1 // SPDX-License-Identifier: GPL-2.0
3 * Serial Attached SCSI (SAS) Expander discovery and configuration
5 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
8 * This file is licensed under GPLv2.
11 #include <linux/scatterlist.h>
12 #include <linux/blkdev.h>
13 #include <linux/slab.h>
14 #include <linux/unaligned.h>
16 #include "sas_internal.h"
18 #include <scsi/sas_ata.h>
19 #include <scsi/scsi_transport.h>
20 #include <scsi/scsi_transport_sas.h>
21 #include "scsi_sas_internal.h"
23 static int sas_discover_expander(struct domain_device
*dev
);
24 static int sas_configure_routing(struct domain_device
*dev
, u8
*sas_addr
);
25 static int sas_configure_phy(struct domain_device
*dev
, int phy_id
,
26 u8
*sas_addr
, int include
);
27 static int sas_disable_routing(struct domain_device
*dev
, u8
*sas_addr
);
29 static void sas_port_add_ex_phy(struct sas_port
*port
, struct ex_phy
*ex_phy
)
31 sas_port_add_phy(port
, ex_phy
->phy
);
33 ex_phy
->phy_state
= PHY_DEVICE_DISCOVERED
;
36 static void sas_ex_add_parent_port(struct domain_device
*dev
, int phy_id
)
38 struct expander_device
*ex
= &dev
->ex_dev
;
39 struct ex_phy
*ex_phy
= &ex
->ex_phy
[phy_id
];
41 if (!ex
->parent_port
) {
42 ex
->parent_port
= sas_port_alloc(&dev
->rphy
->dev
, phy_id
);
43 /* FIXME: error handling */
44 BUG_ON(!ex
->parent_port
);
45 BUG_ON(sas_port_add(ex
->parent_port
));
46 sas_port_mark_backlink(ex
->parent_port
);
48 sas_port_add_ex_phy(ex
->parent_port
, ex_phy
);
51 /* ---------- SMP task management ---------- */
53 /* Give it some long enough timeout. In seconds. */
54 #define SMP_TIMEOUT 10
56 static int smp_execute_task_sg(struct domain_device
*dev
,
57 struct scatterlist
*req
, struct scatterlist
*resp
)
60 struct sas_task
*task
= NULL
;
61 struct sas_internal
*i
=
62 to_sas_internal(dev
->port
->ha
->shost
->transportt
);
63 struct sas_ha_struct
*ha
= dev
->port
->ha
;
65 pm_runtime_get_sync(ha
->dev
);
66 mutex_lock(&dev
->ex_dev
.cmd_mutex
);
67 for (retry
= 0; retry
< 3; retry
++) {
68 if (test_bit(SAS_DEV_GONE
, &dev
->state
)) {
73 task
= sas_alloc_slow_task(GFP_KERNEL
);
79 task
->task_proto
= dev
->tproto
;
80 task
->smp_task
.smp_req
= *req
;
81 task
->smp_task
.smp_resp
= *resp
;
83 task
->task_done
= sas_task_internal_done
;
85 task
->slow_task
->timer
.function
= sas_task_internal_timedout
;
86 task
->slow_task
->timer
.expires
= jiffies
+ SMP_TIMEOUT
*HZ
;
87 add_timer(&task
->slow_task
->timer
);
89 res
= i
->dft
->lldd_execute_task(task
, GFP_KERNEL
);
92 del_timer_sync(&task
->slow_task
->timer
);
93 pr_notice("executing SMP task failed:%d\n", res
);
97 wait_for_completion(&task
->slow_task
->completion
);
99 if ((task
->task_state_flags
& SAS_TASK_STATE_ABORTED
)) {
100 pr_notice("smp task timed out or aborted\n");
101 i
->dft
->lldd_abort_task(task
);
102 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
)) {
103 pr_notice("SMP task aborted and not done\n");
107 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
108 task
->task_status
.stat
== SAS_SAM_STAT_GOOD
) {
112 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
113 task
->task_status
.stat
== SAS_DATA_UNDERRUN
) {
114 /* no error, but return the number of bytes of
116 res
= task
->task_status
.residual
;
119 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
120 task
->task_status
.stat
== SAS_DATA_OVERRUN
) {
124 if (task
->task_status
.resp
== SAS_TASK_UNDELIVERED
&&
125 task
->task_status
.stat
== SAS_DEVICE_UNKNOWN
)
128 pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
130 SAS_ADDR(dev
->sas_addr
),
131 task
->task_status
.resp
,
132 task
->task_status
.stat
);
137 mutex_unlock(&dev
->ex_dev
.cmd_mutex
);
138 pm_runtime_put_sync(ha
->dev
);
140 BUG_ON(retry
== 3 && task
!= NULL
);
145 static int smp_execute_task(struct domain_device
*dev
, void *req
, int req_size
,
146 void *resp
, int resp_size
)
148 struct scatterlist req_sg
;
149 struct scatterlist resp_sg
;
151 sg_init_one(&req_sg
, req
, req_size
);
152 sg_init_one(&resp_sg
, resp
, resp_size
);
153 return smp_execute_task_sg(dev
, &req_sg
, &resp_sg
);
156 /* ---------- Allocations ---------- */
158 static inline void *alloc_smp_req(int size
)
160 u8
*p
= kzalloc(ALIGN(size
, ARCH_DMA_MINALIGN
), GFP_KERNEL
);
166 static inline void *alloc_smp_resp(int size
)
168 return kzalloc(size
, GFP_KERNEL
);
171 static char sas_route_char(struct domain_device
*dev
, struct ex_phy
*phy
)
173 switch (phy
->routing_attr
) {
175 if (dev
->ex_dev
.t2t_supp
)
181 case SUBTRACTIVE_ROUTING
:
188 static enum sas_device_type
to_dev_type(struct discover_resp
*dr
)
190 /* This is detecting a failure to transmit initial dev to host
191 * FIS as described in section J.5 of sas-2 r16
193 if (dr
->attached_dev_type
== SAS_PHY_UNUSED
&& dr
->attached_sata_dev
&&
194 dr
->linkrate
>= SAS_LINK_RATE_1_5_GBPS
)
195 return SAS_SATA_PENDING
;
197 return dr
->attached_dev_type
;
200 static void sas_set_ex_phy(struct domain_device
*dev
, int phy_id
,
201 struct smp_disc_resp
*disc_resp
)
203 enum sas_device_type dev_type
;
204 enum sas_linkrate linkrate
;
205 u8 sas_addr
[SAS_ADDR_SIZE
];
206 struct discover_resp
*dr
= &disc_resp
->disc
;
207 struct sas_ha_struct
*ha
= dev
->port
->ha
;
208 struct expander_device
*ex
= &dev
->ex_dev
;
209 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
210 struct sas_rphy
*rphy
= dev
->rphy
;
211 bool new_phy
= !phy
->phy
;
215 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
)))
217 phy
->phy
= sas_phy_alloc(&rphy
->dev
, phy_id
);
219 /* FIXME: error_handling */
223 switch (disc_resp
->result
) {
224 case SMP_RESP_PHY_VACANT
