2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
55 #include <linux/circ_buf.h>
56 #include <linux/device.h>
61 #include "probe_roms.h"
62 #include "remote_device.h"
64 #include "scu_completion_codes.h"
65 #include "scu_event_codes.h"
66 #include "registers.h"
67 #include "scu_remote_node_context.h"
68 #include "scu_task_context.h"
70 #define SCU_CONTEXT_RAM_INIT_STALL_TIME 200
72 #define smu_max_ports(dcc_value) \
74 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
75 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
78 #define smu_max_task_contexts(dcc_value) \
80 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
81 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
84 #define smu_max_rncs(dcc_value) \
86 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
87 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
90 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100
93 * The number of milliseconds to wait while a given phy is consuming power
94 * before allowing another set of phys to consume power. Ultimately, this will
95 * be specified by OEM parameter.
97 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
100 * NORMALIZE_PUT_POINTER() -
102 * This macro will normalize the completion queue put pointer so its value can
103 * be used as an array inde
105 #define NORMALIZE_PUT_POINTER(x) \
106 ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
110 * NORMALIZE_EVENT_POINTER() -
112 * This macro will normalize the completion queue event entry so its value can
113 * be used as an index.
115 #define NORMALIZE_EVENT_POINTER(x) \
117 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
118 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
122 * NORMALIZE_GET_POINTER() -
124 * This macro will normalize the completion queue get pointer so its value can
125 * be used as an index into an array
127 #define NORMALIZE_GET_POINTER(x) \
128 ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
131 * NORMALIZE_GET_POINTER_CYCLE_BIT() -
133 * This macro will normalize the completion queue cycle pointer so it matches
134 * the completion queue cycle bit
136 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
137 ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
140 * COMPLETION_QUEUE_CYCLE_BIT() -
142 * This macro will return the cycle bit of the completion queue entry
144 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
146 /* Init the state machine and call the state entry function (if any) */
147 void sci_init_sm(struct sci_base_state_machine
*sm
,
148 const struct sci_base_state
*state_table
, u32 initial_state
)
150 sci_state_transition_t handler
;
152 sm
->initial_state_id
= initial_state
;
153 sm
->previous_state_id
= initial_state
;
154 sm
->current_state_id
= initial_state
;
155 sm
->state_table
= state_table
;
157 handler
= sm
->state_table
[initial_state
].enter_state
;
162 /* Call the state exit fn, update the current state, call the state entry fn */
163 void sci_change_state(struct sci_base_state_machine
*sm
, u32 next_state
)
165 sci_state_transition_t handler
;
167 handler
= sm
->state_table
[sm
->current_state_id
].exit_state
;
171 sm
->previous_state_id
= sm
->current_state_id
;
172 sm
->current_state_id
= next_state
;
174 handler
= sm
->state_table
[sm
->current_state_id
].enter_state
;
179 static bool sci_controller_completion_queue_has_entries(struct isci_host
*ihost
)
181 u32 get_value
= ihost
->completion_queue_get
;
182 u32 get_index
= get_value
& SMU_COMPLETION_QUEUE_GET_POINTER_MASK
;
184 if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value
) ==
185 COMPLETION_QUEUE_CYCLE_BIT(ihost
->completion_queue
[get_index
]))
191 static bool sci_controller_isr(struct isci_host
*ihost
)
193 if (sci_controller_completion_queue_has_entries(ihost
))
196 /* we have a spurious interrupt it could be that we have already
197 * emptied the completion queue from a previous interrupt
200 writel(SMU_ISR_COMPLETION
, &ihost
->smu_registers
->interrupt_status
);
202 /* There is a race in the hardware that could cause us not to be
203 * notified of an interrupt completion if we do not take this
204 * step. We will mask then unmask the interrupts so if there is
205 * another interrupt pending the clearing of the interrupt
206 * source we get the next interrupt message.
208 spin_lock(&ihost
->scic_lock
);
209 if (test_bit(IHOST_IRQ_ENABLED
, &ihost
->flags
)) {
210 writel(0xFF000000, &ihost
->smu_registers
->interrupt_mask
);
211 writel(0, &ihost
->smu_registers
->interrupt_mask
);
213 spin_unlock(&ihost
->scic_lock
);
218 irqreturn_t
isci_msix_isr(int vec
, void *data
)
220 struct isci_host
*ihost
= data
;
222 if (sci_controller_isr(ihost
))
223 tasklet_schedule(&ihost
->completion_tasklet
);
228 static bool sci_controller_error_isr(struct isci_host
*ihost
)
230 u32 interrupt_status
;
233 readl(&ihost
->smu_registers
->interrupt_status
);
234 interrupt_status
&= (SMU_ISR_QUEUE_ERROR
| SMU_ISR_QUEUE_SUSPEND
);
236 if (interrupt_status
!= 0) {
238 * There is an error interrupt pending so let it through and handle
244 * There is a race in the hardware that could cause us not to be notified
245 * of an interrupt completion if we do not take this step. We will mask
246 * then unmask the error interrupts so if there was another interrupt
247 * pending we will be notified.
248 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
249 writel(0xff, &ihost
->smu_registers
->interrupt_mask
);
250 writel(0, &ihost
->smu_registers
->interrupt_mask
);
255 static void sci_controller_task_completion(struct isci_host
*ihost
, u32 ent
)
257 u32 index
= SCU_GET_COMPLETION_INDEX(ent
);
258 struct isci_request
*ireq
= ihost
->reqs
[index
];
260 /* Make sure that we really want to process this IO request */
261 if (test_bit(IREQ_ACTIVE
, &ireq
->flags
) &&
262 ireq
->io_tag
!= SCI_CONTROLLER_INVALID_IO_TAG
&&
263 ISCI_TAG_SEQ(ireq
->io_tag
) == ihost
->io_request_sequence
[index
])
264 /* Yep this is a valid io request pass it along to the
267 sci_io_request_tc_completion(ireq
, ent
);
270 static void sci_controller_sdma_completion(struct isci_host
*ihost
, u32 ent
)
273 struct isci_request
*ireq
;
274 struct isci_remote_device
*idev
;
276 index
= SCU_GET_COMPLETION_INDEX(ent
);
278 switch (scu_get_command_request_type(ent
)) {
279 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC
:
280 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC
:
281 ireq
= ihost
->reqs
[index
];
282 dev_warn(&ihost
->pdev
->dev
, "%s: %x for io request %p\n",
283 __func__
, ent
, ireq
);
284 /* @todo For a post TC operation we need to fail the IO
288 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC
:
289 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC
:
290 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC
:
291 idev
= ihost
->device_table
[index
];
292 dev_warn(&ihost
->pdev
->dev
, "%s: %x for device %p\n",
293 __func__
, ent
, idev
);
294 /* @todo For a port RNC operation we need to fail the
299 dev_warn(&ihost
->pdev
->dev
, "%s: unknown completion type %x\n",
305 static void sci_controller_unsolicited_frame(struct isci_host
*ihost
, u32 ent
)
310 struct scu_unsolicited_frame_header
*frame_header
;
311 struct isci_phy
*iphy
;
312 struct isci_remote_device
*idev
;
314 enum sci_status result
= SCI_FAILURE
;
316 frame_index
= SCU_GET_FRAME_INDEX(ent
);
318 frame_header
= ihost
->uf_control
.buffers
.array
[frame_index
].header
;
319 ihost
->uf_control
.buffers
.array
[frame_index
].state
= UNSOLICITED_FRAME_IN_USE
;
321 if (SCU_GET_FRAME_ERROR(ent
)) {
323 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
324 * / this cause a problem? We expect the phy initialization will
325 * / fail if there is an error in the frame. */
326 sci_controller_release_frame(ihost
, frame_index
);
330 if (frame_header
->is_address_frame
) {
331 index
= SCU_GET_PROTOCOL_ENGINE_INDEX(ent
);
332 iphy
= &ihost
->phys
[index
];
333 result
= sci_phy_frame_handler(iphy
, frame_index
);
336 index
= SCU_GET_COMPLETION_INDEX(ent
);
338 if (index
== SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX
) {
340 * This is a signature fis or a frame from a direct attached SATA
341 * device that has not yet been created. In either case forwared
342 * the frame to the PE and let it take care of the frame data. */
343 index
= SCU_GET_PROTOCOL_ENGINE_INDEX(ent
);
344 iphy
= &ihost
->phys
[index
];
345 result
= sci_phy_frame_handler(iphy
, frame_index
);
347 if (index
< ihost
->remote_node_entries
)
348 idev
= ihost
->device_table
[index
];
353 result
= sci_remote_device_frame_handler(idev
, frame_index
);
355 sci_controller_release_frame(ihost
, frame_index
);
359 if (result
!= SCI_SUCCESS
) {
361 * / @todo Is there any reason to report some additional error message
362 * / when we get this failure notifiction? */
366 static void sci_controller_event_completion(struct isci_host
*ihost
, u32 ent
)
368 struct isci_remote_device
*idev
;
369 struct isci_request
*ireq
;
370 struct isci_phy
*iphy
;
373 index
= SCU_GET_COMPLETION_INDEX(ent
);
375 switch (scu_get_event_type(ent
)) {
376 case SCU_EVENT_TYPE_SMU_COMMAND_ERROR
:
377 /* / @todo The driver did something wrong and we need to fix the condtion. */
378 dev_err(&ihost
->pdev
->dev
,
379 "%s: SCIC Controller 0x%p received SMU command error "
386 case SCU_EVENT_TYPE_SMU_PCQ_ERROR
:
387 case SCU_EVENT_TYPE_SMU_ERROR
:
388 case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR
:
390 * / @todo This is a hardware failure and its likely that we want to
391 * / reset the controller. */
392 dev_err(&ihost
->pdev
->dev
,
393 "%s: SCIC Controller 0x%p received fatal controller "
400 case SCU_EVENT_TYPE_TRANSPORT_ERROR
:
401 ireq
= ihost
->reqs
[index
];
402 sci_io_request_event_handler(ireq
, ent
);
405 case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT
:
406 switch (scu_get_event_specifier(ent
)) {
407 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE
:
408 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT
:
409 ireq
= ihost
->reqs
[index
];
411 sci_io_request_event_handler(ireq
, ent
);
413 dev_warn(&ihost
->pdev
->dev
,
414 "%s: SCIC Controller 0x%p received "
415 "event 0x%x for io request object "
416 "that doesn't exist.\n",
423 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT
:
424 idev
= ihost
->device_table
[index
];
426 sci_remote_device_event_handler(idev
, ent
);
428 dev_warn(&ihost
->pdev
->dev
,
429 "%s: SCIC Controller 0x%p received "
430 "event 0x%x for remote device object "
431 "that doesn't exist.\n",
440 case SCU_EVENT_TYPE_BROADCAST_CHANGE
:
442 * direct the broadcast change event to the phy first and then let
443 * the phy redirect the broadcast change to the port object */
444 case SCU_EVENT_TYPE_ERR_CNT_EVENT
:
446 * direct error counter event to the phy object since that is where
447 * we get the event notification. This is a type 4 event. */
