1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
4 #include <linux/acpi.h>
5 #include <linux/delay.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/pm_runtime.h>
8 #include <linux/soundwire/sdw_registers.h>
9 #include <linux/soundwire/sdw.h>
10 #include <linux/soundwire/sdw_type.h>
13 #include "sysfs_local.h"
15 static DEFINE_IDA(sdw_bus_ida
);
17 static int sdw_get_id(struct sdw_bus
*bus
)
19 int rc
= ida_alloc(&sdw_bus_ida
, GFP_KERNEL
);
26 if (bus
->controller_id
== -1)
27 bus
->controller_id
= rc
;
33 * sdw_bus_master_add() - add a bus Master instance
35 * @parent: parent device
36 * @fwnode: firmware node handle
38 * Initializes the bus instance, read properties and create child
41 int sdw_bus_master_add(struct sdw_bus
*bus
, struct device
*parent
,
42 struct fwnode_handle
*fwnode
)
44 struct sdw_master_prop
*prop
= NULL
;
48 pr_err("SoundWire parent device is not set\n");
52 ret
= sdw_get_id(bus
);
54 dev_err(parent
, "Failed to get bus id\n");
58 ret
= sdw_master_device_add(bus
, parent
, fwnode
);
60 dev_err(parent
, "Failed to add master device at link %d\n",
66 dev_err(bus
->dev
, "SoundWire Bus ops are not set\n");
70 if (!bus
->compute_params
) {
72 "Bandwidth allocation not configured, compute_params no set\n");
77 * Give each bus_lock and msg_lock a unique key so that lockdep won't
78 * trigger a deadlock warning when the locks of several buses are
79 * grabbed during configuration of a multi-bus stream.
81 lockdep_register_key(&bus
->msg_lock_key
);
82 __mutex_init(&bus
->msg_lock
, "msg_lock", &bus
->msg_lock_key
);
84 lockdep_register_key(&bus
->bus_lock_key
);
85 __mutex_init(&bus
->bus_lock
, "bus_lock", &bus
->bus_lock_key
);
87 INIT_LIST_HEAD(&bus
->slaves
);
88 INIT_LIST_HEAD(&bus
->m_rt_list
);
91 * Initialize multi_link flag
93 bus
->multi_link
= false;
94 if (bus
->ops
->read_prop
) {
95 ret
= bus
->ops
->read_prop(bus
);
98 "Bus read properties failed:%d\n", ret
);
103 sdw_bus_debugfs_init(bus
);
106 * Device numbers in SoundWire are 0 through 15. Enumeration device
107 * number (0), Broadcast device number (15), Group numbers (12 and
108 * 13) and Master device number (14) are not used for assignment so
109 * mask these and other higher bits.
112 /* Set higher order bits */
113 *bus
->assigned
= ~GENMASK(SDW_BROADCAST_DEV_NUM
, SDW_ENUM_DEV_NUM
);
115 /* Set enumeration device number and broadcast device number */
116 set_bit(SDW_ENUM_DEV_NUM
, bus
->assigned
);
117 set_bit(SDW_BROADCAST_DEV_NUM
, bus
->assigned
);
119 /* Set group device numbers and master device number */
120 set_bit(SDW_GROUP12_DEV_NUM
, bus
->assigned
);
121 set_bit(SDW_GROUP13_DEV_NUM
, bus
->assigned
);
122 set_bit(SDW_MASTER_DEV_NUM
, bus
->assigned
);
125 * SDW is an enumerable bus, but devices can be powered off. So,
126 * they won't be able to report as present.
128 * Create Slave devices based on Slaves described in
129 * the respective firmware (ACPI/DT)
131 if (IS_ENABLED(CONFIG_ACPI
) && ACPI_HANDLE(bus
->dev
))
132 ret
= sdw_acpi_find_slaves(bus
);
133 else if (IS_ENABLED(CONFIG_OF
) && bus
->dev
->of_node
)
134 ret
= sdw_of_find_slaves(bus
);
136 ret
= -ENOTSUPP
; /* No ACPI/DT so error out */
139 dev_err(bus
->dev
, "Finding slaves failed:%d\n", ret
);
144 * Initialize clock values based on Master properties. The max
145 * frequency is read from max_clk_freq property. Current assumption
146 * is that the bus will start at highest clock frequency when
149 * Default active bank will be 0 as out of reset the Slaves have
150 * to start with bank 0 (Table 40 of Spec)
153 bus
->params
.max_dr_freq
= prop
->max_clk_freq
* SDW_DOUBLE_RATE_FACTOR
;
154 bus
->params
.curr_dr_freq
= bus
->params
.max_dr_freq
;
155 bus
->params
.curr_bank
= SDW_BANK0
;
156 bus
->params
.next_bank
= SDW_BANK1
;
158 ret
= sdw_irq_create(bus
, fwnode
);
164 EXPORT_SYMBOL(sdw_bus_master_add
);
166 static int sdw_delete_slave(struct device
*dev
, void *data
)
168 struct sdw_slave
*slave
= dev_to_sdw_dev(dev
);
169 struct sdw_bus
*bus
= slave
->bus
;
171 pm_runtime_disable(dev
);
173 sdw_slave_debugfs_exit(slave
);
175 mutex_lock(&bus
->bus_lock
);
177 if (slave
->dev_num
) { /* clear dev_num if assigned */
178 clear_bit(slave
->dev_num
, bus
->assigned
);
179 if (bus
->ops
&& bus
->ops
->put_device_num
)
180 bus
->ops
->put_device_num(bus
, slave
);
182 list_del_init(&slave
->node
);
183 mutex_unlock(&bus
->bus_lock
);
185 device_unregister(dev
);
190 * sdw_bus_master_delete() - delete the bus master instance
191 * @bus: bus to be deleted
193 * Remove the instance, delete the child devices.
195 void sdw_bus_master_delete(struct sdw_bus
*bus
)
197 device_for_each_child(bus
->dev
, NULL
, sdw_delete_slave
);
201 sdw_master_device_del(bus
);
203 sdw_bus_debugfs_exit(bus
);
204 lockdep_unregister_key(&bus
->bus_lock_key
);
205 lockdep_unregister_key(&bus
->msg_lock_key
);
206 ida_free(&sdw_bus_ida
, bus
->id
);
208 EXPORT_SYMBOL(sdw_bus_master_delete
);
214 static inline int find_response_code(enum sdw_command_response resp
)
220 case SDW_CMD_IGNORED
:
223 case SDW_CMD_TIMEOUT
:
231 static inline int do_transfer(struct sdw_bus
*bus
, struct sdw_msg
*msg
)
233 int retry
= bus
->prop
.err_threshold
;
234 enum sdw_command_response resp
;
237 for (i
= 0; i
<= retry
; i
++) {
238 resp
= bus
->ops
->xfer_msg(bus
, msg
);
239 ret
= find_response_code(resp
);
241 /* if cmd is ok or ignored return */
242 if (ret
== 0 || ret
== -ENODATA
)
249 static inline int do_transfer_defer(struct sdw_bus
*bus
,
252 struct sdw_defer
*defer
= &bus
->defer_msg
;
253 int retry
= bus
->prop
.err_threshold
;
254 enum sdw_command_response resp
;
258 defer
->length
= msg
->len
;
259 init_completion(&defer
->complete
);
261 for (i
= 0; i
<= retry
; i
++) {
262 resp
= bus
->ops
->xfer_msg_defer(bus
);
263 ret
= find_response_code(resp
);
264 /* if cmd is ok or ignored return */
265 if (ret
== 0 || ret
== -ENODATA
)
272 static int sdw_transfer_unlocked(struct sdw_bus
*bus
, struct sdw_msg
*msg
)
276 ret
= do_transfer(bus
, msg
);
277 if (ret
!= 0 && ret
!= -ENODATA
)
278 dev_err(bus
->dev
, "trf on Slave %d failed:%d %s addr %x count %d\n",
280 (msg
->flags
& SDW_MSG_FLAG_WRITE
) ? "write" : "read",
281 msg
->addr
, msg
->len
);
287 * sdw_transfer() - Synchronous transfer message to a SDW Slave device
289 * @msg: SDW message to be xfered
291 int sdw_transfer(struct sdw_bus
*bus
, struct sdw_msg
*msg
)
295 mutex_lock(&bus
->msg_lock
);
297 ret
= sdw_transfer_unlocked(bus
, msg
);
299 mutex_unlock(&bus
->msg_lock
);
305 * sdw_show_ping_status() - Direct report of PING status, to be used by Peripheral drivers
307 * @sync_delay: Delay before reading status
309 void sdw_show_ping_status(struct sdw_bus
*bus
, bool sync_delay
)
313 if (!bus
->ops
->read_ping_status
)
317 * wait for peripheral to sync if desired. 10-15ms should be more than
318 * enough in most cases.