:
225 phy
->phy_state
= PHY_VACANT
;
228 phy
->phy_state
= PHY_NOT_PRESENT
;
230 case SMP_RESP_FUNC_ACC
:
231 phy
->phy_state
= PHY_EMPTY
; /* do not know yet */
235 /* check if anything important changed to squelch debug */
236 dev_type
= phy
->attached_dev_type
;
237 linkrate
= phy
->linkrate
;
238 memcpy(sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
240 /* Handle vacant phy - rest of dr data is not valid so skip it */
241 if (phy
->phy_state
== PHY_VACANT
) {
242 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
243 phy
->attached_dev_type
= SAS_PHY_UNUSED
;
244 if (!test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
)) {
245 phy
->phy_id
= phy_id
;
251 phy
->attached_dev_type
= to_dev_type(dr
);
252 if (test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
))
254 phy
->phy_id
= phy_id
;
255 phy
->linkrate
= dr
->linkrate
;
256 phy
->attached_sata_host
= dr
->attached_sata_host
;
257 phy
->attached_sata_dev
= dr
->attached_sata_dev
;
258 phy
->attached_sata_ps
= dr
->attached_sata_ps
;
259 phy
->attached_iproto
= dr
->iproto
<< 1;
260 phy
->attached_tproto
= dr
->tproto
<< 1;
261 /* help some expanders that fail to zero sas_address in the 'no
264 if (phy
->attached_dev_type
== SAS_PHY_UNUSED
)
265 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
267 memcpy(phy
->attached_sas_addr
, dr
->attached_sas_addr
, SAS_ADDR_SIZE
);
268 phy
->attached_phy_id
= dr
->attached_phy_id
;
269 phy
->phy_change_count
= dr
->change_count
;
270 phy
->routing_attr
= dr
->routing_attr
;
271 phy
->virtual = dr
->virtual;
272 phy
->last_da_index
= -1;
274 phy
->phy
->identify
.sas_address
= SAS_ADDR(phy
->attached_sas_addr
);
275 phy
->phy
->identify
.device_type
= dr
->attached_dev_type
;
276 phy
->phy
->identify
.initiator_port_protocols
= phy
->attached_iproto
;
277 phy
->phy
->identify
.target_port_protocols
= phy
->attached_tproto
;
278 if (!phy
->attached_tproto
&& dr
->attached_sata_dev
)
279 phy
->phy
->identify
.target_port_protocols
= SAS_PROTOCOL_SATA
;
280 phy
->phy
->identify
.phy_identifier
= phy_id
;
281 phy
->phy
->minimum_linkrate_hw
= dr
->hmin_linkrate
;
282 phy
->phy
->maximum_linkrate_hw
= dr
->hmax_linkrate
;
283 phy
->phy
->minimum_linkrate
= dr
->pmin_linkrate
;
284 phy
->phy
->maximum_linkrate
= dr
->pmax_linkrate
;
285 phy
->phy
->negotiated_linkrate
= phy
->linkrate
;
286 phy
->phy
->enabled
= (phy
->linkrate
!= SAS_PHY_DISABLED
);
290 if (sas_phy_add(phy
->phy
)) {
291 sas_phy_free(phy
->phy
);
296 switch (phy
->attached_dev_type
) {
297 case SAS_SATA_PENDING
:
298 type
= "stp pending";
304 if (phy
->attached_iproto
) {
305 if (phy
->attached_tproto
)
306 type
= "host+target";
310 if (dr
->attached_sata_dev
)
316 case SAS_EDGE_EXPANDER_DEVICE
:
317 case SAS_FANOUT_EXPANDER_DEVICE
:
324 /* this routine is polled by libata error recovery so filter
325 * unimportant messages
327 if (new_phy
|| phy
->attached_dev_type
!= dev_type
||
328 phy
->linkrate
!= linkrate
||
329 SAS_ADDR(phy
->attached_sas_addr
) != SAS_ADDR(sas_addr
))
334 /* if the attached device type changed and ata_eh is active,
335 * make sure we run revalidation when eh completes (see:
336 * sas_enable_revalidation)
338 if (test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
))
339 set_bit(DISCE_REVALIDATE_DOMAIN
, &dev
->port
->disc
.pending
);
341 pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
342 test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
) ? "ata: " : "",
343 SAS_ADDR(dev
->sas_addr
), phy
->phy_id
,
344 sas_route_char(dev
, phy
), phy
->linkrate
,
345 SAS_ADDR(phy
->attached_sas_addr
), type
);
348 /* check if we have an existing attached ata device on this expander phy */
349 struct domain_device
*sas_ex_to_ata(struct domain_device
*ex_dev
, int phy_id
)
351 struct ex_phy
*ex_phy
= &ex_dev
->ex_dev
.ex_phy
[phy_id
];
352 struct domain_device
*dev
;
353 struct sas_rphy
*rphy
;
358 rphy
= ex_phy
->port
->rphy
;
362 dev
= sas_find_dev_by_rphy(rphy
);
364 if (dev
&& dev_is_sata(dev
))
370 #define DISCOVER_REQ_SIZE 16
371 #define DISCOVER_RESP_SIZE sizeof(struct smp_disc_resp)
373 static int sas_ex_phy_discover_helper(struct domain_device
*dev
, u8
*disc_req
,
374 struct smp_disc_resp
*disc_resp
,
377 struct discover_resp
*dr
= &disc_resp
->disc
;
380 disc_req
[9] = single
;
382 res
= smp_execute_task(dev
, disc_req
, DISCOVER_REQ_SIZE
,
383 disc_resp
, DISCOVER_RESP_SIZE
);
386 if (memcmp(dev
->sas_addr
, dr
->attached_sas_addr
, SAS_ADDR_SIZE
) == 0) {
387 pr_notice("Found loopback topology, just ignore it!\n");
390 sas_set_ex_phy(dev
, single
, disc_resp
);
394 int sas_ex_phy_discover(struct domain_device
*dev
, int single
)
396 struct expander_device
*ex
= &dev
->ex_dev
;
399 struct smp_disc_resp
*disc_resp
;
401 disc_req
= alloc_smp_req(DISCOVER_REQ_SIZE
);
405 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
411 disc_req
[1] = SMP_DISCOVER
;
413 if (0 <= single
&& single
< ex
->num_phys
) {
414 res
= sas_ex_phy_discover_helper(dev
, disc_req
, disc_resp
, single
);
418 for (i
= 0; i
< ex
->num_phys
; i
++) {
419 res
= sas_ex_phy_discover_helper(dev
, disc_req
,
431 static int sas_expander_discover(struct domain_device
*dev
)
433 struct expander_device
*ex
= &dev
->ex_dev
;
436 ex
->ex_phy
= kcalloc(ex
->num_phys
, sizeof(*ex
->ex_phy
), GFP_KERNEL
);
440 res
= sas_ex_phy_discover(dev
, -1);
451 #define MAX_EXPANDER_PHYS 128
453 #define RG_REQ_SIZE 8
454 #define RG_RESP_SIZE sizeof(struct smp_rg_resp)
456 static int sas_ex_general(struct domain_device
*dev
)
459 struct smp_rg_resp
*rg_resp
;
460 struct report_general_resp