448 case SCU_EVENT_TYPE_OSSP_EVENT
:
449 index
= SCU_GET_PROTOCOL_ENGINE_INDEX(ent
);
450 iphy
= &ihost
->phys
[index
];
451 sci_phy_event_handler(iphy
, ent
);
454 case SCU_EVENT_TYPE_RNC_SUSPEND_TX
:
455 case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX
:
456 case SCU_EVENT_TYPE_RNC_OPS_MISC
:
457 if (index
< ihost
->remote_node_entries
) {
458 idev
= ihost
->device_table
[index
];
461 sci_remote_device_event_handler(idev
, ent
);
463 dev_err(&ihost
->pdev
->dev
,
464 "%s: SCIC Controller 0x%p received event 0x%x "
465 "for remote device object 0x%0x that doesn't "
475 dev_warn(&ihost
->pdev
->dev
,
476 "%s: SCIC Controller received unknown event code %x\n",
483 static void sci_controller_process_completions(struct isci_host
*ihost
)
485 u32 completion_count
= 0;
492 dev_dbg(&ihost
->pdev
->dev
,
493 "%s: completion queue beginning get:0x%08x\n",
495 ihost
->completion_queue_get
);
497 /* Get the component parts of the completion queue */
498 get_index
= NORMALIZE_GET_POINTER(ihost
->completion_queue_get
);
499 get_cycle
= SMU_CQGR_CYCLE_BIT
& ihost
->completion_queue_get
;
501 event_get
= NORMALIZE_EVENT_POINTER(ihost
->completion_queue_get
);
502 event_cycle
= SMU_CQGR_EVENT_CYCLE_BIT
& ihost
->completion_queue_get
;
505 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle
)
506 == COMPLETION_QUEUE_CYCLE_BIT(ihost
->completion_queue
[get_index
])
510 ent
= ihost
->completion_queue
[get_index
];
512 /* increment the get pointer and check for rollover to toggle the cycle bit */
513 get_cycle
^= ((get_index
+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES
) <<
514 (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT
- SCU_MAX_COMPLETION_QUEUE_SHIFT
);
515 get_index
= (get_index
+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES
-1);
517 dev_dbg(&ihost
->pdev
->dev
,
518 "%s: completion queue entry:0x%08x\n",
522 switch (SCU_GET_COMPLETION_TYPE(ent
)) {
523 case SCU_COMPLETION_TYPE_TASK
:
524 sci_controller_task_completion(ihost
, ent
);
527 case SCU_COMPLETION_TYPE_SDMA
:
528 sci_controller_sdma_completion(ihost
, ent
);
531 case SCU_COMPLETION_TYPE_UFI
:
532 sci_controller_unsolicited_frame(ihost
, ent
);
535 case SCU_COMPLETION_TYPE_EVENT
:
536 sci_controller_event_completion(ihost
, ent
);
539 case SCU_COMPLETION_TYPE_NOTIFY
: {
540 event_cycle
^= ((event_get
+1) & SCU_MAX_EVENTS
) <<
541 (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT
- SCU_MAX_EVENTS_SHIFT
);
542 event_get
= (event_get
+1) & (SCU_MAX_EVENTS
-1);
544 sci_controller_event_completion(ihost
, ent
);
548 dev_warn(&ihost
->pdev
->dev
,
549 "%s: SCIC Controller received unknown "
550 "completion type %x\n",
557 /* Update the get register if we completed one or more entries */
558 if (completion_count
> 0) {
559 ihost
->completion_queue_get
=
560 SMU_CQGR_GEN_BIT(ENABLE
) |
561 SMU_CQGR_GEN_BIT(EVENT_ENABLE
) |
563 SMU_CQGR_GEN_VAL(EVENT_POINTER
, event_get
) |
565 SMU_CQGR_GEN_VAL(POINTER
, get_index
);
567 writel(ihost
->completion_queue_get
,
568 &ihost
->smu_registers
->completion_queue_get
);
572 dev_dbg(&ihost
->pdev
->dev
,
573 "%s: completion queue ending get:0x%08x\n",
575 ihost
->completion_queue_get
);
579 static void sci_controller_error_handler(struct isci_host
*ihost
)
581 u32 interrupt_status
;
584 readl(&ihost
->smu_registers
->interrupt_status
);
586 if ((interrupt_status
& SMU_ISR_QUEUE_SUSPEND
) &&
587 sci_controller_completion_queue_has_entries(ihost
)) {
589 sci_controller_process_completions(ihost
);
590 writel(SMU_ISR_QUEUE_SUSPEND
, &ihost
->smu_registers
->interrupt_status
);
592 dev_err(&ihost
->pdev
->dev
, "%s: status: %#x\n", __func__
,
595 sci_change_state(&ihost
->sm
, SCIC_FAILED
);
600 /* If we dont process any completions I am not sure that we want to do this.
601 * We are in the middle of a hardware fault and should probably be reset.
603 writel(0, &ihost
->smu_registers
->interrupt_mask
);
606 irqreturn_t
isci_intx_isr(int vec
, void *data
)
608 irqreturn_t ret
= IRQ_NONE
;
609 struct isci_host
*ihost
= data
;
611 if (sci_controller_isr(ihost
)) {
612 writel(SMU_ISR_COMPLETION
, &ihost
->smu_registers
->interrupt_status
);
613 tasklet_schedule(&ihost
->completion_tasklet
);
615 } else if (sci_controller_error_isr(ihost
)) {
616 spin_lock(&ihost
->scic_lock
);
617 sci_controller_error_handler(ihost
);
618 spin_unlock(&ihost
->scic_lock
);
625 irqreturn_t
isci_error_isr(int vec
, void *data
)
627 struct isci_host
*ihost
= data
;
629 if (sci_controller_error_isr(ihost
))
630 sci_controller_error_handler(ihost
);
636 * isci_host_start_complete() - This function is called by the core library,
637 * through the ISCI Module, to indicate controller start status.
638 * @ihost: This parameter specifies the ISCI host object
639 * @completion_status: This parameter specifies the completion status from the
643 static void isci_host_start_complete(struct isci_host
*ihost
, enum sci_status completion_status
)
645 if (completion_status
!= SCI_SUCCESS
)
646 dev_info(&ihost
->pdev
->dev
,
647 "controller start timed out, continuing...\n");
648 clear_bit(IHOST_START_PENDING
, &ihost
->flags
);
649 wake_up(&ihost
->eventq
);
652 int isci_host_scan_finished(struct Scsi_Host
*shost
, unsigned long time
)
654 struct sas_ha_struct
*ha
= SHOST_TO_SAS_HA(shost
);
655 struct isci_host
*ihost
= ha
->lldd_ha
;
657 if (test_bit(IHOST_START_PENDING
, &ihost
->flags
))
666 * sci_controller_get_suggested_start_timeout() - This method returns the
667 * suggested sci_controller_start() timeout amount. The user is free to
668 * use any timeout value, but this method provides the suggested minimum
669 * start timeout value. The returned value is based upon empirical
670 * information determined as a result of interoperability testing.
671 * @ihost: the handle to the controller object for which to return the
672 * suggested start timeout.
674 * This method returns the number of milliseconds for the suggested start
677 static u32
sci_controller_get_suggested_start_timeout(struct isci_host
*ihost
)
679 /* Validate the user supplied parameters. */
684 * The suggested minimum timeout value for a controller start operation:
686 * Signature FIS Timeout
687 * + Phy Start Timeout
688 * + Number of Phy Spin Up Intervals
689 * ---------------------------------
690 * Number of milliseconds for the controller start operation.
692 * NOTE: The number of phy spin up intervals will be equivalent
693 * to the number of phys divided by the number phys allowed
694 * per interval - 1 (once OEM parameters are supported).
695 * Currently we assume only 1 phy per interval. */
697 return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
698 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
699 + ((SCI_MAX_PHYS
- 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL
);
702 static void sci_controller_enable_interrupts(struct isci_host
*ihost
)
704 set_bit(IHOST_IRQ_ENABLED
, &ihost
->flags
);
705 writel(0, &ihost
->smu_registers
->interrupt_mask
);
708 void sci_controller_disable_interrupts(struct isci_host
*ihost
)
710 clear_bit(IHOST_IRQ_ENABLED
, &ihost
->flags
);
711 writel(0xffffffff, &ihost
->smu_registers
->interrupt_mask
);
712 readl(&ihost
->smu_registers
->interrupt_mask
); /* flush */
715 static void sci_controller_enable_port_task_scheduler(struct isci_host
*ihost
)
717 u32 port_task_scheduler_value
;
719 port_task_scheduler_value
=
720 readl(&ihost
->scu_registers
->peg0
.ptsg
.control
);
721 port_task_scheduler_value
|=
722 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE
) |
723 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE
));
724 writel(port_task_scheduler_value
,
725 &ihost
->scu_registers
->peg0
.ptsg
.control
);
728 static void sci_controller_assign_task_entries(struct isci_host
*ihost
)
733 * Assign all the TCs to function 0
734 * TODO: Do we actually need to read this register to write it back?
738 readl(&ihost
->smu_registers
->task_context_assignment
[0]);
740 task_assignment
|= (SMU_TCA_GEN_VAL(STARTING
, 0)) |
741 (SMU_TCA_GEN_VAL(ENDING
, ihost
->task_context_entries
- 1)) |
742 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE
));
744 writel(task_assignment
,
745 &ihost
->smu_registers
->task_context_assignment
[0]);
749 static void sci_controller_initialize_completion_queue(struct isci_host
*ihost
)
752 u32 completion_queue_control_value
;
753 u32 completion_queue_get_value
;
754 u32 completion_queue_put_value
;
756 ihost
->completion_queue_get
= 0;
758 completion_queue_control_value
=
759 (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES
- 1) |
760 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS
- 1));
762 writel(completion_queue_control_value
,
763 &ihost
->smu_registers
->completion_queue_control
);
766 /* Set the completion queue get pointer and enable the queue */
767 completion_queue_get_value
= (
768 (SMU_CQGR_GEN_VAL(POINTER
, 0))
769 | (SMU_CQGR_GEN_VAL(EVENT_POINTER
, 0))
770 | (SMU_CQGR_GEN_BIT(ENABLE
))
771 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE
))
774 writel(completion_queue_get_value
,
775 &ihost
->smu_registers
->completion_queue_get
);
777 /* Set the completion queue put pointer */
778 completion_queue_put_value
= (
779 (SMU_CQPR_GEN_VAL(POINTER
, 0))
780 | (SMU_CQPR_GEN_VAL(EVENT_POINTER
, 0))
783 writel(completion_queue_put_value
,
784 &ihost
->smu_registers
->completion_queue_put
);
786 /* Initialize the cycle bit of the completion queue entries */
787 for (index
= 0; index
< SCU_MAX_COMPLETION_QUEUE_ENTRIES
; index
++) {
789 * If get.cycle_bit != completion_queue.cycle_bit
790 * its not a valid completion queue entry
791 * so at system start all entries are invalid */
792 ihost
->completion_queue
[index
] = 0x80000000;
796 static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host
*ihost
)
798 u32 frame_queue_control_value
;
799 u32 frame_queue_get_value
;
800 u32 frame_queue_put_value
;
802 /* Write the queue size */
803 frame_queue_control_value
=
804 SCU_UFQC_GEN_VAL(QUEUE_SIZE
, SCU_MAX_UNSOLICITED_FRAMES
);
806 writel(frame_queue_control_value
,
807 &ihost
->scu_registers
->sdma
.unsolicited_frame_queue_control
);
809 /* Setup the get pointer for the unsolicited frame queue */
810 frame_queue_get_value
= (
811 SCU_UFQGP_GEN_VAL(POINTER
, 0)
812 | SCU_UFQGP_GEN_BIT(ENABLE_BIT
)
815 writel(frame_queue_get_value
,
816 &ihost
->scu_registers
->sdma
.unsolicited_frame_get_pointer
);
817 /* Setup the put pointer for the unsolicited frame queue */
818 frame_queue_put_value
= SCU_UFQPP_GEN_VAL(POINTER
, 0);
819 writel(frame_queue_put_value
,
820 &ihost
->scu_registers
->sdma
.unsolicited_frame_put_pointer
);
823 void sci_controller_transition_to_ready(struct isci_host
*ihost
, enum sci_status status
)
825 if (ihost
->sm
.current_state_id
== SCIC_STARTING
) {
827 * We move into the ready state, because some of the phys/ports
828 * may be up and operational.