321 usleep_range(10000, 15000);
323 mutex_lock(&bus
->msg_lock
);
325 status
= bus
->ops
->read_ping_status(bus
);
327 mutex_unlock(&bus
->msg_lock
);
330 dev_warn(bus
->dev
, "%s: no peripherals attached\n", __func__
);
332 dev_dbg(bus
->dev
, "PING status: %#x\n", status
);
334 EXPORT_SYMBOL(sdw_show_ping_status
);
337 * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
339 * @msg: SDW message to be xfered
341 * Caller needs to hold the msg_lock lock while calling this
343 int sdw_transfer_defer(struct sdw_bus
*bus
, struct sdw_msg
*msg
)
347 if (!bus
->ops
->xfer_msg_defer
)
350 ret
= do_transfer_defer(bus
, msg
);
351 if (ret
!= 0 && ret
!= -ENODATA
)
352 dev_err(bus
->dev
, "Defer trf on Slave %d failed:%d\n",
358 int sdw_fill_msg(struct sdw_msg
*msg
, struct sdw_slave
*slave
,
359 u32 addr
, size_t count
, u16 dev_num
, u8 flags
, u8
*buf
)
361 memset(msg
, 0, sizeof(*msg
));
362 msg
->addr
= addr
; /* addr is 16 bit and truncated here */
364 msg
->dev_num
= dev_num
;
368 if (addr
< SDW_REG_NO_PAGE
) /* no paging area */
371 if (addr
>= SDW_REG_MAX
) { /* illegal addr */
372 pr_err("SDW: Invalid address %x passed\n", addr
);
376 if (addr
< SDW_REG_OPTIONAL_PAGE
) { /* 32k but no page */
377 if (slave
&& !slave
->prop
.paging_support
)
379 /* no need for else as that will fall-through to paging */
382 /* paging mandatory */
383 if (dev_num
== SDW_ENUM_DEV_NUM
|| dev_num
== SDW_BROADCAST_DEV_NUM
) {
384 pr_err("SDW: Invalid device for paging :%d\n", dev_num
);
389 pr_err("SDW: No slave for paging addr\n");
393 if (!slave
->prop
.paging_support
) {
395 "address %x needs paging but no support\n", addr
);
399 msg
->addr_page1
= FIELD_GET(SDW_SCP_ADDRPAGE1_MASK
, addr
);
400 msg
->addr_page2
= FIELD_GET(SDW_SCP_ADDRPAGE2_MASK
, addr
);
401 msg
->addr
|= BIT(15);
408 * Read/Write IO functions.
411 static int sdw_ntransfer_no_pm(struct sdw_slave
*slave
, u32 addr
, u8 flags
,
412 size_t count
, u8
*val
)
419 // Only handle bytes up to next page boundary
420 size
= min_t(size_t, count
, (SDW_REGADDR
+ 1) - (addr
& SDW_REGADDR
));
422 ret
= sdw_fill_msg(&msg
, slave
, addr
, size
, slave
->dev_num
, flags
, val
);
426 ret
= sdw_transfer(slave
->bus
, &msg
);
427 if (ret
< 0 && !slave
->is_mockup_device
)
439 * sdw_nread_no_pm() - Read "n" contiguous SDW Slave registers with no PM
441 * @addr: Register address
443 * @val: Buffer for values to be read
445 * Note that if the message crosses a page boundary each page will be
446 * transferred under a separate invocation of the msg_lock.
448 int sdw_nread_no_pm(struct sdw_slave
*slave
, u32 addr
, size_t count
, u8
*val
)
450 return sdw_ntransfer_no_pm(slave
, addr
, SDW_MSG_FLAG_READ
, count
, val
);
452 EXPORT_SYMBOL(sdw_nread_no_pm
);
455 * sdw_nwrite_no_pm() - Write "n" contiguous SDW Slave registers with no PM
457 * @addr: Register address
459 * @val: Buffer for values to be written
461 * Note that if the message crosses a page boundary each page will be
462 * transferred under a separate invocation of the msg_lock.
464 int sdw_nwrite_no_pm(struct sdw_slave
*slave
, u32 addr
, size_t count
, const u8
*val
)
466 return sdw_ntransfer_no_pm(slave
, addr
, SDW_MSG_FLAG_WRITE
, count
, (u8
*)val
);
468 EXPORT_SYMBOL(sdw_nwrite_no_pm
);
471 * sdw_write_no_pm() - Write a SDW Slave register with no PM
473 * @addr: Register address
474 * @value: Register value
476 int sdw_write_no_pm(struct sdw_slave
*slave
, u32 addr
, u8 value
)
478 return sdw_nwrite_no_pm(slave
, addr
, 1, &value
);
480 EXPORT_SYMBOL(sdw_write_no_pm
);
483 sdw_bread_no_pm(struct sdw_bus
*bus
, u16 dev_num
, u32 addr
)
489 ret
= sdw_fill_msg(&msg
, NULL
, addr
, 1, dev_num
,
490 SDW_MSG_FLAG_READ
, &buf
);
494 ret
= sdw_transfer(bus
, &msg
);
502 sdw_bwrite_no_pm(struct sdw_bus
*bus
, u16 dev_num
, u32 addr
, u8 value
)
507 ret
= sdw_fill_msg(&msg
, NULL
, addr
, 1, dev_num
,
508 SDW_MSG_FLAG_WRITE
, &value
);
512 return sdw_transfer(bus
, &msg
);
515 int sdw_bread_no_pm_unlocked(struct sdw_bus
*bus
, u16 dev_num
, u32 addr
)
521 ret
= sdw_fill_msg(&msg
, NULL
, addr
, 1, dev_num
,
522 SDW_MSG_FLAG_READ
, &buf
);
526 ret
= sdw_transfer_unlocked(bus
, &msg
);
532 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked
);
534 int sdw_bwrite_no_pm_unlocked(struct sdw_bus
*bus
, u16 dev_num
, u32 addr
, u8 value
)
539 ret
= sdw_fill_msg(&msg
, NULL
, addr
, 1, dev_num
,
540 SDW_MSG_FLAG_WRITE
, &value
);
544 return sdw_transfer_unlocked(bus
, &msg
);
546 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked
);
549 * sdw_read_no_pm() - Read a SDW Slave register with no PM
551 * @addr: Register address
553 int sdw_read_no_pm(struct sdw_slave
*slave
, u32 addr
)
558 ret
= sdw_nread_no_pm(slave
, addr
, 1, &buf
);
564 EXPORT_SYMBOL(sdw_read_no_pm
);
566 int sdw_update_no_pm(struct sdw_slave
*slave
, u32 addr
, u8 mask
, u8 val
)
570 tmp
= sdw_read_no_pm(slave
, addr
);
574 tmp
= (tmp
& ~mask
) | val
;
575 return sdw_write_no_pm(slave
, addr
, tmp
);
577 EXPORT_SYMBOL(sdw_update_no_pm
);
579 /* Read-Modify-Write Slave register */
580 int sdw_update(struct sdw_slave
*slave
, u32 addr
, u8 mask
, u8 val
)
584 tmp
= sdw_read(slave
, addr
);
588 tmp
= (tmp
& ~mask
) | val
;
589 return sdw_write(slave
, addr
, tmp
);
591 EXPORT_SYMBOL(sdw_update
);
594 * sdw_nread() - Read "n" contiguous SDW Slave registers
596 * @addr: Register address
598 * @val: Buffer for values to be read
600 * This version of the function will take a PM reference to the slave
602 * Note that if the message crosses a page boundary each page will be
603 * transferred under a separate invocation of the msg_lock.