*rg
;
464 rg_req
= alloc_smp_req(RG_REQ_SIZE
);
468 rg_resp
= alloc_smp_resp(RG_RESP_SIZE
);
474 rg_req
[1] = SMP_REPORT_GENERAL
;
476 for (i
= 0; i
< 5; i
++) {
477 res
= smp_execute_task(dev
, rg_req
, RG_REQ_SIZE
, rg_resp
,
481 pr_notice("RG to ex %016llx failed:0x%x\n",
482 SAS_ADDR(dev
->sas_addr
), res
);
484 } else if (rg_resp
->result
!= SMP_RESP_FUNC_ACC
) {
485 pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
486 SAS_ADDR(dev
->sas_addr
), rg_resp
->result
);
487 res
= rg_resp
->result
;
492 dev
->ex_dev
.ex_change_count
= be16_to_cpu(rg
->change_count
);
493 dev
->ex_dev
.max_route_indexes
= be16_to_cpu(rg
->route_indexes
);
494 dev
->ex_dev
.num_phys
= min(rg
->num_phys
, (u8
)MAX_EXPANDER_PHYS
);
495 dev
->ex_dev
.t2t_supp
= rg
->t2t_supp
;
496 dev
->ex_dev
.conf_route_table
= rg
->conf_route_table
;
497 dev
->ex_dev
.configuring
= rg
->configuring
;
498 memcpy(dev
->ex_dev
.enclosure_logical_id
,
499 rg
->enclosure_logical_id
, 8);
501 if (dev
->ex_dev
.configuring
) {
502 pr_debug("RG: ex %016llx self-configuring...\n",
503 SAS_ADDR(dev
->sas_addr
));
504 schedule_timeout_interruptible(5*HZ
);
514 static void ex_assign_manuf_info(struct domain_device
*dev
, void
517 u8
*mi_resp
= _mi_resp
;
518 struct sas_rphy
*rphy
= dev
->rphy
;
519 struct sas_expander_device
*edev
= rphy_to_expander_device(rphy
);
521 memcpy(edev
->vendor_id
, mi_resp
+ 12, SAS_EXPANDER_VENDOR_ID_LEN
);
522 memcpy(edev
->product_id
, mi_resp
+ 20, SAS_EXPANDER_PRODUCT_ID_LEN
);
523 memcpy(edev
->product_rev
, mi_resp
+ 36,
524 SAS_EXPANDER_PRODUCT_REV_LEN
);
526 if (mi_resp
[8] & 1) {
527 memcpy(edev
->component_vendor_id
, mi_resp
+ 40,
528 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN
);
529 edev
->component_id
= mi_resp
[48] << 8 | mi_resp
[49];
530 edev
->component_revision_id
= mi_resp
[50];
534 #define MI_REQ_SIZE 8
535 #define MI_RESP_SIZE 64
537 static int sas_ex_manuf_info(struct domain_device
*dev
)
543 mi_req
= alloc_smp_req(MI_REQ_SIZE
);
547 mi_resp
= alloc_smp_resp(MI_RESP_SIZE
);
553 mi_req
[1] = SMP_REPORT_MANUF_INFO
;
555 res
= smp_execute_task(dev
, mi_req
, MI_REQ_SIZE
, mi_resp
, MI_RESP_SIZE
);
557 pr_notice("MI: ex %016llx failed:0x%x\n",
558 SAS_ADDR(dev
->sas_addr
), res
);
560 } else if (mi_resp
[2] != SMP_RESP_FUNC_ACC
) {
561 pr_debug("MI ex %016llx returned SMP result:0x%x\n",
562 SAS_ADDR(dev
->sas_addr
), mi_resp
[2]);
566 ex_assign_manuf_info(dev
, mi_resp
);
573 #define PC_REQ_SIZE 44
574 #define PC_RESP_SIZE 8
576 int sas_smp_phy_control(struct domain_device
*dev
, int phy_id
,
577 enum phy_func phy_func
,
578 struct sas_phy_linkrates
*rates
)
584 pc_req
= alloc_smp_req(PC_REQ_SIZE
);
588 pc_resp
= alloc_smp_resp(PC_RESP_SIZE
);
594 pc_req
[1] = SMP_PHY_CONTROL
;
596 pc_req
[10] = phy_func
;
598 pc_req
[32] = rates
->minimum_linkrate
<< 4;
599 pc_req
[33] = rates
->maximum_linkrate
<< 4;
602 res
= smp_execute_task(dev
, pc_req
, PC_REQ_SIZE
, pc_resp
, PC_RESP_SIZE
);
604 pr_err("ex %016llx phy%02d PHY control failed: %d\n",
605 SAS_ADDR(dev
->sas_addr
), phy_id
, res
);
606 } else if (pc_resp
[2] != SMP_RESP_FUNC_ACC
) {
607 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
608 SAS_ADDR(dev
->sas_addr
), phy_id
, pc_resp
[2]);
616 static void sas_ex_disable_phy(struct domain_device
*dev
, int phy_id
)
618 struct expander_device
*ex
= &dev
->ex_dev
;
619 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
621 sas_smp_phy_control(dev
, phy_id
, PHY_FUNC_DISABLE
, NULL
);
622 phy
->linkrate
= SAS_PHY_DISABLED
;
625 static void sas_ex_disable_port(struct domain_device
*dev
, u8
*sas_addr
)
627 struct expander_device
*ex
= &dev
->ex_dev
;
630 for (i
= 0; i
< ex
->num_phys
; i
++) {
631 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
633 if (phy
->phy_state
== PHY_VACANT
||
634 phy
->phy_state
== PHY_NOT_PRESENT
)
637 if (SAS_ADDR(phy
->attached_sas_addr
) == SAS_ADDR(sas_addr
))
638 sas_ex_disable_phy(dev
, i
);
642 static int sas_dev_present_in_domain(struct asd_sas_port
*port
,
645 struct domain_device
*dev
;
647 if (SAS_ADDR(port
->sas_addr
) == SAS_ADDR(sas_addr
))
649 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
) {
650 if (SAS_ADDR(dev
->sas_addr
) == SAS_ADDR(sas_addr
))
656 #define RPEL_REQ_SIZE 16
657 #define RPEL_RESP_SIZE 32
658 int sas_smp_get_phy_events(struct sas_phy
*phy
)
663 struct sas_rphy
*rphy
= dev_to_rphy(phy
->dev
.parent
);
664 struct domain_device
*dev
= sas_find_dev_by_rphy(rphy
);
666 req
= alloc_smp_req(RPEL_REQ_SIZE
);
670 resp
= alloc_smp_resp(RPEL_RESP_SIZE
);
676 req
[1] = SMP_REPORT_PHY_ERR_LOG
;
677 req
[9] = phy
->number
;
679 res
= smp_execute_task(dev
, req
, RPEL_REQ_SIZE
,
680 resp
, RPEL_RESP_SIZE
);
685 phy
->invalid_dword_count
= get_unaligned_be32(&resp
[12]);
686 phy
->running_disparity_error_count
= get_unaligned_be32(&resp
[16]);
687 phy
->loss_of_dword_sync_count
= get_unaligned_be32(&resp
[20]);
688 phy
->phy_reset_problem_count
= get_unaligned_be32(&resp
[24]);
697 #ifdef CONFIG_SCSI_SAS_ATA
699 #define RPS_REQ_SIZE 16
700 #define RPS_RESP_SIZE sizeof(struct smp_rps_resp)
702 int sas_get_report_phy_sata(struct domain_device
*dev
, int phy_id
,
703 struct smp_rps_resp
*rps_resp
)
706 u8
*rps_req
= alloc_smp_req(RPS_REQ_SIZE
);
707 u8
*resp
= (u8
*)rps_resp
;
712 rps_req
[1] = SMP_REPORT_PHY_SATA
;
715 res
= smp_execute_task(dev
, rps_req
, RPS_REQ_SIZE
,
716 rps_resp
, RPS_RESP_SIZE
);
718 /* 0x34 is the FIS type for the D2H fis. There's a potential
719 * standards cockup here. sas-2 explicitly specifies the FIS
720 * should be encoded so that FIS type is in resp[24].
