata(dev);
884 return regulator_print_state(buf,
885 rdev->constraints->state_disk.enabled);
887 static DEVICE_ATTR_RO(suspend_disk_state);
889 static ssize_t suspend_standby_state_show(struct device *dev,
890 struct device_attribute *attr, char *buf)
892 struct regulator_dev *rdev = dev_get_drvdata(dev);
894 return regulator_print_state(buf,
895 rdev->constraints->state_standby.enabled);
897 static DEVICE_ATTR_RO(suspend_standby_state);
899 static ssize_t bypass_show(struct device *dev,
900 struct device_attribute *attr, char *buf)
902 struct regulator_dev *rdev = dev_get_drvdata(dev);
903 const char *report;
904 bool bypass;
905 int ret;
907 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
909 if (ret != 0)
910 report = "unknown";
911 else if (bypass)
912 report = "enabled";
913 else
914 report = "disabled";
916 return sprintf(buf, "%s\n", report);
918 static DEVICE_ATTR_RO(bypass);
920 #define REGULATOR_ERROR_ATTR(name, bit) \
921 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \
922 char *buf) \
924 int ret; \
925 unsigned int flags; \
926 struct regulator_dev *rdev = dev_get_drvdata(dev); \
927 ret = _regulator_get_error_flags(rdev, &flags); \
928 if (ret) \
929 return ret; \
930 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \
932 static DEVICE_ATTR_RO(name)
934 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
935 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
936 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
937 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
938 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
939 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
940 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
941 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
942 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
944 /* Calculate the new optimum regulator operating mode based on the new total
945 * consumer load. All locks held by caller
947 static int drms_uA_update(struct regulator_dev *rdev)
949 struct regulator *sibling;
950 int current_uA = 0, output_uV, input_uV, err;
951 unsigned int mode;
954 * first check to see if we can set modes at all, otherwise just
955 * tell the consumer everything is OK.
957 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
958 rdev_dbg(rdev, "DRMS operation not allowed\n");
959 return 0;
962 if (!rdev->desc->ops->get_optimum_mode &&
963 !rdev->desc->ops->set_load)
964 return 0;
966 if (!rdev->desc->ops->set_mode &&
967 !rdev->desc->ops->set_load)
968 return -EINVAL;
970 /* calc total requested load */
971 list_for_each_entry(sibling, &rdev->consumer_list, list) {
972 if (sibling->enable_count)
973 current_uA += sibling->uA_load;
976 current_uA += rdev->constraints->system_load;
978 if (rdev->desc->ops->set_load) {
979 /* set the optimum mode for our new total regulator load */
980 err = rdev->desc->ops->set_load(rdev, current_uA);
981 if (err < 0)
982 rdev_err(rdev, "failed to set load %d: %pe\n",
983 current_uA, ERR_PTR(err));
984 } else {
986 * Unfortunately in some cases the constraints->valid_ops has
987 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
988 * That's not really legit but we won't consider it a fatal
989 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
990 * wasn't set.
992 if (!rdev->constraints->valid_modes_mask) {
993 rdev_dbg(rdev, "Can change modes; but no valid mode\n");
994 return 0;
997 /* get output voltage */
998 output_uV = regulator_get_voltage_rdev(rdev);
1001 * Don't return an error; if regulator driver cares about
1002 * output_uV then it's up to the driver to validate.
1004 if (output_uV <= 0)
1005 rdev_dbg(rdev, "invalid output voltage found\n");
1007 /* get input voltage */
1008 input_uV = 0;
1009 if (rdev->supply)
1010 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1011 if (input_uV <= 0)
1012 input_uV = rdev->constraints->input_uV;
1015 * Don't return an error; if regulator driver cares about
1016 * input_uV then it's up to the driver to validate.
1018 if (input_uV <= 0)
1019 rdev_dbg(rdev, "invalid input voltage found\n");
1021 /* now get the optimum mode for our new total regulator load */
1022 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1023 output_uV, current_uA);
1025 /* check the new mode is allowed */
1026 err = regulator_mode_constrain(rdev, &mode);
1027 if (err < 0) {
1028 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1029 current_uA, input_uV, output_uV, ERR_PTR(err));
1030 return err;
1033 err = rdev->desc->ops->set_mode(rdev, mode);
1034 if (err < 0)
1035 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1036 mode, ERR_PTR(err));
1039 return err;
1042 static int __suspend_set_state(struct regulator_dev *rdev,
1043 const struct regulator_state *rstate)
1045 int ret = 0;
1047 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1048 rdev->desc->ops->set_suspend_enable)
1049 ret = rdev->desc->ops->set_suspend_enable(rdev);
1050 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1051 rdev->desc->ops->set_suspend_disable)
1052 ret = rdev->desc->ops->set_suspend_disable(rdev);
1053 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1054 ret = 0;
1056 if (ret < 0) {
1057 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1058 return ret;
1061 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1062 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1063 if (ret < 0) {
1064 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1065 return ret;
1069 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1070 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1071 if (ret < 0) {
1072 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1073 return ret;
1077 return ret;
1080 static int suspend_set_initial_state(struct regulator_dev *rdev)
1082 const struct regulator_state *rstate;
1084 rstate = regulator_get_suspend_state_check(rdev,
1085 rdev->constraints->initial_state);
1086 if (!rstate)
1087 return 0;
1089 return __suspend_set_state(rdev, rstate);
1092 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1093 static void print_constraints_debug(struct regulator_dev *rdev)
1095 struct regulation_constraints *constraints = rdev->constraints;
1096 char buf[160] = "";
1097 size_t len = sizeof(buf) - 1;
1098 int count = 0;
1099 int ret;
1101 if (constraints->min_uV && constraints->max_uV) {
1102 if (constraints->min_uV == constraints->max_uV)
1103 count += scnprintf(buf + count, len - count, "%d mV ",
1104 constraints->min_uV / 1000);
1105 else
1106 count += scnprintf(buf + count, len - count,
1107 "%d <--> %d mV ",
1108 constraints->min_uV / 1000,
1109 constraints->max_uV / 1000);
1112 if (!constraints->min_uV ||
1113 constraints->min_uV != constraints->max_uV) {
1114 ret = regulator_get_voltage_rdev(rdev);
1115 if (ret > 0)
1116 count += scnprintf(buf + count, len - count,
1117 "at %d mV ", ret / 1000);
1120 if (constraints->uV_offset)
1121 count += scnprintf(buf + count, len - count, "%dmV offset ",
1122 constraints->uV_offset / 1000);
1124 if (constraints->min_uA && constraints->max_uA) {
1125 if (constraints->min_uA == constraints->max_uA)
1126 count += scnprintf(buf + count, len - count, "%d mA ",
1127 constraints->min_uA / 1000);
1128 else
1129 count += scnprintf(buf + count, len - count,
1130 "%d <--> %d mA ",
1131 constraints->min_uA / 1000,
1132 constraints->max_uA / 1000);
1135 if (!constraints->min_uA ||
1136 constraints->min_uA != constraints->max_uA) {
1137 ret = _regulator_get_current_limit(rdev);
1138 if (ret > 0)
1139 count += scnprintf(buf + count, len - count,
1140 "at %d mA ", ret / 1000);
1143 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1144 count += scnprintf(buf + count, len - count, "fast ");
1145 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1146 count += scnprintf(buf + count, len - count, "normal ");
1147 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1148 count += scnprintf(buf + count, len - count, "idle ");
1149 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1150 count += scnprintf(buf + count, len - count, "standby ");
1152 if (!count)
1153 count = scnprintf(buf, len, "no parameters");
1154 else
1155 --count;
1157 count += scnprintf(buf + count, len - count, ", %s",
1158 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1160 rdev_dbg(rdev, "%s\n", buf);
1162 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1163 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1164 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1166 static void print_constraints(struct regulator_dev *rdev)
1168 struct regulation_constraints *constraints = rdev->constraints;
1170 print_constraints_debug(rdev);
1172 if ((constraints->min_uV != constraints->max_uV) &&
1173 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1174 rdev_warn(rdev,
1175 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1178 static int machine_constraints_voltage(struct regulator_dev *rdev,
1179 struct regulation_constraints *constraints)
1181 const struct regulator_ops *ops = rdev->desc->ops;
1182 int ret;
1184 /* do we need to apply the constraint voltage */
1185 if (rdev->constraints->apply_uV &&
1186 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1187 int target_min, target_max;
1188 int current_uV = regulator_get_voltage_rdev(rdev);
1190 if (current_uV == -ENOTRECOVERABLE) {
1191 /* This regulator can't be read and must be initialized */
1192 rdev_info(rdev, "Setting %d-%duV\n",
1193 rdev->constraints->min_uV,
1194 rdev->constraints->max_uV);
1195 _regulator_do_set_voltage(rdev,
1196 rdev->constraints->min_uV,
1197 rdev->constraints->max_uV);
1198 current_uV = regulator_get_voltage_rdev(rdev);
1201 if (current_uV < 0) {
1202 if (current_uV != -EPROBE_DEFER)
1203 rdev_err(rdev,
1204 "failed to get the current voltage: %pe\n",
1205 ERR_PTR(current_uV));
1206 return current_uV;
1210 * If we're below the minimum voltage move up to the
1211 * minimum voltage, if we're above the maximum voltage
1212 * then move down to the maximum.
1214 target_min = current_uV;
1215 target_max = current_uV;
1217 if (current_uV < rdev->constraints->min_uV) {
1218 target_min = rdev->constraints->min_uV;
1219 target_max = rdev->constraints->min_uV;
1222 if (current_uV > rdev->constraints->max_uV) {
1223 target_min = rdev->constraints->max_uV;
1224 target_max = rdev->constraints->max_uV;
1227 if (target_min != current_uV || target_max != current_uV) {
1228 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1229 current_uV, target_min, target_max);
1230 ret = _regulator_do_set_voltage(
1231 rdev, target_min, target_max);
1232 if (ret < 0) {
1233 rdev_err(rdev,
1234 "failed to apply %d-%duV constraint: %pe\n",
1235 target_min, target_max, ERR_PTR(ret));
1236 return ret;
1241 /* constrain machine-level voltage specs to fit
1242 * the actual range supported by this regulator.
1244 if (ops->list_voltage && rdev->desc->n_voltages) {
1245 int count = rdev->desc->n_voltages;
1246 int i;
1247 int min_uV = INT_MAX;
1248 int max_uV = INT_MIN;
1249 int cmin = constraints->min_uV;
1250 int cmax = constraints->max_uV;
1252 /* it's safe to autoconfigure fixed-voltage supplies
1253 * and the constraints are used by list_voltage.
1255 if (count == 1 && !cmin) {
1256 cmin = 1;
1257 cmax = INT_MAX;
1258 constraints->min_uV = cmin;
1259 constraints->max_uV = cmax;
1262 /* voltage constraints are optional */
1263 if ((cmin == 0) && (cmax == 0))
1264 return 0;
1266 /* else require explicit machine-level constraints */
1267 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1268 rdev_err(rdev, "invalid voltage constraints\n");
1269 return -EINVAL;
1272 /* no need to loop voltages if range is continuous */
1273 if (rdev->desc->continuous_voltage_range)
1274 return 0;
1276 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1277 for (i = 0; i < count; i++) {
1278 int value;
1280 value = ops->list_voltage(rdev, i);
1281 if (value <= 0)
1282 continue;
1284 /* maybe adjust [min_uV..max_uV] */
1285 if (value >= cmin && value < min_uV)
1286 min_uV = value;
1287 if (value <= cmax && value > max_uV)
1288 max_uV = value;
1291 /* final: [min_uV..max_uV] valid iff constraints valid */
1292 if (max_uV < min_uV) {
1293 rdev_err(rdev,
1294 "unsupportable voltage constraints %u-%uuV\n",
1295 min_uV, max_uV);
1296 return -EINVAL;
1299 /* use regulator's subset of machine constraints */
1300 if (constraints->min_uV < min_uV) {
1301 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1302 constraints->min_uV, min_uV);
1303 constraints->min_uV = min_uV;
1305 if (constraints->max_uV > max_uV) {
1306 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1307 constraints->max_uV, max_uV);
1308 constraints->max_uV = max_uV;
1312 return 0;
1315 static int machine_constraints_current(struct regulator_dev *rdev,
1316 struct regulation_constraints *constraints)
1318 const struct regulator_ops *ops = rdev->desc->ops;
1319 int ret;
1321 if (!constraints->min_uA && !constraints->max_uA)
1322 return 0;
1324 if (constraints->min_uA > constraints->max_uA) {
1325 rdev_err(rdev, "Invalid current constraints\n");
1326 return -EINVAL;
1329 if (!ops->set_current_limit || !ops->get_current_limit) {
1330 rdev_warn(rdev, "Operation of current configuration missing\n");
1331 return 0;
1334 /* Set regulator current in constraints range */
1335 ret = ops->set_current_limit(rdev, constraints->min_uA,
1336 constraints->max_uA);
1337 if (ret < 0) {
1338 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1339 return ret;
1342 return 0;
1345 static int _regulator_do_enable(struct regulator_dev *rdev);
1347 static int notif_set_limit(struct regulator_dev *rdev,
1348 int (*set)(struct regulator_dev *, int, int, bool),
1349 int limit, int severity)
1351 bool enable;
1353 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1354 enable = false;
1355 limit = 0;
1356 } else {
1357 enable = true;
1360 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1361 limit = 0;
1363 return set(rdev, limit, severity, enable);
1366 static int handle_notify_limits(struct regulator_dev *rdev,
1367 int (*set)(struct regulator_dev *, int, int, bool),
1368 struct notification_limit *limits)
1370 int ret = 0;
1372 if (!set)
1373 return -EOPNOTSUPP;
1375 if (limits->prot)
1376 ret = notif_set_limit(rdev, set, limits->prot,
1377 REGULATOR_SEVERITY_PROT);
1378 if (ret)
1379 return ret;
1381 if (limits->err)
1382 ret = notif_set_limit(rdev, set, limits->err,
1383 REGULATOR_SEVERITY_ERR);
1384 if (ret)
1385 return ret;
1387 if (limits->warn)
1388 ret = notif_set_limit(rdev, set, limits->warn,
1389 REGULATOR_SEVERITY_WARN);
1391 return ret;
1394 * set_machine_constraints - sets regulator constraints
1395 * @rdev: regulator source
1397 * Allows platform initialisation code to define and constrain
1398 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1399 * Constraints *must* be set by platform code in order for some
1400 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1401 * set_mode.
1403 * Return: 0 on success or a negative error number on failure.
1405 static int set_machine_constraints(struct regulator_dev *rdev)
1407 int ret = 0;
1408 const struct regulator_ops *ops = rdev->desc->ops;
1410 ret = machine_constraints_voltage(rdev, rdev->constraints);
1411 if (ret != 0)
1412 return ret;
1414 ret = machine_constraints_current(rdev, rdev->constraints);
1415 if (ret != 0)
1416 return ret;
1418 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1419 ret = ops->set_input_current_limit(rdev,
1420 rdev->constraints->ilim_uA);
1421 if (ret < 0) {
1422 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1423 return ret;
1427 /* do we need to setup our suspend state */
1428 if (rdev->constraints->initial_state) {
1429 ret = suspend_set_initial_state(rdev);
1430 if (ret < 0) {
1431 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1432 return ret;
1436 if (rdev->constraints->initial_mode) {
1437 if (!ops->set_mode) {
1438 rdev_err(rdev, "no set_mode operation\n");
1439 return -EINVAL;
1442 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1443 if (ret < 0) {
1444 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1445 return ret;
1447 } else if (rdev->constraints->system_load) {
1449 * We'll only apply the initial system load if an
1450 * initial mode wasn't specified.
1452 drms_uA_update(rdev);
1455 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1456 && ops->set_ramp_delay) {
1457 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1458 if (ret < 0) {
1459 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1460 return ret;
1464 if (rdev->constraints->pull_down && ops->set_pull_down) {
1465 ret = ops->set_pull_down(rdev);
1466 if (ret < 0) {
1467 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1468 return ret;
1472 if (rdev->constraints->soft_start && ops->set_soft_start) {
1473 ret = ops->set_soft_start(rdev);
1474 if (ret < 0) {
1475 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1476 return ret;
1481 * Existing logic does not warn if over_current_protection is given as
1482 * a constraint but driver does not support that. I think we should
1483 * warn about this type of issues as it is possible someone changes
1484 * PMIC on board to another type - and the another PMIC's driver does
1485 * not support setting protection. Board composer may happily believe
1486 * the DT limits are respected - especially if the new PMIC HW also
1487 * supports protection but the driver does not. I won't change the logic
1488 * without hearing more experienced opinion on this though.
1490 * If warning is seen as a good idea then we can merge handling the
1491 * over-curret protection and detection and get rid of this special
1492 * handling.
1494 if (rdev->constraints->over_current_protection
1495 && ops->set_over_current_protection) {
1496 int lim = rdev->constraints->over_curr_limits.prot;
1498 ret = ops->set_over_current_protection(rdev, lim,
1499 REGULATOR_SEVERITY_PROT,
1500 true);
1501 if (ret < 0) {
1502 rdev_err(rdev, "failed to set over current protection: %pe\n",
1503 ERR_PTR(ret));
1504 return ret;
1508 if (rdev->constraints->over_current_detection)
1509 ret = handle_notify_limits(rdev,
1510 ops->set_over_current_protection,
1511 &rdev->constraints->over_curr_limits);
1512 if (ret) {
1513 if (ret != -EOPNOTSUPP) {
1514 rdev_err(rdev, "failed to set over current limits: %pe\n",
1515 ERR_PTR(ret));
1516 return ret;
1518 rdev_warn(rdev,
1519 "IC does not support requested over-current limits\n");
1522 if (rdev->constraints->over_voltage_detection)
1523 ret = handle_notify_limits(rdev,
1524 ops->set_over_voltage_protection,
1525 &rdev->constraints->over_voltage_limits);
1526 if (ret) {
1527 if (ret != -EOPNOTSUPP) {
1528 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1529 ERR_PTR(ret));
1530 return ret;
1532 rdev_warn(rdev,
1533 "IC does not support requested over voltage limits\n");
1536 if (rdev->constraints->under_voltage_detection)
1537 ret = handle_notify_limits(rdev,
1538 ops->set_under_voltage_protection,
1539 &rdev->constraints->under_voltage_limits);
1540 if (ret) {
1541 if (ret != -EOPNOTSUPP) {
1542 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1543 ERR_PTR(ret));
1544 return ret;
1546 rdev_warn(rdev,
1547 "IC does not support requested under voltage limits\n");
1550 if (rdev->constraints->over_temp_detection)
1551 ret = handle_notify_limits(rdev,
1552 ops->set_thermal_protection,
1553 &rdev->constraints->temp_limits);
1554 if (ret) {
1555 if (ret != -EOPNOTSUPP) {
1556 rdev_err(rdev, "failed to set temperature limits %pe\n",
1557 ERR_PTR(ret));
1558 return ret;
1560 rdev_warn(rdev,
1561 "IC does not support requested temperature limits\n");
1564 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1565 bool ad_state = (rdev->constraints->active_discharge ==
1566 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1568 ret = ops->set_active_discharge(rdev, ad_state);
1569 if (ret < 0) {
1570 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1571 return ret;
1576 * If there is no mechanism for controlling the regulator then
1577 * flag it as always_on so we don't end up duplicating checks
1578 * for this so much. Note that we could control the state of
1579 * a supply to control the output on a regulator that has no
1580 * direct control.