605 int sdw_nread(struct sdw_slave
*slave
, u32 addr
, size_t count
, u8
*val
)
609 ret
= pm_runtime_get_sync(&slave
->dev
);
610 if (ret
< 0 && ret
!= -EACCES
) {
611 pm_runtime_put_noidle(&slave
->dev
);
615 ret
= sdw_nread_no_pm(slave
, addr
, count
, val
);
617 pm_runtime_mark_last_busy(&slave
->dev
);
618 pm_runtime_put(&slave
->dev
);
622 EXPORT_SYMBOL(sdw_nread
);
625 * sdw_nwrite() - Write "n" contiguous SDW Slave registers
627 * @addr: Register address
629 * @val: Buffer for values to be written
631 * This version of the function will take a PM reference to the slave
633 * Note that if the message crosses a page boundary each page will be
634 * transferred under a separate invocation of the msg_lock.
636 int sdw_nwrite(struct sdw_slave
*slave
, u32 addr
, size_t count
, const u8
*val
)
640 ret
= pm_runtime_get_sync(&slave
->dev
);
641 if (ret
< 0 && ret
!= -EACCES
) {
642 pm_runtime_put_noidle(&slave
->dev
);
646 ret
= sdw_nwrite_no_pm(slave
, addr
, count
, val
);
648 pm_runtime_mark_last_busy(&slave
->dev
);
649 pm_runtime_put(&slave
->dev
);
653 EXPORT_SYMBOL(sdw_nwrite
);
656 * sdw_read() - Read a SDW Slave register
658 * @addr: Register address
660 * This version of the function will take a PM reference to the slave
663 int sdw_read(struct sdw_slave
*slave
, u32 addr
)
668 ret
= sdw_nread(slave
, addr
, 1, &buf
);
674 EXPORT_SYMBOL(sdw_read
);
677 * sdw_write() - Write a SDW Slave register
679 * @addr: Register address
680 * @value: Register value
682 * This version of the function will take a PM reference to the slave
685 int sdw_write(struct sdw_slave
*slave
, u32 addr
, u8 value
)
687 return sdw_nwrite(slave
, addr
, 1, &value
);
689 EXPORT_SYMBOL(sdw_write
);
695 /* called with bus_lock held */
696 static struct sdw_slave
*sdw_get_slave(struct sdw_bus
*bus
, int i
)
698 struct sdw_slave
*slave
;
700 list_for_each_entry(slave
, &bus
->slaves
, node
) {
701 if (slave
->dev_num
== i
)
708 int sdw_compare_devid(struct sdw_slave
*slave
, struct sdw_slave_id id
)
710 if (slave
->id
.mfg_id
!= id
.mfg_id
||
711 slave
->id
.part_id
!= id
.part_id
||
712 slave
->id
.class_id
!= id
.class_id
||
713 (slave
->id
.unique_id
!= SDW_IGNORED_UNIQUE_ID
&&
714 slave
->id
.unique_id
!= id
.unique_id
))
719 EXPORT_SYMBOL(sdw_compare_devid
);
721 /* called with bus_lock held */
722 static int sdw_get_device_num(struct sdw_slave
*slave
)
724 struct sdw_bus
*bus
= slave
->bus
;
727 if (bus
->ops
&& bus
->ops
->get_device_num
) {
728 bit
= bus
->ops
->get_device_num(bus
, slave
);
732 bit
= find_first_zero_bit(bus
->assigned
, SDW_MAX_DEVICES
);
733 if (bit
== SDW_MAX_DEVICES
) {
740 * Do not update dev_num in Slave data structure here,
741 * Update once program dev_num is successful
743 set_bit(bit
, bus
->assigned
);
749 static int sdw_assign_device_num(struct sdw_slave
*slave
)
751 struct sdw_bus
*bus
= slave
->bus
;
753 bool new_device
= false;
755 /* check first if device number is assigned, if so reuse that */
756 if (!slave
->dev_num
) {
757 if (!slave
->dev_num_sticky
) {
758 mutex_lock(&slave
->bus
->bus_lock
);
759 dev_num
= sdw_get_device_num(slave
);
760 mutex_unlock(&slave
->bus
->bus_lock
);
762 dev_err(bus
->dev
, "Get dev_num failed: %d\n",
766 slave
->dev_num
= dev_num
;
767 slave
->dev_num_sticky
= dev_num
;
770 slave
->dev_num
= slave
->dev_num_sticky
;
776 "Slave already registered, reusing dev_num:%d\n",
779 /* Clear the slave->dev_num to transfer message on device 0 */
780 dev_num
= slave
->dev_num
;
783 ret
= sdw_write_no_pm(slave
, SDW_SCP_DEVNUMBER
, dev_num
);
785 dev_err(bus
->dev
, "Program device_num %d failed: %d\n",
790 /* After xfer of msg, restore dev_num */
791 slave
->dev_num
= slave
->dev_num_sticky
;
793 if (bus
->ops
&& bus
->ops
->new_peripheral_assigned
)
794 bus
->ops
->new_peripheral_assigned(bus
, slave
, dev_num
);
799 void sdw_extract_slave_id(struct sdw_bus
*bus
,
800 u64 addr
, struct sdw_slave_id
*id
)
802 dev_dbg(bus
->dev
, "SDW Slave Addr: %llx\n", addr
);
804 id
->sdw_version
= SDW_VERSION(addr
);
805 id
->unique_id
= SDW_UNIQUE_ID(addr
);
806 id
->mfg_id
= SDW_MFG_ID(addr
);
807 id
->part_id
= SDW_PART_ID(addr
);
808 id
->class_id
= SDW_CLASS_ID(addr
);
811 "SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n",
812 id
->class_id
, id
->mfg_id
, id
->part_id
, id
->unique_id
, id
->sdw_version
);
814 EXPORT_SYMBOL(sdw_extract_slave_id
);
816 static int sdw_program_device_num(struct sdw_bus
*bus
, bool *programmed
)
818 u8 buf
[SDW_NUM_DEV_ID_REGISTERS
] = {0};
819 struct sdw_slave
*slave
, *_s
;
820 struct sdw_slave_id id
;
828 /* No Slave, so use raw xfer api */
829 ret
= sdw_fill_msg(&msg
, NULL
, SDW_SCP_DEVID_0
,
830 SDW_NUM_DEV_ID_REGISTERS
, 0, SDW_MSG_FLAG_READ
, buf
);
835 ret
= sdw_transfer(bus
, &msg
);
836 if (ret
== -ENODATA
) { /* end of device id reads */
837 dev_dbg(bus
->dev
, "No more devices to enumerate\n");
842 dev_err(bus
->dev
, "DEVID read fail:%d\n", ret
);
847 * Construct the addr and extract. Cast the higher shift
848 * bits to avoid truncation due to size limit.