721 * However, some expanders endian reverse this. Undo the
723 if (!res
&& resp
[27] == 0x34 && resp
[24] != 0x34) {
726 for (i
= 0; i
< 5; i
++) {
731 resp
[j
+ 0] = resp
[j
+ 3];
732 resp
[j
+ 1] = resp
[j
+ 2];
743 static void sas_ex_get_linkrate(struct domain_device
*parent
,
744 struct domain_device
*child
,
745 struct ex_phy
*parent_phy
)
747 struct expander_device
*parent_ex
= &parent
->ex_dev
;
748 struct sas_port
*port
;
753 port
= parent_phy
->port
;
755 for (i
= 0; i
< parent_ex
->num_phys
; i
++) {
756 struct ex_phy
*phy
= &parent_ex
->ex_phy
[i
];
758 if (phy
->phy_state
== PHY_VACANT
||
759 phy
->phy_state
== PHY_NOT_PRESENT
)
762 if (sas_phy_match_dev_addr(child
, phy
)) {
763 child
->min_linkrate
= min(parent
->min_linkrate
,
765 child
->max_linkrate
= max(parent
->max_linkrate
,
768 sas_port_add_phy(port
, phy
->phy
);
771 child
->linkrate
= min(parent_phy
->linkrate
, child
->max_linkrate
);
772 child
->pathways
= min(child
->pathways
, parent
->pathways
);
775 static int sas_ex_add_dev(struct domain_device
*parent
, struct ex_phy
*phy
,
776 struct domain_device
*child
, int phy_id
)
778 struct sas_rphy
*rphy
;
781 child
->dev_type
= SAS_END_DEVICE
;
782 rphy
= sas_end_device_alloc(phy
->port
);
786 child
->tproto
= phy
->attached_tproto
;
790 get_device(&rphy
->dev
);
791 rphy
->identify
.phy_identifier
= phy_id
;
792 sas_fill_in_rphy(child
, rphy
);
794 list_add_tail(&child
->disco_list_node
, &parent
->port
->disco_list
);
796 res
= sas_notify_lldd_dev_found(child
);
798 pr_notice("notify lldd for device %016llx at %016llx:%02d returned 0x%x\n",
799 SAS_ADDR(child
->sas_addr
),
800 SAS_ADDR(parent
->sas_addr
), phy_id
, res
);
801 sas_rphy_free(child
->rphy
);
802 list_del(&child
->disco_list_node
);
809 static struct domain_device
*sas_ex_discover_end_dev(
810 struct domain_device
*parent
, int phy_id
)
812 struct expander_device
*parent_ex
= &parent
->ex_dev
;
813 struct ex_phy
*phy
= &parent_ex
->ex_phy
[phy_id
];
814 struct domain_device
*child
= NULL
;
817 if (phy
->attached_sata_host
|| phy
->attached_sata_ps
)
820 child
= sas_alloc_device();
824 kref_get(&parent
->kref
);
825 child
->parent
= parent
;
826 child
->port
= parent
->port
;
827 child
->iproto
= phy
->attached_iproto
;
828 memcpy(child
->sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
829 sas_hash_addr(child
->hashed_sas_addr
, child
->sas_addr
);
831 phy
->port
= sas_port_alloc(&parent
->rphy
->dev
, phy_id
);
832 if (unlikely(!phy
->port
))
834 if (unlikely(sas_port_add(phy
->port
) != 0)) {
835 sas_port_free(phy
->port
);
839 sas_ex_get_linkrate(parent
, child
, phy
);
840 sas_device_set_phy(child
, phy
->port
);
842 if ((phy
->attached_tproto
& SAS_PROTOCOL_STP
) || phy
->attached_sata_dev
) {
843 res
= sas_ata_add_dev(parent
, phy
, child
, phy_id
);
844 } else if (phy
->attached_tproto
& SAS_PROTOCOL_SSP
) {
845 res
= sas_ex_add_dev(parent
, phy
, child
, phy_id
);
847 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
848 phy
->attached_tproto
, SAS_ADDR(parent
->sas_addr
),
856 list_add_tail(&child
->siblings
, &parent_ex
->children
);
860 sas_port_delete(phy
->port
);
863 sas_put_device(child
);
867 /* See if this phy is part of a wide port */
868 static bool sas_ex_join_wide_port(struct domain_device
*parent
, int phy_id
)
870 struct ex_phy
*phy
= &parent
->ex_dev
.ex_phy
[phy_id
];
873 for (i
= 0; i
< parent
->ex_dev
.num_phys
; i
++) {
874 struct ex_phy
*ephy
= &parent
->ex_dev
.ex_phy
[i
];
879 if (!memcmp(phy
->attached_sas_addr
, ephy
->attached_sas_addr
,
880 SAS_ADDR_SIZE
) && ephy
->port
) {
881 sas_port_add_ex_phy(ephy
->port
, phy
);
889 static struct domain_device
*sas_ex_discover_expander(
890 struct domain_device
*parent
, int phy_id
)
892 struct sas_expander_device
*parent_ex
= rphy_to_expander_device(parent
->rphy
);
893 struct ex_phy
*phy
= &parent
->ex_dev
.ex_phy
[phy_id
];
894 struct domain_device
*child
= NULL
;
895 struct sas_rphy
*rphy
;
896 struct sas_expander_device
*edev
;
897 struct asd_sas_port
*port
;
900 if (phy
->routing_attr
== DIRECT_ROUTING
) {
901 pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
902 SAS_ADDR(parent
->sas_addr
), phy_id
,
903 SAS_ADDR(phy
->attached_sas_addr
),
904 phy
->attached_phy_id
);
907 child
= sas_alloc_device();
911 phy
->port
= sas_port_alloc(&parent
->rphy
->dev
, phy_id
);
912 /* FIXME: better error handling */
913 BUG_ON(sas_port_add(phy
->port
) != 0);
916 switch (phy
->attached_dev_type
) {
917 case SAS_EDGE_EXPANDER_DEVICE
:
918 rphy
= sas_expander_alloc(phy
->port
,
919 SAS_EDGE_EXPANDER_DEVICE
);
921 case SAS_FANOUT_EXPANDER_DEVICE
:
922 rphy
= sas_expander_alloc(phy
->port
,
923 SAS_FANOUT_EXPANDER_DEVICE
);
926 rphy
= NULL
; /* shut gcc up */
931 get_device(&rphy
->dev
);
932 edev
= rphy_to_expander_device(rphy
);
933 child
->dev_type
= phy
->attached_dev_type
;
934 kref_get(&parent
->kref
);
935 child
->parent
= parent
;
937 child
->iproto
= phy
->attached_iproto
;
938 child
->tproto
= phy
->attached_tproto
;
939 memcpy(child
->sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
940 sas_hash_addr(child
->hashed_sas_addr
, child
->sas_addr
);
941 sas_ex_get_linkrate(parent
, child
, phy
);
942 edev
->level
= parent_ex
->level
+ 1;
943 parent
->port
->disc
.max_level
= max(parent
->port
->disc
.max_level
,
946 sas_fill_in_rphy(child
, rphy
);
949 spin_lock_irq(&parent
->port
->dev_list_lock
);
950 list_add_tail(&child
->dev_list_node
, &parent
->port
->dev_list
);
951 spin_unlock_irq(&parent
->port
->dev_list_lock
);
953 res
= sas_discover_expander(child
);
955 sas_rphy_delete(rphy
);
956 spin_lock_irq(&parent
->port
->dev_list_lock
);
957 list_del(&child
->dev_list_node
);
958 spin_unlock_irq(&parent
->port
->dev_list_lock
);
959 sas_put_device(child
);
960 sas_port_delete(phy
->port
);
964 list_add_tail(&child
->siblings
, &parent
->ex_dev
.children
);
968 static int sas_ex_discover_dev(struct domain_device
*dev
, int phy_id
)
970 struct expander_device
*ex
= &dev
->ex_dev
;
971 struct ex_phy
*ex_phy
= &ex
->ex_phy
[phy_id
];
972 struct domain_device
*child
= NULL
;
976 if (ex_phy
->linkrate
== SAS_SATA_SPINUP_HOLD
) {
977 if (!sas_smp_phy_control(dev
, phy_id
, PHY_FUNC_LINK_RESET
, NULL
))
978 res
= sas_ex_phy_discover(dev
, phy_id
);
983 /* Parent and domain coherency */
984 if (!dev
->parent
&& sas_phy_match_port_addr(dev
->port
, ex_phy
)) {
985 sas_ex_add_parent_port(dev
, phy_id
);
988 if (dev
->parent
&& sas_phy_match_dev_addr(dev
->parent
, ex_phy
)) {
989 sas_ex_add_parent_port(dev
