drm/nouveau: fix kernel-doc comments
[drm/drm-misc.git] / drivers / soundwire / bus.c
blobd1dc62c34f1cf319ffe7d038e6744b2963da1b4a
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
4 #include <linux/acpi.h>
5 #include <linux/delay.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/pm_runtime.h>
8 #include <linux/soundwire/sdw_registers.h>
9 #include <linux/soundwire/sdw.h>
10 #include <linux/soundwire/sdw_type.h>
11 #include "bus.h"
12 #include "irq.h"
13 #include "sysfs_local.h"
15 static DEFINE_IDA(sdw_bus_ida);
17 static int sdw_get_id(struct sdw_bus *bus)
19 int rc = ida_alloc(&sdw_bus_ida, GFP_KERNEL);
21 if (rc < 0)
22 return rc;
24 bus->id = rc;
26 if (bus->controller_id == -1)
27 bus->controller_id = rc;
29 return 0;
32 /**
33 * sdw_bus_master_add() - add a bus Master instance
34 * @bus: bus instance
35 * @parent: parent device
36 * @fwnode: firmware node handle
38 * Initializes the bus instance, read properties and create child
39 * devices.
41 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent,
42 struct fwnode_handle *fwnode)
44 struct sdw_master_prop *prop = NULL;
45 int ret;
47 if (!parent) {
48 pr_err("SoundWire parent device is not set\n");
49 return -ENODEV;
52 ret = sdw_get_id(bus);
53 if (ret < 0) {
54 dev_err(parent, "Failed to get bus id\n");
55 return ret;
58 ret = sdw_master_device_add(bus, parent, fwnode);
59 if (ret < 0) {
60 dev_err(parent, "Failed to add master device at link %d\n",
61 bus->link_id);
62 return ret;
65 if (!bus->ops) {
66 dev_err(bus->dev, "SoundWire Bus ops are not set\n");
67 return -EINVAL;
70 if (!bus->compute_params) {
71 dev_err(bus->dev,
72 "Bandwidth allocation not configured, compute_params no set\n");
73 return -EINVAL;
77 * Give each bus_lock and msg_lock a unique key so that lockdep won't
78 * trigger a deadlock warning when the locks of several buses are
79 * grabbed during configuration of a multi-bus stream.
81 lockdep_register_key(&bus->msg_lock_key);
82 __mutex_init(&bus->msg_lock, "msg_lock", &bus->msg_lock_key);
84 lockdep_register_key(&bus->bus_lock_key);
85 __mutex_init(&bus->bus_lock, "bus_lock", &bus->bus_lock_key);
87 INIT_LIST_HEAD(&bus->slaves);
88 INIT_LIST_HEAD(&bus->m_rt_list);
91 * Initialize multi_link flag
93 bus->multi_link = false;
94 if (bus->ops->read_prop) {
95 ret = bus->ops->read_prop(bus);
96 if (ret < 0) {
97 dev_err(bus->dev,
98 "Bus read properties failed:%d\n", ret);
99 return ret;
103 sdw_bus_debugfs_init(bus);
106 * Device numbers in SoundWire are 0 through 15. Enumeration device
107 * number (0), Broadcast device number (15), Group numbers (12 and
108 * 13) and Master device number (14) are not used for assignment so
109 * mask these and other higher bits.
112 /* Set higher order bits */
113 *bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM);
115 /* Set enumeration device number and broadcast device number */
116 set_bit(SDW_ENUM_DEV_NUM, bus->assigned);
117 set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned);
119 /* Set group device numbers and master device number */
120 set_bit(SDW_GROUP12_DEV_NUM, bus->assigned);
121 set_bit(SDW_GROUP13_DEV_NUM, bus->assigned);
122 set_bit(SDW_MASTER_DEV_NUM, bus->assigned);
125 * SDW is an enumerable bus, but devices can be powered off. So,
126 * they won't be able to report as present.
128 * Create Slave devices based on Slaves described in
129 * the respective firmware (ACPI/DT)
131 if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev))
132 ret = sdw_acpi_find_slaves(bus);
133 else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node)
134 ret = sdw_of_find_slaves(bus);
135 else
136 ret = -ENOTSUPP; /* No ACPI/DT so error out */
138 if (ret < 0) {
139 dev_err(bus->dev, "Finding slaves failed:%d\n", ret);
140 return ret;
144 * Initialize clock values based on Master properties. The max
145 * frequency is read from max_clk_freq property. Current assumption
146 * is that the bus will start at highest clock frequency when
147 * powered on.