1582 if (!rdev->ena_pin && !ops->enable) {
1583 if (rdev->supply_name && !rdev->supply)
1584 return -EPROBE_DEFER;
1586 if (rdev->supply)
1587 rdev->constraints->always_on =
1588 rdev->supply->rdev->constraints->always_on;
1589 else
1590 rdev->constraints->always_on = true;
1593 /* If the constraints say the regulator should be on at this point
1594 * and we have control then make sure it is enabled.
1596 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1597 /* If we want to enable this regulator, make sure that we know
1598 * the supplying regulator.
1600 if (rdev->supply_name && !rdev->supply)
1601 return -EPROBE_DEFER;
1603 /* If supplying regulator has already been enabled,
1604 * it's not intended to have use_count increment
1605 * when rdev is only boot-on.
1607 if (rdev->supply &&
1608 (rdev->constraints->always_on ||
1609 !regulator_is_enabled(rdev->supply))) {
1610 ret = regulator_enable(rdev->supply);
1611 if (ret < 0) {
1612 _regulator_put(rdev->supply);
1613 rdev->supply = NULL;
1614 return ret;
1618 ret = _regulator_do_enable(rdev);
1619 if (ret < 0 && ret != -EINVAL) {
1620 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1621 return ret;
1624 if (rdev->constraints->always_on)
1625 rdev->use_count++;
1626 } else if (rdev->desc->off_on_delay) {
1627 rdev->last_off = ktime_get();
1630 print_constraints(rdev);
1631 return 0;
1635 * set_supply - set regulator supply regulator
1636 * @rdev: regulator (locked)
1637 * @supply_rdev: supply regulator (locked))
1639 * Called by platform initialisation code to set the supply regulator for this
1640 * regulator. This ensures that a regulators supply will also be enabled by the
1641 * core if it's child is enabled.
1643 * Return: 0 on success or a negative error number on failure.
1645 static int set_supply(struct regulator_dev *rdev,
1646 struct regulator_dev *supply_rdev)
1648 int err;
1650 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1652 if (!try_module_get(supply_rdev->owner))
1653 return -ENODEV;
1655 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1656 if (rdev->supply == NULL) {
1657 module_put(supply_rdev->owner);
1658 err = -ENOMEM;
1659 return err;
1661 supply_rdev->open_count++;
1663 return 0;
1667 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1668 * @rdev: regulator source
1669 * @consumer_dev_name: dev_name() string for device supply applies to
1670 * @supply: symbolic name for supply
1672 * Allows platform initialisation code to map physical regulator
1673 * sources to symbolic names for supplies for use by devices. Devices
1674 * should use these symbolic names to request regulators, avoiding the
1675 * need to provide board-specific regulator names as platform data.
1677 * Return: 0 on success or a negative error number on failure.
1679 static int set_consumer_device_supply(struct regulator_dev *rdev,
1680 const char *consumer_dev_name,
1681 const char *supply)
1683 struct regulator_map *node, *new_node;
1684 int has_dev;
1686 if (supply == NULL)
1687 return -EINVAL;
1689 if (consumer_dev_name != NULL)
1690 has_dev = 1;
1691 else
1692 has_dev = 0;
1694 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1695 if (new_node == NULL)
1696 return -ENOMEM;
1698 new_node->regulator = rdev;
1699 new_node->supply = supply;
1701 if (has_dev) {
1702 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1703 if (new_node->dev_name == NULL) {
1704 kfree(new_node);
1705 return -ENOMEM;
1709 mutex_lock(&regulator_list_mutex);
1710 list_for_each_entry(node, &regulator_map_list, list) {
1711 if (node->dev_name && consumer_dev_name) {
1712 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1713 continue;
1714 } else if (node->dev_name || consumer_dev_name) {
1715 continue;
1718 if (strcmp(node->supply, supply) != 0)
1719 continue;
1721 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1722 consumer_dev_name,
1723 dev_name(&node->regulator->dev),
1724 node->regulator->desc->name,
1725 supply,
1726 dev_name(&rdev->dev), rdev_get_name(rdev));
1727 goto fail;
1730 list_add(&new_node->list, &regulator_map_list);
1731 mutex_unlock(&regulator_list_mutex);
1733 return 0;
1735 fail:
1736 mutex_unlock(&regulator_list_mutex);
1737 kfree(new_node->dev_name);
1738 kfree(new_node);
1739 return -EBUSY;
1742 static void unset_regulator_supplies(struct regulator_dev *rdev)
1744 struct regulator_map *node, *n;
1746 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1747 if (rdev == node->regulator) {
1748 list_del(&node->list);
1749 kfree(node->dev_name);
1750 kfree(node);
1755 #ifdef CONFIG_DEBUG_FS
1756 static ssize_t constraint_flags_read_file(struct file *file,
1757 char __user *user_buf,
1758 size_t count, loff_t *ppos)
1760 const struct regulator *regulator = file->private_data;
1761 const struct regulation_constraints *c = regulator->rdev->constraints;
1762 char *buf;
1763 ssize_t ret;
1765 if (!c)
1766 return 0;
1768 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1769 if (!buf)
1770 return -ENOMEM;
1772 ret = snprintf(buf, PAGE_SIZE,
1773 "always_on: %u\n"
1774 "boot_on: %u\n"
1775 "apply_uV: %u\n"
1776 "ramp_disable: %u\n"
1777 "soft_start: %u\n"
1778 "pull_down: %u\n"
1779 "over_current_protection: %u\n",
1780 c->always_on,
1781 c->boot_on,
1782 c->apply_uV,
1783 c->ramp_disable,
1784 c->soft_start,
1785 c->pull_down,
1786 c->over_current_protection);
1788 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1789 kfree(buf);
1791 return ret;
1794 #endif
1796 static const struct file_operations constraint_flags_fops = {
1797 #ifdef CONFIG_DEBUG_FS
1798 .open = simple_open,
1799 .read = constraint_flags_read_file,
1800 .llseek = default_llseek,
1801 #endif
1804 #define REG_STR_SIZE 64
1806 static struct regulator *create_regulator(struct regulator_dev *rdev,
1807 struct device *dev,
1808 const char *supply_name)
1810 struct regulator *regulator;
1811 int err = 0;
1813 lockdep_assert_held_once(&rdev->mutex.base);
1815 if (dev) {
1816 char buf[REG_STR_SIZE];
1817 int size;
1819 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1820 dev->kobj.name, supply_name);
1821 if (size >= REG_STR_SIZE)
1822 return NULL;
1824 supply_name = kstrdup(buf, GFP_KERNEL);
1825 if (supply_name == NULL)
1826 return NULL;
1827 } else {
1828 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1829 if (supply_name == NULL)
1830 return NULL;
1833 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1834 if (regulator == NULL) {
1835 kfree_const(supply_name);
1836 return NULL;
1839 regulator->rdev = rdev;
1840 regulator->supply_name = supply_name;
1842 list_add(&regulator->list, &rdev->consumer_list);
1844 if (dev) {
1845 regulator->dev = dev;
1847 /* Add a link to the device sysfs entry */
1848 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1849 supply_name);
1850 if (err) {
1851 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1852 dev->kobj.name, ERR_PTR(err));
1853 /* non-fatal */
1857 if (err != -EEXIST) {
1858 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1859 if (IS_ERR(regulator->debugfs)) {
1860 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1861 regulator->debugfs = NULL;
1865 if (regulator->debugfs) {
1866 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1867 &regulator->uA_load);
1868 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1869 &regulator->voltage[PM_SUSPEND_ON].min_uV);
1870 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1871 &regulator->voltage[PM_SUSPEND_ON].max_uV);
1872 debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1873 regulator, &constraint_flags_fops);
1877 * Check now if the regulator is an always on regulator - if
1878 * it is then we don't need to do nearly so much work for
1879 * enable/disable calls.
1881 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1882 _regulator_is_enabled(rdev))
1883 regulator->always_on = true;
1885 return regulator;
1888 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1890 if (rdev->constraints && rdev->constraints->enable_time)
1891 return rdev->constraints->enable_time;
1892 if (rdev->desc->ops->enable_time)
1893 return rdev->desc->ops->enable_time(rdev);
1894 return rdev->desc->enable_time;
1897 static struct regulator_supply_alias *regulator_find_supply_alias(
1898 struct device *dev, const char *supply)
1900 struct regulator_supply_alias *map;
1902 list_for_each_entry(map, &regulator_supply_alias_list, list)
1903 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1904 return map;
1906 return NULL;
1909 static void regulator_supply_alias(struct device **dev, const char **supply)
1911 struct regulator_supply_alias *map;
1913 map = regulator_find_supply_alias(*dev, *supply);
1914 if (map) {
1915 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1916 *supply, map->alias_supply,
1917 dev_name(map->alias_dev));
1918 *dev = map->alias_dev;
1919 *supply = map->alias_supply;
1923 static int regulator_match(struct device *dev, const void *data)
1925 struct regulator_dev *r = dev_to_rdev(dev);
1927 return strcmp(rdev_get_name(r), data) == 0;
1930 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1932 struct device *dev;
1934 dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1936 return dev ? dev_to_rdev(dev) : NULL;
1940 * regulator_dev_lookup - lookup a regulator device.
1941 * @dev: device for regulator "consumer".
1942 * @supply: Supply name or regulator ID.
1944 * Return: pointer to &struct regulator_dev or ERR_PTR() encoded negative error number.
1946 * If successful, returns a struct regulator_dev that corresponds to the name
1947 * @supply and with the embedded struct device refcount incremented by one.
1948 * The refcount must be dropped by calling put_device().
1949 * On failure one of the following ERR_PTR() encoded values is returned:
1950 * -%ENODEV if lookup fails permanently, -%EPROBE_DEFER if lookup could succeed
1951 * in the future.
1953 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1954 const char *supply)
1956 struct regulator_dev *r = NULL;
1957 struct regulator_map *map;
1958 const char *devname = NULL;
1960 regulator_supply_alias(&dev, &supply);
1962 /* first do a dt based lookup */
1963 if (dev_of_node(dev)) {
1964 r = of_regulator_dev_lookup(dev, dev_of_node(dev), supply);
1965 if (!IS_ERR(r))
1966 return r;
1967 if (PTR_ERR(r) == -EPROBE_DEFER)
1968 return r;
1970 if (PTR_ERR(r) == -ENODEV)
1971 r = NULL;
1974 /* if not found, try doing it non-dt way */
1975 if (dev)
1976 devname = dev_name(dev);
1978 mutex_lock(&regulator_list_mutex);
1979 list_for_each_entry(map, &regulator_map_list, list) {
1980 /* If the mapping has a device set up it must match */
1981 if (map->dev_name &&
1982 (!devname || strcmp(map->dev_name, devname)))
1983 continue;
1985 if (strcmp(map->supply, supply) == 0 &&
1986 get_device(&map->regulator->dev)) {
1987 r = map->regulator;
1988 break;
1991 mutex_unlock(&regulator_list_mutex);
1993 if (r)
1994 return r;
1996 r = regulator_lookup_by_name(supply);
1997 if (r)
1998 return r;
2000 return ERR_PTR(-ENODEV);
2003 static int regulator_resolve_supply(struct regulator_dev *rdev)
2005 struct regulator_dev *r;
2006 struct device *dev = rdev->dev.parent;
2007 struct ww_acquire_ctx ww_ctx;
2008 int ret = 0;
2010 /* No supply to resolve? */
2011 if (!rdev->supply_name)
2012 return 0;
2014 /* Supply already resolved? (fast-path without locking contention) */
2015 if (rdev->supply)
2016 return 0;
2018 r = regulator_dev_lookup(dev, rdev->supply_name);
2019 if (IS_ERR(r)) {
2020 ret = PTR_ERR(r);
2022 /* Did the lookup explicitly defer for us? */
2023 if (ret == -EPROBE_DEFER)
2024 goto out;
2026 if (have_full_constraints()) {
2027 r = dummy_regulator_rdev;
2028 get_device(&r->dev);
2029 } else {
2030 dev_err(dev, "Failed to resolve %s-supply for %s\n",
2031 rdev->supply_name, rdev->desc->name);
2032 ret = -EPROBE_DEFER;
2033 goto out;
2037 if (r == rdev) {
2038 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2039 rdev->desc->name, rdev->supply_name);
2040 if (!have_full_constraints()) {
2041 ret = -EINVAL;
2042 goto out;
2044 r = dummy_regulator_rdev;
2045 get_device(&r->dev);
2049 * If the supply's parent device is not the same as the
2050 * regulator's parent device, then ensure the parent device
2051 * is bound before we resolve the supply, in case the parent
2052 * device get probe deferred and unregisters the supply.
2054 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2055 if (!device_is_bound(r->dev.parent)) {
2056 put_device(&r->dev);
2057 ret = -EPROBE_DEFER;
2058 goto out;
2062 /* Recursively resolve the supply of the supply */
2063 ret = regulator_resolve_supply(r);
2064 if (ret < 0) {
2065 put_device(&r->dev);
2066 goto out;
2070 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2071 * between rdev->supply null check and setting rdev->supply in
2072 * set_supply() from concurrent tasks.
2074 regulator_lock_two(rdev, r, &ww_ctx);
2076 /* Supply just resolved by a concurrent task? */
2077 if (rdev->supply) {
2078 regulator_unlock_two(rdev, r, &ww_ctx);
2079 put_device(&r->dev);
2080 goto out;
2083 ret = set_supply(rdev, r);
2084 if (ret < 0) {
2085 regulator_unlock_two(rdev, r, &ww_ctx);
2086 put_device(&r->dev);
2087 goto out;
2090 regulator_unlock_two(rdev, r, &ww_ctx);
2093 * In set_machine_constraints() we may have turned this regulator on
2094 * but we couldn't propagate to the supply if it hadn't been resolved
2095 * yet. Do it now.
2097 if (rdev->use_count) {
2098 ret = regulator_enable(rdev->supply);
2099 if (ret < 0) {
2100 _regulator_put(rdev->supply);
2101 rdev->supply = NULL;
2102 goto out;
2106 out:
2107 return ret;
2110 /* common pre-checks for regulator requests */
2111 int _regulator_get_common_check(struct device *dev, const char *id,
2112 enum regulator_get_type get_type)
2114 if (get_type >= MAX_GET_TYPE) {
2115 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2116 return -EINVAL;
2119 if (id == NULL) {
2120 dev_err(dev, "regulator request with no identifier\n");
2121 return -EINVAL;
2124 return 0;
2128 * _regulator_get_common - Common code for regulator requests
2129 * @rdev: regulator device pointer as returned by *regulator_dev_lookup()
2130 * Its reference count is expected to have been incremented.
2131 * @dev: device used for dev_printk messages
2132 * @id: Supply name or regulator ID
2133 * @get_type: enum regulator_get_type value corresponding to type of request
2135 * Returns: pointer to struct regulator corresponding to @rdev, or ERR_PTR()
2136 * encoded error.
2138 * This function should be chained with *regulator_dev_lookup() functions.
2140 struct regulator *_regulator_get_common(struct regulator_dev *rdev, struct device *dev,
2141 const char *id, enum regulator_get_type get_type)
2143 struct regulator *regulator;
2144 struct device_link *link;
2145 int ret;
2147 if (IS_ERR(rdev)) {
2148 ret = PTR_ERR(rdev);
2151 * If regulator_dev_lookup() fails with error other
2152 * than -ENODEV our job here is done, we simply return it.
2154 if (ret != -ENODEV)
2155 return ERR_PTR(ret);
2157 if (!have_full_constraints()) {
2158 dev_warn(dev,
2159 "incomplete constraints, dummy supplies not allowed (id=%s)\n", id);
2160 return ERR_PTR(-ENODEV);
2163 switch (get_type) {
2164 case NORMAL_GET:
2166 * Assume that a regulator is physically present and
2167 * enabled, even if it isn't hooked up, and just
2168 * provide a dummy.
2170 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2171 rdev = dummy_regulator_rdev;
2172 get_device(&rdev->dev);
2173 break;
2175 case EXCLUSIVE_GET:
2176 dev_warn(dev,
2177 "dummy supplies not allowed for exclusive requests (id=%s)\n", id);
2178 fallthrough;
2180 default:
2181 return ERR_PTR(-ENODEV);
2185 if (rdev->exclusive) {
2186 regulator = ERR_PTR(-EPERM);
2187 put_device(&rdev->dev);
2188 return regulator;
2191 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2192 regulator = ERR_PTR(-EBUSY);
2193 put_device(&rdev->dev);
2194 return regulator;
2197 mutex_lock(&regulator_list_mutex);
2198 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2199 mutex_unlock(&regulator_list_mutex);
2201 if (ret != 0) {
2202 regulator = ERR_PTR(-EPROBE_DEFER);
2203 put_device(&rdev->dev);
2204 return regulator;
2207 ret = regulator_resolve_supply(rdev);
2208 if (ret < 0) {
2209 regulator = ERR_PTR(ret);
2210 put_device(&rdev->dev);
2211 return regulator;
2214 if (!try_module_get(rdev->owner)) {
2215 regulator = ERR_PTR(-EPROBE_DEFER);
2216 put_device(&rdev->dev);
2217 return regulator;
2220 regulator_lock(rdev);
2221 regulator = create_regulator(rdev, dev, id);
2222 regulator_unlock(rdev);
2223 if (regulator == NULL) {
2224 regulator = ERR_PTR(-ENOMEM);
2225 module_put(rdev->owner);
2226 put_device(&rdev->dev);
2227 return regulator;
2230 rdev->open_count++;
2231 if (get_type == EXCLUSIVE_GET) {
2232 rdev->exclusive = 1;
2234 ret = _regulator_is_enabled(rdev);
2235 if (ret > 0) {
2236 rdev->use_count = 1;
2237 regulator->enable_count = 1;
2239 /* Propagate the regulator state to its supply */
2240 if (rdev->supply) {
2241 ret = regulator_enable(rdev->supply);
2242 if (ret < 0) {
2243 destroy_regulator(regulator);
2244 module_put(rdev->owner);
2245 put_device(&rdev->dev);
2246 return ERR_PTR(ret);
2249 } else {
2250 rdev->use_count = 0;
2251 regulator->enable_count = 0;
2255 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2256 if (!IS_ERR_OR_NULL(link))
2257 regulator->device_link = true;
2259 return regulator;
2262 /* Internal regulator request function */
2263 struct regulator *_regulator_get(struct device *dev, const char *id,
2264 enum regulator_get_type get_type)
2266 struct regulator_dev *rdev;
2267 int ret;
2269 ret = _regulator_get_common_check(dev, id, get_type);
2270 if (ret)
2271 return ERR_PTR(ret);
2273 rdev = regulator_dev_lookup(dev, id);
2274 return _regulator_get_common(rdev, dev, id, get_type);
2278 * regulator_get - lookup and obtain a reference to a regulator.