, phy_id
);
990 if (ex_phy
->routing_attr
== TABLE_ROUTING
)
991 sas_configure_phy(dev
, phy_id
, dev
->port
->sas_addr
, 1);
995 if (sas_dev_present_in_domain(dev
->port
, ex_phy
->attached_sas_addr
))
996 sas_ex_disable_port(dev
, ex_phy
->attached_sas_addr
);
998 if (ex_phy
->attached_dev_type
== SAS_PHY_UNUSED
) {
999 if (ex_phy
->routing_attr
== DIRECT_ROUTING
) {
1000 memset(ex_phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
1001 sas_configure_routing(dev
, ex_phy
->attached_sas_addr
);
1004 } else if (ex_phy
->linkrate
== SAS_LINK_RATE_UNKNOWN
)
1007 if (ex_phy
->attached_dev_type
!= SAS_END_DEVICE
&&
1008 ex_phy
->attached_dev_type
!= SAS_FANOUT_EXPANDER_DEVICE
&&
1009 ex_phy
->attached_dev_type
!= SAS_EDGE_EXPANDER_DEVICE
&&
1010 ex_phy
->attached_dev_type
!= SAS_SATA_PENDING
) {
1011 pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1012 ex_phy
->attached_dev_type
,
1013 SAS_ADDR(dev
->sas_addr
),
1018 res
= sas_configure_routing(dev
, ex_phy
->attached_sas_addr
);
1020 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1021 SAS_ADDR(ex_phy
->attached_sas_addr
), res
);
1022 sas_disable_routing(dev
, ex_phy
->attached_sas_addr
);
1026 if (sas_ex_join_wide_port(dev
, phy_id
)) {
1027 pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1028 phy_id
, SAS_ADDR(ex_phy
->attached_sas_addr
));
1032 switch (ex_phy
->attached_dev_type
) {
1033 case SAS_END_DEVICE
:
1034 case SAS_SATA_PENDING
:
1035 child
= sas_ex_discover_end_dev(dev
, phy_id
);
1037 case SAS_FANOUT_EXPANDER_DEVICE
:
1038 if (SAS_ADDR(dev
->port
->disc
.fanout_sas_addr
)) {
1039 pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1040 SAS_ADDR(ex_phy
->attached_sas_addr
),
1041 ex_phy
->attached_phy_id
,
1042 SAS_ADDR(dev
->sas_addr
),
1044 sas_ex_disable_phy(dev
, phy_id
);
1047 memcpy(dev
->port
->disc
.fanout_sas_addr
,
1048 ex_phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
1050 case SAS_EDGE_EXPANDER_DEVICE
:
1051 child
= sas_ex_discover_expander(dev
, phy_id
);
1058 pr_notice("ex %016llx phy%02d failed to discover\n",
1059 SAS_ADDR(dev
->sas_addr
), phy_id
);
1063 static int sas_find_sub_addr(struct domain_device
*dev
, u8
*sub_addr
)
1065 struct expander_device
*ex
= &dev
->ex_dev
;
1068 for (i
= 0; i
< ex
->num_phys
; i
++) {
1069 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
1071 if (phy
->phy_state
== PHY_VACANT
||
1072 phy
->phy_state
== PHY_NOT_PRESENT
)
1075 if (dev_is_expander(phy
->attached_dev_type
) &&
1076 phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1078 memcpy(sub_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
1086 static int sas_check_level_subtractive_boundary(struct domain_device
*dev
)
1088 struct expander_device
*ex
= &dev
->ex_dev
;
1089 struct domain_device
*child
;
1090 u8 sub_addr
[SAS_ADDR_SIZE
] = {0, };
1092 list_for_each_entry(child
, &ex
->children
, siblings
) {
1093 if (!dev_is_expander(child
->dev_type
))
1095 if (sub_addr
[0] == 0) {
1096 sas_find_sub_addr(child
, sub_addr
);
1099 u8 s2
[SAS_ADDR_SIZE
];
1101 if (sas_find_sub_addr(child
, s2
) &&
1102 (SAS_ADDR(sub_addr
) != SAS_ADDR(s2
))) {
1104 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1105 SAS_ADDR(dev
->sas_addr
),
1106 SAS_ADDR(child
->sas_addr
),
1108 SAS_ADDR(sub_addr
));
1110 sas_ex_disable_port(child
, s2
);
1117 * sas_ex_discover_devices - discover devices attached to this expander
1118 * @dev: pointer to the expander domain device
1119 * @single: if you want to do a single phy, else set to -1;
1121 * Configure this expander for use with its devices and register the
1122 * devices of this expander.
1124 static int sas_ex_discover_devices(struct domain_device
*dev
, int single
)
1126 struct expander_device
*ex
= &dev
->ex_dev
;
1127 int i
= 0, end
= ex
->num_phys
;
1130 if (0 <= single
&& single
< end
) {
1135 for ( ; i
< end
; i
++) {
1136 struct ex_phy
*ex_phy
= &ex
->ex_phy
[i
];
1138 if (ex_phy
->phy_state
== PHY_VACANT
||
1139 ex_phy
->phy_state
== PHY_NOT_PRESENT
||
1140 ex_phy
->phy_state
== PHY_DEVICE_DISCOVERED
)
1143 switch (ex_phy
->linkrate
) {
1144 case SAS_PHY_DISABLED
:
1145 case SAS_PHY_RESET_PROBLEM
:
1146 case SAS_SATA_PORT_SELECTOR
:
1149 res
= sas_ex_discover_dev(dev
, i
);
1157 sas_check_level_subtractive_boundary(dev
);
1162 static int sas_check_ex_subtractive_boundary(struct domain_device
*dev
)
1164 struct expander_device
*ex
= &dev
->ex_dev
;
1166 u8
*sub_sas_addr
= NULL
;
1168 if (dev
->dev_type
!= SAS_EDGE_EXPANDER_DEVICE
)
1171 for (i
= 0; i
< ex
->num_phys
; i
++) {
1172 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
1174 if (phy
->phy_state
== PHY_VACANT
||
1175 phy
->phy_state
== PHY_NOT_PRESENT
)
1178 if (dev_is_expander(phy
->attached_dev_type
) &&
1179 phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1182 sub_sas_addr
= &phy
->attached_sas_addr
[0];
1183 else if (SAS_ADDR(sub_sas_addr
) !=
1184 SAS_ADDR(phy
->attached_sas_addr
)) {
1186 pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1187 SAS_ADDR(dev
->sas_addr
), i
,
1188 SAS_ADDR(phy
->attached_sas_addr
),
1189 SAS_ADDR(sub_sas_addr
));
1190 sas_ex_disable_phy(dev
, i
);
1197 static void sas_print_parent_topology_bug(struct domain_device
*child
,
1198 struct ex_phy
*parent_phy
,
1199 struct ex_phy
*child_phy
)
1201 static const char *ex_type
[] = {
1202 [SAS_EDGE_EXPANDER_DEVICE
] = "edge",
1203 [SAS_FANOUT_EXPANDER_DEVICE
] = "fanout",
1205 struct domain_device
*parent
= child
->parent
;
1207 pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1208 ex_type
[parent
->dev_type
],
1209 SAS_ADDR(parent
->sas_addr
),
1212 ex_type
[child
->dev_type
],
1213 SAS_ADDR(child
->sas_addr
),
1216 sas_route_char(parent
, parent_phy
),
1217 sas_route_char(child
, child_phy
));
1220 static bool sas_eeds_valid(struct domain_device
*parent
,
1221 struct domain_device
*child
)
1223 struct sas_discovery
*disc
= &parent
->port
->disc
;
1225 return (SAS_ADDR(disc
->eeds_a
) == SAS_ADDR(parent
->sas_addr
) ||
1226 SAS_ADDR(disc
->eeds_a
) == SAS_ADDR(child
->sas_addr
)) &&
1227 (SAS_ADDR(disc
->eeds_b
) == SAS_ADDR(parent
->sas_addr
) ||
1228 SAS_ADDR(disc
->eeds_b
) == SAS_ADDR(child
->sas_addr
));
1231 static int sas_check_eeds(struct domain_device
*child
,
1232 struct ex_phy
*parent_phy
,
1233 struct ex_phy
*child_phy
)
1236 struct domain_device
*parent
= child
->parent
;
1237 struct sas_discovery
*disc
= &parent
->port
->disc
;
1239 if (SAS_ADDR(disc
->fanout_sas_addr
) != 0) {
1241 pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1242 SAS_ADDR(parent
->sas_addr