850 addr
= buf
[5] | (buf
[4] << 8) | (buf
[3] << 16) |
851 ((u64
)buf
[2] << 24) | ((u64
)buf
[1] << 32) |
854 sdw_extract_slave_id(bus
, addr
, &id
);
857 /* Now compare with entries */
858 list_for_each_entry_safe(slave
, _s
, &bus
->slaves
, node
) {
859 if (sdw_compare_devid(slave
, id
) == 0) {
863 * To prevent skipping state-machine stages don't
864 * program a device until we've seen it UNATTACH.
865 * Must return here because no other device on #0
866 * can be detected until this one has been
867 * assigned a device ID.
869 if (slave
->status
!= SDW_SLAVE_UNATTACHED
)
873 * Assign a new dev_num to this Slave and
874 * not mark it present. It will be marked
875 * present after it reports ATTACHED on new
878 ret
= sdw_assign_device_num(slave
);
881 "Assign dev_num failed:%d\n",
893 /* TODO: Park this device in Group 13 */
896 * add Slave device even if there is no platform
897 * firmware description. There will be no driver probe
898 * but the user/integration will be able to see the
899 * device, enumeration status and device number in sysfs
901 sdw_slave_add(bus
, &id
, NULL
);
903 dev_err(bus
->dev
, "Slave Entry not found\n");
909 * Check till error out or retry (count) exhausts.
910 * Device can drop off and rejoin during enumeration
911 * so count till twice the bound.
914 } while (ret
== 0 && count
< (SDW_MAX_DEVICES
* 2));
919 static void sdw_modify_slave_status(struct sdw_slave
*slave
,
920 enum sdw_slave_status status
)
922 struct sdw_bus
*bus
= slave
->bus
;
924 mutex_lock(&bus
->bus_lock
);
927 "changing status slave %d status %d new status %d\n",
928 slave
->dev_num
, slave
->status
, status
);
930 if (status
== SDW_SLAVE_UNATTACHED
) {
932 "initializing enumeration and init completion for Slave %d\n",
935 reinit_completion(&slave
->enumeration_complete
);
936 reinit_completion(&slave
->initialization_complete
);
938 } else if ((status
== SDW_SLAVE_ATTACHED
) &&
939 (slave
->status
== SDW_SLAVE_UNATTACHED
)) {
941 "signaling enumeration completion for Slave %d\n",
944 complete_all(&slave
->enumeration_complete
);
946 slave
->status
= status
;
947 mutex_unlock(&bus
->bus_lock
);
950 static int sdw_slave_clk_stop_callback(struct sdw_slave
*slave
,
951 enum sdw_clk_stop_mode mode
,
952 enum sdw_clk_stop_type type
)
956 mutex_lock(&slave
->sdw_dev_lock
);
959 struct device
*dev
= &slave
->dev
;
960 struct sdw_driver
*drv
= drv_to_sdw_driver(dev
->driver
);
962 if (drv
->ops
&& drv
->ops
->clk_stop
)
963 ret
= drv
->ops
->clk_stop(slave
, mode
, type
);
966 mutex_unlock(&slave
->sdw_dev_lock
);
971 static int sdw_slave_clk_stop_prepare(struct sdw_slave
*slave
,
972 enum sdw_clk_stop_mode mode
,
979 wake_en
= slave
->prop
.wake_capable
;
982 val
= SDW_SCP_SYSTEMCTRL_CLK_STP_PREP
;
984 if (mode
== SDW_CLK_STOP_MODE1
)
985 val
|= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1
;
988 val
|= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN
;
990 ret
= sdw_read_no_pm(slave
, SDW_SCP_SYSTEMCTRL
);
993 dev_err(&slave
->dev
, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret
);
997 val
&= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP
);
1000 ret
= sdw_write_no_pm(slave
, SDW_SCP_SYSTEMCTRL
, val
);
1002 if (ret
< 0 && ret
!= -ENODATA
)
1003 dev_err(&slave
->dev
, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret
);
1008 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus
*bus
, u16 dev_num
, bool prepare
)
1010 int retry
= bus
->clk_stop_timeout
;
1014 val
= sdw_bread_no_pm(bus
, dev_num
, SDW_SCP_STAT
);
1016 if (val
!= -ENODATA
)
1017 dev_err(bus
->dev
, "SDW_SCP_STAT bread failed:%d\n", val
);
1020 val
&= SDW_SCP_STAT_CLK_STP_NF
;
1022 dev_dbg(bus
->dev
, "clock stop %s done slave:%d\n",
1023 prepare
? "prepare" : "deprepare",
1028 usleep_range(1000, 1500);
1032 dev_dbg(bus
->dev
, "clock stop %s did not complete for slave:%d\n",
1033 prepare
? "prepare" : "deprepare",
1040 * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
1042 * @bus: SDW bus instance
1044 * Query Slave for clock stop mode and prepare for that mode.
1046 int sdw_bus_prep_clk_stop(struct sdw_bus
*bus
)
1048 bool simple_clk_stop
= true;
1049 struct sdw_slave
*slave
;
1050 bool is_slave
= false;
1054 * In order to save on transition time, prepare
1055 * each Slave and then wait for all Slave(s) to be
1056 * prepared for clock stop.
1057 * If one of the Slave devices has lost sync and
1058 * replies with Command Ignored/-ENODATA, we continue
1061 list_for_each_entry(slave
, &bus
->slaves
, node
) {
1062 if (!slave
->dev_num
)
1065 if (slave
->status
!= SDW_SLAVE_ATTACHED
&&
1066 slave
->status
!= SDW_SLAVE_ALERT
)
1069 /* Identify if Slave(s) are available on Bus */
1072 ret
= sdw_slave_clk_stop_callback(slave
,
1074 SDW_CLK_PRE_PREPARE
);
1075 if (ret
< 0 && ret
!= -ENODATA
) {
1076 dev_err(&slave
->dev
, "clock stop pre-prepare cb failed:%d\n", ret
);
1080 /* Only prepare a Slave device if needed */
1081 if (!slave
->prop
.simple_clk_stop_capable
) {
1082 simple_clk_stop
= false;
1084 ret
= sdw_slave_clk_stop_prepare(slave
,
1087 if (ret
< 0 && ret
!= -ENODATA
) {
1088 dev_err(&slave
->dev
, "clock stop prepare failed:%d\n", ret
);
1094 /* Skip remaining clock stop preparation if no Slave is attached */
1099 * Don't wait for all Slaves to be ready if they follow the simple
1102 if (!simple_clk_stop
) {
1103 ret
= sdw_bus_wait_for_clk_prep_deprep(bus
,
1104 SDW_BROADCAST_DEV_NUM
, true);
1106 * if there are no Slave devices present and the reply is
1107 * Command_Ignored/-ENODATA, we don't need to continue with the
1108 * flow and can just return here. The error code is not modified
1109 * and its handling left as an exercise for the caller.