2279 * @dev: device for regulator "consumer"
2280 * @id: Supply name or regulator ID.
2282 * Use of supply names configured via set_consumer_device_supply() is
2283 * strongly encouraged. It is recommended that the supply name used
2284 * should match the name used for the supply and/or the relevant
2285 * device pins in the datasheet.
2287 * Return: Pointer to a &struct regulator corresponding to the regulator
2288 * producer, or an ERR_PTR() encoded negative error number.
2290 struct regulator *regulator_get(struct device *dev, const char *id)
2292 return _regulator_get(dev, id, NORMAL_GET);
2294 EXPORT_SYMBOL_GPL(regulator_get);
2297 * regulator_get_exclusive - obtain exclusive access to a regulator.
2298 * @dev: device for regulator "consumer"
2299 * @id: Supply name or regulator ID.
2301 * Other consumers will be unable to obtain this regulator while this
2302 * reference is held and the use count for the regulator will be
2303 * initialised to reflect the current state of the regulator.
2305 * This is intended for use by consumers which cannot tolerate shared
2306 * use of the regulator such as those which need to force the
2307 * regulator off for correct operation of the hardware they are
2308 * controlling.
2310 * Use of supply names configured via set_consumer_device_supply() is
2311 * strongly encouraged. It is recommended that the supply name used
2312 * should match the name used for the supply and/or the relevant
2313 * device pins in the datasheet.
2315 * Return: Pointer to a &struct regulator corresponding to the regulator
2316 * producer, or an ERR_PTR() encoded negative error number.
2318 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2320 return _regulator_get(dev, id, EXCLUSIVE_GET);
2322 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2325 * regulator_get_optional - obtain optional access to a regulator.
2326 * @dev: device for regulator "consumer"
2327 * @id: Supply name or regulator ID.
2329 * This is intended for use by consumers for devices which can have
2330 * some supplies unconnected in normal use, such as some MMC devices.
2331 * It can allow the regulator core to provide stub supplies for other
2332 * supplies requested using normal regulator_get() calls without
2333 * disrupting the operation of drivers that can handle absent
2334 * supplies.
2336 * Use of supply names configured via set_consumer_device_supply() is
2337 * strongly encouraged. It is recommended that the supply name used
2338 * should match the name used for the supply and/or the relevant
2339 * device pins in the datasheet.
2341 * Return: Pointer to a &struct regulator corresponding to the regulator
2342 * producer, or an ERR_PTR() encoded negative error number.
2344 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2346 return _regulator_get(dev, id, OPTIONAL_GET);
2348 EXPORT_SYMBOL_GPL(regulator_get_optional);
2350 static void destroy_regulator(struct regulator *regulator)
2352 struct regulator_dev *rdev = regulator->rdev;
2354 debugfs_remove_recursive(regulator->debugfs);
2356 if (regulator->dev) {
2357 if (regulator->device_link)
2358 device_link_remove(regulator->dev, &rdev->dev);
2360 /* remove any sysfs entries */
2361 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2364 regulator_lock(rdev);
2365 list_del(&regulator->list);
2367 rdev->open_count--;
2368 rdev->exclusive = 0;
2369 regulator_unlock(rdev);
2371 kfree_const(regulator->supply_name);
2372 kfree(regulator);
2375 /* regulator_list_mutex lock held by regulator_put() */
2376 static void _regulator_put(struct regulator *regulator)
2378 struct regulator_dev *rdev;
2380 if (IS_ERR_OR_NULL(regulator))
2381 return;
2383 lockdep_assert_held_once(&regulator_list_mutex);
2385 /* Docs say you must disable before calling regulator_put() */
2386 WARN_ON(regulator->enable_count);
2388 rdev = regulator->rdev;
2390 destroy_regulator(regulator);
2392 module_put(rdev->owner);
2393 put_device(&rdev->dev);
2397 * regulator_put - "free" the regulator source
2398 * @regulator: regulator source
2400 * Note: drivers must ensure that all regulator_enable calls made on this
2401 * regulator source are balanced by regulator_disable calls prior to calling
2402 * this function.
2404 void regulator_put(struct regulator *regulator)
2406 mutex_lock(&regulator_list_mutex);
2407 _regulator_put(regulator);
2408 mutex_unlock(&regulator_list_mutex);
2410 EXPORT_SYMBOL_GPL(regulator_put);
2413 * regulator_register_supply_alias - Provide device alias for supply lookup
2415 * @dev: device that will be given as the regulator "consumer"
2416 * @id: Supply name or regulator ID
2417 * @alias_dev: device that should be used to lookup the supply
2418 * @alias_id: Supply name or regulator ID that should be used to lookup the
2419 * supply
2421 * All lookups for id on dev will instead be conducted for alias_id on
2422 * alias_dev.
2424 * Return: 0 on success or a negative error number on failure.
2426 int regulator_register_supply_alias(struct device *dev, const char *id,
2427 struct device *alias_dev,
2428 const char *alias_id)
2430 struct regulator_supply_alias *map;
2432 map = regulator_find_supply_alias(dev, id);
2433 if (map)
2434 return -EEXIST;
2436 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2437 if (!map)
2438 return -ENOMEM;
2440 map->src_dev = dev;
2441 map->src_supply = id;
2442 map->alias_dev = alias_dev;
2443 map->alias_supply = alias_id;
2445 list_add(&map->list, &regulator_supply_alias_list);
2447 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2448 id, dev_name(dev), alias_id, dev_name(alias_dev));
2450 return 0;
2452 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2455 * regulator_unregister_supply_alias - Remove device alias
2457 * @dev: device that will be given as the regulator "consumer"
2458 * @id: Supply name or regulator ID
2460 * Remove a lookup alias if one exists for id on dev.
2462 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2464 struct regulator_supply_alias *map;
2466 map = regulator_find_supply_alias(dev, id);
2467 if (map) {
2468 list_del(&map->list);
2469 kfree(map);
2472 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2475 * regulator_bulk_register_supply_alias - register multiple aliases
2477 * @dev: device that will be given as the regulator "consumer"
2478 * @id: List of supply names or regulator IDs
2479 * @alias_dev: device that should be used to lookup the supply
2480 * @alias_id: List of supply names or regulator IDs that should be used to
2481 * lookup the supply
2482 * @num_id: Number of aliases to register
2484 * This helper function allows drivers to register several supply
2485 * aliases in one operation. If any of the aliases cannot be
2486 * registered any aliases that were registered will be removed
2487 * before returning to the caller.
2489 * Return: 0 on success or a negative error number on failure.
2491 int regulator_bulk_register_supply_alias(struct device *dev,
2492 const char *const *id,
2493 struct device *alias_dev,
2494 const char *const *alias_id,
2495 int num_id)
2497 int i;
2498 int ret;
2500 for (i = 0; i < num_id; ++i) {
2501 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2502 alias_id[i]);
2503 if (ret < 0)
2504 goto err;
2507 return 0;
2509 err:
2510 dev_err(dev,
2511 "Failed to create supply alias %s,%s -> %s,%s\n",
2512 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2514 while (--i >= 0)
2515 regulator_unregister_supply_alias(dev, id[i]);
2517 return ret;
2519 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2522 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2524 * @dev: device that will be given as the regulator "consumer"
2525 * @id: List of supply names or regulator IDs
2526 * @num_id: Number of aliases to unregister
2528 * This helper function allows drivers to unregister several supply
2529 * aliases in one operation.
2531 void regulator_bulk_unregister_supply_alias(struct device *dev,
2532 const char *const *id,
2533 int num_id)
2535 int i;
2537 for (i = 0; i < num_id; ++i)
2538 regulator_unregister_supply_alias(dev, id[i]);
2540 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2543 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2544 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2545 const struct regulator_config *config)
2547 struct regulator_enable_gpio *pin, *new_pin;
2548 struct gpio_desc *gpiod;
2550 gpiod = config->ena_gpiod;
2551 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2553 mutex_lock(&regulator_list_mutex);
2555 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2556 if (pin->gpiod == gpiod) {
2557 rdev_dbg(rdev, "GPIO is already used\n");
2558 goto update_ena_gpio_to_rdev;
2562 if (new_pin == NULL) {
2563 mutex_unlock(&regulator_list_mutex);
2564 return -ENOMEM;
2567 pin = new_pin;
2568 new_pin = NULL;
2570 pin->gpiod = gpiod;
2571 list_add(&pin->list, &regulator_ena_gpio_list);
2573 update_ena_gpio_to_rdev:
2574 pin->request_count++;
2575 rdev->ena_pin = pin;
2577 mutex_unlock(&regulator_list_mutex);
2578 kfree(new_pin);
2580 return 0;
2583 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2585 struct regulator_enable_gpio *pin, *n;
2587 if (!rdev->ena_pin)
2588 return;
2590 /* Free the GPIO only in case of no use */
2591 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2592 if (pin != rdev->ena_pin)
2593 continue;
2595 if (--pin->request_count)
2596 break;
2598 gpiod_put(pin->gpiod);
2599 list_del(&pin->list);
2600 kfree(pin);
2601 break;
2604 rdev->ena_pin = NULL;
2608 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2609 * @rdev: regulator_dev structure
2610 * @enable: enable GPIO at initial use?
2612 * GPIO is enabled in case of initial use. (enable_count is 0)
2613 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2615 * Return: 0 on success or a negative error number on failure.
2617 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2619 struct regulator_enable_gpio *pin = rdev->ena_pin;
2621 if (!pin)
2622 return -EINVAL;
2624 if (enable) {
2625 /* Enable GPIO at initial use */
2626 if (pin->enable_count == 0)
2627 gpiod_set_value_cansleep(pin->gpiod, 1);
2629 pin->enable_count++;
2630 } else {
2631 if (pin->enable_count > 1) {
2632 pin->enable_count--;
2633 return 0;
2636 /* Disable GPIO if not used */
2637 if (pin->enable_count <= 1) {
2638 gpiod_set_value_cansleep(pin->gpiod, 0);
2639 pin->enable_count = 0;
2643 return 0;
2647 * _regulator_check_status_enabled - check if regulator status can be
2648 * interpreted as "regulator is enabled"
2649 * @rdev: the regulator device to check
2651 * Return:
2652 * * 1 - if status shows regulator is in enabled state
2653 * * 0 - if not enabled state
2654 * * Error Value - as received from ops->get_status()
2656 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2658 int ret = rdev->desc->ops->get_status(rdev);
2660 if (ret < 0) {
2661 rdev_info(rdev, "get_status returned error: %d\n", ret);
2662 return ret;
2665 switch (ret) {
2666 case REGULATOR_STATUS_OFF:
2667 case REGULATOR_STATUS_ERROR:
2668 case REGULATOR_STATUS_UNDEFINED:
2669 return 0;
2670 default:
2671 return 1;
2675 static int _regulator_do_enable(struct regulator_dev *rdev)
2677 int ret, delay;
2679 /* Query before enabling in case configuration dependent. */
2680 ret = _regulator_get_enable_time(rdev);
2681 if (ret >= 0) {
2682 delay = ret;
2683 } else {
2684 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2685 delay = 0;
2688 trace_regulator_enable(rdev_get_name(rdev));
2690 if (rdev->desc->off_on_delay) {
2691 /* if needed, keep a distance of off_on_delay from last time
2692 * this regulator was disabled.
2694 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2695 s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2697 if (remaining > 0)
2698 fsleep(remaining);
2701 if (rdev->ena_pin) {
2702 if (!rdev->ena_gpio_state) {
2703 ret = regulator_ena_gpio_ctrl(rdev, true);
2704 if (ret < 0)
2705 return ret;
2706 rdev->ena_gpio_state = 1;
2708 } else if (rdev->desc->ops->enable) {
2709 ret = rdev->desc->ops->enable(rdev);
2710 if (ret < 0)
2711 return ret;
2712 } else {
2713 return -EINVAL;
2716 /* Allow the regulator to ramp; it would be useful to extend
2717 * this for bulk operations so that the regulators can ramp
2718 * together.
2720 trace_regulator_enable_delay(rdev_get_name(rdev));
2722 /* If poll_enabled_time is set, poll upto the delay calculated
2723 * above, delaying poll_enabled_time uS to check if the regulator
2724 * actually got enabled.
2725 * If the regulator isn't enabled after our delay helper has expired,
2726 * return -ETIMEDOUT.
2728 if (rdev->desc->poll_enabled_time) {
2729 int time_remaining = delay;
2731 while (time_remaining > 0) {
2732 fsleep(rdev->desc->poll_enabled_time);
2734 if (rdev->desc->ops->get_status) {
2735 ret = _regulator_check_status_enabled(rdev);
2736 if (ret < 0)
2737 return ret;
2738 else if (ret)
2739 break;
2740 } else if (rdev->desc->ops->is_enabled(rdev))
2741 break;
2743 time_remaining -= rdev->desc->poll_enabled_time;
2746 if (time_remaining <= 0) {
2747 rdev_err(rdev, "Enabled check timed out\n");
2748 return -ETIMEDOUT;
2750 } else {
2751 fsleep(delay);
2754 trace_regulator_enable_complete(rdev_get_name(rdev));
2756 return 0;
2760 * _regulator_handle_consumer_enable - handle that a consumer enabled
2761 * @regulator: regulator source
2763 * Some things on a regulator consumer (like the contribution towards total
2764 * load on the regulator) only have an effect when the consumer wants the
2765 * regulator enabled. Explained in example with two consumers of the same
2766 * regulator:
2767 * consumer A: set_load(100); => total load = 0
2768 * consumer A: regulator_enable(); => total load = 100
2769 * consumer B: set_load(1000); => total load = 100
2770 * consumer B: regulator_enable(); => total load = 1100
2771 * consumer A: regulator_disable(); => total_load = 1000
2773 * This function (together with _regulator_handle_consumer_disable) is
2774 * responsible for keeping track of the refcount for a given regulator consumer
2775 * and applying / unapplying these things.
2777 * Return: 0 on success or negative error number on failure.
2779 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2781 int ret;
2782 struct regulator_dev *rdev = regulator->rdev;
2784 lockdep_assert_held_once(&rdev->mutex.base);
2786 regulator->enable_count++;
2787 if (regulator->uA_load && regulator->enable_count == 1) {
2788 ret = drms_uA_update(rdev);
2789 if (ret)
2790 regulator->enable_count--;
2791 return ret;
2794 return 0;
2798 * _regulator_handle_consumer_disable - handle that a consumer disabled
2799 * @regulator: regulator source
2801 * The opposite of _regulator_handle_consumer_enable().
2803 * Return: 0 on success or a negative error number on failure.
2805 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2807 struct regulator_dev *rdev = regulator->rdev;
2809 lockdep_assert_held_once(&rdev->mutex.base);
2811 if (!regulator->enable_count) {
2812 rdev_err(rdev, "Underflow of regulator enable count\n");
2813 return -EINVAL;
2816 regulator->enable_count--;
2817 if (regulator->uA_load && regulator->enable_count == 0)
2818 return drms_uA_update(rdev);
2820 return 0;
2823 /* locks held by regulator_enable() */
2824 static int _regulator_enable(struct regulator *regulator)
2826 struct regulator_dev *rdev = regulator->rdev;
2827 int ret;
2829 lockdep_assert_held_once(&rdev->mutex.base);
2831 if (rdev->use_count == 0 && rdev->supply) {
2832 ret = _regulator_enable(rdev->supply);
2833 if (ret < 0)
2834 return ret;
2837 /* balance only if there are regulators coupled */
2838 if (rdev->coupling_desc.n_coupled > 1) {
2839 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2840 if (ret < 0)
2841 goto err_disable_supply;
2844 ret = _regulator_handle_consumer_enable(regulator);
2845 if (ret < 0)
2846 goto err_disable_supply;
2848 if (rdev->use_count == 0) {
2850 * The regulator may already be enabled if it's not switchable
2851 * or was left on
2853 ret = _regulator_is_enabled(rdev);
2854 if (ret == -EINVAL || ret == 0) {
2855 if (!regulator_ops_is_valid(rdev,
2856 REGULATOR_CHANGE_STATUS)) {
2857 ret = -EPERM;
2858 goto err_consumer_disable;
2861 ret = _regulator_do_enable(rdev);
2862 if (ret < 0)
2863 goto err_consumer_disable;
2865 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2866 NULL);
2867 } else if (ret < 0) {
2868 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2869 goto err_consumer_disable;
2871 /* Fallthrough on positive return values - already enabled */
2874 if (regulator->enable_count == 1)
2875 rdev->use_count++;
2877 return 0;
2879 err_consumer_disable:
2880 _regulator_handle_consumer_disable(regulator);
2882 err_disable_supply:
2883 if (rdev->use_count == 0 && rdev->supply)
2884 _regulator_disable(rdev->supply);
2886 return ret;
2890 * regulator_enable - enable regulator output
2891 * @regulator: regulator source
2893 * Request that the regulator be enabled with the regulator output at
2894 * the predefined voltage or current value. Calls to regulator_enable()
2895 * must be balanced with calls to regulator_disable().
2897 * NOTE: the output value can be set by other drivers, boot loader or may be
2898 * hardwired in the regulator.
2900 * Return: 0 on success or a negative error number on failure.
2902 int regulator_enable(struct regulator *regulator)
2904 struct regulator_dev *rdev = regulator->rdev;
2905 struct ww_acquire_ctx ww_ctx;
2906 int ret;
2908 regulator_lock_dependent(rdev, &ww_ctx);
2909 ret = _regulator_enable(regulator);
2910 regulator_unlock_dependent(rdev, &ww_ctx);
2912 return ret;
2914 EXPORT_SYMBOL_GPL(regulator_enable);
2916 static int _regulator_do_disable(struct regulator_dev *rdev)
2918 int ret;
2920 trace_regulator_disable(rdev_get_name(rdev));
2922 if (rdev->ena_pin) {
2923 if (rdev->ena_gpio_state) {
2924 ret = regulator_ena_gpio_ctrl(rdev, false);
2925 if (ret < 0)
2926 return ret;
2927 rdev->ena_gpio_state = 0;
2930 } else if (rdev->desc->ops->disable) {
2931 ret = rdev->desc->ops->disable(rdev);
2932 if (ret != 0)
2933 return ret;
2936 if (rdev->desc->off_on_delay)
2937 rdev->last_off = ktime_get_boottime();
2939 trace_regulator_disable_complete(rdev_get_name(rdev));
2941 return 0;
2944 /* locks held by regulator_disable() */
2945 static int _regulator_disable(struct regulator *regulator)
2947 struct regulator_dev *rdev = regulator->rdev;
2948 int ret = 0;
2950 lockdep_assert_held_once(&rdev->mutex.base);
2952 if (WARN(regulator->enable_count == 0,
2953 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2954 return -EIO;
2956 if (regulator->enable_count == 1) {
2957 /* disabling last enable_count from this regulator */
2958 /* are we the last user and permitted to disable ? */
2959 if (rdev->use_count == 1 &&
2960 (rdev->constraints && !rdev->constraints->always_on)) {
2962 /* we are last user */
2963 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2964 ret = _notifier_call_chain(rdev,
2965 REGULATOR_EVENT_PRE_DISABLE,
2966 NULL);
2967 if (ret & NOTIFY_STOP_MASK)
2968 return -EINVAL;
2970 ret = _regulator_do_disable(rdev);
2971 if (ret < 0) {
2972 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2973 _notifier_call_chain(rdev,
2974 REGULATOR_EVENT_ABORT_DISABLE,
2975 NULL);
2976 return ret;
2978 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2979 NULL);
2982 rdev->use_count = 0;
2983 } else if (rdev->use_count > 1) {
2984 rdev->use_count--;
2988 if (ret == 0)
2989 ret = _regulator_handle_consumer_disable(regulator);
2991 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2992 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2994 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2995 ret = _regulator_disable(rdev->supply);
2997 return ret;
3001 * regulator_disable - disable regulator output
3002 * @regulator: regulator source
3004 * Disable the regulator output voltage or current. Calls to
3005 * regulator_enable() must be balanced with calls to
3006 * regulator_disable().