),
1244 SAS_ADDR(child
->sas_addr
),
1246 SAS_ADDR(disc
->fanout_sas_addr
));
1247 } else if (SAS_ADDR(disc
->eeds_a
) == 0) {
1248 memcpy(disc
->eeds_a
, parent
->sas_addr
, SAS_ADDR_SIZE
);
1249 memcpy(disc
->eeds_b
, child
->sas_addr
, SAS_ADDR_SIZE
);
1250 } else if (!sas_eeds_valid(parent
, child
)) {
1252 pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1253 SAS_ADDR(parent
->sas_addr
),
1255 SAS_ADDR(child
->sas_addr
),
1262 static int sas_check_edge_expander_topo(struct domain_device
*child
,
1263 struct ex_phy
*parent_phy
)
1265 struct expander_device
*child_ex
= &child
->ex_dev
;
1266 struct expander_device
*parent_ex
= &child
->parent
->ex_dev
;
1267 struct ex_phy
*child_phy
;
1269 child_phy
= &child_ex
->ex_phy
[parent_phy
->attached_phy_id
];
1271 if (child
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
) {
1272 if (parent_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
||
1273 child_phy
->routing_attr
!= TABLE_ROUTING
)
1275 } else if (parent_phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1276 if (child_phy
->routing_attr
== SUBTRACTIVE_ROUTING
)
1277 return sas_check_eeds(child
, parent_phy
, child_phy
);
1278 else if (child_phy
->routing_attr
!= TABLE_ROUTING
)
1280 } else if (parent_phy
->routing_attr
== TABLE_ROUTING
) {
1281 if (child_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
&&
1282 (child_phy
->routing_attr
!= TABLE_ROUTING
||
1283 !child_ex
->t2t_supp
|| !parent_ex
->t2t_supp
))
1289 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1293 static int sas_check_fanout_expander_topo(struct domain_device
*child
,
1294 struct ex_phy
*parent_phy
)
1296 struct expander_device
*child_ex
= &child
->ex_dev
;
1297 struct ex_phy
*child_phy
;
1299 child_phy
= &child_ex
->ex_phy
[parent_phy
->attached_phy_id
];
1301 if (parent_phy
->routing_attr
== TABLE_ROUTING
&&
1302 child_phy
->routing_attr
== SUBTRACTIVE_ROUTING
)
1305 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1310 static int sas_check_parent_topology(struct domain_device
*child
)
1312 struct expander_device
*parent_ex
;
1319 if (!dev_is_expander(child
->parent
->dev_type
))
1322 parent_ex
= &child
->parent
->ex_dev
;
1324 for (i
= 0; i
< parent_ex
->num_phys
; i
++) {
1325 struct ex_phy
*parent_phy
= &parent_ex
->ex_phy
[i
];
1327 if (parent_phy
->phy_state
== PHY_VACANT
||
1328 parent_phy
->phy_state
== PHY_NOT_PRESENT
)
1331 if (!sas_phy_match_dev_addr(child
, parent_phy
))
1334 switch (child
->parent
->dev_type
) {
1335 case SAS_EDGE_EXPANDER_DEVICE
:
1336 if (sas_check_edge_expander_topo(child
, parent_phy
))
1339 case SAS_FANOUT_EXPANDER_DEVICE
:
1340 if (sas_check_fanout_expander_topo(child
, parent_phy
))
1351 #define RRI_REQ_SIZE 16
1352 #define RRI_RESP_SIZE 44
1354 static int sas_configure_present(struct domain_device
*dev
, int phy_id
,
1355 u8
*sas_addr
, int *index
, int *present
)
1358 struct expander_device
*ex
= &dev
->ex_dev
;
1359 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
1366 rri_req
= alloc_smp_req(RRI_REQ_SIZE
);
1370 rri_resp
= alloc_smp_resp(RRI_RESP_SIZE
);
1376 rri_req
[1] = SMP_REPORT_ROUTE_INFO
;
1377 rri_req
[9] = phy_id
;
1379 for (i
= 0; i
< ex
->max_route_indexes
; i
++) {
1380 *(__be16
*)(rri_req
+6) = cpu_to_be16(i
);
1381 res
= smp_execute_task(dev
, rri_req
, RRI_REQ_SIZE
, rri_resp
,
1386 if (res
== SMP_RESP_NO_INDEX
) {
1387 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1388 SAS_ADDR(dev
->sas_addr
), phy_id
, i
);
1390 } else if (res
!= SMP_RESP_FUNC_ACC
) {
1391 pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1392 __func__
, SAS_ADDR(dev
->sas_addr
), phy_id
,
1396 if (SAS_ADDR(sas_addr
) != 0) {
1397 if (SAS_ADDR(rri_resp
+16) == SAS_ADDR(sas_addr
)) {
1399 if ((rri_resp
[12] & 0x80) == 0x80)
1404 } else if (SAS_ADDR(rri_resp
+16) == 0) {
1409 } else if (SAS_ADDR(rri_resp
+16) == 0 &&
1410 phy
->last_da_index
< i
) {
1411 phy
->last_da_index
= i
;
1424 #define CRI_REQ_SIZE 44
1425 #define CRI_RESP_SIZE 8
1427 static int sas_configure_set(struct domain_device
*dev
, int phy_id
,
1428 u8
*sas_addr
, int index
, int include
)
1434 cri_req
= alloc_smp_req(CRI_REQ_SIZE
);
1438 cri_resp
= alloc_smp_resp(CRI_RESP_SIZE
);
1444 cri_req
[1] = SMP_CONF_ROUTE_INFO
;
1445 *(__be16
*)(cri_req
+6) = cpu_to_be16(index
);
1446 cri_req
[9] = phy_id
;
1447 if (SAS_ADDR(sas_addr
) == 0 || !include
)
1448 cri_req
[12] |= 0x80;
1449 memcpy(cri_req
+16, sas_addr
, SAS_ADDR_SIZE
);
1451 res
= smp_execute_task(dev
, cri_req
, CRI_REQ_SIZE
, cri_resp
,
1456 if (res
== SMP_RESP_NO_INDEX
) {
1457 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1458 SAS_ADDR(dev
->sas_addr
), phy_id
, index
);
1466 static int sas_configure_phy(struct domain_device
*dev
, int phy_id
,
1467 u8
*sas_addr
, int include
)
1473 res
= sas_configure_present(dev
, phy_id
, sas_addr
, &index
, &present
);
1476 if (include
^ present
)
1477 return sas_configure_set(dev
, phy_id
, sas_addr
, index
,
1484 * sas_configure_parent - configure routing table of parent
1485 * @parent: parent expander
1486 * @child: child expander
1487 * @sas_addr: SAS port identifier of device directly attached to child
1488 * @include: whether or not to include @child in the expander routing table
1490 static int sas_configure_parent(struct domain_device
*parent
,
1491 struct domain_device
*child
,
1492 u8
*sas_addr
, int include
)
1494 struct expander_device
*ex_parent
= &parent
->ex_dev
;
1498 if (parent
->parent
) {
1499 res
= sas_configure_parent(parent
->parent
, parent
, sas_addr
,
1505 if (ex_parent
->conf_route_table
== 0) {
1506 pr_debug("ex %016llx has self-configuring routing table\n",
1507 SAS_ADDR(parent
->sas_addr
));
1511 for (i
= 0; i
< ex_parent
->num_phys
; i
++) {
1512 struct ex_phy
*phy
= &ex_parent
->ex_phy
[i
];
1514 if ((phy
->routing_attr
== TABLE_ROUTING
) &&
1515 sas_phy_match_dev_addr(child
, phy
)) {
1516 res
= sas_configure_phy(parent
, i
, sas_addr
, include
);
1526 * sas_configure_routing - configure routing
1527 * @dev: expander device
1528 * @sas_addr: port identifier of device directly attached to the expander device
1530 static int sas_configure_routing(struct domain_device
*dev
, u8
*sas_addr
)
1533 return sas_configure_parent(dev
->parent
, dev
, sas_addr
, 1);
1537 static int sas_disable_routing(struct domain_device
*dev
, u8
*sas_addr
)
1540 return sas_configure_parent(dev
->parent
, dev
, sas_addr
, 0);
1545 * sas_discover_expander - expander discovery
1546 * @dev: pointer to expander domain device
1548 * See comment in sas_discover_sata().