1115 /* Inform slaves that prep is done */
1116 list_for_each_entry(slave
, &bus
->slaves
, node
) {
1117 if (!slave
->dev_num
)
1120 if (slave
->status
!= SDW_SLAVE_ATTACHED
&&
1121 slave
->status
!= SDW_SLAVE_ALERT
)
1124 ret
= sdw_slave_clk_stop_callback(slave
,
1126 SDW_CLK_POST_PREPARE
);
1128 if (ret
< 0 && ret
!= -ENODATA
) {
1129 dev_err(&slave
->dev
, "clock stop post-prepare cb failed:%d\n", ret
);
1136 EXPORT_SYMBOL(sdw_bus_prep_clk_stop
);
1139 * sdw_bus_clk_stop: stop bus clock
1141 * @bus: SDW bus instance
1143 * After preparing the Slaves for clock stop, stop the clock by broadcasting
1144 * write to SCP_CTRL register.
1146 int sdw_bus_clk_stop(struct sdw_bus
*bus
)
1151 * broadcast clock stop now, attached Slaves will ACK this,
1152 * unattached will ignore
1154 ret
= sdw_bwrite_no_pm(bus
, SDW_BROADCAST_DEV_NUM
,
1155 SDW_SCP_CTRL
, SDW_SCP_CTRL_CLK_STP_NOW
);
1157 if (ret
!= -ENODATA
)
1158 dev_err(bus
->dev
, "ClockStopNow Broadcast msg failed %d\n", ret
);
1164 EXPORT_SYMBOL(sdw_bus_clk_stop
);
1167 * sdw_bus_exit_clk_stop: Exit clock stop mode
1169 * @bus: SDW bus instance
1171 * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
1172 * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
1175 int sdw_bus_exit_clk_stop(struct sdw_bus
*bus
)
1177 bool simple_clk_stop
= true;
1178 struct sdw_slave
*slave
;
1179 bool is_slave
= false;
1183 * In order to save on transition time, de-prepare
1184 * each Slave and then wait for all Slave(s) to be
1185 * de-prepared after clock resume.
1187 list_for_each_entry(slave
, &bus
->slaves
, node
) {
1188 if (!slave
->dev_num
)
1191 if (slave
->status
!= SDW_SLAVE_ATTACHED
&&
1192 slave
->status
!= SDW_SLAVE_ALERT
)
1195 /* Identify if Slave(s) are available on Bus */
1198 ret
= sdw_slave_clk_stop_callback(slave
, SDW_CLK_STOP_MODE0
,
1199 SDW_CLK_PRE_DEPREPARE
);
1201 dev_warn(&slave
->dev
, "clock stop pre-deprepare cb failed:%d\n", ret
);
1203 /* Only de-prepare a Slave device if needed */
1204 if (!slave
->prop
.simple_clk_stop_capable
) {
1205 simple_clk_stop
= false;
1207 ret
= sdw_slave_clk_stop_prepare(slave
, SDW_CLK_STOP_MODE0
,
1211 dev_warn(&slave
->dev
, "clock stop deprepare failed:%d\n", ret
);
1215 /* Skip remaining clock stop de-preparation if no Slave is attached */
1220 * Don't wait for all Slaves to be ready if they follow the simple
1223 if (!simple_clk_stop
) {
1224 ret
= sdw_bus_wait_for_clk_prep_deprep(bus
, SDW_BROADCAST_DEV_NUM
, false);
1226 dev_warn(bus
->dev
, "clock stop deprepare wait failed:%d\n", ret
);
1229 list_for_each_entry(slave
, &bus
->slaves
, node
) {
1230 if (!slave
->dev_num
)
1233 if (slave
->status
!= SDW_SLAVE_ATTACHED
&&
1234 slave
->status
!= SDW_SLAVE_ALERT
)
1237 ret
= sdw_slave_clk_stop_callback(slave
, SDW_CLK_STOP_MODE0
,
1238 SDW_CLK_POST_DEPREPARE
);
1240 dev_warn(&slave
->dev
, "clock stop post-deprepare cb failed:%d\n", ret
);
1245 EXPORT_SYMBOL(sdw_bus_exit_clk_stop
);
1247 int sdw_configure_dpn_intr(struct sdw_slave
*slave
,
1248 int port
, bool enable
, int mask
)
1254 if (slave
->bus
->params
.s_data_mode
!= SDW_PORT_DATA_MODE_NORMAL
) {
1255 dev_dbg(&slave
->dev
, "TEST FAIL interrupt %s\n",
1256 enable
? "on" : "off");
1257 mask
|= SDW_DPN_INT_TEST_FAIL
;
1260 addr
= SDW_DPN_INTMASK(port
);
1262 /* Set/Clear port ready interrupt mask */
1265 val
|= SDW_DPN_INT_PORT_READY
;
1268 val
&= ~SDW_DPN_INT_PORT_READY
;
1271 ret
= sdw_update_no_pm(slave
, addr
, (mask
| SDW_DPN_INT_PORT_READY
), val
);
1273 dev_err(&slave
->dev
,
1274 "SDW_DPN_INTMASK write failed:%d\n", val
);
1279 static int sdw_slave_set_frequency(struct sdw_slave
*slave
)
1281 u32 mclk_freq
= slave
->bus
->prop
.mclk_freq
;
1282 u32 curr_freq
= slave
->bus
->params
.curr_dr_freq
>> 1;
1289 * frequency base and scale registers are required for SDCA
1290 * devices. They may also be used for 1.2+/non-SDCA devices.
1291 * Driver can set the property, we will need a DisCo property
1292 * to discover this case from platform firmware.
1294 if (!slave
->id
.class_id
&& !slave
->prop
.clock_reg_supported
)
1298 dev_err(&slave
->dev
,
1299 "no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n");
1304 * map base frequency using Table 89 of SoundWire 1.2 spec.
1305 * The order of the tests just follows the specification, this
1306 * is not a selection between possible values or a search for
1307 * the best value but just a mapping. Only one case per platform
1309 * Some BIOS have inconsistent values for mclk_freq but a
1310 * correct root so we force the mclk_freq to avoid variations.