830 sci_change_state(&ihost
->sm
, SCIC_READY
);
832 isci_host_start_complete(ihost
, status
);
836 static bool is_phy_starting(struct isci_phy
*iphy
)
838 enum sci_phy_states state
;
840 state
= iphy
->sm
.current_state_id
;
842 case SCI_PHY_STARTING
:
843 case SCI_PHY_SUB_INITIAL
:
844 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN
:
845 case SCI_PHY_SUB_AWAIT_IAF_UF
:
846 case SCI_PHY_SUB_AWAIT_SAS_POWER
:
847 case SCI_PHY_SUB_AWAIT_SATA_POWER
:
848 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN
:
849 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN
:
850 case SCI_PHY_SUB_AWAIT_OSSP_EN
:
851 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF
:
852 case SCI_PHY_SUB_FINAL
:
859 bool is_controller_start_complete(struct isci_host
*ihost
)
863 for (i
= 0; i
< SCI_MAX_PHYS
; i
++) {
864 struct isci_phy
*iphy
= &ihost
->phys
[i
];
865 u32 state
= iphy
->sm
.current_state_id
;
867 /* in apc mode we need to check every phy, in
868 * mpc mode we only need to check phys that have
869 * been configured into a port
871 if (is_port_config_apc(ihost
))
873 else if (!phy_get_non_dummy_port(iphy
))
876 /* The controller start operation is complete iff:
877 * - all links have been given an opportunity to start
878 * - have no indication of a connected device
879 * - have an indication of a connected device and it has
880 * finished the link training process.
882 if ((iphy
->is_in_link_training
== false && state
== SCI_PHY_INITIAL
) ||
883 (iphy
->is_in_link_training
== false && state
== SCI_PHY_STOPPED
) ||
884 (iphy
->is_in_link_training
== true && is_phy_starting(iphy
)) ||
885 (ihost
->port_agent
.phy_ready_mask
!= ihost
->port_agent
.phy_configured_mask
))
893 * sci_controller_start_next_phy - start phy
896 * If all the phys have been started, then attempt to transition the
897 * controller to the READY state and inform the user
898 * (sci_cb_controller_start_complete()).
900 static enum sci_status
sci_controller_start_next_phy(struct isci_host
*ihost
)
902 struct sci_oem_params
*oem
= &ihost
->oem_parameters
;
903 struct isci_phy
*iphy
;
904 enum sci_status status
;
906 status
= SCI_SUCCESS
;
908 if (ihost
->phy_startup_timer_pending
)
911 if (ihost
->next_phy_to_start
>= SCI_MAX_PHYS
) {
912 if (is_controller_start_complete(ihost
)) {
913 sci_controller_transition_to_ready(ihost
, SCI_SUCCESS
);
914 sci_del_timer(&ihost
->phy_timer
);
915 ihost
->phy_startup_timer_pending
= false;
918 iphy
= &ihost
->phys
[ihost
->next_phy_to_start
];
920 if (oem
->controller
.mode_type
== SCIC_PORT_MANUAL_CONFIGURATION_MODE
) {
921 if (phy_get_non_dummy_port(iphy
) == NULL
) {
922 ihost
->next_phy_to_start
++;
924 /* Caution recursion ahead be forwarned
926 * The PHY was never added to a PORT in MPC mode
927 * so start the next phy in sequence This phy
928 * will never go link up and will not draw power
929 * the OEM parameters either configured the phy
930 * incorrectly for the PORT or it was never
933 return sci_controller_start_next_phy(ihost
);
937 status
= sci_phy_start(iphy
);
939 if (status
== SCI_SUCCESS
) {
940 sci_mod_timer(&ihost
->phy_timer
,
941 SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
);
942 ihost
->phy_startup_timer_pending
= true;
944 dev_warn(&ihost
->pdev
->dev
,
945 "%s: Controller stop operation failed "
946 "to stop phy %d because of status "
949 ihost
->phys
[ihost
->next_phy_to_start
].phy_index
,
953 ihost
->next_phy_to_start
++;
959 static void phy_startup_timeout(struct timer_list
*t
)
961 struct sci_timer
*tmr
= from_timer(tmr
, t
, timer
);
962 struct isci_host
*ihost
= container_of(tmr
, typeof(*ihost
), phy_timer
);
964 enum sci_status status
;
966 spin_lock_irqsave(&ihost
->scic_lock
, flags
);
971 ihost
->phy_startup_timer_pending
= false;
974 status
= sci_controller_start_next_phy(ihost
);
975 } while (status
!= SCI_SUCCESS
);
978 spin_unlock_irqrestore(&ihost
->scic_lock
, flags
);
981 static u16
isci_tci_active(struct isci_host
*ihost
)
983 return CIRC_CNT(ihost
->tci_head
, ihost
->tci_tail
, SCI_MAX_IO_REQUESTS
);
986 static enum sci_status
sci_controller_start(struct isci_host
*ihost
,
989 enum sci_status result
;
992 if (ihost
->sm
.current_state_id
!= SCIC_INITIALIZED
) {
993 dev_warn(&ihost
->pdev
->dev
, "%s invalid state: %d\n",
994 __func__
, ihost
->sm
.current_state_id
);
995 return SCI_FAILURE_INVALID_STATE
;
998 /* Build the TCi free pool */
999 BUILD_BUG_ON(SCI_MAX_IO_REQUESTS
> 1 << sizeof(ihost
->tci_pool
[0]) * 8);
1000 ihost
->tci_head
= 0;
1001 ihost
->tci_tail
= 0;
1002 for (index
= 0; index
< ihost
->task_context_entries
; index
++)
1003 isci_tci_free(ihost
, index
);
1005 /* Build the RNi free pool */
1006 sci_remote_node_table_initialize(&ihost
->available_remote_nodes
,
1007 ihost
->remote_node_entries
);
1010 * Before anything else lets make sure we will not be
1011 * interrupted by the hardware.
1013 sci_controller_disable_interrupts(ihost
);
1015 /* Enable the port task scheduler */
1016 sci_controller_enable_port_task_scheduler(ihost
);
1018 /* Assign all the task entries to ihost physical function */
1019 sci_controller_assign_task_entries(ihost
);
1021 /* Now initialize the completion queue */
1022 sci_controller_initialize_completion_queue(ihost
);
1024 /* Initialize the unsolicited frame queue for use */
1025 sci_controller_initialize_unsolicited_frame_queue(ihost
);
1027 /* Start all of the ports on this controller */
1028 for (index
= 0; index
< ihost
->logical_port_entries
; index
++) {
1029 struct isci_port
*iport
= &ihost
->ports
[index
];
1031 result
= sci_port_start(iport
);
1036 sci_controller_start_next_phy(ihost
);
1038 sci_mod_timer(&ihost
->timer
, timeout
);
1040 sci_change_state(&ihost
->sm
, SCIC_STARTING
);
1045 void isci_host_start(struct Scsi_Host
*shost
)
1047 struct isci_host
*ihost
= SHOST_TO_SAS_HA(shost
)->lldd_ha
;
1048 unsigned long tmo
= sci_controller_get_suggested_start_timeout(ihost
);
1050 set_bit(IHOST_START_PENDING
, &ihost
->flags
);
1052 spin_lock_irq(&ihost
->scic_lock
);
1053 sci_controller_start(ihost
, tmo
);
1054 sci_controller_enable_interrupts(ihost
);
1055 spin_unlock_irq(&ihost
->scic_lock
);
1058 static void isci_host_stop_complete(struct isci_host
*ihost
)
1060 sci_controller_disable_interrupts(ihost
);
1061 clear_bit(IHOST_STOP_PENDING
, &ihost
->flags
);
1062 wake_up(&ihost
->eventq
);
1065 static void sci_controller_completion_handler(struct isci_host
*ihost
)
1067 /* Empty out the completion queue */
1068 if (sci_controller_completion_queue_has_entries(ihost
))
1069 sci_controller_process_completions(ihost
);
1071 /* Clear the interrupt and enable all interrupts again */
1072 writel(SMU_ISR_COMPLETION
, &ihost
->smu_registers
->interrupt_status
);
1073 /* Could we write the value of SMU_ISR_COMPLETION? */
1074 writel(0xFF000000, &ihost
->smu_registers
->interrupt_mask
);
1075 writel(0, &ihost
->smu_registers
->interrupt_mask
);
1078 void ireq_done(struct isci_host
*ihost
, struct isci_request
*ireq
, struct sas_task
*task
)
1080 if (!test_bit(IREQ_ABORT_PATH_ACTIVE
, &ireq
->flags
) &&
1081 !(task
->task_state_flags
& SAS_TASK_STATE_ABORTED
)) {
1082 if (test_bit(IREQ_COMPLETE_IN_TARGET
, &ireq
->flags
)) {
1083 /* Normal notification (task_done) */
1084 dev_dbg(&ihost
->pdev
->dev
,
1085 "%s: Normal - ireq/task = %p/%p\n",
1086 __func__
, ireq
, task
);
1087 task
->lldd_task
= NULL
;
1088 task
->task_done(task
);
1090 dev_dbg(&ihost
->pdev
->dev
,
1091 "%s: Error - ireq/task = %p/%p\n",
1092 __func__
, ireq
, task
);
1093 if (sas_protocol_ata(task
->task_proto
))
1094 task
->lldd_task
= NULL
;
1095 sas_task_abort(task
);
1098 task
->lldd_task
= NULL
;
1100 if (test_and_clear_bit(IREQ_ABORT_PATH_ACTIVE
, &ireq
->flags
))
1101 wake_up_all(&ihost
->eventq
);
1103 if (!test_bit(IREQ_NO_AUTO_FREE_TAG
, &ireq
->flags
))
1104 isci_free_tag(ihost
, ireq
->io_tag
);
1107 * isci_host_completion_routine() - This function is the delayed service
1108 * routine that calls the sci core library's completion handler. It's
1109 * scheduled as a tasklet from the interrupt service routine when interrupts
1110 * in use, or set as the timeout function in polled mode.
1111 * @data: This parameter specifies the ISCI host object
1114 void isci_host_completion_routine(unsigned long data
)
1116 struct isci_host
*ihost
= (struct isci_host
*)data
;
1119 spin_lock_irq(&ihost
->scic_lock
);
1120 sci_controller_completion_handler(ihost
);
1121 spin_unlock_irq(&ihost
->scic_lock
);
1124 * we subtract SCI_MAX_PORTS to account for the number of dummy TCs
1125 * issued for hardware issue workaround
1127 active
= isci_tci_active(ihost
) - SCI_MAX_PORTS
;
1130 * the coalesence timeout doubles at each encoding step, so
1131 * update it based on the ilog2 value of the outstanding requests
1133 writel(SMU_ICC_GEN_VAL(NUMBER
, active
) |
1134 SMU_ICC_GEN_VAL(TIMER
, ISCI_COALESCE_BASE
+ ilog2(active
)),
1135 &ihost
->smu_registers
->interrupt_coalesce_control
);
1139 * sci_controller_stop() - This method will stop an individual controller
1140 * object.This method will invoke the associated user callback upon
1141 * completion. The completion callback is called when the following
1142 * conditions are met: -# the method return status is SCI_SUCCESS. -# the
1143 * controller has been quiesced. This method will ensure that all IO
1144 * requests are quiesced, phys are stopped, and all additional operation by
1145 * the hardware is halted.
1146 * @ihost: the handle to the controller object to stop.
1147 * @timeout: This parameter specifies the number of milliseconds in which the
1148 * stop operation should complete.