1550 static int sas_discover_expander(struct domain_device
*dev
)
1554 res
= sas_notify_lldd_dev_found(dev
);
1558 res
= sas_ex_general(dev
);
1561 res
= sas_ex_manuf_info(dev
);
1565 res
= sas_expander_discover(dev
);
1567 pr_warn("expander %016llx discovery failed(0x%x)\n",
1568 SAS_ADDR(dev
->sas_addr
), res
);
1572 sas_check_ex_subtractive_boundary(dev
);
1573 res
= sas_check_parent_topology(dev
);
1578 sas_notify_lldd_dev_gone(dev
);
1582 static int sas_ex_level_discovery(struct asd_sas_port
*port
, const int level
)
1585 struct domain_device
*dev
;
1587 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
) {
1588 if (dev_is_expander(dev
->dev_type
)) {
1589 struct sas_expander_device
*ex
=
1590 rphy_to_expander_device(dev
->rphy
);
1592 if (level
== ex
->level
)
1593 res
= sas_ex_discover_devices(dev
, -1);
1595 res
= sas_ex_discover_devices(port
->port_dev
, -1);
1603 static int sas_ex_bfs_disc(struct asd_sas_port
*port
)
1609 level
= port
->disc
.max_level
;
1610 res
= sas_ex_level_discovery(port
, level
);
1612 } while (level
< port
->disc
.max_level
);
1617 int sas_discover_root_expander(struct domain_device
*dev
)
1620 struct sas_expander_device
*ex
= rphy_to_expander_device(dev
->rphy
);
1622 res
= sas_rphy_add(dev
->rphy
);
1626 ex
->level
= dev
->port
->disc
.max_level
; /* 0 */
1627 res
= sas_discover_expander(dev
);
1631 sas_ex_bfs_disc(dev
->port
);
1636 sas_rphy_remove(dev
->rphy
);
1641 /* ---------- Domain revalidation ---------- */
1643 static void sas_get_sas_addr_and_dev_type(struct smp_disc_resp
*disc_resp
,
1645 enum sas_device_type
*type
)
1647 memcpy(sas_addr
, disc_resp
->disc
.attached_sas_addr
, SAS_ADDR_SIZE
);
1648 *type
= to_dev_type(&disc_resp
->disc
);
1649 if (*type
== SAS_PHY_UNUSED
)
1650 memset(sas_addr
, 0, SAS_ADDR_SIZE
);
1653 static int sas_get_phy_discover(struct domain_device
*dev
,
1654 int phy_id
, struct smp_disc_resp
*disc_resp
)
1659 disc_req
= alloc_smp_req(DISCOVER_REQ_SIZE
);
1663 disc_req
[1] = SMP_DISCOVER
;
1664 disc_req
[9] = phy_id
;
1666 res
= smp_execute_task(dev
, disc_req
, DISCOVER_REQ_SIZE
,
1667 disc_resp
, DISCOVER_RESP_SIZE
);
1670 if (disc_resp
->result
!= SMP_RESP_FUNC_ACC
)
1671 res
= disc_resp
->result
;
1677 static int sas_get_phy_change_count(struct domain_device
*dev
,
1678 int phy_id
, int *pcc
)
1681 struct smp_disc_resp
*disc_resp
;
1683 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
1687 res
= sas_get_phy_discover(dev
, phy_id
, disc_resp
);
1689 *pcc
= disc_resp
->disc
.change_count
;
1695 int sas_get_phy_attached_dev(struct domain_device
*dev
, int phy_id
,
1696 u8
*sas_addr
, enum sas_device_type
*type
)
1699 struct smp_disc_resp
*disc_resp
;
1701 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
1705 res
= sas_get_phy_discover(dev
, phy_id
, disc_resp
);
1707 sas_get_sas_addr_and_dev_type(disc_resp
, sas_addr
, type
);
1712 static int sas_find_bcast_phy(struct domain_device
*dev
, int *phy_id
,
1713 int from_phy
, bool update
)
1715 struct expander_device
*ex
= &dev
->ex_dev
;
1719 for (i
= from_phy
; i
< ex
->num_phys
; i
++) {
1720 int phy_change_count
= 0;
1722 res
= sas_get_phy_change_count(dev
, i
, &phy_change_count
);
1724 case SMP_RESP_PHY_VACANT
:
1725 case SMP_RESP_NO_PHY
:
1727 case SMP_RESP_FUNC_ACC
:
1733 if (phy_change_count
!= ex
->ex_phy
[i
].phy_change_count
) {
1735 ex
->ex_phy
[i
].phy_change_count
=
1744 static int sas_get_ex_change_count(struct domain_device
*dev
, int *ecc
)
1748 struct smp_rg_resp
*rg_resp
;
1750 rg_req
= alloc_smp_req(RG_REQ_SIZE
);
1754 rg_resp
= alloc_smp_resp(RG_RESP_SIZE
);
1760 rg_req
[1] = SMP_REPORT_GENERAL
;
1762 res
= smp_execute_task(dev
, rg_req
, RG_REQ_SIZE
, rg_resp
,
1766 if (rg_resp
->result
!= SMP_RESP_FUNC_ACC
) {
1767 res
= rg_resp
->result
;
1771 *ecc
= be16_to_cpu(rg_resp
->rg
.change_count
);
1778 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1779 * @dev:domain device to be detect.
1780 * @src_dev: the device which originated BROADCAST(CHANGE).
1782 * Add self-configuration expander support. Suppose two expander cascading,
1783 * when the first level expander is self-configuring, hotplug the disks in
1784 * second level expander, BROADCAST(CHANGE) will not only be originated
1785 * in the second level expander, but also be originated in the first level
1786 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1787 * expander changed count in two level expanders will all increment at least
1788 * once, but the phy which chang count has changed is the source device which
1792 static int sas_find_bcast_dev(struct domain_device
*dev
,
1793 struct domain_device
**src_dev
)
1795 struct expander_device
*ex
= &dev
->ex_dev
;
1796 int ex_change_count
= -1;
1799 struct domain_device
*ch
;
1801 res
= sas_get_ex_change_count(dev
, &ex_change_count
);
1804 if (ex_change_count
!= -1 && ex_change_count
!= ex
->ex_change_count
) {
1805 /* Just detect if this expander phys phy change count changed,
1806 * in order to determine if this expander originate BROADCAST,
1807 * and do not update phy change count field in our structure.
1809 res
= sas_find_bcast_phy(dev
, &phy_id
, 0, false);
1812 ex
->ex_change_count
= ex_change_count
;
1813 pr_info("ex %016llx phy%02d change count has changed\n",
1814 SAS_ADDR(dev
->sas_addr
), phy_id
);
1817 pr_info("ex %016llx phys DID NOT change\n",
1818 SAS_ADDR(dev
->sas_addr
));
1820 list_for_each_entry(ch
, &ex
->children
, siblings
) {
1821 if (dev_is_expander(ch
->dev_type
)) {
1822 res
= sas_find_bcast_dev(ch
, src_dev
);
1831 static void sas_unregister_ex_tree(struct asd_sas_port
*port
, struct domain_device
*dev
)
1833 struct expander_device
*ex
= &dev
->ex_dev
;
1834 struct domain_device
*child
, *n
;
1836 list_for_each_entry_safe(child
, n
, &ex
->children
, siblings
) {
1837 set_bit(SAS_DEV_GONE
, &child
->state
);
1838 if (dev_is_expander(child
->dev_type
))
1839 sas_unregister_ex_tree(port
, child
);
1841 sas_unregister_dev(port
, child
);
1843 sas_unregister_dev(port
, dev
);
1846 static void sas_unregister_devs_sas_addr(struct domain_device
*parent
,
1847 int phy_id
, bool last
)
1849 struct expander_device
*ex_dev
= &parent
->ex_dev
;
1850 struct ex_phy
*phy
= &ex_dev
->ex_phy
[phy_id
];
1851 struct domain_device
*child
, *n
, *found
= NULL
;
1853 list_for_each_entry_safe(child
, n
,
1854 &ex_dev
->children
, siblings
) {
1855 if (sas_phy_match_dev_addr(child
, phy
)) {
1856 set_bit(SAS_DEV_GONE
, &child
->state
);
1857 if (dev_is_expander(child
->dev_type
))
1858 sas_unregister_ex_tree(parent
->port
, child
);
1860 sas_unregister_dev(parent
->port
, child
);
1865 sas_disable_routing(parent
, phy
->attached_sas_addr
);
1867 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
1869 sas_port_delete_phy(phy
->port
, phy
->phy
);
1870 sas_device_set_phy(found
, phy
->port
);
1871 if (phy
->port
->num_phys
== 0) {
1872 list_add_tail(&phy
->port
->del_list
,
1873 &parent
->port
->sas_port_del_list
);
1874 if (ex_dev
->parent_port
== phy
->port
)
1875 ex_dev
->parent_port
= NULL
;
1881 static int sas_discover_bfs_by_root_level(struct domain_device
*root
,
1884 struct expander_device
*ex_root
= &root
->ex_dev
;
1885 struct domain_device
*child
;