1312 if (!(19200000 % mclk_freq
)) {
1313 mclk_freq
= 19200000;
1314 base
= SDW_SCP_BASE_CLOCK_19200000_HZ
;
1315 } else if (!(22579200 % mclk_freq
)) {
1316 mclk_freq
= 22579200;
1317 base
= SDW_SCP_BASE_CLOCK_22579200_HZ
;
1318 } else if (!(24576000 % mclk_freq
)) {
1319 mclk_freq
= 24576000;
1320 base
= SDW_SCP_BASE_CLOCK_24576000_HZ
;
1321 } else if (!(32000000 % mclk_freq
)) {
1322 mclk_freq
= 32000000;
1323 base
= SDW_SCP_BASE_CLOCK_32000000_HZ
;
1324 } else if (!(96000000 % mclk_freq
)) {
1325 mclk_freq
= 24000000;
1326 base
= SDW_SCP_BASE_CLOCK_24000000_HZ
;
1328 dev_err(&slave
->dev
,
1329 "Unsupported clock base, mclk %d\n",
1334 if (mclk_freq
% curr_freq
) {
1335 dev_err(&slave
->dev
,
1336 "mclk %d is not multiple of bus curr_freq %d\n",
1337 mclk_freq
, curr_freq
);
1341 scale
= mclk_freq
/ curr_freq
;
1344 * map scale to Table 90 of SoundWire 1.2 spec - and check
1345 * that the scale is a power of two and maximum 64
1347 scale_index
= ilog2(scale
);
1349 if (BIT(scale_index
) != scale
|| scale_index
> 6) {
1350 dev_err(&slave
->dev
,
1351 "No match found for scale %d, bus mclk %d curr_freq %d\n",
1352 scale
, mclk_freq
, curr_freq
);
1357 ret
= sdw_write_no_pm(slave
, SDW_SCP_BUS_CLOCK_BASE
, base
);
1359 dev_err(&slave
->dev
,
1360 "SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret
);
1364 /* initialize scale for both banks */
1365 ret
= sdw_write_no_pm(slave
, SDW_SCP_BUSCLOCK_SCALE_B0
, scale_index
);
1367 dev_err(&slave
->dev
,
1368 "SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret
);
1371 ret
= sdw_write_no_pm(slave
, SDW_SCP_BUSCLOCK_SCALE_B1
, scale_index
);
1373 dev_err(&slave
->dev
,
1374 "SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret
);
1376 dev_dbg(&slave
->dev
,
1377 "Configured bus base %d, scale %d, mclk %d, curr_freq %d\n",
1378 base
, scale_index
, mclk_freq
, curr_freq
);
1383 static int sdw_initialize_slave(struct sdw_slave
*slave
)
1385 struct sdw_slave_prop
*prop
= &slave
->prop
;
1390 ret
= sdw_slave_set_frequency(slave
);
1394 if (slave
->bus
->prop
.quirks
& SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH
) {
1395 /* Clear bus clash interrupt before enabling interrupt mask */
1396 status
= sdw_read_no_pm(slave
, SDW_SCP_INT1
);
1398 dev_err(&slave
->dev
,
1399 "SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status
);
1402 if (status
& SDW_SCP_INT1_BUS_CLASH
) {
1403 dev_warn(&slave
->dev
, "Bus clash detected before INT mask is enabled\n");
1404 ret
= sdw_write_no_pm(slave
, SDW_SCP_INT1
, SDW_SCP_INT1_BUS_CLASH
);
1406 dev_err(&slave
->dev
,
1407 "SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret
);
1412 if ((slave
->bus
->prop
.quirks
& SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY
) &&
1413 !(prop
->quirks
& SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY
)) {
1414 /* Clear parity interrupt before enabling interrupt mask */
1415 status
= sdw_read_no_pm(slave
, SDW_SCP_INT1
);
1417 dev_err(&slave
->dev
,
1418 "SDW_SCP_INT1 (PARITY) read failed:%d\n", status
);
1421 if (status
& SDW_SCP_INT1_PARITY
) {
1422 dev_warn(&slave
->dev
, "PARITY error detected before INT mask is enabled\n");
1423 ret
= sdw_write_no_pm(slave
, SDW_SCP_INT1
, SDW_SCP_INT1_PARITY
);
1425 dev_err(&slave
->dev
,
1426 "SDW_SCP_INT1 (PARITY) write failed:%d\n", ret
);
1433 * Set SCP_INT1_MASK register, typically bus clash and
1434 * implementation-defined interrupt mask. The Parity detection
1435 * may not always be correct on startup so its use is
1436 * device-dependent, it might e.g. only be enabled in
1437 * steady-state after a couple of frames.
1439 val
= prop
->scp_int1_mask
;
1441 /* Enable SCP interrupts */
1442 ret
= sdw_update_no_pm(slave
, SDW_SCP_INTMASK1
, val
, val
);
1444 dev_err(&slave
->dev
,
1445 "SDW_SCP_INTMASK1 write failed:%d\n", ret
);
1449 /* No need to continue if DP0 is not present */
1450 if (!prop
->dp0_prop
)
1453 /* Enable DP0 interrupts */
1454 val
= prop
->dp0_prop
->imp_def_interrupts
;
1455 val
|= SDW_DP0_INT_PORT_READY
| SDW_DP0_INT_BRA_FAILURE
;
1457 ret
= sdw_update_no_pm(slave
, SDW_DP0_INTMASK
, val
, val
);
1459 dev_err(&slave
->dev
,
1460 "SDW_DP0_INTMASK read failed:%d\n", ret
);
1464 static int sdw_handle_dp0_interrupt(struct sdw_slave
*slave
, u8
*slave_status
)
1466 u8 clear
, impl_int_mask
;
1467 int status
, status2
, ret
, count
= 0;
1469 status
= sdw_read_no_pm(slave
, SDW_DP0_INT
);
1471 dev_err(&slave
->dev
,
1472 "SDW_DP0_INT read failed:%d\n", status
);
1477 clear
= status
& ~(SDW_DP0_INTERRUPTS
| SDW_DP0_SDCA_CASCADE
);
1479 if (status
& SDW_DP0_INT_TEST_FAIL
) {
1480 dev_err(&slave
->dev
, "Test fail for port 0\n");
1481 clear
|= SDW_DP0_INT_TEST_FAIL
;
1485 * Assumption: PORT_READY interrupt will be received only for
1486 * ports implementing Channel Prepare state machine (CP_SM)
1489 if (status
& SDW_DP0_INT_PORT_READY
) {
1490 complete(&slave
->port_ready
[0]);
1491 clear
|= SDW_DP0_INT_PORT_READY
;
1494 if (status
& SDW_DP0_INT_BRA_FAILURE
) {
1495 dev_err(&slave
->dev
, "BRA failed\n");
1496 clear
|= SDW_DP0_INT_BRA_FAILURE
;
1499 impl_int_mask
= SDW_DP0_INT_IMPDEF1
|
1500 SDW_DP0_INT_IMPDEF2
| SDW_DP0_INT_IMPDEF3
;
1502 if (status
& impl_int_mask
) {
1503 clear
|= impl_int_mask
;
1504 *slave_status
= clear
;
1507 /* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */
1508 ret
= sdw_write_no_pm(slave
, SDW_DP0_INT
, clear
);
1510 dev_err(&slave
->dev
,
1511 "SDW_DP0_INT write failed:%d\n", ret
);
1515 /* Read DP0 interrupt again */
1516 status2
= sdw_read_no_pm(slave
, SDW_DP0_INT
);
1518 dev_err(&slave
->dev
,
1519 "SDW_DP0_INT read failed:%d\n", status2
);
1522 /* filter to limit loop to interrupts identified in the first status read */
1527 /* we can get alerts while processing so keep retrying */
1528 } while ((status
& SDW_DP0_INTERRUPTS
) && (count
< SDW_READ_INTR_CLEAR_RETRY
));
1530 if (count
== SDW_READ_INTR_CLEAR_RETRY
)
1531 dev_warn(&slave
->dev
, "Reached MAX_RETRY on DP0 read\n");
1536 static int sdw_handle_port_interrupt(struct sdw_slave
*slave
,
1537 int port
, u8
*slave_status
)
1539 u8 clear
, impl_int_mask
;
1540 int status
, status2
, ret
, count
= 0;
1544 return sdw_handle_dp0_interrupt(slave
, slave_status
);
1546 addr
= SDW_DPN_INT(port
);
1547 status
= sdw_read_no_pm(slave
, addr
);
1549 dev_err(&slave
->dev
,
1550 "SDW_DPN_INT read failed:%d\n", status
);
1556 clear
= status
& ~SDW_DPN_INTERRUPTS
;
1558 if (status
& SDW_DPN_INT_TEST_FAIL
) {
1559 dev_err(&slave
->dev
, "Test fail for port:%d\n", port
);
1560 clear
|= SDW_DPN_INT_TEST_FAIL
;
1564 * Assumption: PORT_READY interrupt will be received only
1565 * for ports implementing CP_SM.