1150 * The controller must be in the STARTED or STOPPED state. Indicate if the
1151 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1152 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1153 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1154 * controller is not either in the STARTED or STOPPED states.
1156 static enum sci_status
sci_controller_stop(struct isci_host
*ihost
, u32 timeout
)
1158 if (ihost
->sm
.current_state_id
!= SCIC_READY
) {
1159 dev_warn(&ihost
->pdev
->dev
, "%s invalid state: %d\n",
1160 __func__
, ihost
->sm
.current_state_id
);
1161 return SCI_FAILURE_INVALID_STATE
;
1164 sci_mod_timer(&ihost
->timer
, timeout
);
1165 sci_change_state(&ihost
->sm
, SCIC_STOPPING
);
1170 * sci_controller_reset() - This method will reset the supplied core
1171 * controller regardless of the state of said controller. This operation is
1172 * considered destructive. In other words, all current operations are wiped
1173 * out. No IO completions for outstanding devices occur. Outstanding IO
1174 * requests are not aborted or completed at the actual remote device.
1175 * @ihost: the handle to the controller object to reset.
1177 * Indicate if the controller reset method succeeded or failed in some way.
1178 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1179 * the controller reset operation is unable to complete.
1181 static enum sci_status
sci_controller_reset(struct isci_host
*ihost
)
1183 switch (ihost
->sm
.current_state_id
) {
1189 * The reset operation is not a graceful cleanup, just
1190 * perform the state transition.
1192 sci_change_state(&ihost
->sm
, SCIC_RESETTING
);
1195 dev_warn(&ihost
->pdev
->dev
, "%s invalid state: %d\n",
1196 __func__
, ihost
->sm
.current_state_id
);
1197 return SCI_FAILURE_INVALID_STATE
;
1201 static enum sci_status
sci_controller_stop_phys(struct isci_host
*ihost
)
1204 enum sci_status status
;
1205 enum sci_status phy_status
;
1207 status
= SCI_SUCCESS
;
1209 for (index
= 0; index
< SCI_MAX_PHYS
; index
++) {
1210 phy_status
= sci_phy_stop(&ihost
->phys
[index
]);
1212 if (phy_status
!= SCI_SUCCESS
&&
1213 phy_status
!= SCI_FAILURE_INVALID_STATE
) {
1214 status
= SCI_FAILURE
;
1216 dev_warn(&ihost
->pdev
->dev
,
1217 "%s: Controller stop operation failed to stop "
1218 "phy %d because of status %d.\n",
1220 ihost
->phys
[index
].phy_index
, phy_status
);
1229 * isci_host_deinit - shutdown frame reception and dma
1230 * @ihost: host to take down
1232 * This is called in either the driver shutdown or the suspend path. In
1233 * the shutdown case libsas went through port teardown and normal device
1234 * removal (i.e. physical links stayed up to service scsi_device removal
1235 * commands). In the suspend case we disable the hardware without
1236 * notifying libsas of the link down events since we want libsas to
1237 * remember the domain across the suspend/resume cycle
1239 void isci_host_deinit(struct isci_host
*ihost
)
1243 /* disable output data selects */
1244 for (i
= 0; i
< isci_gpio_count(ihost
); i
++)
1245 writel(SGPIO_HW_CONTROL
, &ihost
->scu_registers
->peg0
.sgpio
.output_data_select
[i
]);
1247 set_bit(IHOST_STOP_PENDING
, &ihost
->flags
);
1249 spin_lock_irq(&ihost
->scic_lock
);
1250 sci_controller_stop(ihost
, SCIC_CONTROLLER_STOP_TIMEOUT
);
1251 spin_unlock_irq(&ihost
->scic_lock
);
1253 wait_for_stop(ihost
);
1255 /* phy stop is after controller stop to allow port and device to
1256 * go idle before shutting down the phys, but the expectation is
1257 * that i/o has been shut off well before we reach this
1260 sci_controller_stop_phys(ihost
);
1262 /* disable sgpio: where the above wait should give time for the
1263 * enclosure to sample the gpios going inactive
1265 writel(0, &ihost
->scu_registers
->peg0
.sgpio
.interface_control
);
1267 spin_lock_irq(&ihost
->scic_lock
);
1268 sci_controller_reset(ihost
);
1269 spin_unlock_irq(&ihost
->scic_lock
);
1271 /* Cancel any/all outstanding port timers */
1272 for (i
= 0; i
< ihost
->logical_port_entries
; i
++) {
1273 struct isci_port
*iport
= &ihost
->ports
[i
];
1274 del_timer_sync(&iport
->timer
.timer
);
1277 /* Cancel any/all outstanding phy timers */
1278 for (i
= 0; i
< SCI_MAX_PHYS
; i
++) {
1279 struct isci_phy
*iphy
= &ihost
->phys
[i
];
1280 del_timer_sync(&iphy
->sata_timer
.timer
);
1283 del_timer_sync(&ihost
->port_agent
.timer
.timer
);
1285 del_timer_sync(&ihost
->power_control
.timer
.timer
);
1287 del_timer_sync(&ihost
->timer
.timer
);
1289 del_timer_sync(&ihost
->phy_timer
.timer
);
1292 static void __iomem
*scu_base(struct isci_host
*isci_host
)
1294 struct pci_dev
*pdev
= isci_host
->pdev
;
1295 int id
= isci_host
->id
;
1297 return pcim_iomap_table(pdev
)[SCI_SCU_BAR
* 2] + SCI_SCU_BAR_SIZE
* id
;
1300 static void __iomem
*smu_base(struct isci_host
*isci_host
)
1302 struct pci_dev
*pdev
= isci_host
->pdev
;
1303 int id
= isci_host
->id
;
1305 return pcim_iomap_table(pdev
)[SCI_SMU_BAR
* 2] + SCI_SMU_BAR_SIZE
* id
;
1308 static void sci_controller_initial_state_enter(struct sci_base_state_machine
*sm
)
1310 struct isci_host
*ihost
= container_of(sm
, typeof(*ihost
), sm
);
1312 sci_change_state(&ihost
->sm
, SCIC_RESET
);
1315 static inline void sci_controller_starting_state_exit(struct sci_base_state_machine
*sm
)
1317 struct isci_host
*ihost
= container_of(sm
, typeof(*ihost
), sm
);
1319 sci_del_timer(&ihost
->timer
);
1322 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1323 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1324 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000
1325 #define INTERRUPT_COALESCE_NUMBER_MAX 256
1326 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7
1327 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28
1330 * sci_controller_set_interrupt_coalescence() - This method allows the user to
1331 * configure the interrupt coalescence.
1332 * @ihost: This parameter represents the handle to the controller object
1333 * for which its interrupt coalesce register is overridden.
1334 * @coalesce_number: Used to control the number of entries in the Completion
1335 * Queue before an interrupt is generated. If the number of entries exceed
1336 * this number, an interrupt will be generated. The valid range of the input
1337 * is [0, 256]. A setting of 0 results in coalescing being disabled.
1338 * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1339 * input is [0, 2700000] . A setting of 0 is allowed and results in no
1340 * interrupt coalescing timeout.
1342 * Indicate if the user successfully set the interrupt coalesce parameters.
1343 * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1344 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1346 static enum sci_status
1347 sci_controller_set_interrupt_coalescence(struct isci_host
*ihost
,
1348 u32 coalesce_number
,
1349 u32 coalesce_timeout
)
1351 u8 timeout_encode
= 0;
1355 /* Check if the input parameters fall in the range. */
1356 if (coalesce_number
> INTERRUPT_COALESCE_NUMBER_MAX
)
1357 return SCI_FAILURE_INVALID_PARAMETER_VALUE
;
1360 * Defined encoding for interrupt coalescing timeout:
1361 * Value Min Max Units
1362 * ----- --- --- -----
1392 * Others Undefined */
1395 * Use the table above to decide the encode of interrupt coalescing timeout
1396 * value for register writing. */
1397 if (coalesce_timeout
== 0)
1400 /* make the timeout value in unit of (10 ns). */
1401 coalesce_timeout
= coalesce_timeout
* 100;
1402 min
= INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS
/ 10;
1403 max
= INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS
/ 10;
1405 /* get the encode of timeout for register writing. */
1406 for (timeout_encode
= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN
;
1407 timeout_encode
<= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX
;
1409 if (min
<= coalesce_timeout
&& max
> coalesce_timeout
)
1411 else if (coalesce_timeout
>= max
&& coalesce_timeout
< min
* 2
1412 && coalesce_timeout
<= INTERRUPT_COALESCE_TIMEOUT_MAX_US
* 100) {
1413 if ((coalesce_timeout
- max
) < (2 * min
- coalesce_timeout
))
1425 if (timeout_encode
== INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX
+ 1)
1426 /* the value is out of range. */
1427 return SCI_FAILURE_INVALID_PARAMETER_VALUE
;
1430 writel(SMU_ICC_GEN_VAL(NUMBER
, coalesce_number
) |
1431 SMU_ICC_GEN_VAL(TIMER
, timeout_encode
),
1432 &ihost
->smu_registers
->interrupt_coalesce_control
);
1435 ihost
->interrupt_coalesce_number
= (u16
)coalesce_number
;
1436 ihost
->interrupt_coalesce_timeout
= coalesce_timeout
/ 100;
1442 static void sci_controller_ready_state_enter(struct sci_base_state_machine
*sm
)
1444 struct isci_host
*ihost
= container_of(sm
, typeof(*ihost
), sm
);
1447 /* enable clock gating for power control of the scu unit */
1448 val
= readl(&ihost
->smu_registers
->clock_gating_control
);
1449 val
&= ~(SMU_CGUCR_GEN_BIT(REGCLK_ENABLE
) |
1450 SMU_CGUCR_GEN_BIT(TXCLK_ENABLE
) |
1451 SMU_CGUCR_GEN_BIT(XCLK_ENABLE
));
1452 val
|= SMU_CGUCR_GEN_BIT(IDLE_ENABLE
);
1453 writel(val
, &ihost
->smu_registers
->clock_gating_control
);
1455 /* set the default interrupt coalescence number and timeout value. */
1456 sci_controller_set_interrupt_coalescence(ihost
, 0, 0);
1459 static void sci_controller_ready_state_exit(struct sci_base_state_machine
*sm
)
1461 struct isci_host
*ihost
= container_of(sm
, typeof(*ihost
), sm
);
1463 /* disable interrupt coalescence. */
1464 sci_controller_set_interrupt_coalescence(ihost
, 0, 0);
1467 static enum sci_status