3008 * NOTE: this will only disable the regulator output if no other consumer
3009 * devices have it enabled, the regulator device supports disabling and
3010 * machine constraints permit this operation.
3012 * Return: 0 on success or a negative error number on failure.
3014 int regulator_disable(struct regulator *regulator)
3016 struct regulator_dev *rdev = regulator->rdev;
3017 struct ww_acquire_ctx ww_ctx;
3018 int ret;
3020 regulator_lock_dependent(rdev, &ww_ctx);
3021 ret = _regulator_disable(regulator);
3022 regulator_unlock_dependent(rdev, &ww_ctx);
3024 return ret;
3026 EXPORT_SYMBOL_GPL(regulator_disable);
3028 /* locks held by regulator_force_disable() */
3029 static int _regulator_force_disable(struct regulator_dev *rdev)
3031 int ret = 0;
3033 lockdep_assert_held_once(&rdev->mutex.base);
3035 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3036 REGULATOR_EVENT_PRE_DISABLE, NULL);
3037 if (ret & NOTIFY_STOP_MASK)
3038 return -EINVAL;
3040 ret = _regulator_do_disable(rdev);
3041 if (ret < 0) {
3042 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3043 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3044 REGULATOR_EVENT_ABORT_DISABLE, NULL);
3045 return ret;
3048 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3049 REGULATOR_EVENT_DISABLE, NULL);
3051 return 0;
3055 * regulator_force_disable - force disable regulator output
3056 * @regulator: regulator source
3058 * Forcibly disable the regulator output voltage or current.
3059 * NOTE: this *will* disable the regulator output even if other consumer
3060 * devices have it enabled. This should be used for situations when device
3061 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3063 * Return: 0 on success or a negative error number on failure.
3065 int regulator_force_disable(struct regulator *regulator)
3067 struct regulator_dev *rdev = regulator->rdev;
3068 struct ww_acquire_ctx ww_ctx;
3069 int ret;
3071 regulator_lock_dependent(rdev, &ww_ctx);
3073 ret = _regulator_force_disable(regulator->rdev);
3075 if (rdev->coupling_desc.n_coupled > 1)
3076 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3078 if (regulator->uA_load) {
3079 regulator->uA_load = 0;
3080 ret = drms_uA_update(rdev);
3083 if (rdev->use_count != 0 && rdev->supply)
3084 _regulator_disable(rdev->supply);
3086 regulator_unlock_dependent(rdev, &ww_ctx);
3088 return ret;
3090 EXPORT_SYMBOL_GPL(regulator_force_disable);
3092 static void regulator_disable_work(struct work_struct *work)
3094 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3095 disable_work.work);
3096 struct ww_acquire_ctx ww_ctx;
3097 int count, i, ret;
3098 struct regulator *regulator;
3099 int total_count = 0;
3101 regulator_lock_dependent(rdev, &ww_ctx);
3104 * Workqueue functions queue the new work instance while the previous
3105 * work instance is being processed. Cancel the queued work instance
3106 * as the work instance under processing does the job of the queued
3107 * work instance.
3109 cancel_delayed_work(&rdev->disable_work);
3111 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3112 count = regulator->deferred_disables;
3114 if (!count)
3115 continue;
3117 total_count += count;
3118 regulator->deferred_disables = 0;
3120 for (i = 0; i < count; i++) {
3121 ret = _regulator_disable(regulator);
3122 if (ret != 0)
3123 rdev_err(rdev, "Deferred disable failed: %pe\n",
3124 ERR_PTR(ret));
3127 WARN_ON(!total_count);
3129 if (rdev->coupling_desc.n_coupled > 1)
3130 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3132 regulator_unlock_dependent(rdev, &ww_ctx);
3136 * regulator_disable_deferred - disable regulator output with delay
3137 * @regulator: regulator source
3138 * @ms: milliseconds until the regulator is disabled
3140 * Execute regulator_disable() on the regulator after a delay. This
3141 * is intended for use with devices that require some time to quiesce.
3143 * NOTE: this will only disable the regulator output if no other consumer
3144 * devices have it enabled, the regulator device supports disabling and
3145 * machine constraints permit this operation.
3147 * Return: 0 on success or a negative error number on failure.
3149 int regulator_disable_deferred(struct regulator *regulator, int ms)
3151 struct regulator_dev *rdev = regulator->rdev;
3153 if (!ms)
3154 return regulator_disable(regulator);
3156 regulator_lock(rdev);
3157 regulator->deferred_disables++;
3158 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3159 msecs_to_jiffies(ms));
3160 regulator_unlock(rdev);
3162 return 0;
3164 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3166 static int _regulator_is_enabled(struct regulator_dev *rdev)
3168 /* A GPIO control always takes precedence */
3169 if (rdev->ena_pin)
3170 return rdev->ena_gpio_state;
3172 /* If we don't know then assume that the regulator is always on */
3173 if (!rdev->desc->ops->is_enabled)
3174 return 1;
3176 return rdev->desc->ops->is_enabled(rdev);
3179 static int _regulator_list_voltage(struct regulator_dev *rdev,
3180 unsigned selector, int lock)
3182 const struct regulator_ops *ops = rdev->desc->ops;
3183 int ret;
3185 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3186 return rdev->desc->fixed_uV;
3188 if (ops->list_voltage) {
3189 if (selector >= rdev->desc->n_voltages)
3190 return -EINVAL;
3191 if (selector < rdev->desc->linear_min_sel)
3192 return 0;
3193 if (lock)
3194 regulator_lock(rdev);
3195 ret = ops->list_voltage(rdev, selector);
3196 if (lock)
3197 regulator_unlock(rdev);
3198 } else if (rdev->is_switch && rdev->supply) {
3199 ret = _regulator_list_voltage(rdev->supply->rdev,
3200 selector, lock);
3201 } else {
3202 return -EINVAL;
3205 if (ret > 0) {
3206 if (ret < rdev->constraints->min_uV)
3207 ret = 0;
3208 else if (ret > rdev->constraints->max_uV)
3209 ret = 0;
3212 return ret;
3216 * regulator_is_enabled - is the regulator output enabled
3217 * @regulator: regulator source
3219 * Note that the device backing this regulator handle can have multiple
3220 * users, so it might be enabled even if regulator_enable() was never
3221 * called for this particular source.
3223 * Return: Positive if the regulator driver backing the source/client
3224 * has requested that the device be enabled, zero if it hasn't,
3225 * else a negative error number.
3227 int regulator_is_enabled(struct regulator *regulator)
3229 int ret;
3231 if (regulator->always_on)
3232 return 1;
3234 regulator_lock(regulator->rdev);
3235 ret = _regulator_is_enabled(regulator->rdev);
3236 regulator_unlock(regulator->rdev);
3238 return ret;
3240 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3243 * regulator_count_voltages - count regulator_list_voltage() selectors
3244 * @regulator: regulator source
3246 * Return: Number of selectors for @regulator, or negative error number.
3248 * Selectors are numbered starting at zero, and typically correspond to
3249 * bitfields in hardware registers.
3251 int regulator_count_voltages(struct regulator *regulator)
3253 struct regulator_dev *rdev = regulator->rdev;
3255 if (rdev->desc->n_voltages)
3256 return rdev->desc->n_voltages;
3258 if (!rdev->is_switch || !rdev->supply)
3259 return -EINVAL;
3261 return regulator_count_voltages(rdev->supply);
3263 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3266 * regulator_list_voltage - enumerate supported voltages
3267 * @regulator: regulator source
3268 * @selector: identify voltage to list
3269 * Context: can sleep
3271 * Return: Voltage for @selector that can be passed to regulator_set_voltage(),
3272 * 0 if @selector can't be used on this system, or a negative error
3273 * number on failure.
3275 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3277 return _regulator_list_voltage(regulator->rdev, selector, 1);
3279 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3282 * regulator_get_regmap - get the regulator's register map
3283 * @regulator: regulator source
3285 * Return: Pointer to the &struct regmap for @regulator, or ERR_PTR()
3286 * encoded -%EOPNOTSUPP if @regulator doesn't use regmap.
3288 struct regmap *regulator_get_regmap(struct regulator *regulator)
3290 struct regmap *map = regulator->rdev->regmap;
3292 return map ? map : ERR_PTR(-EOPNOTSUPP);
3294 EXPORT_SYMBOL_GPL(regulator_get_regmap);
3297 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3298 * @regulator: regulator source
3299 * @vsel_reg: voltage selector register, output parameter
3300 * @vsel_mask: mask for voltage selector bitfield, output parameter
3302 * Returns the hardware register offset and bitmask used for setting the
3303 * regulator voltage. This might be useful when configuring voltage-scaling
3304 * hardware or firmware that can make I2C requests behind the kernel's back,
3305 * for example.
3307 * Return: 0 on success, or -%EOPNOTSUPP if the regulator does not support
3308 * voltage selectors.
3310 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3311 * and 0 is returned, otherwise a negative error number is returned.
3313 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3314 unsigned *vsel_reg,
3315 unsigned *vsel_mask)
3317 struct regulator_dev *rdev = regulator->rdev;
3318 const struct regulator_ops *ops = rdev->desc->ops;
3320 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3321 return -EOPNOTSUPP;
3323 *vsel_reg = rdev->desc->vsel_reg;
3324 *vsel_mask = rdev->desc->vsel_mask;
3326 return 0;
3328 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3331 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3332 * @regulator: regulator source
3333 * @selector: identify voltage to list
3335 * Converts the selector to a hardware-specific voltage selector that can be
3336 * directly written to the regulator registers. The address of the voltage
3337 * register can be determined by calling @regulator_get_hardware_vsel_register.
3339 * Return: 0 on success, -%EINVAL if the selector is outside the supported
3340 * range, or -%EOPNOTSUPP if the regulator does not support voltage
3341 * selectors.
3343 int regulator_list_hardware_vsel(struct regulator *regulator,
3344 unsigned selector)
3346 struct regulator_dev *rdev = regulator->rdev;
3347 const struct regulator_ops *ops = rdev->desc->ops;
3349 if (selector >= rdev->desc->n_voltages)
3350 return -EINVAL;
3351 if (selector < rdev->desc->linear_min_sel)
3352 return 0;
3353 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3354 return -EOPNOTSUPP;
3356 return selector;
3358 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3361 * regulator_hardware_enable - access the HW for enable/disable regulator
3362 * @regulator: regulator source
3363 * @enable: true for enable, false for disable
3365 * Request that the regulator be enabled/disabled with the regulator output at
3366 * the predefined voltage or current value.
3368 * Return: 0 on success or a negative error number on failure.
3370 int regulator_hardware_enable(struct regulator *regulator, bool enable)
3372 struct regulator_dev *rdev = regulator->rdev;
3373 const struct regulator_ops *ops = rdev->desc->ops;
3374 int ret = -EOPNOTSUPP;
3376 if (!rdev->exclusive || !ops || !ops->enable || !ops->disable)
3377 return ret;
3379 if (enable)
3380 ret = ops->enable(rdev);
3381 else
3382 ret = ops->disable(rdev);
3384 return ret;
3386 EXPORT_SYMBOL_GPL(regulator_hardware_enable);
3389 * regulator_get_linear_step - return the voltage step size between VSEL values
3390 * @regulator: regulator source
3392 * Return: The voltage step size between VSEL values for linear regulators,
3393 * or 0 if the regulator isn't a linear regulator.
3395 unsigned int regulator_get_linear_step(struct regulator *regulator)
3397 struct regulator_dev *rdev = regulator->rdev;
3399 return rdev->desc->uV_step;
3401 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3404 * regulator_is_supported_voltage - check if a voltage range can be supported
3406 * @regulator: Regulator to check.
3407 * @min_uV: Minimum required voltage in uV.
3408 * @max_uV: Maximum required voltage in uV.
3410 * Return: 1 if the voltage range is supported, 0 if not, or a negative error
3411 * number if @regulator's voltage can't be changed and voltage readback
3412 * failed.
3414 int regulator_is_supported_voltage(struct regulator *regulator,
3415 int min_uV, int max_uV)
3417 struct regulator_dev *rdev = regulator->rdev;
3418 int i, voltages, ret;
3420 /* If we can't change voltage check the current voltage */
3421 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3422 ret = regulator_get_voltage(regulator);
3423 if (ret >= 0)
3424 return min_uV <= ret && ret <= max_uV;
3425 else
3426 return ret;
3429 /* Any voltage within constrains range is fine? */
3430 if (rdev->desc->continuous_voltage_range)
3431 return min_uV >= rdev->constraints->min_uV &&
3432 max_uV <= rdev->constraints->max_uV;
3434 ret = regulator_count_voltages(regulator);
3435 if (ret < 0)
3436 return 0;
3437 voltages = ret;
3439 for (i = 0; i < voltages; i++) {
3440 ret = regulator_list_voltage(regulator, i);
3442 if (ret >= min_uV && ret <= max_uV)
3443 return 1;
3446 return 0;
3448 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3450 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3451 int max_uV)
3453 const struct regulator_desc *desc = rdev->desc;
3455 if (desc->ops->map_voltage)
3456 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3458 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3459 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3461 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3462 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3464 if (desc->ops->list_voltage ==
3465 regulator_list_voltage_pickable_linear_range)
3466 return regulator_map_voltage_pickable_linear_range(rdev,
3467 min_uV, max_uV);
3469 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3472 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3473 int min_uV, int max_uV,
3474 unsigned *selector)
3476 struct pre_voltage_change_data data;
3477 int ret;
3479 data.old_uV = regulator_get_voltage_rdev(rdev);
3480 data.min_uV = min_uV;
3481 data.max_uV = max_uV;
3482 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3483 &data);
3484 if (ret & NOTIFY_STOP_MASK)
3485 return -EINVAL;
3487 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3488 if (ret >= 0)
3489 return ret;
3491 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3492 (void *)data.old_uV);
3494 return ret;
3497 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3498 int uV, unsigned selector)
3500 struct pre_voltage_change_data data;
3501 int ret;
3503 data.old_uV = regulator_get_voltage_rdev(rdev);
3504 data.min_uV = uV;
3505 data.max_uV = uV;
3506 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3507 &data);
3508 if (ret & NOTIFY_STOP_MASK)
3509 return -EINVAL;
3511 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3512 if (ret >= 0)
3513 return ret;
3515 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3516 (void *)data.old_uV);
3518 return ret;
3521 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3522 int uV, int new_selector)
3524 const struct regulator_ops *ops = rdev->desc->ops;
3525 int diff, old_sel, curr_sel, ret;
3527 /* Stepping is only needed if the regulator is enabled. */
3528 if (!_regulator_is_enabled(rdev))
3529 goto final_set;
3531 if (!ops->get_voltage_sel)
3532 return -EINVAL;
3534 old_sel = ops->get_voltage_sel(rdev);
3535 if (old_sel < 0)
3536 return old_sel;
3538 diff = new_selector - old_sel;
3539 if (diff == 0)
3540 return 0; /* No change needed. */
3542 if (diff > 0) {
3543 /* Stepping up. */
3544 for (curr_sel = old_sel + rdev->desc->vsel_step;
3545 curr_sel < new_selector;
3546 curr_sel += rdev->desc->vsel_step) {
3548 * Call the callback directly instead of using
3549 * _regulator_call_set_voltage_sel() as we don't
3550 * want to notify anyone yet. Same in the branch
3551 * below.
3553 ret = ops->set_voltage_sel(rdev, curr_sel);
3554 if (ret)
3555 goto try_revert;
3557 } else {
3558 /* Stepping down. */
3559 for (curr_sel = old_sel - rdev->desc->vsel_step;
3560 curr_sel > new_selector;
3561 curr_sel -= rdev->desc->vsel_step) {
3562 ret = ops->set_voltage_sel(rdev, curr_sel);
3563 if (ret)
3564 goto try_revert;
3568 final_set:
3569 /* The final selector will trigger the notifiers. */
3570 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3572 try_revert:
3574 * At least try to return to the previous voltage if setting a new
3575 * one failed.
3577 (void)ops->set_voltage_sel(rdev, old_sel);
3578 return ret;
3581 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3582 int old_uV, int new_uV)
3584 unsigned int ramp_delay = 0;
3586 if (rdev->constraints->ramp_delay)
3587 ramp_delay = rdev->constraints->ramp_delay;
3588 else if (rdev->desc->ramp_delay)
3589 ramp_delay = rdev->desc->ramp_delay;
3590 else if (rdev->constraints->settling_time)
3591 return rdev->constraints->settling_time;
3592 else if (rdev->constraints->settling_time_up &&
3593 (new_uV > old_uV))
3594 return rdev->constraints->settling_time_up;
3595 else if (rdev->constraints->settling_time_down &&
3596 (new_uV < old_uV))
3597 return rdev->constraints->settling_time_down;
3599 if (ramp_delay == 0)
3600 return 0;
3602 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3605 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3606 int min_uV, int max_uV)
3608 int ret;
3609 int delay = 0;
3610 int best_val = 0;
3611 unsigned int selector;
3612 int old_selector = -1;
3613 const struct regulator_ops *ops = rdev->desc->ops;
3614 int old_uV = regulator_get_voltage_rdev(rdev);
3616 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3618 min_uV += rdev->constraints->uV_offset;
3619 max_uV += rdev->constraints->uV_offset;
3622 * If we can't obtain the old selector there is not enough
3623 * info to call set_voltage_time_sel().