1567 if (status
& SDW_DPN_INT_PORT_READY
) {
1568 complete(&slave
->port_ready
[port
]);
1569 clear
|= SDW_DPN_INT_PORT_READY
;
1572 impl_int_mask
= SDW_DPN_INT_IMPDEF1
|
1573 SDW_DPN_INT_IMPDEF2
| SDW_DPN_INT_IMPDEF3
;
1575 if (status
& impl_int_mask
) {
1576 clear
|= impl_int_mask
;
1577 *slave_status
= clear
;
1580 /* clear the interrupt but don't touch reserved fields */
1581 ret
= sdw_write_no_pm(slave
, addr
, clear
);
1583 dev_err(&slave
->dev
,
1584 "SDW_DPN_INT write failed:%d\n", ret
);
1588 /* Read DPN interrupt again */
1589 status2
= sdw_read_no_pm(slave
, addr
);
1591 dev_err(&slave
->dev
,
1592 "SDW_DPN_INT read failed:%d\n", status2
);
1595 /* filter to limit loop to interrupts identified in the first status read */
1600 /* we can get alerts while processing so keep retrying */
1601 } while ((status
& SDW_DPN_INTERRUPTS
) && (count
< SDW_READ_INTR_CLEAR_RETRY
));
1603 if (count
== SDW_READ_INTR_CLEAR_RETRY
)
1604 dev_warn(&slave
->dev
, "Reached MAX_RETRY on port read");
1609 static int sdw_handle_slave_alerts(struct sdw_slave
*slave
)
1611 struct sdw_slave_intr_status slave_intr
;
1612 u8 clear
= 0, bit
, port_status
[15] = {0};
1613 int port_num
, stat
, ret
, count
= 0;
1616 u8 sdca_cascade
= 0;
1621 sdw_modify_slave_status(slave
, SDW_SLAVE_ALERT
);
1623 ret
= pm_runtime_get_sync(&slave
->dev
);
1624 if (ret
< 0 && ret
!= -EACCES
) {
1625 dev_err(&slave
->dev
, "Failed to resume device: %d\n", ret
);
1626 pm_runtime_put_noidle(&slave
->dev
);
1630 /* Read Intstat 1, Intstat 2 and Intstat 3 registers */
1631 ret
= sdw_read_no_pm(slave
, SDW_SCP_INT1
);
1633 dev_err(&slave
->dev
,
1634 "SDW_SCP_INT1 read failed:%d\n", ret
);
1639 ret
= sdw_nread_no_pm(slave
, SDW_SCP_INTSTAT2
, 2, buf2
);
1641 dev_err(&slave
->dev
,
1642 "SDW_SCP_INT2/3 read failed:%d\n", ret
);
1646 if (slave
->id
.class_id
) {
1647 ret
= sdw_read_no_pm(slave
, SDW_DP0_INT
);
1649 dev_err(&slave
->dev
,
1650 "SDW_DP0_INT read failed:%d\n", ret
);
1653 sdca_cascade
= ret
& SDW_DP0_SDCA_CASCADE
;
1657 slave_notify
= false;
1660 * Check parity, bus clash and Slave (impl defined)
1663 if (buf
& SDW_SCP_INT1_PARITY
) {
1664 parity_check
= slave
->prop
.scp_int1_mask
& SDW_SCP_INT1_PARITY
;
1665 parity_quirk
= !slave
->first_interrupt_done
&&
1666 (slave
->prop
.quirks
& SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY
);
1668 if (parity_check
&& !parity_quirk
)
1669 dev_err(&slave
->dev
, "Parity error detected\n");
1670 clear
|= SDW_SCP_INT1_PARITY
;
1673 if (buf
& SDW_SCP_INT1_BUS_CLASH
) {
1674 if (slave
->prop
.scp_int1_mask
& SDW_SCP_INT1_BUS_CLASH
)
1675 dev_err(&slave
->dev
, "Bus clash detected\n");
1676 clear
|= SDW_SCP_INT1_BUS_CLASH
;
1680 * When bus clash or parity errors are detected, such errors
1681 * are unlikely to be recoverable errors.
1682 * TODO: In such scenario, reset bus. Make this configurable
1683 * via sysfs property with bus reset being the default.
1686 if (buf
& SDW_SCP_INT1_IMPL_DEF
) {
1687 if (slave
->prop
.scp_int1_mask
& SDW_SCP_INT1_IMPL_DEF
) {
1688 dev_dbg(&slave
->dev
, "Slave impl defined interrupt\n");
1689 slave_notify
= true;
1691 clear
|= SDW_SCP_INT1_IMPL_DEF
;
1694 /* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */
1696 slave_notify
= true;
1698 /* Check port 0 - 3 interrupts */
1699 port
= buf
& SDW_SCP_INT1_PORT0_3
;
1701 /* To get port number corresponding to bits, shift it */
1702 port
= FIELD_GET(SDW_SCP_INT1_PORT0_3
, port
);
1703 for_each_set_bit(bit
, &port
, 8) {
1704 sdw_handle_port_interrupt(slave
, bit
,
1708 /* Check if cascade 2 interrupt is present */
1709 if (buf
& SDW_SCP_INT1_SCP2_CASCADE
) {
1710 port
= buf2
[0] & SDW_SCP_INTSTAT2_PORT4_10
;
1711 for_each_set_bit(bit
, &port
, 8) {
1712 /* scp2 ports start from 4 */
1714 sdw_handle_port_interrupt(slave
,
1716 &port_status
[port_num
]);
1720 /* now check last cascade */
1721 if (buf2
[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE
) {
1722 port
= buf2
[1] & SDW_SCP_INTSTAT3_PORT11_14
;
1723 for_each_set_bit(bit
, &port
, 8) {
1724 /* scp3 ports start from 11 */
1725 port_num
= bit
+ 11;
1726 sdw_handle_port_interrupt(slave
,
1728 &port_status
[port_num
]);
1732 /* Update the Slave driver */
1734 mutex_lock(&slave
->sdw_dev_lock
);
1736 if (slave
->probed
) {
1737 struct device
*dev
= &slave
->dev
;
1738 struct sdw_driver
*drv
= drv_to_sdw_driver(dev
->driver
);
1740 if (slave
->prop
.use_domain_irq
&& slave
->irq
)
1741 handle_nested_irq(slave
->irq
);
1743 if (drv
->ops
&& drv
->ops
->interrupt_callback
) {
1744 slave_intr
.sdca_cascade
= sdca_cascade
;
1745 slave_intr
.control_port
= clear
;
1746 memcpy(slave_intr
.port
, &port_status
,
1747 sizeof(slave_intr
.port
));
1749 drv
->ops
->interrupt_callback(slave
, &slave_intr
);
1753 mutex_unlock(&slave
->sdw_dev_lock
);
1757 ret
= sdw_write_no_pm(slave
, SDW_SCP_INT1
, clear
);
1759 dev_err(&slave
->dev
,
1760 "SDW_SCP_INT1 write failed:%d\n", ret
);
1764 /* at this point all initial interrupt sources were handled */
1765 slave
->first_interrupt_done
= true;
1768 * Read status again to ensure no new interrupts arrived
1769 * while servicing interrupts.