sci_controller_stop_ports(struct isci_host
*ihost
)
1470 enum sci_status port_status
;
1471 enum sci_status status
= SCI_SUCCESS
;
1473 for (index
= 0; index
< ihost
->logical_port_entries
; index
++) {
1474 struct isci_port
*iport
= &ihost
->ports
[index
];
1476 port_status
= sci_port_stop(iport
);
1478 if ((port_status
!= SCI_SUCCESS
) &&
1479 (port_status
!= SCI_FAILURE_INVALID_STATE
)) {
1480 status
= SCI_FAILURE
;
1482 dev_warn(&ihost
->pdev
->dev
,
1483 "%s: Controller stop operation failed to "
1484 "stop port %d because of status %d.\n",
1486 iport
->logical_port_index
,
1494 static enum sci_status
sci_controller_stop_devices(struct isci_host
*ihost
)
1497 enum sci_status status
;
1498 enum sci_status device_status
;
1500 status
= SCI_SUCCESS
;
1502 for (index
= 0; index
< ihost
->remote_node_entries
; index
++) {
1503 if (ihost
->device_table
[index
] != NULL
) {
1504 /* / @todo What timeout value do we want to provide to this request? */
1505 device_status
= sci_remote_device_stop(ihost
->device_table
[index
], 0);
1507 if ((device_status
!= SCI_SUCCESS
) &&
1508 (device_status
!= SCI_FAILURE_INVALID_STATE
)) {
1509 dev_warn(&ihost
->pdev
->dev
,
1510 "%s: Controller stop operation failed "
1511 "to stop device 0x%p because of "
1514 ihost
->device_table
[index
], device_status
);
1522 static void sci_controller_stopping_state_enter(struct sci_base_state_machine
*sm
)
1524 struct isci_host
*ihost
= container_of(sm
, typeof(*ihost
), sm
);
1526 sci_controller_stop_devices(ihost
);
1527 sci_controller_stop_ports(ihost
);
1529 if (!sci_controller_has_remote_devices_stopping(ihost
))
1530 isci_host_stop_complete(ihost
);
1533 static void sci_controller_stopping_state_exit(struct sci_base_state_machine
*sm
)
1535 struct isci_host
*ihost
= container_of(sm
, typeof(*ihost
), sm
);
1537 sci_del_timer(&ihost
->timer
);
1540 static void sci_controller_reset_hardware(struct isci_host
*ihost
)
1542 /* Disable interrupts so we dont take any spurious interrupts */
1543 sci_controller_disable_interrupts(ihost
);
1546 writel(0xFFFFFFFF, &ihost
->smu_registers
->soft_reset_control
);
1548 /* Delay for 1ms to before clearing the CQP and UFQPR. */
1551 /* The write to the CQGR clears the CQP */
1552 writel(0x00000000, &ihost
->smu_registers
->completion_queue_get
);
1554 /* The write to the UFQGP clears the UFQPR */
1555 writel(0, &ihost
->scu_registers
->sdma
.unsolicited_frame_get_pointer
);
1557 /* clear all interrupts */
1558 writel(~SMU_INTERRUPT_STATUS_RESERVED_MASK
, &ihost
->smu_registers
->interrupt_status
);
1561 static void sci_controller_resetting_state_enter(struct sci_base_state_machine
*sm
)
1563 struct isci_host
*ihost
= container_of(sm
, typeof(*ihost
), sm
);
1565 sci_controller_reset_hardware(ihost
);
1566 sci_change_state(&ihost
->sm
, SCIC_RESET
);
1569 static const struct sci_base_state sci_controller_state_table
[] = {
1571 .enter_state
= sci_controller_initial_state_enter
,
1574 [SCIC_INITIALIZING
] = {},
1575 [SCIC_INITIALIZED
] = {},
1577 .exit_state
= sci_controller_starting_state_exit
,
1580 .enter_state
= sci_controller_ready_state_enter
,
1581 .exit_state
= sci_controller_ready_state_exit
,
1583 [SCIC_RESETTING
] = {
1584 .enter_state
= sci_controller_resetting_state_enter
,
1587 .enter_state
= sci_controller_stopping_state_enter
,
1588 .exit_state
= sci_controller_stopping_state_exit
,
1593 static void controller_timeout(struct timer_list
*t
)
1595 struct sci_timer
*tmr
= from_timer(tmr
, t
, timer
);
1596 struct isci_host
*ihost
= container_of(tmr
, typeof(*ihost
), timer
);
1597 struct sci_base_state_machine
*sm
= &ihost
->sm
;
1598 unsigned long flags
;
1600 spin_lock_irqsave(&ihost
->scic_lock
, flags
);
1605 if (sm
->current_state_id
== SCIC_STARTING
)
1606 sci_controller_transition_to_ready(ihost
, SCI_FAILURE_TIMEOUT
);
1607 else if (sm
->current_state_id
== SCIC_STOPPING
) {
1608 sci_change_state(sm
, SCIC_FAILED
);
1609 isci_host_stop_complete(ihost
);
1610 } else /* / @todo Now what do we want to do in this case? */
1611 dev_err(&ihost
->pdev
->dev
,
1612 "%s: Controller timer fired when controller was not "
1613 "in a state being timed.\n",
1617 spin_unlock_irqrestore(&ihost
->scic_lock
, flags
);
1620 static enum sci_status
sci_controller_construct(struct isci_host
*ihost
,
1621 void __iomem
*scu_base
,
1622 void __iomem
*smu_base
)
1626 sci_init_sm(&ihost
->sm
, sci_controller_state_table
, SCIC_INITIAL
);
1628 ihost
->scu_registers
= scu_base
;
1629 ihost
->smu_registers
= smu_base
;
1631 sci_port_configuration_agent_construct(&ihost
->port_agent
);
1633 /* Construct the ports for this controller */
1634 for (i
= 0; i
< SCI_MAX_PORTS
; i
++)
1635 sci_port_construct(&ihost
->ports
[i
], i
, ihost
);
1636 sci_port_construct(&ihost
->ports
[i
], SCIC_SDS_DUMMY_PORT
, ihost
);
1638 /* Construct the phys for this controller */
1639 for (i
= 0; i
< SCI_MAX_PHYS
; i
++) {
1640 /* Add all the PHYs to the dummy port */
1641 sci_phy_construct(&ihost
->phys
[i
],
1642 &ihost
->ports
[SCI_MAX_PORTS
], i
);
1645 ihost
->invalid_phy_mask
= 0;
1647 sci_init_timer(&ihost
->timer
, controller_timeout
);
1649 return sci_controller_reset(ihost
);
1652 int sci_oem_parameters_validate(struct sci_oem_params
*oem
, u8 version
)
1656 for (i
= 0; i
< SCI_MAX_PORTS
; i
++)
1657 if (oem
->ports
[i
].phy_mask
> SCIC_SDS_PARM_PHY_MASK_MAX
)
1660 for (i
= 0; i
< SCI_MAX_PHYS
; i
++)
1661 if (oem
->phys
[i
].sas_address
.high
== 0 &&
1662 oem
->phys
[i
].sas_address
.low
== 0)
1665 if (oem
->controller
.mode_type
== SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE
) {
1666 for (i
= 0; i
< SCI_MAX_PHYS
; i
++)
1667 if (oem
->ports
[i
].phy_mask
!= 0)
1669 } else if (oem
->controller
.mode_type
== SCIC_PORT_MANUAL_CONFIGURATION_MODE
) {
1672 for (i
= 0; i
< SCI_MAX_PHYS
; i
++)
1673 phy_mask
|= oem
->ports
[i
].phy_mask
;
1680 if (oem
->controller
.max_concurr_spin_up
> MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT
||
1681 oem
->controller
.max_concurr_spin_up
< 1)
1684 if (oem
->controller
.do_enable_ssc
) {
1685 if (version
< ISCI_ROM_VER_1_1
&& oem
->controller
.do_enable_ssc
!= 1)
1688 if (version
>= ISCI_ROM_VER_1_1
) {
1689 u8 test
= oem
->controller
.ssc_sata_tx_spread_level
;
1702 test
= oem
->controller
.ssc_sas_tx_spread_level
;
1703 if (oem
->controller
.ssc_sas_tx_type
== 0) {
1712 } else if (oem
->controller
.ssc_sas_tx_type
== 1) {
1728 static u8
max_spin_up(struct isci_host
*ihost
)
1730 if (ihost
->user_parameters
.max_concurr_spinup
)
1731 return min_t(u8
, ihost
->user_parameters
.max_concurr_spinup
,
1732 MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT
);
1734 return min_t(u8
, ihost
->oem_parameters
.controller
.max_concurr_spin_up
,
1735 MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT
);
1738 static void power_control_timeout(struct timer_list
*t
)
1740 struct sci_timer
*tmr
= from_timer(tmr
, t
, timer
);
1741 struct isci_host
*ihost
= container_of(tmr
, typeof(*ihost
), power_control
.timer
);
1742 struct isci_phy
*iphy
;
1743 unsigned long flags
;
1746 spin_lock_irqsave(&ihost
->scic_lock
, flags
);
1751 ihost
->power_control
.phys_granted_power
= 0;
1753 if (ihost
->power_control
.phys_waiting
== 0) {
1754 ihost
->power_control
.timer_started
= false;
1758 for (i
= 0; i
< SCI_MAX_PHYS
; i
++) {
1760 if (ihost
->power_control
.phys_waiting
== 0)
1763 iphy
= ihost
->power_control
.requesters
[i
];
1767 if (ihost
->power_control
.phys_granted_power
>= max_spin_up(ihost
))
1770 ihost
->power_control
.requesters
[i
] = NULL
;
1771 ihost
->power_control
.phys_waiting
--;
1772 ihost
->power_control
.phys_granted_power
++;
1773 sci_phy_consume_power_handler(iphy
);
1775 if (iphy
->protocol
== SAS_PROTOCOL_SSP
) {
1778 for (j
= 0; j
< SCI_MAX_PHYS
; j
++) {
1779 struct isci_phy
*requester
= ihost
->power_control
.requesters
[j
];
1782 * Search the power_control queue to see if there are other phys
1783 * attached to the same remote device. If found, take all of
1784 * them out of await_sas_power state.
1786 if (requester
!= NULL
&& requester
!= iphy
) {
1787 u8 other
= memcmp(requester
->frame_rcvd
.iaf
.sas_addr
,
1788 iphy
->frame_rcvd
.iaf
.sas_addr
,
1789 sizeof(requester
->frame_rcvd
.iaf
.sas_addr
));
1792 ihost
->power_control
.requesters
[j
] = NULL
;
1793 ihost
->power_control
.phys_waiting
--;
1794 sci_phy_consume_power_handler(requester
);
1802 * It doesn't matter if the power list is empty, we need to start the
1803 * timer in case another phy becomes ready.
1805 sci_mod_timer(tmr
, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL
);
1806 ihost
->power_control
.timer_started
= true;
1809 spin_unlock_irqrestore(&ihost
->scic_lock
, flags
);
1812 void sci_controller_power_control_queue_insert(struct isci_host
*ihost
,
1813 struct isci_phy
*iphy
)
1815 BUG_ON(iphy
== NULL
);
1817 if (ihost
->power_control
.phys_granted_power
< max_spin_up(ihost
)) {
1818 ihost
->power_control
.phys_granted_power
++;
1819 sci_phy_consume_power_handler(iphy
);
1822 * stop and start the power_control timer. When the timer fires, the
1823 * no_of_phys_granted_power will be set to 0
1825 if (ihost
->power_control
.timer_started
)
1826 sci_del_timer(&ihost
->power_control
.timer
);
1828 sci_mod_timer(&ihost
->power_control
.timer
,
1829 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL
);
1830 ihost
->power_control
.timer_started
= true;
1834 * There are phys, attached to the same sas address as this phy, are
1835 * already in READY state, this phy don't need wait.