1888 list_for_each_entry(child
, &ex_root
->children
, siblings
) {
1889 if (dev_is_expander(child
->dev_type
)) {
1890 struct sas_expander_device
*ex
=
1891 rphy_to_expander_device(child
->rphy
);
1893 if (level
> ex
->level
)
1894 res
= sas_discover_bfs_by_root_level(child
,
1896 else if (level
== ex
->level
)
1897 res
= sas_ex_discover_devices(child
, -1);
1903 static int sas_discover_bfs_by_root(struct domain_device
*dev
)
1906 struct sas_expander_device
*ex
= rphy_to_expander_device(dev
->rphy
);
1907 int level
= ex
->level
+1;
1909 res
= sas_ex_discover_devices(dev
, -1);
1913 res
= sas_discover_bfs_by_root_level(dev
, level
);
1916 } while (level
<= dev
->port
->disc
.max_level
);
1921 static int sas_discover_new(struct domain_device
*dev
, int phy_id
)
1923 struct ex_phy
*ex_phy
= &dev
->ex_dev
.ex_phy
[phy_id
];
1924 struct domain_device
*child
;
1927 pr_debug("ex %016llx phy%02d new device attached\n",
1928 SAS_ADDR(dev
->sas_addr
), phy_id
);
1929 res
= sas_ex_phy_discover(dev
, phy_id
);
1933 if (sas_ex_join_wide_port(dev
, phy_id
))
1936 res
= sas_ex_discover_devices(dev
, phy_id
);
1939 list_for_each_entry(child
, &dev
->ex_dev
.children
, siblings
) {
1940 if (sas_phy_match_dev_addr(child
, ex_phy
)) {
1941 if (dev_is_expander(child
->dev_type
))
1942 res
= sas_discover_bfs_by_root(child
);
1949 static bool dev_type_flutter(enum sas_device_type
new, enum sas_device_type old
)
1954 /* treat device directed resets as flutter, if we went
1955 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1957 if ((old
== SAS_SATA_PENDING
&& new == SAS_END_DEVICE
) ||
1958 (old
== SAS_END_DEVICE
&& new == SAS_SATA_PENDING
))
1964 static int sas_rediscover_dev(struct domain_device
*dev
, int phy_id
,
1965 bool last
, int sibling
)
1967 struct expander_device
*ex
= &dev
->ex_dev
;
1968 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
1969 enum sas_device_type type
= SAS_PHY_UNUSED
;
1970 struct smp_disc_resp
*disc_resp
;
1971 u8 sas_addr
[SAS_ADDR_SIZE
];
1976 sprintf(msg
, ", part of a wide port with phy%02d", sibling
);
1978 pr_debug("ex %016llx rediscovering phy%02d%s\n",
1979 SAS_ADDR(dev
->sas_addr
), phy_id
, msg
);
1981 memset(sas_addr
, 0, SAS_ADDR_SIZE
);
1982 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
1986 res
= sas_get_phy_discover(dev
, phy_id
, disc_resp
);
1988 case SMP_RESP_NO_PHY
:
1989 phy
->phy_state
= PHY_NOT_PRESENT
;
1990 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
1992 case SMP_RESP_PHY_VACANT
:
1993 phy
->phy_state
= PHY_VACANT
;
1994 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
1996 case SMP_RESP_FUNC_ACC
:
2005 sas_get_sas_addr_and_dev_type(disc_resp
, sas_addr
, &type
);
2007 if ((SAS_ADDR(sas_addr
) == 0) || (res
== -ECOMM
)) {
2008 phy
->phy_state
= PHY_EMPTY
;
2009 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
2011 * Even though the PHY is empty, for convenience we update
2012 * the PHY info, like negotiated linkrate.
2015 sas_set_ex_phy(dev
, phy_id
, disc_resp
);
2017 } else if (SAS_ADDR(sas_addr
) == SAS_ADDR(phy
->attached_sas_addr
) &&
2018 dev_type_flutter(type
, phy
->attached_dev_type
)) {
2019 struct domain_device
*ata_dev
= sas_ex_to_ata(dev
, phy_id
);
2022 sas_ex_phy_discover(dev
, phy_id
);
2024 if (ata_dev
&& phy
->attached_dev_type
== SAS_SATA_PENDING
)
2025 action
= ", needs recovery";
2026 pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2027 SAS_ADDR(dev
->sas_addr
), phy_id
, action
);
2031 /* we always have to delete the old device when we went here */
2032 pr_info("ex %016llx phy%02d replace %016llx\n",
2033 SAS_ADDR(dev
->sas_addr
), phy_id
,
2034 SAS_ADDR(phy
->attached_sas_addr
));
2035 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
2037 res
= sas_discover_new(dev
, phy_id
);
2044 * sas_rediscover - revalidate the domain.
2045 * @dev:domain device to be detect.
2046 * @phy_id: the phy id will be detected.
2048 * NOTE: this process _must_ quit (return) as soon as any connection
2049 * errors are encountered. Connection recovery is done elsewhere.
2050 * Discover process only interrogates devices in order to discover the
2051 * domain.For plugging out, we un-register the device only when it is
2052 * the last phy in the port, for other phys in this port, we just delete it
2053 * from the port.For inserting, we do discovery when it is the
2054 * first phy,for other phys in this port, we add it to the port to
2055 * forming the wide-port.
2057 static int sas_rediscover(struct domain_device
*dev
, const int phy_id
)
2059 struct expander_device
*ex
= &dev
->ex_dev
;
2060 struct ex_phy
*changed_phy
= &ex
->ex_phy
[phy_id
];
2063 bool last
= true; /* is this the last phy of the port */
2065 pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2066 SAS_ADDR(dev
->sas_addr
), phy_id
);
2068 if (SAS_ADDR(changed_phy
->attached_sas_addr
) != 0) {
2069 for (i
= 0; i
< ex
->num_phys
; i
++) {
2070 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
2074 if (sas_phy_addr_match(phy
, changed_phy
)) {
2079 res
= sas_rediscover_dev(dev
, phy_id
, last
, i
);
2081 res
= sas_discover_new(dev
, phy_id
);
2086 * sas_ex_revalidate_domain - revalidate the domain
2087 * @port_dev: port domain device.
2089 * NOTE: this process _must_ quit (return) as soon as any connection
2090 * errors are encountered. Connection recovery is done elsewhere.
2091 * Discover process only interrogates devices in order to discover the
2094 int sas_ex_revalidate_domain(struct domain_device
*port_dev
)
2097 struct domain_device
*dev
= NULL
;
2099 res
= sas_find_bcast_dev(port_dev
, &dev
);
2100 if (res
== 0 && dev
) {
2101 struct expander_device
*ex
= &dev
->ex_dev
;
2106 res
= sas_find_bcast_phy(dev
, &phy_id
, i
, true);
2109 res
= sas_rediscover(dev
, phy_id
);
2111 } while (i
< ex
->num_phys
);
2116 int sas_find_attached_phy_id(struct expander_device
*ex_dev
,
2117 struct domain_device
*dev
)
2122 for (phy_id
= 0; phy_id
< ex_dev
->num_phys
; phy_id
++) {
2123 phy
= &ex_dev
->ex_phy
[phy_id
];
2124 if (sas_phy_match_dev_addr(dev
, phy
))
2130 EXPORT_SYMBOL_GPL(sas_find_attached_phy_id
);
2132 void sas_smp_handler(struct bsg_job
*job
, struct Scsi_Host
*shost
,
2133 struct sas_rphy
*rphy
)
2135 struct domain_device
*dev
;
2136 unsigned int rcvlen
= 0;
2139 /* no rphy means no smp target support (ie aic94xx host) */
2141 return sas_smp_host_handler(job
, shost
);
2143 switch (rphy
->identify
.device_type
) {
2144 case SAS_EDGE_EXPANDER_DEVICE
:
2145 case SAS_FANOUT_EXPANDER_DEVICE
:
2148 pr_err("%s: can we send a smp request to a device?\n",
2153 dev
= sas_find_dev_by_rphy(rphy
);
2155 pr_err("%s: fail to find a domain_device?\n", __func__
);
2159 /* do we need to support multiple segments? */
2160 if (job
->request_payload
.sg_cnt
> 1 ||
2161 job
->reply_payload
.sg_cnt
> 1) {
2162 pr_info("%s: multiple segments req %u, rsp %u\n",
2163 __func__
, job
->request_payload
.payload_len
,
2164 job
->reply_payload
.payload_len
);
2168 ret
= smp_execute_task_sg(dev
, job
->request_payload
.sg_list
,
2169 job
->reply_payload
.sg_list
);
2171 /* bsg_job_done() requires the length received */
2172 rcvlen
= job
->reply_payload
.payload_len
- ret
;
2177 bsg_job_done(job
, ret
, rcvlen
);