3625 if (_regulator_is_enabled(rdev) &&
3626 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3627 old_selector = ops->get_voltage_sel(rdev);
3628 if (old_selector < 0)
3629 return old_selector;
3632 if (ops->set_voltage) {
3633 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3634 &selector);
3636 if (ret >= 0) {
3637 if (ops->list_voltage)
3638 best_val = ops->list_voltage(rdev,
3639 selector);
3640 else
3641 best_val = regulator_get_voltage_rdev(rdev);
3644 } else if (ops->set_voltage_sel) {
3645 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3646 if (ret >= 0) {
3647 best_val = ops->list_voltage(rdev, ret);
3648 if (min_uV <= best_val && max_uV >= best_val) {
3649 selector = ret;
3650 if (old_selector == selector)
3651 ret = 0;
3652 else if (rdev->desc->vsel_step)
3653 ret = _regulator_set_voltage_sel_step(
3654 rdev, best_val, selector);
3655 else
3656 ret = _regulator_call_set_voltage_sel(
3657 rdev, best_val, selector);
3658 } else {
3659 ret = -EINVAL;
3662 } else {
3663 ret = -EINVAL;
3666 if (ret)
3667 goto out;
3669 if (ops->set_voltage_time_sel) {
3671 * Call set_voltage_time_sel if successfully obtained
3672 * old_selector
3674 if (old_selector >= 0 && old_selector != selector)
3675 delay = ops->set_voltage_time_sel(rdev, old_selector,
3676 selector);
3677 } else {
3678 if (old_uV != best_val) {
3679 if (ops->set_voltage_time)
3680 delay = ops->set_voltage_time(rdev, old_uV,
3681 best_val);
3682 else
3683 delay = _regulator_set_voltage_time(rdev,
3684 old_uV,
3685 best_val);
3689 if (delay < 0) {
3690 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3691 delay = 0;
3694 /* Insert any necessary delays */
3695 fsleep(delay);
3697 if (best_val >= 0) {
3698 unsigned long data = best_val;
3700 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3701 (void *)data);
3704 out:
3705 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3707 return ret;
3710 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3711 int min_uV, int max_uV, suspend_state_t state)
3713 struct regulator_state *rstate;
3714 int uV, sel;
3716 rstate = regulator_get_suspend_state(rdev, state);
3717 if (rstate == NULL)
3718 return -EINVAL;
3720 if (min_uV < rstate->min_uV)
3721 min_uV = rstate->min_uV;
3722 if (max_uV > rstate->max_uV)
3723 max_uV = rstate->max_uV;
3725 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3726 if (sel < 0)
3727 return sel;
3729 uV = rdev->desc->ops->list_voltage(rdev, sel);
3730 if (uV >= min_uV && uV <= max_uV)
3731 rstate->uV = uV;
3733 return 0;
3736 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3737 int min_uV, int max_uV,
3738 suspend_state_t state)
3740 struct regulator_dev *rdev = regulator->rdev;
3741 struct regulator_voltage *voltage = &regulator->voltage[state];
3742 int ret = 0;
3743 int old_min_uV, old_max_uV;
3744 int current_uV;
3746 /* If we're setting the same range as last time the change
3747 * should be a noop (some cpufreq implementations use the same
3748 * voltage for multiple frequencies, for example).
3750 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3751 goto out;
3753 /* If we're trying to set a range that overlaps the current voltage,
3754 * return successfully even though the regulator does not support
3755 * changing the voltage.
3757 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3758 current_uV = regulator_get_voltage_rdev(rdev);
3759 if (min_uV <= current_uV && current_uV <= max_uV) {
3760 voltage->min_uV = min_uV;
3761 voltage->max_uV = max_uV;
3762 goto out;
3766 /* sanity check */
3767 if (!rdev->desc->ops->set_voltage &&
3768 !rdev->desc->ops->set_voltage_sel) {
3769 ret = -EINVAL;
3770 goto out;
3773 /* constraints check */
3774 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3775 if (ret < 0)
3776 goto out;
3778 /* restore original values in case of error */
3779 old_min_uV = voltage->min_uV;
3780 old_max_uV = voltage->max_uV;
3781 voltage->min_uV = min_uV;
3782 voltage->max_uV = max_uV;
3784 /* for not coupled regulators this will just set the voltage */
3785 ret = regulator_balance_voltage(rdev, state);
3786 if (ret < 0) {
3787 voltage->min_uV = old_min_uV;
3788 voltage->max_uV = old_max_uV;
3791 out:
3792 return ret;
3795 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3796 int max_uV, suspend_state_t state)
3798 int best_supply_uV = 0;
3799 int supply_change_uV = 0;
3800 int ret;
3802 if (rdev->supply &&
3803 regulator_ops_is_valid(rdev->supply->rdev,
3804 REGULATOR_CHANGE_VOLTAGE) &&
3805 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3806 rdev->desc->ops->get_voltage_sel))) {
3807 int current_supply_uV;
3808 int selector;
3810 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3811 if (selector < 0) {
3812 ret = selector;
3813 goto out;
3816 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3817 if (best_supply_uV < 0) {
3818 ret = best_supply_uV;
3819 goto out;
3822 best_supply_uV += rdev->desc->min_dropout_uV;
3824 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3825 if (current_supply_uV < 0) {
3826 ret = current_supply_uV;
3827 goto out;
3830 supply_change_uV = best_supply_uV - current_supply_uV;
3833 if (supply_change_uV > 0) {
3834 ret = regulator_set_voltage_unlocked(rdev->supply,
3835 best_supply_uV, INT_MAX, state);
3836 if (ret) {
3837 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3838 ERR_PTR(ret));
3839 goto out;
3843 if (state == PM_SUSPEND_ON)
3844 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3845 else
3846 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3847 max_uV, state);
3848 if (ret < 0)
3849 goto out;
3851 if (supply_change_uV < 0) {
3852 ret = regulator_set_voltage_unlocked(rdev->supply,
3853 best_supply_uV, INT_MAX, state);
3854 if (ret)
3855 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3856 ERR_PTR(ret));
3857 /* No need to fail here */
3858 ret = 0;
3861 out:
3862 return ret;
3864 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3866 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3867 int *current_uV, int *min_uV)
3869 struct regulation_constraints *constraints = rdev->constraints;
3871 /* Limit voltage change only if necessary */
3872 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3873 return 1;
3875 if (*current_uV < 0) {
3876 *current_uV = regulator_get_voltage_rdev(rdev);
3878 if (*current_uV < 0)
3879 return *current_uV;
3882 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3883 return 1;
3885 /* Clamp target voltage within the given step */
3886 if (*current_uV < *min_uV)
3887 *min_uV = min(*current_uV + constraints->max_uV_step,
3888 *min_uV);
3889 else
3890 *min_uV = max(*current_uV - constraints->max_uV_step,
3891 *min_uV);
3893 return 0;
3896 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3897 int *current_uV,
3898 int *min_uV, int *max_uV,
3899 suspend_state_t state,
3900 int n_coupled)
3902 struct coupling_desc *c_desc = &rdev->coupling_desc;
3903 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3904 struct regulation_constraints *constraints = rdev->constraints;
3905 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3906 int max_current_uV = 0, min_current_uV = INT_MAX;
3907 int highest_min_uV = 0, target_uV, possible_uV;
3908 int i, ret, max_spread;
3909 bool done;
3911 *current_uV = -1;
3914 * If there are no coupled regulators, simply set the voltage
3915 * demanded by consumers.
3917 if (n_coupled == 1) {
3919 * If consumers don't provide any demands, set voltage
3920 * to min_uV
3922 desired_min_uV = constraints->min_uV;
3923 desired_max_uV = constraints->max_uV;
3925 ret = regulator_check_consumers(rdev,
3926 &desired_min_uV,
3927 &desired_max_uV, state);
3928 if (ret < 0)
3929 return ret;
3931 done = true;
3933 goto finish;
3936 /* Find highest min desired voltage */
3937 for (i = 0; i < n_coupled; i++) {
3938 int tmp_min = 0;
3939 int tmp_max = INT_MAX;
3941 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3943 ret = regulator_check_consumers(c_rdevs[i],
3944 &tmp_min,
3945 &tmp_max, state);
3946 if (ret < 0)
3947 return ret;
3949 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3950 if (ret < 0)
3951 return ret;
3953 highest_min_uV = max(highest_min_uV, tmp_min);
3955 if (i == 0) {
3956 desired_min_uV = tmp_min;
3957 desired_max_uV = tmp_max;
3961 max_spread = constraints->max_spread[0];
3964 * Let target_uV be equal to the desired one if possible.
3965 * If not, set it to minimum voltage, allowed by other coupled
3966 * regulators.
3968 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3971 * Find min and max voltages, which currently aren't violating
3972 * max_spread.
3974 for (i = 1; i < n_coupled; i++) {
3975 int tmp_act;
3977 if (!_regulator_is_enabled(c_rdevs[i]))
3978 continue;
3980 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3981 if (tmp_act < 0)
3982 return tmp_act;
3984 min_current_uV = min(tmp_act, min_current_uV);
3985 max_current_uV = max(tmp_act, max_current_uV);
3988 /* There aren't any other regulators enabled */
3989 if (max_current_uV == 0) {
3990 possible_uV = target_uV;
3991 } else {
3993 * Correct target voltage, so as it currently isn't
3994 * violating max_spread
3996 possible_uV = max(target_uV, max_current_uV - max_spread);
3997 possible_uV = min(possible_uV, min_current_uV + max_spread);
4000 if (possible_uV > desired_max_uV)
4001 return -EINVAL;
4003 done = (possible_uV == target_uV);
4004 desired_min_uV = possible_uV;
4006 finish:
4007 /* Apply max_uV_step constraint if necessary */
4008 if (state == PM_SUSPEND_ON) {
4009 ret = regulator_limit_voltage_step(rdev, current_uV,
4010 &desired_min_uV);
4011 if (ret < 0)
4012 return ret;
4014 if (ret == 0)
4015 done = false;
4018 /* Set current_uV if wasn't done earlier in the code and if necessary */
4019 if (n_coupled > 1 && *current_uV == -1) {
4021 if (_regulator_is_enabled(rdev)) {
4022 ret = regulator_get_voltage_rdev(rdev);
4023 if (ret < 0)
4024 return ret;
4026 *current_uV = ret;
4027 } else {
4028 *current_uV = desired_min_uV;
4032 *min_uV = desired_min_uV;
4033 *max_uV = desired_max_uV;
4035 return done;
4038 int regulator_do_balance_voltage(struct regulator_dev *rdev,
4039 suspend_state_t state, bool skip_coupled)
4041 struct regulator_dev **c_rdevs;
4042 struct regulator_dev *best_rdev;
4043 struct coupling_desc *c_desc = &rdev->coupling_desc;
4044 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4045 unsigned int delta, best_delta;
4046 unsigned long c_rdev_done = 0;
4047 bool best_c_rdev_done;
4049 c_rdevs = c_desc->coupled_rdevs;
4050 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4053 * Find the best possible voltage change on each loop. Leave the loop
4054 * if there isn't any possible change.
4056 do {
4057 best_c_rdev_done = false;
4058 best_delta = 0;
4059 best_min_uV = 0;
4060 best_max_uV = 0;
4061 best_c_rdev = 0;
4062 best_rdev = NULL;
4065 * Find highest difference between optimal voltage
4066 * and current voltage.
4068 for (i = 0; i < n_coupled; i++) {
4070 * optimal_uV is the best voltage that can be set for
4071 * i-th regulator at the moment without violating
4072 * max_spread constraint in order to balance
4073 * the coupled voltages.
4075 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4077 if (test_bit(i, &c_rdev_done))
4078 continue;
4080 ret = regulator_get_optimal_voltage(c_rdevs[i],
4081 &current_uV,
4082 &optimal_uV,
4083 &optimal_max_uV,
4084 state, n_coupled);
4085 if (ret < 0)
4086 goto out;
4088 delta = abs(optimal_uV - current_uV);
4090 if (delta && best_delta <= delta) {
4091 best_c_rdev_done = ret;
4092 best_delta = delta;
4093 best_rdev = c_rdevs[i];
4094 best_min_uV = optimal_uV;
4095 best_max_uV = optimal_max_uV;
4096 best_c_rdev = i;
4100 /* Nothing to change, return successfully */
4101 if (!best_rdev) {
4102 ret = 0;
4103 goto out;
4106 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4107 best_max_uV, state);
4109 if (ret < 0)
4110 goto out;
4112 if (best_c_rdev_done)
4113 set_bit(best_c_rdev, &c_rdev_done);
4115 } while (n_coupled > 1);
4117 out:
4118 return ret;
4121 static int regulator_balance_voltage(struct regulator_dev *rdev,
4122 suspend_state_t state)
4124 struct coupling_desc *c_desc = &rdev->coupling_desc;
4125 struct regulator_coupler *coupler = c_desc->coupler;
4126 bool skip_coupled = false;
4129 * If system is in a state other than PM_SUSPEND_ON, don't check
4130 * other coupled regulators.
4132 if (state != PM_SUSPEND_ON)
4133 skip_coupled = true;
4135 if (c_desc->n_resolved < c_desc->n_coupled) {
4136 rdev_err(rdev, "Not all coupled regulators registered\n");
4137 return -EPERM;
4140 /* Invoke custom balancer for customized couplers */
4141 if (coupler && coupler->balance_voltage)
4142 return coupler->balance_voltage(coupler, rdev, state);
4144 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4148 * regulator_set_voltage - set regulator output voltage
4149 * @regulator: regulator source
4150 * @min_uV: Minimum required voltage in uV
4151 * @max_uV: Maximum acceptable voltage in uV
4153 * Sets a voltage regulator to the desired output voltage. This can be set
4154 * during any regulator state. IOW, regulator can be disabled or enabled.
4156 * If the regulator is enabled then the voltage will change to the new value
4157 * immediately otherwise if the regulator is disabled the regulator will
4158 * output at the new voltage when enabled.
4160 * NOTE: If the regulator is shared between several devices then the lowest
4161 * request voltage that meets the system constraints will be used.
4162 * Regulator system constraints must be set for this regulator before
4163 * calling this function otherwise this call will fail.
4165 * Return: 0 on success or a negative error number on failure.
4167 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4169 struct ww_acquire_ctx ww_ctx;
4170 int ret;
4172 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4174 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4175 PM_SUSPEND_ON);
4177 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4179 return ret;
4181 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4183 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4184 suspend_state_t state, bool en)
4186 struct regulator_state *rstate;
4188 rstate = regulator_get_suspend_state(rdev, state);
4189 if (rstate == NULL)
4190 return -EINVAL;
4192 if (!rstate->changeable)
4193 return -EPERM;
4195 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4197 return 0;
4200 int regulator_suspend_enable(struct regulator_dev *rdev,
4201 suspend_state_t state)
4203 return regulator_suspend_toggle(rdev, state, true);
4205 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4207 int regulator_suspend_disable(struct regulator_dev *rdev,
4208 suspend_state_t state)
4210 struct regulator *regulator;
4211 struct regulator_voltage *voltage;
4214 * if any consumer wants this regulator device keeping on in
4215 * suspend states, don't set it as disabled.
4217 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4218 voltage = &regulator->voltage[state];
4219 if (voltage->min_uV || voltage->max_uV)
4220 return 0;
4223 return regulator_suspend_toggle(rdev, state, false);
4225 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4227 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4228 int min_uV, int max_uV,
4229 suspend_state_t state)
4231 struct regulator_dev *rdev = regulator->rdev;
4232 struct regulator_state *rstate;
4234 rstate = regulator_get_suspend_state(rdev, state);
4235 if (rstate == NULL)
4236 return -EINVAL;
4238 if (rstate->min_uV == rstate->max_uV) {
4239 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4240 return -EPERM;
4243 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4246 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4247 int max_uV, suspend_state_t state)
4249 struct ww_acquire_ctx ww_ctx;
4250 int ret;
4252 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4253 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4254 return -EINVAL;
4256 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4258 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4259 max_uV, state);
4261 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4263 return ret;
4265 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4268 * regulator_set_voltage_time - get raise/fall time
4269 * @regulator: regulator source
4270 * @old_uV: starting voltage in microvolts
4271 * @new_uV: target voltage in microvolts
4273 * Provided with the starting and ending voltage, this function attempts to
4274 * calculate the time in microseconds required to rise or fall to this new
4275 * voltage.
4277 * Return: ramp time in microseconds, or a negative error number if calculation failed.
4279 int regulator_set_voltage_time(struct regulator *regulator,
4280 int old_uV, int new_uV)
4282 struct regulator_dev *rdev = regulator->rdev;
4283 const struct regulator_ops *ops = rdev->desc->ops;
4284 int old_sel = -1;
4285 int new_sel = -1;
4286 int voltage;
4287 int i;
4289 if (ops->set_voltage_time)
4290 return ops->set_voltage_time(rdev, old_uV, new_uV);
4291 else if (!ops->set_voltage_time_sel)
4292 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4294 /* Currently requires operations to do this */
4295 if (!ops->list_voltage || !rdev->desc->n_voltages)
4296 return -EINVAL;
4298 for (i = 0; i < rdev->desc->n_voltages; i++) {
4299 /* We only look for exact voltage matches here */
4300 if (i < rdev->desc->linear_min_sel)
4301 continue;
4303 if (old_sel >= 0 && new_sel >= 0)
4304 break;
4306 voltage = regulator_list_voltage(regulator, i);
4307 if (voltage < 0)
4308 return -EINVAL;
4309 if (voltage == 0)
4310 continue;
4311 if (voltage == old_uV)
4312 old_sel = i;
4313 if (voltage == new_uV)
4314 new_sel = i;
4317 if (old_sel < 0 || new_sel < 0)
4318 return -EINVAL;
4320 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4322 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4325 * regulator_set_voltage_time_sel - get raise/fall time
4326 * @rdev: regulator source device
4327 * @old_selector: selector for starting voltage
4328 * @new_selector: selector for target voltage
4330 * Provided with the starting and target voltage selectors, this function
4331 * returns time in microseconds required to rise or fall to this new voltage
4333 * Drivers providing ramp_delay in regulation_constraints can use this as their
4334 * set_voltage_time_sel() operation.
4336 * Return: ramp time in microseconds, or a negative error number if calculation failed.
4338 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4339 unsigned int old_selector,
4340 unsigned int new_selector)
4342 int old_volt, new_volt;
4344 /* sanity check */
4345 if (!rdev->desc->ops->list_voltage)
4346 return -EINVAL;
4348 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4349 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4351 if (rdev->desc->ops->set_voltage_time)
4352 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4353 new_volt);
4354 else
4355 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4357 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4359 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4361 int ret;
4363 regulator_lock(rdev);
4365 if (!rdev->desc->ops->set_voltage &&
4366 !rdev->desc->ops->set_voltage_sel) {
4367 ret = -EINVAL;
4368 goto out;
4371 /* balance only, if regulator is coupled */
4372 if (rdev->coupling_desc.n_coupled > 1)
4373 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4374 else
4375 ret = -EOPNOTSUPP;
4377 out:
4378 regulator_unlock(rdev);
4379 return ret;
4383 * regulator_sync_voltage - re-apply last regulator output voltage
4384 * @regulator: regulator source
4386 * Re-apply the last configured voltage. This is intended to be used
4387 * where some external control source the consumer is cooperating with
4388 * has caused the configured voltage to change.
4390 * Return: 0 on success or a negative error number on failure.