1838 struct isci_phy
*current_phy
;
1840 for (i
= 0; i
< SCI_MAX_PHYS
; i
++) {
1842 current_phy
= &ihost
->phys
[i
];
1844 other
= memcmp(current_phy
->frame_rcvd
.iaf
.sas_addr
,
1845 iphy
->frame_rcvd
.iaf
.sas_addr
,
1846 sizeof(current_phy
->frame_rcvd
.iaf
.sas_addr
));
1848 if (current_phy
->sm
.current_state_id
== SCI_PHY_READY
&&
1849 current_phy
->protocol
== SAS_PROTOCOL_SSP
&&
1851 sci_phy_consume_power_handler(iphy
);
1856 if (i
== SCI_MAX_PHYS
) {
1857 /* Add the phy in the waiting list */
1858 ihost
->power_control
.requesters
[iphy
->phy_index
] = iphy
;
1859 ihost
->power_control
.phys_waiting
++;
1864 void sci_controller_power_control_queue_remove(struct isci_host
*ihost
,
1865 struct isci_phy
*iphy
)
1867 BUG_ON(iphy
== NULL
);
1869 if (ihost
->power_control
.requesters
[iphy
->phy_index
])
1870 ihost
->power_control
.phys_waiting
--;
1872 ihost
->power_control
.requesters
[iphy
->phy_index
] = NULL
;
1875 static int is_long_cable(int phy
, unsigned char selection_byte
)
1877 return !!(selection_byte
& (1 << phy
));
1880 static int is_medium_cable(int phy
, unsigned char selection_byte
)
1882 return !!(selection_byte
& (1 << (phy
+ 4)));
1885 static enum cable_selections
decode_selection_byte(
1887 unsigned char selection_byte
)
1889 return ((selection_byte
& (1 << phy
)) ? 1 : 0)
1890 + (selection_byte
& (1 << (phy
+ 4)) ? 2 : 0);
1893 static unsigned char *to_cable_select(struct isci_host
*ihost
)
1895 if (is_cable_select_overridden())
1896 return ((unsigned char *)&cable_selection_override
)
1899 return &ihost
->oem_parameters
.controller
.cable_selection_mask
;
1902 enum cable_selections
decode_cable_selection(struct isci_host
*ihost
, int phy
)
1904 return decode_selection_byte(phy
, *to_cable_select(ihost
));
1907 char *lookup_cable_names(enum cable_selections selection
)
1909 static char *cable_names
[] = {
1910 [short_cable
] = "short",
1911 [long_cable
] = "long",
1912 [medium_cable
] = "medium",
1913 [undefined_cable
] = "<undefined, assumed long>" /* bit 0==1 */
1915 return (selection
<= undefined_cable
) ? cable_names
[selection
]
1916 : cable_names
[undefined_cable
];
1919 #define AFE_REGISTER_WRITE_DELAY 10
1921 static void sci_controller_afe_initialization(struct isci_host
*ihost
)
1923 struct scu_afe_registers __iomem
*afe
= &ihost
->scu_registers
->afe
;
1924 const struct sci_oem_params
*oem
= &ihost
->oem_parameters
;
1925 struct pci_dev
*pdev
= ihost
->pdev
;
1928 unsigned char cable_selection_mask
= *to_cable_select(ihost
);
1930 /* Clear DFX Status registers */
1931 writel(0x0081000f, &afe
->afe_dfx_master_control0
);
1932 udelay(AFE_REGISTER_WRITE_DELAY
);
1934 if (is_b0(pdev
) || is_c0(pdev
) || is_c1(pdev
)) {
1935 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
1936 * Timer, PM Stagger Timer
1938 writel(0x0007FFFF, &afe
->afe_pmsn_master_control2
);
1939 udelay(AFE_REGISTER_WRITE_DELAY
);
1942 /* Configure bias currents to normal */
1944 writel(0x00005A00, &afe
->afe_bias_control
);
1945 else if (is_b0(pdev
) || is_c0(pdev
))
1946 writel(0x00005F00, &afe
->afe_bias_control
);
1947 else if (is_c1(pdev
))
1948 writel(0x00005500, &afe
->afe_bias_control
);
1950 udelay(AFE_REGISTER_WRITE_DELAY
);
1954 writel(0x80040908, &afe
->afe_pll_control0
);
1955 else if (is_b0(pdev
) || is_c0(pdev
))
1956 writel(0x80040A08, &afe
->afe_pll_control0
);
1957 else if (is_c1(pdev
)) {
1958 writel(0x80000B08, &afe
->afe_pll_control0
);
1959 udelay(AFE_REGISTER_WRITE_DELAY
);
1960 writel(0x00000B08, &afe
->afe_pll_control0
);
1961 udelay(AFE_REGISTER_WRITE_DELAY
);
1962 writel(0x80000B08, &afe
->afe_pll_control0
);
1965 udelay(AFE_REGISTER_WRITE_DELAY
);
1967 /* Wait for the PLL to lock */
1969 afe_status
= readl(&afe
->afe_common_block_status
);
1970 udelay(AFE_REGISTER_WRITE_DELAY
);
1971 } while ((afe_status
& 0x00001000) == 0);
1974 /* Shorten SAS SNW lock time (RxLock timer value from 76
1977 writel(0x7bcc96ad, &afe
->afe_pmsn_master_control0
);
1978 udelay(AFE_REGISTER_WRITE_DELAY
);
1981 for (phy_id
= 0; phy_id
< SCI_MAX_PHYS
; phy_id
++) {
1982 struct scu_afe_transceiver __iomem
*xcvr
= &afe
->scu_afe_xcvr
[phy_id
];
1983 const struct sci_phy_oem_params
*oem_phy
= &oem
->phys
[phy_id
];
1984 int cable_length_long
=
1985 is_long_cable(phy_id
, cable_selection_mask
);
1986 int cable_length_medium
=
1987 is_medium_cable(phy_id
, cable_selection_mask
);
1990 /* All defaults, except the Receive Word
1991 * Alignament/Comma Detect Enable....(0xe800)
1993 writel(0x00004512, &xcvr
->afe_xcvr_control0
);
1994 udelay(AFE_REGISTER_WRITE_DELAY
);
1996 writel(0x0050100F, &xcvr
->afe_xcvr_control1
);
1997 udelay(AFE_REGISTER_WRITE_DELAY
);
1998 } else if (is_b0(pdev
)) {
1999 /* Configure transmitter SSC parameters */
2000 writel(0x00030000, &xcvr
->afe_tx_ssc_control
);
2001 udelay(AFE_REGISTER_WRITE_DELAY
);
2002 } else if (is_c0(pdev
)) {
2003 /* Configure transmitter SSC parameters */
2004 writel(0x00010202, &xcvr
->afe_tx_ssc_control
);
2005 udelay(AFE_REGISTER_WRITE_DELAY
);
2007 /* All defaults, except the Receive Word
2008 * Alignament/Comma Detect Enable....(0xe800)
2010 writel(0x00014500, &xcvr
->afe_xcvr_control0
);
2011 udelay(AFE_REGISTER_WRITE_DELAY
);
2012 } else if (is_c1(pdev
)) {
2013 /* Configure transmitter SSC parameters */
2014 writel(0x00010202, &xcvr
->afe_tx_ssc_control
);
2015 udelay(AFE_REGISTER_WRITE_DELAY
);
2017 /* All defaults, except the Receive Word
2018 * Alignament/Comma Detect Enable....(0xe800)
2020 writel(0x0001C500, &xcvr
->afe_xcvr_control0
);
2021 udelay(AFE_REGISTER_WRITE_DELAY
);
2024 /* Power up TX and RX out from power down (PWRDNTX and
2025 * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c)
2028 writel(0x000003F0, &xcvr
->afe_channel_control
);
2029 else if (is_b0(pdev
)) {
2030 writel(0x000003D7, &xcvr
->afe_channel_control
);
2031 udelay(AFE_REGISTER_WRITE_DELAY
);
2033 writel(0x000003D4, &xcvr
->afe_channel_control
);
2034 } else if (is_c0(pdev
)) {
2035 writel(0x000001E7, &xcvr
->afe_channel_control
);
2036 udelay(AFE_REGISTER_WRITE_DELAY
);
2038 writel(0x000001E4, &xcvr
->afe_channel_control
);
2039 } else if (is_c1(pdev
)) {
2040 writel(cable_length_long
? 0x000002F7 : 0x000001F7,
2041 &xcvr
->afe_channel_control
);
2042 udelay(AFE_REGISTER_WRITE_DELAY
);
2044 writel(cable_length_long
? 0x000002F4 : 0x000001F4,
2045 &xcvr
->afe_channel_control
);
2047 udelay(AFE_REGISTER_WRITE_DELAY
);
2050 /* Enable TX equalization (0xe824) */
2051 writel(0x00040000, &xcvr
->afe_tx_control
);
2052 udelay(AFE_REGISTER_WRITE_DELAY
);
2055 if (is_a2(pdev
) || is_b0(pdev
))
2056 /* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0,
2057 * TPD=0x0(TX Power On), RDD=0x0(RX Detect
2058 * Enabled) ....(0xe800)
2060 writel(0x00004100, &xcvr
->afe_xcvr_control0
);
2061 else if (is_c0(pdev
))
2062 writel(0x00014100, &xcvr
->afe_xcvr_control0
);
2063 else if (is_c1(pdev
))
2064 writel(0x0001C100, &xcvr
->afe_xcvr_control0
);
2065 udelay(AFE_REGISTER_WRITE_DELAY
);
2067 /* Leave DFE/FFE on */
2069 writel(0x3F11103F, &xcvr
->afe_rx_ssc_control0
);
2070 else if (is_b0(pdev
)) {
2071 writel(0x3F11103F, &xcvr
->afe_rx_ssc_control0
);
2072 udelay(AFE_REGISTER_WRITE_DELAY
);
2073 /* Enable TX equalization (0xe824) */
2074 writel(0x00040000, &xcvr
->afe_tx_control
);
2075 } else if (is_c0(pdev
)) {
2076 writel(0x01400C0F, &xcvr
->afe_rx_ssc_control1
);
2077 udelay(AFE_REGISTER_WRITE_DELAY
);
2079 writel(0x3F6F103F, &xcvr
->afe_rx_ssc_control0
);
2080 udelay(AFE_REGISTER_WRITE_DELAY
);
2082 /* Enable TX equalization (0xe824) */
2083 writel(0x00040000, &xcvr
->afe_tx_control
);
2084 } else if (is_c1(pdev
)) {
2085 writel(cable_length_long
? 0x01500C0C :
2086 cable_length_medium
? 0x01400C0D : 0x02400C0D,
2087 &xcvr
->afe_xcvr_control1
);
2088 udelay(AFE_REGISTER_WRITE_DELAY
);
2090 writel(0x000003E0, &xcvr
->afe_dfx_rx_control1
);
2091 udelay(AFE_REGISTER_WRITE_DELAY
);
2093 writel(cable_length_long
? 0x33091C1F :
2094 cable_length_medium
? 0x3315181F : 0x2B17161F,
2095 &xcvr
->afe_rx_ssc_control0
);
2096 udelay(AFE_REGISTER_WRITE_DELAY
);
2098 /* Enable TX equalization (0xe824) */
2099 writel(0x00040000, &xcvr
->afe_tx_control
);
2102 udelay(AFE_REGISTER_WRITE_DELAY
);
2104 writel(oem_phy
->afe_tx_amp_control0
, &xcvr
->afe_tx_amp_control0
);
2105 udelay(AFE_REGISTER_WRITE_DELAY
);
2107 writel(oem_phy
->afe_tx_amp_control1
, &xcvr
->afe_tx_amp_control1
);
2108 udelay(AFE_REGISTER_WRITE_DELAY
);
2110 writel(oem_phy
->afe_tx_amp_control2
, &xcvr
->afe_tx_amp_control2
);
2111 udelay(AFE_REGISTER_WRITE_DELAY
);
2113 writel(oem_phy
->afe_tx_amp_control3
, &xcvr
->afe_tx_amp_control3
);
2114 udelay(AFE_REGISTER_WRITE_DELAY
);
2117 /* Transfer control to the PEs */
2118 writel(0x00010f00, &afe
->afe_dfx_master_control0
);
2119 udelay(AFE_REGISTER_WRITE_DELAY
);
2122 static void sci_controller_initialize_power_control(struct isci_host
*ihost
)
2124 sci_init_timer(&ihost
->power_control
.timer
, power_control_timeout
);
2126 memset(ihost
->power_control
.requesters
, 0,
2127 sizeof(ihost
->power_control
.requesters
));
2129 ihost
->power_control
.phys_waiting
= 0;
2130 ihost
->power_control
.phys_granted_power
= 0;
2133 static enum sci_status
sci_controller_initialize(struct isci_host
*ihost
)
2135 struct sci_base_state_machine
*sm
= &ihost
->sm
;
2136 enum sci_status result
= SCI_FAILURE
;
2137 unsigned long i
, state
, val
;
2139 if (ihost
->sm
.current_state_id
!= SCIC_RESET
) {
2140 dev_warn(&ihost
->pdev
->dev
, "%s invalid state: %d\n",
2141 __func__
, ihost
->sm
.current_state_id
);
2142 return SCI_FAILURE_INVALID_STATE
;
2145 sci_change_state(sm
, SCIC_INITIALIZING
);
2147 sci_init_timer(&ihost
->phy_timer
, phy_startup_timeout
);
2149 ihost
->next_phy_to_start
= 0;
2150 ihost
->phy_startup_timer_pending
= false;
2152 sci_controller_initialize_power_control(ihost
);
2155 * There is nothing to do here for B0 since we do not have to
2156 * program the AFE registers.