1771 ret
= sdw_read_no_pm(slave
, SDW_SCP_INT1
);
1773 dev_err(&slave
->dev
,
1774 "SDW_SCP_INT1 recheck read failed:%d\n", ret
);
1779 ret
= sdw_nread_no_pm(slave
, SDW_SCP_INTSTAT2
, 2, buf2
);
1781 dev_err(&slave
->dev
,
1782 "SDW_SCP_INT2/3 recheck read failed:%d\n", ret
);
1786 if (slave
->id
.class_id
) {
1787 ret
= sdw_read_no_pm(slave
, SDW_DP0_INT
);
1789 dev_err(&slave
->dev
,
1790 "SDW_DP0_INT recheck read failed:%d\n", ret
);
1793 sdca_cascade
= ret
& SDW_DP0_SDCA_CASCADE
;
1797 * Make sure no interrupts are pending
1799 stat
= buf
|| buf2
[0] || buf2
[1] || sdca_cascade
;
1802 * Exit loop if Slave is continuously in ALERT state even
1803 * after servicing the interrupt multiple times.
1807 /* we can get alerts while processing so keep retrying */
1808 } while (stat
!= 0 && count
< SDW_READ_INTR_CLEAR_RETRY
);
1810 if (count
== SDW_READ_INTR_CLEAR_RETRY
)
1811 dev_warn(&slave
->dev
, "Reached MAX_RETRY on alert read\n");
1814 pm_runtime_mark_last_busy(&slave
->dev
);
1815 pm_runtime_put_autosuspend(&slave
->dev
);
1820 static int sdw_update_slave_status(struct sdw_slave
*slave
,
1821 enum sdw_slave_status status
)
1825 mutex_lock(&slave
->sdw_dev_lock
);
1827 if (slave
->probed
) {
1828 struct device
*dev
= &slave
->dev
;
1829 struct sdw_driver
*drv
= drv_to_sdw_driver(dev
->driver
);
1831 if (drv
->ops
&& drv
->ops
->update_status
)
1832 ret
= drv
->ops
->update_status(slave
, status
);
1835 mutex_unlock(&slave
->sdw_dev_lock
);
1841 * sdw_handle_slave_status() - Handle Slave status
1842 * @bus: SDW bus instance
1843 * @status: Status for all Slave(s)
1845 int sdw_handle_slave_status(struct sdw_bus
*bus
,
1846 enum sdw_slave_status status
[])
1848 enum sdw_slave_status prev_status
;
1849 struct sdw_slave
*slave
;
1850 bool attached_initializing
, id_programmed
;
1853 /* first check if any Slaves fell off the bus */
1854 for (i
= 1; i
<= SDW_MAX_DEVICES
; i
++) {
1855 mutex_lock(&bus
->bus_lock
);
1856 if (test_bit(i
, bus
->assigned
) == false) {
1857 mutex_unlock(&bus
->bus_lock
);
1860 mutex_unlock(&bus
->bus_lock
);
1862 slave
= sdw_get_slave(bus
, i
);
1866 if (status
[i
] == SDW_SLAVE_UNATTACHED
&&
1867 slave
->status
!= SDW_SLAVE_UNATTACHED
) {
1868 dev_warn(&slave
->dev
, "Slave %d state check1: UNATTACHED, status was %d\n",
1870 sdw_modify_slave_status(slave
, SDW_SLAVE_UNATTACHED
);
1872 /* Ensure driver knows that peripheral unattached */
1873 ret
= sdw_update_slave_status(slave
, status
[i
]);
1875 dev_warn(&slave
->dev
, "Update Slave status failed:%d\n", ret
);
1879 if (status
[0] == SDW_SLAVE_ATTACHED
) {
1880 dev_dbg(bus
->dev
, "Slave attached, programming device number\n");
1883 * Programming a device number will have side effects,
1884 * so we deal with other devices at a later time.
1885 * This relies on those devices reporting ATTACHED, which will
1886 * trigger another call to this function. This will only
1887 * happen if at least one device ID was programmed.
1888 * Error returns from sdw_program_device_num() are currently
1889 * ignored because there's no useful recovery that can be done.
1890 * Returning the error here could result in the current status
1891 * of other devices not being handled, because if no device IDs
1892 * were programmed there's nothing to guarantee a status change
1893 * to trigger another call to this function.
1895 sdw_program_device_num(bus
, &id_programmed
);
1900 /* Continue to check other slave statuses */
1901 for (i
= 1; i
<= SDW_MAX_DEVICES
; i
++) {
1902 mutex_lock(&bus
->bus_lock
);
1903 if (test_bit(i
, bus
->assigned
) == false) {
1904 mutex_unlock(&bus
->bus_lock
);
1907 mutex_unlock(&bus
->bus_lock
);
1909 slave
= sdw_get_slave(bus
, i
);
1913 attached_initializing
= false;
1915 switch (status
[i
]) {
1916 case SDW_SLAVE_UNATTACHED
:
1917 if (slave
->status
== SDW_SLAVE_UNATTACHED
)
1920 dev_warn(&slave
->dev
, "Slave %d state check2: UNATTACHED, status was %d\n",
1923 sdw_modify_slave_status(slave
, SDW_SLAVE_UNATTACHED
);
1926 case SDW_SLAVE_ALERT
:
1927 ret
= sdw_handle_slave_alerts(slave
);
1929 dev_err(&slave
->dev
,
1930 "Slave %d alert handling failed: %d\n",
1934 case SDW_SLAVE_ATTACHED
:
1935 if (slave
->status
== SDW_SLAVE_ATTACHED
)
1938 prev_status
= slave
->status
;
1939 sdw_modify_slave_status(slave
, SDW_SLAVE_ATTACHED
);
1941 if (prev_status
== SDW_SLAVE_ALERT
)
1944 attached_initializing
= true;
1946 ret
= sdw_initialize_slave(slave
);
1948 dev_err(&slave
->dev
,
1949 "Slave %d initialization failed: %d\n",
1955 dev_err(&slave
->dev
, "Invalid slave %d status:%d\n",
1960 ret
= sdw_update_slave_status(slave
, status
[i
]);
1962 dev_err(&slave
->dev
,
1963 "Update Slave status failed:%d\n", ret
);
1964 if (attached_initializing
) {
1965 dev_dbg(&slave
->dev
,
1966 "signaling initialization completion for Slave %d\n",
1969 complete_all(&slave
->initialization_complete
);
1972 * If the manager became pm_runtime active, the peripherals will be
1973 * restarted and attach, but their pm_runtime status may remain
1974 * suspended. If the 'update_slave_status' callback initiates
1975 * any sort of deferred processing, this processing would not be
1976 * cancelled on pm_runtime suspend.
1977 * To avoid such zombie states, we queue a request to resume.
1978 * This would be a no-op in case the peripheral was being resumed
1979 * by e.g. the ALSA/ASoC framework.
1981 pm_request_resume(&slave
->dev
);
1987 EXPORT_SYMBOL(sdw_handle_slave_status
);
1989 void sdw_clear_slave_status(struct sdw_bus
*bus
, u32 request
)
1991 struct sdw_slave
*slave
;
1994 /* Check all non-zero devices */
1995 for (i
= 1; i
<= SDW_MAX_DEVICES
; i
++) {
1996 mutex_lock(&bus
->bus_lock
);
1997 if (test_bit(i
, bus
->assigned
) == false) {
1998 mutex_unlock(&bus
->bus_lock
);
2001 mutex_unlock(&bus
->bus_lock
);
2003 slave
= sdw_get_slave(bus
, i
);
2007 if (slave
->status
!= SDW_SLAVE_UNATTACHED
) {
2008 sdw_modify_slave_status(slave
, SDW_SLAVE_UNATTACHED
);
2009 slave
->first_interrupt_done
= false;
2010 sdw_update_slave_status(slave
, SDW_SLAVE_UNATTACHED
);
2013 /* keep track of request, used in pm_runtime resume */
2014 slave
->unattach_request
= request
;
2017 EXPORT_SYMBOL(sdw_clear_slave_status
);