4392 int regulator_sync_voltage(struct regulator *regulator)
4394 struct regulator_dev *rdev = regulator->rdev;
4395 struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4396 int ret, min_uV, max_uV;
4398 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4399 return 0;
4401 regulator_lock(rdev);
4403 if (!rdev->desc->ops->set_voltage &&
4404 !rdev->desc->ops->set_voltage_sel) {
4405 ret = -EINVAL;
4406 goto out;
4409 /* This is only going to work if we've had a voltage configured. */
4410 if (!voltage->min_uV && !voltage->max_uV) {
4411 ret = -EINVAL;
4412 goto out;
4415 min_uV = voltage->min_uV;
4416 max_uV = voltage->max_uV;
4418 /* This should be a paranoia check... */
4419 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4420 if (ret < 0)
4421 goto out;
4423 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4424 if (ret < 0)
4425 goto out;
4427 /* balance only, if regulator is coupled */
4428 if (rdev->coupling_desc.n_coupled > 1)
4429 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4430 else
4431 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4433 out:
4434 regulator_unlock(rdev);
4435 return ret;
4437 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4439 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4441 int sel, ret;
4442 bool bypassed;
4444 if (rdev->desc->ops->get_bypass) {
4445 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4446 if (ret < 0)
4447 return ret;
4448 if (bypassed) {
4449 /* if bypassed the regulator must have a supply */
4450 if (!rdev->supply) {
4451 rdev_err(rdev,
4452 "bypassed regulator has no supply!\n");
4453 return -EPROBE_DEFER;
4456 return regulator_get_voltage_rdev(rdev->supply->rdev);
4460 if (rdev->desc->ops->get_voltage_sel) {
4461 sel = rdev->desc->ops->get_voltage_sel(rdev);
4462 if (sel < 0)
4463 return sel;
4464 ret = rdev->desc->ops->list_voltage(rdev, sel);
4465 } else if (rdev->desc->ops->get_voltage) {
4466 ret = rdev->desc->ops->get_voltage(rdev);
4467 } else if (rdev->desc->ops->list_voltage) {
4468 ret = rdev->desc->ops->list_voltage(rdev, 0);
4469 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4470 ret = rdev->desc->fixed_uV;
4471 } else if (rdev->supply) {
4472 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4473 } else if (rdev->supply_name) {
4474 return -EPROBE_DEFER;
4475 } else {
4476 return -EINVAL;
4479 if (ret < 0)
4480 return ret;
4481 return ret - rdev->constraints->uV_offset;
4483 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4486 * regulator_get_voltage - get regulator output voltage
4487 * @regulator: regulator source
4489 * Return: Current regulator voltage in uV, or a negative error number on failure.
4491 * NOTE: If the regulator is disabled it will return the voltage value. This
4492 * function should not be used to determine regulator state.
4494 int regulator_get_voltage(struct regulator *regulator)
4496 struct ww_acquire_ctx ww_ctx;
4497 int ret;
4499 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4500 ret = regulator_get_voltage_rdev(regulator->rdev);
4501 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4503 return ret;
4505 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4508 * regulator_set_current_limit - set regulator output current limit
4509 * @regulator: regulator source
4510 * @min_uA: Minimum supported current in uA
4511 * @max_uA: Maximum supported current in uA
4513 * Sets current sink to the desired output current. This can be set during
4514 * any regulator state. IOW, regulator can be disabled or enabled.
4516 * If the regulator is enabled then the current will change to the new value
4517 * immediately otherwise if the regulator is disabled the regulator will
4518 * output at the new current when enabled.
4520 * NOTE: Regulator system constraints must be set for this regulator before
4521 * calling this function otherwise this call will fail.
4523 * Return: 0 on success or a negative error number on failure.
4525 int regulator_set_current_limit(struct regulator *regulator,
4526 int min_uA, int max_uA)
4528 struct regulator_dev *rdev = regulator->rdev;
4529 int ret;
4531 regulator_lock(rdev);
4533 /* sanity check */
4534 if (!rdev->desc->ops->set_current_limit) {
4535 ret = -EINVAL;
4536 goto out;
4539 /* constraints check */
4540 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4541 if (ret < 0)
4542 goto out;
4544 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4545 out:
4546 regulator_unlock(rdev);
4547 return ret;
4549 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4551 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4553 /* sanity check */
4554 if (!rdev->desc->ops->get_current_limit)
4555 return -EINVAL;
4557 return rdev->desc->ops->get_current_limit(rdev);
4560 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4562 int ret;
4564 regulator_lock(rdev);
4565 ret = _regulator_get_current_limit_unlocked(rdev);
4566 regulator_unlock(rdev);
4568 return ret;
4572 * regulator_get_current_limit - get regulator output current
4573 * @regulator: regulator source
4575 * Return: Current supplied by the specified current sink in uA,
4576 * or a negative error number on failure.
4578 * NOTE: If the regulator is disabled it will return the current value. This
4579 * function should not be used to determine regulator state.
4581 int regulator_get_current_limit(struct regulator *regulator)
4583 return _regulator_get_current_limit(regulator->rdev);
4585 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4588 * regulator_set_mode - set regulator operating mode
4589 * @regulator: regulator source
4590 * @mode: operating mode - one of the REGULATOR_MODE constants
4592 * Set regulator operating mode to increase regulator efficiency or improve
4593 * regulation performance.
4595 * NOTE: Regulator system constraints must be set for this regulator before
4596 * calling this function otherwise this call will fail.
4598 * Return: 0 on success or a negative error number on failure.
4600 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4602 struct regulator_dev *rdev = regulator->rdev;
4603 int ret;
4604 int regulator_curr_mode;
4606 regulator_lock(rdev);
4608 /* sanity check */
4609 if (!rdev->desc->ops->set_mode) {
4610 ret = -EINVAL;
4611 goto out;
4614 /* return if the same mode is requested */
4615 if (rdev->desc->ops->get_mode) {
4616 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4617 if (regulator_curr_mode == mode) {
4618 ret = 0;
4619 goto out;
4623 /* constraints check */
4624 ret = regulator_mode_constrain(rdev, &mode);
4625 if (ret < 0)
4626 goto out;
4628 ret = rdev->desc->ops->set_mode(rdev, mode);
4629 out:
4630 regulator_unlock(rdev);
4631 return ret;
4633 EXPORT_SYMBOL_GPL(regulator_set_mode);
4635 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4637 /* sanity check */
4638 if (!rdev->desc->ops->get_mode)
4639 return -EINVAL;
4641 return rdev->desc->ops->get_mode(rdev);
4644 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4646 int ret;
4648 regulator_lock(rdev);
4649 ret = _regulator_get_mode_unlocked(rdev);
4650 regulator_unlock(rdev);
4652 return ret;
4656 * regulator_get_mode - get regulator operating mode
4657 * @regulator: regulator source
4659 * Get the current regulator operating mode.
4661 * Return: Current operating mode as %REGULATOR_MODE_* values,
4662 * or a negative error number on failure.
4664 unsigned int regulator_get_mode(struct regulator *regulator)
4666 return _regulator_get_mode(regulator->rdev);
4668 EXPORT_SYMBOL_GPL(regulator_get_mode);
4670 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4672 int ret = 0;
4674 if (rdev->use_cached_err) {
4675 spin_lock(&rdev->err_lock);
4676 ret = rdev->cached_err;
4677 spin_unlock(&rdev->err_lock);
4679 return ret;
4682 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4683 unsigned int *flags)
4685 int cached_flags, ret = 0;
4687 regulator_lock(rdev);
4689 cached_flags = rdev_get_cached_err_flags(rdev);
4691 if (rdev->desc->ops->get_error_flags)
4692 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4693 else if (!rdev->use_cached_err)
4694 ret = -EINVAL;
4696 *flags |= cached_flags;
4698 regulator_unlock(rdev);
4700 return ret;
4704 * regulator_get_error_flags - get regulator error information
4705 * @regulator: regulator source
4706 * @flags: pointer to store error flags
4708 * Get the current regulator error information.
4710 * Return: 0 on success or a negative error number on failure.
4712 int regulator_get_error_flags(struct regulator *regulator,
4713 unsigned int *flags)
4715 return _regulator_get_error_flags(regulator->rdev, flags);
4717 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4720 * regulator_set_load - set regulator load
4721 * @regulator: regulator source
4722 * @uA_load: load current
4724 * Notifies the regulator core of a new device load. This is then used by
4725 * DRMS (if enabled by constraints) to set the most efficient regulator
4726 * operating mode for the new regulator loading.
4728 * Consumer devices notify their supply regulator of the maximum power
4729 * they will require (can be taken from device datasheet in the power
4730 * consumption tables) when they change operational status and hence power
4731 * state. Examples of operational state changes that can affect power
4732 * consumption are :-
4734 * o Device is opened / closed.
4735 * o Device I/O is about to begin or has just finished.
4736 * o Device is idling in between work.
4738 * This information is also exported via sysfs to userspace.
4740 * DRMS will sum the total requested load on the regulator and change
4741 * to the most efficient operating mode if platform constraints allow.
4743 * NOTE: when a regulator consumer requests to have a regulator
4744 * disabled then any load that consumer requested no longer counts
4745 * toward the total requested load. If the regulator is re-enabled
4746 * then the previously requested load will start counting again.
4748 * If a regulator is an always-on regulator then an individual consumer's
4749 * load will still be removed if that consumer is fully disabled.
4751 * Return: 0 on success or a negative error number on failure.
4753 int regulator_set_load(struct regulator *regulator, int uA_load)
4755 struct regulator_dev *rdev = regulator->rdev;
4756 int old_uA_load;
4757 int ret = 0;
4759 regulator_lock(rdev);
4760 old_uA_load = regulator->uA_load;
4761 regulator->uA_load = uA_load;
4762 if (regulator->enable_count && old_uA_load != uA_load) {
4763 ret = drms_uA_update(rdev);
4764 if (ret < 0)
4765 regulator->uA_load = old_uA_load;
4767 regulator_unlock(rdev);
4769 return ret;
4771 EXPORT_SYMBOL_GPL(regulator_set_load);
4774 * regulator_allow_bypass - allow the regulator to go into bypass mode
4776 * @regulator: Regulator to configure
4777 * @enable: enable or disable bypass mode
4779 * Allow the regulator to go into bypass mode if all other consumers
4780 * for the regulator also enable bypass mode and the machine
4781 * constraints allow this. Bypass mode means that the regulator is
4782 * simply passing the input directly to the output with no regulation.
4784 * Return: 0 on success or if changing bypass is not possible, or
4785 * a negative error number on failure.
4787 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4789 struct regulator_dev *rdev = regulator->rdev;
4790 const char *name = rdev_get_name(rdev);
4791 int ret = 0;
4793 if (!rdev->desc->ops->set_bypass)
4794 return 0;
4796 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4797 return 0;
4799 regulator_lock(rdev);
4801 if (enable && !regulator->bypass) {
4802 rdev->bypass_count++;
4804 if (rdev->bypass_count == rdev->open_count) {
4805 trace_regulator_bypass_enable(name);
4807 ret = rdev->desc->ops->set_bypass(rdev, enable);
4808 if (ret != 0)
4809 rdev->bypass_count--;
4810 else
4811 trace_regulator_bypass_enable_complete(name);
4814 } else if (!enable && regulator->bypass) {
4815 rdev->bypass_count--;
4817 if (rdev->bypass_count != rdev->open_count) {
4818 trace_regulator_bypass_disable(name);
4820 ret = rdev->desc->ops->set_bypass(rdev, enable);
4821 if (ret != 0)
4822 rdev->bypass_count++;
4823 else
4824 trace_regulator_bypass_disable_complete(name);
4828 if (ret == 0)
4829 regulator->bypass = enable;
4831 regulator_unlock(rdev);
4833 return ret;
4835 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4838 * regulator_register_notifier - register regulator event notifier
4839 * @regulator: regulator source
4840 * @nb: notifier block
4842 * Register notifier block to receive regulator events.
4844 * Return: 0 on success or a negative error number on failure.
4846 int regulator_register_notifier(struct regulator *regulator,
4847 struct notifier_block *nb)
4849 return blocking_notifier_chain_register(&regulator->rdev->notifier,
4850 nb);
4852 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4855 * regulator_unregister_notifier - unregister regulator event notifier
4856 * @regulator: regulator source
4857 * @nb: notifier block
4859 * Unregister regulator event notifier block.
4861 * Return: 0 on success or a negative error number on failure.
4863 int regulator_unregister_notifier(struct regulator *regulator,
4864 struct notifier_block *nb)
4866 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4867 nb);
4869 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4871 /* notify regulator consumers and downstream regulator consumers.
4872 * Note mutex must be held by caller.
4874 static int _notifier_call_chain(struct regulator_dev *rdev,
4875 unsigned long event, void *data)
4877 /* call rdev chain first */
4878 int ret = blocking_notifier_call_chain(&rdev->notifier, event, data);
4880 if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4881 struct device *parent = rdev->dev.parent;
4882 const char *rname = rdev_get_name(rdev);
4883 char name[32];
4885 /* Avoid duplicate debugfs directory names */
4886 if (parent && rname == rdev->desc->name) {
4887 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4888 rname);
4889 rname = name;
4891 reg_generate_netlink_event(rname, event);
4894 return ret;
4897 int _regulator_bulk_get(struct device *dev, int num_consumers,
4898 struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4900 int i;
4901 int ret;
4903 for (i = 0; i < num_consumers; i++)
4904 consumers[i].consumer = NULL;
4906 for (i = 0; i < num_consumers; i++) {
4907 consumers[i].consumer = _regulator_get(dev,
4908 consumers[i].supply, get_type);
4909 if (IS_ERR(consumers[i].consumer)) {
4910 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4911 "Failed to get supply '%s'",
4912 consumers[i].supply);
4913 consumers[i].consumer = NULL;
4914 goto err;
4917 if (consumers[i].init_load_uA > 0) {
4918 ret = regulator_set_load(consumers[i].consumer,
4919 consumers[i].init_load_uA);
4920 if (ret) {
4921 i++;
4922 goto err;
4927 return 0;
4929 err:
4930 while (--i >= 0)
4931 regulator_put(consumers[i].consumer);
4933 return ret;
4937 * regulator_bulk_get - get multiple regulator consumers
4939 * @dev: Device to supply
4940 * @num_consumers: Number of consumers to register
4941 * @consumers: Configuration of consumers; clients are stored here.
4943 * This helper function allows drivers to get several regulator
4944 * consumers in one operation. If any of the regulators cannot be
4945 * acquired then any regulators that were allocated will be freed
4946 * before returning to the caller.
4948 * Return: 0 on success or a negative error number on failure.
4950 int regulator_bulk_get(struct device *dev, int num_consumers,
4951 struct regulator_bulk_data *consumers)
4953 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4955 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4957 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4959 struct regulator_bulk_data *bulk = data;
4961 bulk->ret = regulator_enable(bulk->consumer);
4965 * regulator_bulk_enable - enable multiple regulator consumers
4967 * @num_consumers: Number of consumers
4968 * @consumers: Consumer data; clients are stored here.
4970 * This convenience API allows consumers to enable multiple regulator
4971 * clients in a single API call. If any consumers cannot be enabled
4972 * then any others that were enabled will be disabled again prior to
4973 * return.
4975 * Return: 0 on success or a negative error number on failure.
4977 int regulator_bulk_enable(int num_consumers,
4978 struct regulator_bulk_data *consumers)
4980 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4981 int i;
4982 int ret = 0;
4984 for (i = 0; i < num_consumers; i++) {
4985 async_schedule_domain(regulator_bulk_enable_async,
4986 &consumers[i], &async_domain);
4989 async_synchronize_full_domain(&async_domain);
4991 /* If any consumer failed we need to unwind any that succeeded */
4992 for (i = 0; i < num_consumers; i++) {
4993 if (consumers[i].ret != 0) {
4994 ret = consumers[i].ret;
4995 goto err;
4999 return 0;
5001 err:
5002 for (i = 0; i < num_consumers; i++) {
5003 if (consumers[i].ret < 0)
5004 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
5005 ERR_PTR(consumers[i].ret));
5006 else
5007 regulator_disable(consumers[i].consumer);
5010 return ret;
5012 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
5015 * regulator_bulk_disable - disable multiple regulator consumers
5017 * @num_consumers: Number of consumers
5018 * @consumers: Consumer data; clients are stored here.
5020 * This convenience API allows consumers to disable multiple regulator
5021 * clients in a single API call. If any consumers cannot be disabled
5022 * then any others that were disabled will be enabled again prior to
5023 * return.
5025 * Return: 0 on success or a negative error number on failure.
5027 int regulator_bulk_disable(int num_consumers,
5028 struct regulator_bulk_data *consumers)
5030 int i;
5031 int ret, r;
5033 for (i = num_consumers - 1; i >= 0; --i) {
5034 ret = regulator_disable(consumers[i].consumer);
5035 if (ret != 0)
5036 goto err;
5039 return 0;
5041 err:
5042 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5043 for (++i; i < num_consumers; ++i) {
5044 r = regulator_enable(consumers[i].consumer);
5045 if (r != 0)
5046 pr_err("Failed to re-enable %s: %pe\n",
5047 consumers[i].supply, ERR_PTR(r));
5050 return ret;
5052 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5055 * regulator_bulk_force_disable - force disable multiple regulator consumers
5057 * @num_consumers: Number of consumers
5058 * @consumers: Consumer data; clients are stored here.
5060 * This convenience API allows consumers to forcibly disable multiple regulator
5061 * clients in a single API call.
5062 * NOTE: This should be used for situations when device damage will
5063 * likely occur if the regulators are not disabled (e.g. over temp).
5064 * Although regulator_force_disable function call for some consumers can
5065 * return error numbers, the function is called for all consumers.
5067 * Return: 0 on success or a negative error number on failure.
5069 int regulator_bulk_force_disable(int num_consumers,
5070 struct regulator_bulk_data *consumers)
5072 int i;
5073 int ret = 0;
5075 for (i = 0; i < num_consumers; i++) {
5076 consumers[i].ret =
5077 regulator_force_disable(consumers[i].consumer);
5079 /* Store first error for reporting */
5080 if (consumers[i].ret && !ret)
5081 ret = consumers[i].ret;
5084 return ret;
5086 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5089 * regulator_bulk_free - free multiple regulator consumers
5091 * @num_consumers: Number of consumers
5092 * @consumers: Consumer data; clients are stored here.
5094 * This convenience API allows consumers to free multiple regulator
5095 * clients in a single API call.
5097 void regulator_bulk_free(int num_consumers,
5098 struct regulator_bulk_data *consumers)
5100 int i;
5102 for (i = 0; i < num_consumers; i++) {
5103 regulator_put(consumers[i].consumer);
5104 consumers[i].consumer = NULL;
5107 EXPORT_SYMBOL_GPL(regulator_bulk_free);
5110 * regulator_handle_critical - Handle events for system-critical regulators.
5111 * @rdev: The regulator device.
5112 * @event: The event being handled.
5114 * This function handles critical events such as under-voltage, over-current,
5115 * and unknown errors for regulators deemed system-critical. On detecting such
5116 * events, it triggers a hardware protection shutdown with a defined timeout.