2157 * / @todo The AFE settings are supposed to be correct for the B0 but
2158 * / presently they seem to be wrong. */
2159 sci_controller_afe_initialization(ihost
);
2162 /* Take the hardware out of reset */
2163 writel(0, &ihost
->smu_registers
->soft_reset_control
);
2166 * / @todo Provide meaningfull error code for hardware failure
2167 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2168 for (i
= 100; i
>= 1; i
--) {
2171 /* Loop until the hardware reports success */
2172 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME
);
2173 status
= readl(&ihost
->smu_registers
->control_status
);
2175 if ((status
& SCU_RAM_INIT_COMPLETED
) == SCU_RAM_INIT_COMPLETED
)
2182 * Determine what are the actaul device capacities that the
2183 * hardware will support */
2184 val
= readl(&ihost
->smu_registers
->device_context_capacity
);
2186 /* Record the smaller of the two capacity values */
2187 ihost
->logical_port_entries
= min(smu_max_ports(val
), SCI_MAX_PORTS
);
2188 ihost
->task_context_entries
= min(smu_max_task_contexts(val
), SCI_MAX_IO_REQUESTS
);
2189 ihost
->remote_node_entries
= min(smu_max_rncs(val
), SCI_MAX_REMOTE_DEVICES
);
2192 * Make all PEs that are unassigned match up with the
2195 for (i
= 0; i
< ihost
->logical_port_entries
; i
++) {
2196 struct scu_port_task_scheduler_group_registers __iomem
2197 *ptsg
= &ihost
->scu_registers
->peg0
.ptsg
;
2199 writel(i
, &ptsg
->protocol_engine
[i
]);
2202 /* Initialize hardware PCI Relaxed ordering in DMA engines */
2203 val
= readl(&ihost
->scu_registers
->sdma
.pdma_configuration
);
2204 val
|= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE
);
2205 writel(val
, &ihost
->scu_registers
->sdma
.pdma_configuration
);
2207 val
= readl(&ihost
->scu_registers
->sdma
.cdma_configuration
);
2208 val
|= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE
);
2209 writel(val
, &ihost
->scu_registers
->sdma
.cdma_configuration
);
2212 * Initialize the PHYs before the PORTs because the PHY registers
2213 * are accessed during the port initialization.
2215 for (i
= 0; i
< SCI_MAX_PHYS
; i
++) {
2216 result
= sci_phy_initialize(&ihost
->phys
[i
],
2217 &ihost
->scu_registers
->peg0
.pe
[i
].tl
,
2218 &ihost
->scu_registers
->peg0
.pe
[i
].ll
);
2219 if (result
!= SCI_SUCCESS
)
2223 for (i
= 0; i
< ihost
->logical_port_entries
; i
++) {
2224 struct isci_port
*iport
= &ihost
->ports
[i
];
2226 iport
->port_task_scheduler_registers
= &ihost
->scu_registers
->peg0
.ptsg
.port
[i
];
2227 iport
->port_pe_configuration_register
= &ihost
->scu_registers
->peg0
.ptsg
.protocol_engine
[0];
2228 iport
->viit_registers
= &ihost
->scu_registers
->peg0
.viit
[i
];
2231 result
= sci_port_configuration_agent_initialize(ihost
, &ihost
->port_agent
);
2234 /* Advance the controller state machine */
2235 if (result
== SCI_SUCCESS
)
2236 state
= SCIC_INITIALIZED
;
2238 state
= SCIC_FAILED
;
2239 sci_change_state(sm
, state
);
2244 static int sci_controller_dma_alloc(struct isci_host
*ihost
)
2246 struct device
*dev
= &ihost
->pdev
->dev
;
2250 /* detect re-initialization */
2251 if (ihost
->completion_queue
)
2254 size
= SCU_MAX_COMPLETION_QUEUE_ENTRIES
* sizeof(u32
);
2255 ihost
->completion_queue
= dmam_alloc_coherent(dev
, size
, &ihost
->cq_dma
,
2257 if (!ihost
->completion_queue
)
2260 size
= ihost
->remote_node_entries
* sizeof(union scu_remote_node_context
);
2261 ihost
->remote_node_context_table
= dmam_alloc_coherent(dev
, size
, &ihost
->rnc_dma
,
2264 if (!ihost
->remote_node_context_table
)
2267 size
= ihost
->task_context_entries
* sizeof(struct scu_task_context
),
2268 ihost
->task_context_table
= dmam_alloc_coherent(dev
, size
, &ihost
->tc_dma
,
2270 if (!ihost
->task_context_table
)
2273 size
= SCI_UFI_TOTAL_SIZE
;
2274 ihost
->ufi_buf
= dmam_alloc_coherent(dev
, size
, &ihost
->ufi_dma
, GFP_KERNEL
);
2275 if (!ihost
->ufi_buf
)
2278 for (i
= 0; i
< SCI_MAX_IO_REQUESTS
; i
++) {
2279 struct isci_request
*ireq
;
2282 ireq
= dmam_alloc_coherent(dev
, sizeof(*ireq
), &dma
, GFP_KERNEL
);
2286 ireq
->tc
= &ihost
->task_context_table
[i
];
2287 ireq
->owning_controller
= ihost
;
2288 ireq
->request_daddr
= dma
;
2289 ireq
->isci_host
= ihost
;
2290 ihost
->reqs
[i
] = ireq
;
2296 static int sci_controller_mem_init(struct isci_host
*ihost
)
2298 int err
= sci_controller_dma_alloc(ihost
);
2303 writel(lower_32_bits(ihost
->cq_dma
), &ihost
->smu_registers
->completion_queue_lower
);
2304 writel(upper_32_bits(ihost
->cq_dma
), &ihost
->smu_registers
->completion_queue_upper
);
2306 writel(lower_32_bits(ihost
->rnc_dma
), &ihost
->smu_registers
->remote_node_context_lower
);
2307 writel(upper_32_bits(ihost
->rnc_dma
), &ihost
->smu_registers
->remote_node_context_upper
);
2309 writel(lower_32_bits(ihost
->tc_dma
), &ihost
->smu_registers
->host_task_table_lower
);
2310 writel(upper_32_bits(ihost
->tc_dma
), &ihost
->smu_registers
->host_task_table_upper
);
2312 sci_unsolicited_frame_control_construct(ihost
);
2315 * Inform the silicon as to the location of the UF headers and
2318 writel(lower_32_bits(ihost
->uf_control
.headers
.physical_address
),
2319 &ihost
->scu_registers
->sdma
.uf_header_base_address_lower
);
2320 writel(upper_32_bits(ihost
->uf_control
.headers
.physical_address
),
2321 &ihost
->scu_registers
->sdma
.uf_header_base_address_upper
);
2323 writel(lower_32_bits(ihost
->uf_control
.address_table
.physical_address
),
2324 &ihost
->scu_registers
->sdma
.uf_address_table_lower
);
2325 writel(upper_32_bits(ihost
->uf_control
.address_table
.physical_address
),
2326 &ihost
->scu_registers
->sdma
.uf_address_table_upper
);
2332 * isci_host_init - (re-)initialize hardware and internal (private) state
2333 * @ihost: host to init
2335 * Any public facing objects (like asd_sas_port, and asd_sas_phys), or
2336 * one-time initialization objects like locks and waitqueues, are
2337 * not touched (they are initialized in isci_host_alloc)
2339 int isci_host_init(struct isci_host
*ihost
)
2342 enum sci_status status
;
2344 spin_lock_irq(&ihost
->scic_lock
);
2345 status
= sci_controller_construct(ihost
, scu_base(ihost
), smu_base(ihost
));
2346 spin_unlock_irq(&ihost
->scic_lock
);
2347 if (status
!= SCI_SUCCESS
) {
2348 dev_err(&ihost
->pdev
->dev
,
2349 "%s: sci_controller_construct failed - status = %x\n",
2355 spin_lock_irq(&ihost
->scic_lock
);
2356 status
= sci_controller_initialize(ihost
);
2357 spin_unlock_irq(&ihost
->scic_lock
);
2358 if (status
!= SCI_SUCCESS
) {
2359 dev_warn(&ihost
->pdev
->dev
,
2360 "%s: sci_controller_initialize failed -"
2366 err
= sci_controller_mem_init(ihost
);
2371 writel(1, &ihost
->scu_registers
->peg0
.sgpio
.interface_control
);
2372 for (i
= 0; i
< isci_gpio_count(ihost
); i
++)
2373 writel(SGPIO_HW_CONTROL
, &ihost
->scu_registers
->peg0
.sgpio
.output_data_select
[i
]);
2374 writel(0, &ihost
->scu_registers
->peg0
.sgpio
.vendor_specific_code
);
2379 void sci_controller_link_up(struct isci_host
*ihost
, struct isci_port
*iport
,
2380 struct isci_phy
*iphy
)
2382 switch (ihost
->sm
.current_state_id
) {
2384 sci_del_timer(&ihost
->phy_timer
);
2385 ihost
->phy_startup_timer_pending
= false;
2386 ihost
->port_agent
.link_up_handler(ihost
, &ihost
->port_agent
,
2388 sci_controller_start_next_phy(ihost
);
2391 ihost
->port_agent
.link_up_handler(ihost
, &ihost
->port_agent
,
2395 dev_dbg(&ihost
->pdev
->dev
,
2396 "%s: SCIC Controller linkup event from phy %d in "
2397 "unexpected state %d\n", __func__
, iphy
->phy_index
,
2398 ihost
->sm
.current_state_id
);
2402 void sci_controller_link_down(struct isci_host
*ihost
, struct isci_port
*iport
,
2403 struct isci_phy
*iphy
)
2405 switch (ihost
->sm
.current_state_id
) {
2408 ihost
->port_agent
.link_down_handler(ihost
, &ihost
->port_agent
,
2412 dev_dbg(&ihost
->pdev
->dev
,
2413 "%s: SCIC Controller linkdown event from phy %d in "
2414 "unexpected state %d\n",
2417 ihost
->sm
.current_state_id
);
2421 bool sci_controller_has_remote_devices_stopping(struct isci_host
*ihost
)
2425 for (index
= 0; index
< ihost
->remote_node_entries
; index
++) {
2426 if ((ihost
->device_table
[index
] != NULL
) &&
2427 (ihost
->device_table
[index
]->sm
.current_state_id
== SCI_DEV_STOPPING
))
2434 void sci_controller_remote_device_stopped(struct isci_host
*ihost
,
2435 struct isci_remote_device
*idev
)
2437 if (ihost
->sm
.current_state_id
!= SCIC_STOPPING
) {
2438 dev_dbg(&ihost
->pdev
->dev
,
2439 "SCIC Controller 0x%p remote device stopped event "
2440 "from device 0x%p in unexpected state %d\n",
2442 ihost
->sm
.current_state_id
);
2446 if (!sci_controller_has_remote_devices_stopping(ihost
))
2447 isci_host_stop_complete(ihost
);
2450 void sci_controller_post_request(struct isci_host
*ihost
, u32 request
)
2452 dev_dbg(&ihost
->pdev
->dev
, "%s[%d]: %#x\n",
2453 __func__
, ihost
->id
, request
);
2455 writel(request
, &ihost
->smu_registers
->post_context_port
);
2458 struct isci_request
*sci_request_by_tag(struct isci_host
*ihost
, u16 io_tag
)
2463 task_index
= ISCI_TAG_TCI(io_tag
);
2465 if (task_index
< ihost
->task_context_entries
) {
2466 struct isci_request
*ireq
= ihost
->reqs
[task_index
];
2468 if (test_bit(IREQ_ACTIVE
, &ireq
->flags
)) {
2469 task_sequence
= ISCI_TAG_SEQ(io_tag
);
2471 if (task_sequence
== ihost
->io_request_sequence
[task_index
])
2480 * sci_controller_allocate_remote_node_context()
2481 * This method allocates remote node index and the reserves the remote node
2482 * context space for use. This method can fail if there are no more remote
2483 * node index available.