149 * Default active bank will be 0 as out of reset the Slaves have
150 * to start with bank 0 (Table 40 of Spec)
152 prop = &bus->prop;
153 bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR;
154 bus->params.curr_dr_freq = bus->params.max_dr_freq;
155 bus->params.curr_bank = SDW_BANK0;
156 bus->params.next_bank = SDW_BANK1;
158 ret = sdw_irq_create(bus, fwnode);
159 if (ret)
160 return ret;
162 return 0;
164 EXPORT_SYMBOL(sdw_bus_master_add);
166 static int sdw_delete_slave(struct device *dev, void *data)
168 struct sdw_slave *slave = dev_to_sdw_dev(dev);
169 struct sdw_bus *bus = slave->bus;
171 pm_runtime_disable(dev);
173 sdw_slave_debugfs_exit(slave);
175 mutex_lock(&bus->bus_lock);
177 if (slave->dev_num) { /* clear dev_num if assigned */
178 clear_bit(slave->dev_num, bus->assigned);
179 if (bus->ops && bus->ops->put_device_num)
180 bus->ops->put_device_num(bus, slave);
182 list_del_init(&slave->node);
183 mutex_unlock(&bus->bus_lock);
185 device_unregister(dev);
186 return 0;
190 * sdw_bus_master_delete() - delete the bus master instance
191 * @bus: bus to be deleted
193 * Remove the instance, delete the child devices.
195 void sdw_bus_master_delete(struct sdw_bus *bus)
197 device_for_each_child(bus->dev, NULL, sdw_delete_slave);
199 sdw_irq_delete(bus);
201 sdw_master_device_del(bus);
203 sdw_bus_debugfs_exit(bus);
204 lockdep_unregister_key(&bus->bus_lock_key);
205 lockdep_unregister_key(&bus->msg_lock_key);
206 ida_free(&sdw_bus_ida, bus->id);
208 EXPORT_SYMBOL(sdw_bus_master_delete);
211 * SDW IO Calls
214 static inline int find_response_code(enum sdw_command_response resp)
216 switch (resp) {
217 case SDW_CMD_OK:
218 return 0;
220 case SDW_CMD_IGNORED:
221 return -ENODATA;
223 case SDW_CMD_TIMEOUT:
224 return -ETIMEDOUT;
226 default:
227 return -EIO;
231 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
233 int retry = bus->prop.err_threshold;
234 enum sdw_command_response resp;
235 int ret = 0, i;
237 for (i = 0; i <= retry; i++) {
238 resp = bus->ops->xfer_msg(bus, msg);
239 ret = find_response_code(resp);
241 /* if cmd is ok or ignored return */
242 if (ret == 0 || ret == -ENODATA)
243 return ret;
246 return ret;
249 static inline int do_transfer_defer(struct sdw_bus *bus,
250 struct sdw_msg *msg)
252 struct sdw_defer *defer = &bus->defer_msg;
253 int retry = bus->prop.err_threshold;
254 enum sdw_command_response resp;
255 int ret = 0, i;
257 defer->msg = msg;
258 defer->length = msg->len;
259 init_completion(&defer->complete);
261 for (i = 0; i <= retry; i++) {
262 resp = bus->ops->xfer_msg_defer(bus);
263 ret = find_response_code(resp);
264 /* if cmd is ok or ignored return */
265 if (ret == 0 || ret == -ENODATA)
266 return ret;
269 return ret;
272 static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg)
274 int ret;
276 ret = do_transfer(bus, msg);
277 if (ret != 0 && ret != -ENODATA)
278 dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n",
279 msg->dev_num, ret,
280 (msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read",
281 msg->addr, msg->len);
283 return ret;
287 * sdw_transfer() - Synchronous transfer message to a SDW Slave device
288 * @bus: SDW bus
289 * @msg: SDW message to be xfered
291 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
293 int ret;
295 mutex_lock(&bus->msg_lock);
297 ret = sdw_transfer_unlocked(bus, msg);
299 mutex_unlock(&bus->msg_lock);
301 return ret;
305 * sdw_show_ping_status() - Direct report of PING status, to be used by Peripheral drivers
306 * @bus: SDW bus
307 * @sync_delay: Delay before reading status
309 void sdw_show_ping_status(struct sdw_bus *bus, bool sync_delay)
311 u32 status;
313 if (!bus->ops->read_ping_status)
314 return;
317 * wait for peripheral to sync if desired. 10-15ms should be more than
318 * enough in most cases.