5118 static void regulator_handle_critical(struct regulator_dev *rdev,
5119 unsigned long event)
5121 const char *reason = NULL;
5123 if (!rdev->constraints->system_critical)
5124 return;
5126 switch (event) {
5127 case REGULATOR_EVENT_UNDER_VOLTAGE:
5128 reason = "System critical regulator: voltage drop detected";
5129 break;
5130 case REGULATOR_EVENT_OVER_CURRENT:
5131 reason = "System critical regulator: over-current detected";
5132 break;
5133 case REGULATOR_EVENT_FAIL:
5134 reason = "System critical regulator: unknown error";
5137 if (!reason)
5138 return;
5140 hw_protection_shutdown(reason,
5141 rdev->constraints->uv_less_critical_window_ms);
5145 * regulator_notifier_call_chain - call regulator event notifier
5146 * @rdev: regulator source
5147 * @event: notifier block
5148 * @data: callback-specific data.
5150 * Called by regulator drivers to notify clients a regulator event has
5151 * occurred.
5153 * Return: %NOTIFY_DONE.
5155 int regulator_notifier_call_chain(struct regulator_dev *rdev,
5156 unsigned long event, void *data)
5158 regulator_handle_critical(rdev, event);
5160 _notifier_call_chain(rdev, event, data);
5161 return NOTIFY_DONE;
5164 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5167 * regulator_mode_to_status - convert a regulator mode into a status
5169 * @mode: Mode to convert
5171 * Convert a regulator mode into a status.
5173 * Return: %REGULATOR_STATUS_* value corresponding to given mode.
5175 int regulator_mode_to_status(unsigned int mode)
5177 switch (mode) {
5178 case REGULATOR_MODE_FAST:
5179 return REGULATOR_STATUS_FAST;
5180 case REGULATOR_MODE_NORMAL:
5181 return REGULATOR_STATUS_NORMAL;
5182 case REGULATOR_MODE_IDLE:
5183 return REGULATOR_STATUS_IDLE;
5184 case REGULATOR_MODE_STANDBY:
5185 return REGULATOR_STATUS_STANDBY;
5186 default:
5187 return REGULATOR_STATUS_UNDEFINED;
5190 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5192 static struct attribute *regulator_dev_attrs[] = {
5193 &dev_attr_name.attr,
5194 &dev_attr_num_users.attr,
5195 &dev_attr_type.attr,
5196 &dev_attr_microvolts.attr,
5197 &dev_attr_microamps.attr,
5198 &dev_attr_opmode.attr,
5199 &dev_attr_state.attr,
5200 &dev_attr_status.attr,
5201 &dev_attr_bypass.attr,
5202 &dev_attr_requested_microamps.attr,
5203 &dev_attr_min_microvolts.attr,
5204 &dev_attr_max_microvolts.attr,
5205 &dev_attr_min_microamps.attr,
5206 &dev_attr_max_microamps.attr,
5207 &dev_attr_under_voltage.attr,
5208 &dev_attr_over_current.attr,
5209 &dev_attr_regulation_out.attr,
5210 &dev_attr_fail.attr,
5211 &dev_attr_over_temp.attr,
5212 &dev_attr_under_voltage_warn.attr,
5213 &dev_attr_over_current_warn.attr,
5214 &dev_attr_over_voltage_warn.attr,
5215 &dev_attr_over_temp_warn.attr,
5216 &dev_attr_suspend_standby_state.attr,
5217 &dev_attr_suspend_mem_state.attr,
5218 &dev_attr_suspend_disk_state.attr,
5219 &dev_attr_suspend_standby_microvolts.attr,
5220 &dev_attr_suspend_mem_microvolts.attr,
5221 &dev_attr_suspend_disk_microvolts.attr,
5222 &dev_attr_suspend_standby_mode.attr,
5223 &dev_attr_suspend_mem_mode.attr,
5224 &dev_attr_suspend_disk_mode.attr,
5225 NULL
5229 * To avoid cluttering sysfs (and memory) with useless state, only
5230 * create attributes that can be meaningfully displayed.
5232 static umode_t regulator_attr_is_visible(struct kobject *kobj,
5233 struct attribute *attr, int idx)
5235 struct device *dev = kobj_to_dev(kobj);
5236 struct regulator_dev *rdev = dev_to_rdev(dev);
5237 const struct regulator_ops *ops = rdev->desc->ops;
5238 umode_t mode = attr->mode;
5240 /* these three are always present */
5241 if (attr == &dev_attr_name.attr ||
5242 attr == &dev_attr_num_users.attr ||
5243 attr == &dev_attr_type.attr)
5244 return mode;
5246 /* some attributes need specific methods to be displayed */
5247 if (attr == &dev_attr_microvolts.attr) {
5248 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5249 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5250 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5251 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5252 return mode;
5253 return 0;
5256 if (attr == &dev_attr_microamps.attr)
5257 return ops->get_current_limit ? mode : 0;
5259 if (attr == &dev_attr_opmode.attr)
5260 return ops->get_mode ? mode : 0;
5262 if (attr == &dev_attr_state.attr)
5263 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5265 if (attr == &dev_attr_status.attr)
5266 return ops->get_status ? mode : 0;
5268 if (attr == &dev_attr_bypass.attr)
5269 return ops->get_bypass ? mode : 0;
5271 if (attr == &dev_attr_under_voltage.attr ||
5272 attr == &dev_attr_over_current.attr ||
5273 attr == &dev_attr_regulation_out.attr ||
5274 attr == &dev_attr_fail.attr ||
5275 attr == &dev_attr_over_temp.attr ||
5276 attr == &dev_attr_under_voltage_warn.attr ||
5277 attr == &dev_attr_over_current_warn.attr ||
5278 attr == &dev_attr_over_voltage_warn.attr ||
5279 attr == &dev_attr_over_temp_warn.attr)
5280 return ops->get_error_flags ? mode : 0;
5282 /* constraints need specific supporting methods */
5283 if (attr == &dev_attr_min_microvolts.attr ||
5284 attr == &dev_attr_max_microvolts.attr)
5285 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5287 if (attr == &dev_attr_min_microamps.attr ||
5288 attr == &dev_attr_max_microamps.attr)
5289 return ops->set_current_limit ? mode : 0;
5291 if (attr == &dev_attr_suspend_standby_state.attr ||
5292 attr == &dev_attr_suspend_mem_state.attr ||
5293 attr == &dev_attr_suspend_disk_state.attr)
5294 return mode;
5296 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5297 attr == &dev_attr_suspend_mem_microvolts.attr ||
5298 attr == &dev_attr_suspend_disk_microvolts.attr)
5299 return ops->set_suspend_voltage ? mode : 0;
5301 if (attr == &dev_attr_suspend_standby_mode.attr ||
5302 attr == &dev_attr_suspend_mem_mode.attr ||
5303 attr == &dev_attr_suspend_disk_mode.attr)
5304 return ops->set_suspend_mode ? mode : 0;
5306 return mode;
5309 static const struct attribute_group regulator_dev_group = {
5310 .attrs = regulator_dev_attrs,
5311 .is_visible = regulator_attr_is_visible,
5314 static const struct attribute_group *regulator_dev_groups[] = {
5315 &regulator_dev_group,
5316 NULL
5319 static void regulator_dev_release(struct device *dev)
5321 struct regulator_dev *rdev = dev_get_drvdata(dev);
5323 debugfs_remove_recursive(rdev->debugfs);
5324 kfree(rdev->constraints);
5325 of_node_put(rdev->dev.of_node);
5326 kfree(rdev);
5329 static void rdev_init_debugfs(struct regulator_dev *rdev)
5331 struct device *parent = rdev->dev.parent;
5332 const char *rname = rdev_get_name(rdev);
5333 char name[NAME_MAX];
5335 /* Avoid duplicate debugfs directory names */
5336 if (parent && rname == rdev->desc->name) {
5337 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5338 rname);
5339 rname = name;
5342 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5343 if (IS_ERR(rdev->debugfs))
5344 rdev_dbg(rdev, "Failed to create debugfs directory\n");
5346 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5347 &rdev->use_count);
5348 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5349 &rdev->open_count);
5350 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5351 &rdev->bypass_count);
5354 static int regulator_register_resolve_supply(struct device *dev, void *data)
5356 struct regulator_dev *rdev = dev_to_rdev(dev);
5358 if (regulator_resolve_supply(rdev))
5359 rdev_dbg(rdev, "unable to resolve supply\n");
5361 return 0;
5364 int regulator_coupler_register(struct regulator_coupler *coupler)
5366 mutex_lock(&regulator_list_mutex);
5367 list_add_tail(&coupler->list, &regulator_coupler_list);
5368 mutex_unlock(&regulator_list_mutex);
5370 return 0;
5373 static struct regulator_coupler *
5374 regulator_find_coupler(struct regulator_dev *rdev)
5376 struct regulator_coupler *coupler;
5377 int err;
5380 * Note that regulators are appended to the list and the generic
5381 * coupler is registered first, hence it will be attached at last
5382 * if nobody cared.
5384 list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5385 err = coupler->attach_regulator(coupler, rdev);
5386 if (!err) {
5387 if (!coupler->balance_voltage &&
5388 rdev->coupling_desc.n_coupled > 2)
5389 goto err_unsupported;
5391 return coupler;
5394 if (err < 0)
5395 return ERR_PTR(err);
5397 if (err == 1)
5398 continue;
5400 break;
5403 return ERR_PTR(-EINVAL);
5405 err_unsupported:
5406 if (coupler->detach_regulator)
5407 coupler->detach_regulator(coupler, rdev);
5409 rdev_err(rdev,
5410 "Voltage balancing for multiple regulator couples is unimplemented\n");
5412 return ERR_PTR(-EPERM);
5415 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5417 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5418 struct coupling_desc *c_desc = &rdev->coupling_desc;
5419 int n_coupled = c_desc->n_coupled;
5420 struct regulator_dev *c_rdev;
5421 int i;
5423 for (i = 1; i < n_coupled; i++) {
5424 /* already resolved */
5425 if (c_desc->coupled_rdevs[i])
5426 continue;
5428 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5430 if (!c_rdev)
5431 continue;
5433 if (c_rdev->coupling_desc.coupler != coupler) {
5434 rdev_err(rdev, "coupler mismatch with %s\n",
5435 rdev_get_name(c_rdev));
5436 return;
5439 c_desc->coupled_rdevs[i] = c_rdev;
5440 c_desc->n_resolved++;
5442 regulator_resolve_coupling(c_rdev);
5446 static void regulator_remove_coupling(struct regulator_dev *rdev)
5448 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5449 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5450 struct regulator_dev *__c_rdev, *c_rdev;
5451 unsigned int __n_coupled, n_coupled;
5452 int i, k;
5453 int err;
5455 n_coupled = c_desc->n_coupled;
5457 for (i = 1; i < n_coupled; i++) {
5458 c_rdev = c_desc->coupled_rdevs[i];
5460 if (!c_rdev)
5461 continue;
5463 regulator_lock(c_rdev);
5465 __c_desc = &c_rdev->coupling_desc;
5466 __n_coupled = __c_desc->n_coupled;
5468 for (k = 1; k < __n_coupled; k++) {
5469 __c_rdev = __c_desc->coupled_rdevs[k];
5471 if (__c_rdev == rdev) {
5472 __c_desc->coupled_rdevs[k] = NULL;
5473 __c_desc->n_resolved--;
5474 break;
5478 regulator_unlock(c_rdev);
5480 c_desc->coupled_rdevs[i] = NULL;
5481 c_desc->n_resolved--;
5484 if (coupler && coupler->detach_regulator) {
5485 err = coupler->detach_regulator(coupler, rdev);
5486 if (err)
5487 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5488 ERR_PTR(err));
5491 kfree(rdev->coupling_desc.coupled_rdevs);
5492 rdev->coupling_desc.coupled_rdevs = NULL;
5495 static int regulator_init_coupling(struct regulator_dev *rdev)
5497 struct regulator_dev **coupled;
5498 int err, n_phandles;
5500 if (!IS_ENABLED(CONFIG_OF))
5501 n_phandles = 0;
5502 else
5503 n_phandles = of_get_n_coupled(rdev);
5505 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5506 if (!coupled)
5507 return -ENOMEM;
5509 rdev->coupling_desc.coupled_rdevs = coupled;
5512 * Every regulator should always have coupling descriptor filled with
5513 * at least pointer to itself.
5515 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5516 rdev->coupling_desc.n_coupled = n_phandles + 1;
5517 rdev->coupling_desc.n_resolved++;
5519 /* regulator isn't coupled */
5520 if (n_phandles == 0)
5521 return 0;
5523 if (!of_check_coupling_data(rdev))
5524 return -EPERM;
5526 mutex_lock(&regulator_list_mutex);
5527 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5528 mutex_unlock(&regulator_list_mutex);
5530 if (IS_ERR(rdev->coupling_desc.coupler)) {
5531 err = PTR_ERR(rdev->coupling_desc.coupler);
5532 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5533 return err;
5536 return 0;
5539 static int generic_coupler_attach(struct regulator_coupler *coupler,
5540 struct regulator_dev *rdev)
5542 if (rdev->coupling_desc.n_coupled > 2) {
5543 rdev_err(rdev,
5544 "Voltage balancing for multiple regulator couples is unimplemented\n");
5545 return -EPERM;
5548 if (!rdev->constraints->always_on) {
5549 rdev_err(rdev,
5550 "Coupling of a non always-on regulator is unimplemented\n");
5551 return -ENOTSUPP;
5554 return 0;
5557 static struct regulator_coupler generic_regulator_coupler = {
5558 .attach_regulator = generic_coupler_attach,
5562 * regulator_register - register regulator
5563 * @dev: the device that drive the regulator
5564 * @regulator_desc: regulator to register
5565 * @cfg: runtime configuration for regulator
5567 * Called by regulator drivers to register a regulator.
5569 * Return: Pointer to a valid &struct regulator_dev on success or
5570 * an ERR_PTR() encoded negative error number on failure.
5572 struct regulator_dev *
5573 regulator_register(struct device *dev,
5574 const struct regulator_desc *regulator_desc,
5575 const struct regulator_config *cfg)
5577 const struct regulator_init_data *init_data;
5578 struct regulator_config *config = NULL;
5579 static atomic_t regulator_no = ATOMIC_INIT(-1);
5580 struct regulator_dev *rdev;
5581 bool dangling_cfg_gpiod = false;
5582 bool dangling_of_gpiod = false;
5583 int ret, i;
5584 bool resolved_early = false;
5586 if (cfg == NULL)
5587 return ERR_PTR(-EINVAL);
5588 if (cfg->ena_gpiod)
5589 dangling_cfg_gpiod = true;
5590 if (regulator_desc == NULL) {
5591 ret = -EINVAL;
5592 goto rinse;
5595 WARN_ON(!dev || !cfg->dev);
5597 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5598 ret = -EINVAL;
5599 goto rinse;
5602 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5603 regulator_desc->type != REGULATOR_CURRENT) {
5604 ret = -EINVAL;
5605 goto rinse;
5608 /* Only one of each should be implemented */
5609 WARN_ON(regulator_desc->ops->get_voltage &&
5610 regulator_desc->ops->get_voltage_sel);
5611 WARN_ON(regulator_desc->ops->set_voltage &&
5612 regulator_desc->ops->set_voltage_sel);
5614 /* If we're using selectors we must implement list_voltage. */
5615 if (regulator_desc->ops->get_voltage_sel &&
5616 !regulator_desc->ops->list_voltage) {
5617 ret = -EINVAL;
5618 goto rinse;
5620 if (regulator_desc->ops->set_voltage_sel &&
5621 !regulator_desc->ops->list_voltage) {
5622 ret = -EINVAL;
5623 goto rinse;
5626 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5627 if (rdev == NULL) {
5628 ret = -ENOMEM;
5629 goto rinse;
5631 device_initialize(&rdev->dev);
5632 dev_set_drvdata(&rdev->dev, rdev);
5633 rdev->dev.class = &regulator_class;
5634 spin_lock_init(&rdev->err_lock);
5637 * Duplicate the config so the driver could override it after
5638 * parsing init data.
5640 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5641 if (config == NULL) {
5642 ret = -ENOMEM;
5643 goto clean;
5646 if (config->init_data) {
5648 * Providing of_match means the framework is expected to parse
5649 * DT to get the init_data. This would conflict with provided
5650 * init_data, if set. Warn if it happens.
5652 if (regulator_desc->of_match)
5653 dev_warn(dev, "Using provided init data - OF match ignored\n");
5655 init_data = config->init_data;
5656 rdev->dev.of_node = of_node_get(config->of_node);
5658 } else {
5659 init_data = regulator_of_get_init_data(dev, regulator_desc,
5660 config,
5661 &rdev->dev.of_node);
5664 * Sometimes not all resources are probed already so we need to
5665 * take that into account. This happens most the time if the
5666 * ena_gpiod comes from a gpio extender or something else.
5668 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5669 ret = -EPROBE_DEFER;
5670 goto clean;
5674 * We need to keep track of any GPIO descriptor coming from the
5675 * device tree until we have handled it over to the core. If the
5676 * config that was passed in to this function DOES NOT contain a
5677 * descriptor, and the config after this call DOES contain a
5678 * descriptor, we definitely got one from parsing the device
5679 * tree.