2484 * @ihost: This is the controller object which contains the set of
2485 * free remote node ids
2486 * @idev: This is the device object which is requesting the a remote node
2488 * @node_id: This is the remote node id that is assinged to the device if one
2491 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2492 * node index available.
2494 enum sci_status
sci_controller_allocate_remote_node_context(struct isci_host
*ihost
,
2495 struct isci_remote_device
*idev
,
2499 u32 remote_node_count
= sci_remote_device_node_count(idev
);
2501 node_index
= sci_remote_node_table_allocate_remote_node(
2502 &ihost
->available_remote_nodes
, remote_node_count
2505 if (node_index
!= SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX
) {
2506 ihost
->device_table
[node_index
] = idev
;
2508 *node_id
= node_index
;
2513 return SCI_FAILURE_INSUFFICIENT_RESOURCES
;
2516 void sci_controller_free_remote_node_context(struct isci_host
*ihost
,
2517 struct isci_remote_device
*idev
,
2520 u32 remote_node_count
= sci_remote_device_node_count(idev
);
2522 if (ihost
->device_table
[node_id
] == idev
) {
2523 ihost
->device_table
[node_id
] = NULL
;
2525 sci_remote_node_table_release_remote_node_index(
2526 &ihost
->available_remote_nodes
, remote_node_count
, node_id
2531 void sci_controller_copy_sata_response(void *response_buffer
,
2535 /* XXX type safety? */
2536 memcpy(response_buffer
, frame_header
, sizeof(u32
));
2538 memcpy(response_buffer
+ sizeof(u32
),
2540 sizeof(struct dev_to_host_fis
) - sizeof(u32
));
2543 void sci_controller_release_frame(struct isci_host
*ihost
, u32 frame_index
)
2545 if (sci_unsolicited_frame_control_release_frame(&ihost
->uf_control
, frame_index
))
2546 writel(ihost
->uf_control
.get
,
2547 &ihost
->scu_registers
->sdma
.unsolicited_frame_get_pointer
);
2550 void isci_tci_free(struct isci_host
*ihost
, u16 tci
)
2552 u16 tail
= ihost
->tci_tail
& (SCI_MAX_IO_REQUESTS
-1);
2554 ihost
->tci_pool
[tail
] = tci
;
2555 ihost
->tci_tail
= tail
+ 1;
2558 static u16
isci_tci_alloc(struct isci_host
*ihost
)
2560 u16 head
= ihost
->tci_head
& (SCI_MAX_IO_REQUESTS
-1);
2561 u16 tci
= ihost
->tci_pool
[head
];
2563 ihost
->tci_head
= head
+ 1;
2567 static u16
isci_tci_space(struct isci_host
*ihost
)
2569 return CIRC_SPACE(ihost
->tci_head
, ihost
->tci_tail
, SCI_MAX_IO_REQUESTS
);
2572 u16
isci_alloc_tag(struct isci_host
*ihost
)
2574 if (isci_tci_space(ihost
)) {
2575 u16 tci
= isci_tci_alloc(ihost
);
2576 u8 seq
= ihost
->io_request_sequence
[tci
];
2578 return ISCI_TAG(seq
, tci
);
2581 return SCI_CONTROLLER_INVALID_IO_TAG
;
2584 enum sci_status
isci_free_tag(struct isci_host
*ihost
, u16 io_tag
)
2586 u16 tci
= ISCI_TAG_TCI(io_tag
);
2587 u16 seq
= ISCI_TAG_SEQ(io_tag
);
2589 /* prevent tail from passing head */
2590 if (isci_tci_active(ihost
) == 0)
2591 return SCI_FAILURE_INVALID_IO_TAG
;
2593 if (seq
== ihost
->io_request_sequence
[tci
]) {
2594 ihost
->io_request_sequence
[tci
] = (seq
+1) & (SCI_MAX_SEQ
-1);
2596 isci_tci_free(ihost
, tci
);
2600 return SCI_FAILURE_INVALID_IO_TAG
;
2603 enum sci_status
sci_controller_start_io(struct isci_host
*ihost
,
2604 struct isci_remote_device
*idev
,
2605 struct isci_request
*ireq
)
2607 enum sci_status status
;
2609 if (ihost
->sm
.current_state_id
!= SCIC_READY
) {
2610 dev_warn(&ihost
->pdev
->dev
, "%s invalid state: %d\n",
2611 __func__
, ihost
->sm
.current_state_id
);
2612 return SCI_FAILURE_INVALID_STATE
;
2615 status
= sci_remote_device_start_io(ihost
, idev
, ireq
);
2616 if (status
!= SCI_SUCCESS
)
2619 set_bit(IREQ_ACTIVE
, &ireq
->flags
);
2620 sci_controller_post_request(ihost
, ireq
->post_context
);
2624 enum sci_status
sci_controller_terminate_request(struct isci_host
*ihost
,
2625 struct isci_remote_device
*idev
,
2626 struct isci_request
*ireq
)
2628 /* terminate an ongoing (i.e. started) core IO request. This does not
2629 * abort the IO request at the target, but rather removes the IO
2630 * request from the host controller.
2632 enum sci_status status
;
2634 if (ihost
->sm
.current_state_id
!= SCIC_READY
) {
2635 dev_warn(&ihost
->pdev
->dev
, "%s invalid state: %d\n",
2636 __func__
, ihost
->sm
.current_state_id
);
2637 return SCI_FAILURE_INVALID_STATE
;
2639 status
= sci_io_request_terminate(ireq
);
2641 dev_dbg(&ihost
->pdev
->dev
, "%s: status=%d; ireq=%p; flags=%lx\n",
2642 __func__
, status
, ireq
, ireq
->flags
);
2644 if ((status
== SCI_SUCCESS
) &&
2645 !test_bit(IREQ_PENDING_ABORT
, &ireq
->flags
) &&
2646 !test_and_set_bit(IREQ_TC_ABORT_POSTED
, &ireq
->flags
)) {
2647 /* Utilize the original post context command and or in the
2648 * POST_TC_ABORT request sub-type.
2650 sci_controller_post_request(
2651 ihost
, ireq
->post_context
|
2652 SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT
);
2658 * sci_controller_complete_io() - This method will perform core specific
2659 * completion operations for an IO request. After this method is invoked,
2660 * the user should consider the IO request as invalid until it is properly
2661 * reused (i.e. re-constructed).
2662 * @ihost: The handle to the controller object for which to complete the
2664 * @idev: The handle to the remote device object for which to complete
2666 * @ireq: the handle to the io request object to complete.
2668 enum sci_status
sci_controller_complete_io(struct isci_host
*ihost
,
2669 struct isci_remote_device
*idev
,
2670 struct isci_request
*ireq
)
2672 enum sci_status status
;
2674 switch (ihost
->sm
.current_state_id
) {
2676 /* XXX: Implement this function */
2679 status
= sci_remote_device_complete_io(ihost
, idev
, ireq
);
2680 if (status
!= SCI_SUCCESS
)
2683 clear_bit(IREQ_ACTIVE
, &ireq
->flags
);
2686 dev_warn(&ihost
->pdev
->dev
, "%s invalid state: %d\n",
2687 __func__
, ihost
->sm
.current_state_id
);
2688 return SCI_FAILURE_INVALID_STATE
;
2693 enum sci_status
sci_controller_continue_io(struct isci_request
*ireq
)
2695 struct isci_host
*ihost
= ireq
->owning_controller
;
2697 if (ihost
->sm
.current_state_id
!= SCIC_READY
) {
2698 dev_warn(&ihost
->pdev
->dev
, "%s invalid state: %d\n",
2699 __func__
, ihost
->sm
.current_state_id
);
2700 return SCI_FAILURE_INVALID_STATE
;
2703 set_bit(IREQ_ACTIVE
, &ireq
->flags
);
2704 sci_controller_post_request(ihost
, ireq
->post_context
);
2709 * sci_controller_start_task() - This method is called by the SCIC user to
2710 * send/start a framework task management request.
2711 * @ihost: the handle to the controller object for which to start the task
2712 * management request.
2713 * @idev: the handle to the remote device object for which to start
2714 * the task management request.
2715 * @ireq: the handle to the task request object to start.
2717 enum sci_status
sci_controller_start_task(struct isci_host
*ihost
,
2718 struct isci_remote_device
*idev
,
2719 struct isci_request
*ireq
)
2721 enum sci_status status
;
2723 if (ihost
->sm
.current_state_id
!= SCIC_READY
) {
2724 dev_warn(&ihost
->pdev
->dev
,
2725 "%s: SCIC Controller starting task from invalid "
2728 return SCI_FAILURE_INVALID_STATE
;
2731 status
= sci_remote_device_start_task(ihost
, idev
, ireq
);
2733 case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS
:
2734 set_bit(IREQ_ACTIVE
, &ireq
->flags
);
2737 * We will let framework know this task request started successfully,
2738 * although core is still woring on starting the request (to post tc when
2743 set_bit(IREQ_ACTIVE
, &ireq
->flags
);
2744 sci_controller_post_request(ihost
, ireq
->post_context
);
2753 static int sci_write_gpio_tx_gp(struct isci_host
*ihost
, u8 reg_index
, u8 reg_count
, u8
*write_data
)
2757 /* no support for TX_GP_CFG */
2761 for (d
= 0; d
< isci_gpio_count(ihost
); d
++) {
2762 u32 val
= 0x444; /* all ODx.n clear */
2765 for (i
= 0; i
< 3; i
++) {
2768 bit
= try_test_sas_gpio_gp_bit(to_sas_gpio_od(d
, i
),
2769 write_data
, reg_index
,
2774 /* if od is set, clear the 'invert' bit */
2775 val
&= ~(bit
<< ((i
<< 2) + 2));
2780 writel(val
, &ihost
->scu_registers
->peg0
.sgpio
.output_data_select
[d
]);
2783 /* unless reg_index is > 1, we should always be able to write at
2784 * least one register
2789 int isci_gpio_write(struct sas_ha_struct
*sas_ha
, u8 reg_type
, u8 reg_index
,
2790 u8 reg_count
, u8
*write_data
)
2792 struct isci_host
*ihost
= sas_ha
->lldd_ha
;
2796 case SAS_GPIO_REG_TX_GP
:
2797 written
= sci_write_gpio_tx_gp(ihost
, reg_index
, reg_count
, write_data
);