5681 if (!cfg->ena_gpiod && config->ena_gpiod)
5682 dangling_of_gpiod = true;
5685 ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5686 rdev->reg_data = config->driver_data;
5687 rdev->owner = regulator_desc->owner;
5688 rdev->desc = regulator_desc;
5689 if (config->regmap)
5690 rdev->regmap = config->regmap;
5691 else if (dev_get_regmap(dev, NULL))
5692 rdev->regmap = dev_get_regmap(dev, NULL);
5693 else if (dev->parent)
5694 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5695 INIT_LIST_HEAD(&rdev->consumer_list);
5696 INIT_LIST_HEAD(&rdev->list);
5697 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5698 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5700 if (init_data && init_data->supply_regulator)
5701 rdev->supply_name = init_data->supply_regulator;
5702 else if (regulator_desc->supply_name)
5703 rdev->supply_name = regulator_desc->supply_name;
5705 /* register with sysfs */
5706 rdev->dev.parent = config->dev;
5707 dev_set_name(&rdev->dev, "regulator.%lu",
5708 (unsigned long) atomic_inc_return(&regulator_no));
5710 /* set regulator constraints */
5711 if (init_data)
5712 rdev->constraints = kmemdup(&init_data->constraints,
5713 sizeof(*rdev->constraints),
5714 GFP_KERNEL);
5715 else
5716 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5717 GFP_KERNEL);
5718 if (!rdev->constraints) {
5719 ret = -ENOMEM;
5720 goto wash;
5723 if (regulator_desc->init_cb) {
5724 ret = regulator_desc->init_cb(rdev, config);
5725 if (ret < 0)
5726 goto wash;
5729 if ((rdev->supply_name && !rdev->supply) &&
5730 (rdev->constraints->always_on ||
5731 rdev->constraints->boot_on)) {
5732 ret = regulator_resolve_supply(rdev);
5733 if (ret)
5734 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5735 ERR_PTR(ret));
5737 resolved_early = true;
5740 if (config->ena_gpiod) {
5741 ret = regulator_ena_gpio_request(rdev, config);
5742 if (ret != 0) {
5743 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5744 ERR_PTR(ret));
5745 goto wash;
5747 /* The regulator core took over the GPIO descriptor */
5748 dangling_cfg_gpiod = false;
5749 dangling_of_gpiod = false;
5752 ret = set_machine_constraints(rdev);
5753 if (ret == -EPROBE_DEFER && !resolved_early) {
5754 /* Regulator might be in bypass mode and so needs its supply
5755 * to set the constraints
5757 /* FIXME: this currently triggers a chicken-and-egg problem
5758 * when creating -SUPPLY symlink in sysfs to a regulator
5759 * that is just being created
5761 rdev_dbg(rdev, "will resolve supply early: %s\n",
5762 rdev->supply_name);
5763 ret = regulator_resolve_supply(rdev);
5764 if (!ret)
5765 ret = set_machine_constraints(rdev);
5766 else
5767 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5768 ERR_PTR(ret));
5770 if (ret < 0)
5771 goto wash;
5773 ret = regulator_init_coupling(rdev);
5774 if (ret < 0)
5775 goto wash;
5777 /* add consumers devices */
5778 if (init_data) {
5779 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5780 ret = set_consumer_device_supply(rdev,
5781 init_data->consumer_supplies[i].dev_name,
5782 init_data->consumer_supplies[i].supply);
5783 if (ret < 0) {
5784 dev_err(dev, "Failed to set supply %s\n",
5785 init_data->consumer_supplies[i].supply);
5786 goto unset_supplies;
5791 if (!rdev->desc->ops->get_voltage &&
5792 !rdev->desc->ops->list_voltage &&
5793 !rdev->desc->fixed_uV)
5794 rdev->is_switch = true;
5796 ret = device_add(&rdev->dev);
5797 if (ret != 0)
5798 goto unset_supplies;
5800 rdev_init_debugfs(rdev);
5802 /* try to resolve regulators coupling since a new one was registered */
5803 mutex_lock(&regulator_list_mutex);
5804 regulator_resolve_coupling(rdev);
5805 mutex_unlock(&regulator_list_mutex);
5807 /* try to resolve regulators supply since a new one was registered */
5808 class_for_each_device(&regulator_class, NULL, NULL,
5809 regulator_register_resolve_supply);
5810 kfree(config);
5811 return rdev;
5813 unset_supplies:
5814 mutex_lock(&regulator_list_mutex);
5815 unset_regulator_supplies(rdev);
5816 regulator_remove_coupling(rdev);
5817 mutex_unlock(&regulator_list_mutex);
5818 wash:
5819 regulator_put(rdev->supply);
5820 kfree(rdev->coupling_desc.coupled_rdevs);
5821 mutex_lock(&regulator_list_mutex);
5822 regulator_ena_gpio_free(rdev);
5823 mutex_unlock(&regulator_list_mutex);
5824 clean:
5825 if (dangling_of_gpiod)
5826 gpiod_put(config->ena_gpiod);
5827 kfree(config);
5828 put_device(&rdev->dev);
5829 rinse:
5830 if (dangling_cfg_gpiod)
5831 gpiod_put(cfg->ena_gpiod);
5832 return ERR_PTR(ret);
5834 EXPORT_SYMBOL_GPL(regulator_register);
5837 * regulator_unregister - unregister regulator
5838 * @rdev: regulator to unregister
5840 * Called by regulator drivers to unregister a regulator.
5842 void regulator_unregister(struct regulator_dev *rdev)
5844 if (rdev == NULL)
5845 return;
5847 if (rdev->supply) {
5848 while (rdev->use_count--)
5849 regulator_disable(rdev->supply);
5850 regulator_put(rdev->supply);
5853 flush_work(&rdev->disable_work.work);
5855 mutex_lock(&regulator_list_mutex);
5857 WARN_ON(rdev->open_count);
5858 regulator_remove_coupling(rdev);
5859 unset_regulator_supplies(rdev);
5860 list_del(&rdev->list);
5861 regulator_ena_gpio_free(rdev);
5862 device_unregister(&rdev->dev);
5864 mutex_unlock(&regulator_list_mutex);
5866 EXPORT_SYMBOL_GPL(regulator_unregister);
5868 #ifdef CONFIG_SUSPEND
5870 * regulator_suspend - prepare regulators for system wide suspend
5871 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5873 * Configure each regulator with it's suspend operating parameters for state.
5875 * Return: 0 on success or a negative error number on failure.
5877 static int regulator_suspend(struct device *dev)
5879 struct regulator_dev *rdev = dev_to_rdev(dev);
5880 suspend_state_t state = pm_suspend_target_state;
5881 int ret;
5882 const struct regulator_state *rstate;
5884 rstate = regulator_get_suspend_state_check(rdev, state);
5885 if (!rstate)
5886 return 0;
5888 regulator_lock(rdev);
5889 ret = __suspend_set_state(rdev, rstate);
5890 regulator_unlock(rdev);
5892 return ret;
5895 static int regulator_resume(struct device *dev)
5897 suspend_state_t state = pm_suspend_target_state;
5898 struct regulator_dev *rdev = dev_to_rdev(dev);
5899 struct regulator_state *rstate;
5900 int ret = 0;
5902 rstate = regulator_get_suspend_state(rdev, state);
5903 if (rstate == NULL)
5904 return 0;
5906 /* Avoid grabbing the lock if we don't need to */
5907 if (!rdev->desc->ops->resume)
5908 return 0;
5910 regulator_lock(rdev);
5912 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5913 rstate->enabled == DISABLE_IN_SUSPEND)
5914 ret = rdev->desc->ops->resume(rdev);
5916 regulator_unlock(rdev);
5918 return ret;
5920 #else /* !CONFIG_SUSPEND */
5922 #define regulator_suspend NULL
5923 #define regulator_resume NULL
5925 #endif /* !CONFIG_SUSPEND */
5927 #ifdef CONFIG_PM
5928 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5929 .suspend = regulator_suspend,
5930 .resume = regulator_resume,
5932 #endif
5934 const struct class regulator_class = {
5935 .name = "regulator",
5936 .dev_release = regulator_dev_release,
5937 .dev_groups = regulator_dev_groups,
5938 #ifdef CONFIG_PM
5939 .pm = &regulator_pm_ops,
5940 #endif
5943 * regulator_has_full_constraints - the system has fully specified constraints
5945 * Calling this function will cause the regulator API to disable all
5946 * regulators which have a zero use count and don't have an always_on
5947 * constraint in a late_initcall.
5949 * The intention is that this will become the default behaviour in a
5950 * future kernel release so users are encouraged to use this facility
5951 * now.
5953 void regulator_has_full_constraints(void)
5955 has_full_constraints = 1;
5957 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5960 * rdev_get_drvdata - get rdev regulator driver data
5961 * @rdev: regulator
5963 * Get rdev regulator driver private data. This call can be used in the
5964 * regulator driver context.
5966 * Return: Pointer to regulator driver private data.
5968 void *rdev_get_drvdata(struct regulator_dev *rdev)
5970 return rdev->reg_data;
5972 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5975 * regulator_get_drvdata - get regulator driver data
5976 * @regulator: regulator
5978 * Get regulator driver private data. This call can be used in the consumer
5979 * driver context when non API regulator specific functions need to be called.
5981 * Return: Pointer to regulator driver private data.
5983 void *regulator_get_drvdata(struct regulator *regulator)
5985 return regulator->rdev->reg_data;
5987 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5990 * regulator_set_drvdata - set regulator driver data
5991 * @regulator: regulator
5992 * @data: data
5994 void regulator_set_drvdata(struct regulator *regulator, void *data)
5996 regulator->rdev->reg_data = data;
5998 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
6001 * rdev_get_id - get regulator ID
6002 * @rdev: regulator
6004 * Return: Regulator ID for @rdev.
6006 int rdev_get_id(struct regulator_dev *rdev)
6008 return rdev->desc->id;
6010 EXPORT_SYMBOL_GPL(rdev_get_id);
6012 struct device *rdev_get_dev(struct regulator_dev *rdev)
6014 return &rdev->dev;
6016 EXPORT_SYMBOL_GPL(rdev_get_dev);
6018 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
6020 return rdev->regmap;
6022 EXPORT_SYMBOL_GPL(rdev_get_regmap);
6024 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
6026 return reg_init_data->driver_data;
6028 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
6030 #ifdef CONFIG_DEBUG_FS
6031 static int supply_map_show(struct seq_file *sf, void *data)
6033 struct regulator_map *map;
6035 list_for_each_entry(map, &regulator_map_list, list) {
6036 seq_printf(sf, "%s -> %s.%s\n",
6037 rdev_get_name(map->regulator), map->dev_name,
6038 map->supply);
6041 return 0;
6043 DEFINE_SHOW_ATTRIBUTE(supply_map);
6045 struct summary_data {
6046 struct seq_file *s;
6047 struct regulator_dev *parent;
6048 int level;
6051 static void regulator_summary_show_subtree(struct seq_file *s,
6052 struct regulator_dev *rdev,
6053 int level);
6055 static int regulator_summary_show_children(struct device *dev, void *data)
6057 struct regulator_dev *rdev = dev_to_rdev(dev);
6058 struct summary_data *summary_data = data;
6060 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6061 regulator_summary_show_subtree(summary_data->s, rdev,
6062 summary_data->level + 1);
6064 return 0;
6067 static void regulator_summary_show_subtree(struct seq_file *s,
6068 struct regulator_dev *rdev,
6069 int level)
6071 struct regulation_constraints *c;
6072 struct regulator *consumer;
6073 struct summary_data summary_data;
6074 unsigned int opmode;
6076 if (!rdev)
6077 return;
6079 opmode = _regulator_get_mode_unlocked(rdev);
6080 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6081 level * 3 + 1, "",
6082 30 - level * 3, rdev_get_name(rdev),
6083 rdev->use_count, rdev->open_count, rdev->bypass_count,
6084 regulator_opmode_to_str(opmode));
6086 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6087 seq_printf(s, "%5dmA ",
6088 _regulator_get_current_limit_unlocked(rdev) / 1000);
6090 c = rdev->constraints;
6091 if (c) {
6092 switch (rdev->desc->type) {
6093 case REGULATOR_VOLTAGE:
6094 seq_printf(s, "%5dmV %5dmV ",
6095 c->min_uV / 1000, c->max_uV / 1000);
6096 break;
6097 case REGULATOR_CURRENT:
6098 seq_printf(s, "%5dmA %5dmA ",
6099 c->min_uA / 1000, c->max_uA / 1000);
6100 break;
6104 seq_puts(s, "\n");
6106 list_for_each_entry(consumer, &rdev->consumer_list, list) {
6107 if (consumer->dev && consumer->dev->class == &regulator_class)
6108 continue;
6110 seq_printf(s, "%*s%-*s ",
6111 (level + 1) * 3 + 1, "",
6112 30 - (level + 1) * 3,
6113 consumer->supply_name ? consumer->supply_name :
6114 consumer->dev ? dev_name(consumer->dev) : "deviceless");
6116 switch (rdev->desc->type) {
6117 case REGULATOR_VOLTAGE:
6118 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6119 consumer->enable_count,
6120 consumer->uA_load / 1000,
6121 consumer->uA_load && !consumer->enable_count ?
6122 '*' : ' ',
6123 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6124 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6125 break;
6126 case REGULATOR_CURRENT:
6127 break;
6130 seq_puts(s, "\n");
6133 summary_data.s = s;
6134 summary_data.level = level;
6135 summary_data.parent = rdev;
6137 class_for_each_device(&regulator_class, NULL, &summary_data,
6138 regulator_summary_show_children);
6141 struct summary_lock_data {
6142 struct ww_acquire_ctx *ww_ctx;
6143 struct regulator_dev **new_contended_rdev;
6144 struct regulator_dev **old_contended_rdev;
6147 static int regulator_summary_lock_one(struct device *dev, void *data)
6149 struct regulator_dev *rdev = dev_to_rdev(dev);
6150 struct summary_lock_data *lock_data = data;
6151 int ret = 0;
6153 if (rdev != *lock_data->old_contended_rdev) {
6154 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6156 if (ret == -EDEADLK)
6157 *lock_data->new_contended_rdev = rdev;
6158 else
6159 WARN_ON_ONCE(ret);
6160 } else {
6161 *lock_data->old_contended_rdev = NULL;
6164 return ret;
6167 static int regulator_summary_unlock_one(struct device *dev, void *data)
6169 struct regulator_dev *rdev = dev_to_rdev(dev);
6170 struct summary_lock_data *lock_data = data;
6172 if (lock_data) {
6173 if (rdev == *lock_data->new_contended_rdev)
6174 return -EDEADLK;
6177 regulator_unlock(rdev);
6179 return 0;
6182 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6183 struct regulator_dev **new_contended_rdev,
6184 struct regulator_dev **old_contended_rdev)
6186 struct summary_lock_data lock_data;
6187 int ret;
6189 lock_data.ww_ctx = ww_ctx;
6190 lock_data.new_contended_rdev = new_contended_rdev;
6191 lock_data.old_contended_rdev = old_contended_rdev;
6193 ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6194 regulator_summary_lock_one);
6195 if (ret)
6196 class_for_each_device(&regulator_class, NULL, &lock_data,
6197 regulator_summary_unlock_one);
6199 return ret;
6202 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6204 struct regulator_dev *new_contended_rdev = NULL;
6205 struct regulator_dev *old_contended_rdev = NULL;
6206 int err;
6208 mutex_lock(&regulator_list_mutex);
6210 ww_acquire_init(ww_ctx, &regulator_ww_class);
6212 do {
6213 if (new_contended_rdev) {
6214 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6215 old_contended_rdev = new_contended_rdev;
6216 old_contended_rdev->ref_cnt++;
6217 old_contended_rdev->mutex_owner = current;
6220 err = regulator_summary_lock_all(ww_ctx,
6221 &new_contended_rdev,
6222 &old_contended_rdev);
6224 if (old_contended_rdev)
6225 regulator_unlock(old_contended_rdev);
6227 } while (err == -EDEADLK);
6229 ww_acquire_done(ww_ctx);
6232 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6234 class_for_each_device(&regulator_class, NULL, NULL,
6235 regulator_summary_unlock_one);
6236 ww_acquire_fini(ww_ctx);
6238 mutex_unlock(&regulator_list_mutex);
6241 static int regulator_summary_show_roots(struct device *dev, void *data)
6243 struct regulator_dev *rdev = dev_to_rdev(dev);
6244 struct seq_file *s = data;
6246 if (!rdev->supply)
6247 regulator_summary_show_subtree(s, rdev, 0);
6249 return 0;
6252 static int regulator_summary_show(struct seq_file *s, void *data)
6254 struct ww_acquire_ctx ww_ctx;
6256 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
6257 seq_puts(s, "---------------------------------------------------------------------------------------\n");
6259 regulator_summary_lock(&ww_ctx);
6261 class_for_each_device(&regulator_class, NULL, s,
6262 regulator_summary_show_roots);
6264 regulator_summary_unlock(&ww_ctx);
6266 return 0;
6268 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6269 #endif /* CONFIG_DEBUG_FS */
6271 static int __init regulator_init(void)
6273 int ret;
6275 ret = class_register(&regulator_class);
6277 debugfs_root = debugfs_create_dir("regulator", NULL);
6278 if (IS_ERR(debugfs_root))
6279 pr_debug("regulator: Failed to create debugfs directory\n");
6281 #ifdef CONFIG_DEBUG_FS
6282 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6283 &supply_map_fops);
6285 debugfs_create_file("regulator_summary", 0444, debugfs_root,
6286 NULL, &regulator_summary_fops);
6287 #endif
6288 regulator_dummy_init();
6290 regulator_coupler_register(&generic_regulator_coupler);
6292 return ret;
6295 /* init early to allow our consumers to complete system booting */
6296 core_initcall(regulator_init);
6298 static int regulator_late_cleanup(struct device *dev, void *data)
6300 struct regulator_dev *rdev = dev_to_rdev(dev);
6301 struct regulation_constraints *c = rdev->constraints;
6302 int ret;
6304 if (c && c->always_on)
6305 return 0;
6307 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6308 return 0;
6310 regulator_lock(rdev);
6312 if (rdev->use_count)
6313 goto unlock;
6315 /* If reading the status failed, assume that it's off. */
6316 if (_regulator_is_enabled(rdev) <= 0)
6317 goto unlock;
6319 if (have_full_constraints()) {
6320 /* We log since this may kill the system if it goes
6321 * wrong.
6323 rdev_info(rdev, "disabling\n");
6324 ret = _regulator_do_disable(rdev);
6325 if (ret != 0)
6326 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6327 } else {
6328 /* The intention is that in future we will
6329 * assume that full constraints are provided
6330 * so warn even if we aren't going to do
6331 * anything here.
6333 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6336 unlock:
6337 regulator_unlock(rdev);
6339 return 0;
6342 static bool regulator_ignore_unused;
6343 static int __init regulator_ignore_unused_setup(char *__unused)
6345 regulator_ignore_unused = true;
6346 return 1;
6348 __setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6350 static void regulator_init_complete_work_function(struct work_struct *work)
6353 * Regulators may had failed to resolve their input supplies
6354 * when were registered, either because the input supply was
6355 * not registered yet or because its parent device was not
6356 * bound yet. So attempt to resolve the input supplies for
6357 * pending regulators before trying to disable unused ones.
6359 class_for_each_device(&regulator_class, NULL, NULL,
6360 regulator_register_resolve_supply);
6363 * For debugging purposes, it may be useful to prevent unused
6364 * regulators from being disabled.
6366 if (regulator_ignore_unused) {
6367 pr_warn("regulator: Not disabling unused regulators\n");
6368 return;
6371 /* If we have a full configuration then disable any regulators
6372 * we have permission to change the status for and which are
6373 * not in use or always_on. This is effectively the default
6374 * for DT and ACPI as they have full constraints.
6376 class_for_each_device(&regulator_class, NULL, NULL,
6377 regulator_late_cleanup);
6380 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6381 regulator_init_complete_work_function);
6383 static int __init regulator_init_complete(void)
6386 * Since DT doesn't provide an idiomatic mechanism for
6387 * enabling full constraints and since it's much more natural
6388 * with DT to provide them just assume that a DT enabled
6389 * system has full constraints.
6391 if (of_have_populated_dt())
6392 has_full_constraints = true;
6395 * We punt completion for an arbitrary amount of time since
6396 * systems like distros will load many drivers from userspace
6397 * so consumers might not always be ready yet, this is
6398 * particularly an issue with laptops where this might bounce
6399 * the display off then on. Ideally we'd get a notification
6400 * from userspace when this happens but we don't so just wait
6401 * a bit and hope we waited long enough. It'd be better if
6402 * we'd only do this on systems that need it, and a kernel
6403 * command line option might be useful.
6405 schedule_delayed_work(&regulator_init_complete_work,
6406 msecs_to_jiffies(30000));
6408 return 0;
6410 late_initcall_sync(regulator_init_complete);