320 if (sync_delay)
321 usleep_range(10000, 15000);
323 mutex_lock(&bus->msg_lock);
325 status = bus->ops->read_ping_status(bus);
327 mutex_unlock(&bus->msg_lock);
329 if (!status)
330 dev_warn(bus->dev, "%s: no peripherals attached\n", __func__);
331 else
332 dev_dbg(bus->dev, "PING status: %#x\n", status);
334 EXPORT_SYMBOL(sdw_show_ping_status);
337 * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
338 * @bus: SDW bus
339 * @msg: SDW message to be xfered
341 * Caller needs to hold the msg_lock lock while calling this
343 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg)
345 int ret;
347 if (!bus->ops->xfer_msg_defer)
348 return -ENOTSUPP;
350 ret = do_transfer_defer(bus, msg);
351 if (ret != 0 && ret != -ENODATA)
352 dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n",
353 msg->dev_num, ret);
355 return ret;
358 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave,
359 u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf)
361 memset(msg, 0, sizeof(*msg));
362 msg->addr = addr; /* addr is 16 bit and truncated here */
363 msg->len = count;
364 msg->dev_num = dev_num;
365 msg->flags = flags;
366 msg->buf = buf;
368 if (addr < SDW_REG_NO_PAGE) /* no paging area */
369 return 0;
371 if (addr >= SDW_REG_MAX) { /* illegal addr */
372 pr_err("SDW: Invalid address %x passed\n", addr);
373 return -EINVAL;
376 if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */
377 if (slave && !slave->prop.paging_support)
378 return 0;
379 /* no need for else as that will fall-through to paging */
382 /* paging mandatory */
383 if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) {
384 pr_err("SDW: Invalid device for paging :%d\n", dev_num);
385 return -EINVAL;
388 if (!slave) {
389 pr_err("SDW: No slave for paging addr\n");
390 return -EINVAL;
393 if (!slave->prop.paging_support) {
394 dev_err(&slave->dev,
395 "address %x needs paging but no support\n", addr);
396 return -EINVAL;
399 msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr);
400 msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr);
401 msg->addr |= BIT(15);
402 msg->page = true;
404 return 0;
408 * Read/Write IO functions.
411 static int sdw_ntransfer_no_pm(struct sdw_slave *slave, u32 addr, u8 flags,
412 size_t count, u8 *val)
414 struct sdw_msg msg;
415 size_t size;
416 int ret;
418 while (count) {
419 // Only handle bytes up to next page boundary
420 size = min_t(size_t, count, (SDW_REGADDR + 1) - (addr & SDW_REGADDR));
422 ret = sdw_fill_msg(&msg, slave, addr, size, slave->dev_num, flags, val);
423 if (ret < 0)
424 return ret;
426 ret = sdw_transfer(slave->bus, &msg);
427 if (ret < 0 && !slave->is_mockup_device)
428 return ret;
430 addr += size;
431 val += size;
432 count -= size;
435 return 0;
439 * sdw_nread_no_pm() - Read "n" contiguous SDW Slave registers with no PM
440 * @slave: SDW Slave
441 * @addr: Register address
442 * @count: length
443 * @val: Buffer for values to be read
445 * Note that if the message crosses a page boundary each page will be
446 * transferred under a separate invocation of the msg_lock.
448 int sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
450 return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_READ, count, val);
452 EXPORT_SYMBOL(sdw_nread_no_pm);
455 * sdw_nwrite_no_pm() - Write "n" contiguous SDW Slave registers with no PM
456 * @slave: SDW Slave
457 * @addr: Register address
458 * @count: length
459 * @val: Buffer for values to be written
461 * Note that if the message crosses a page boundary each page will be
462 * transferred under a separate invocation of the msg_lock.
464 int sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
466 return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_WRITE, count, (u8 *)val);
468 EXPORT_SYMBOL(sdw_nwrite_no_pm);
471 * sdw_write_no_pm() - Write a SDW Slave register with no PM
472 * @slave: SDW Slave
473 * @addr: Register address
474 * @value: Register value
476 int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value)
478 return sdw_nwrite_no_pm(slave, addr, 1, &value);
480 EXPORT_SYMBOL(sdw_write_no_pm);
482 static int
483 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr)
485 struct sdw_msg msg;
486 u8 buf;
487 int ret;
489 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
490 SDW_MSG_FLAG_READ, &buf);
491 if (ret < 0)
492 return ret;
494 ret = sdw_transfer(bus, &msg);
495 if (ret < 0)
496 return ret;
498 return buf;
501 static int
502 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
504 struct sdw_msg msg;
505 int ret;
507 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
508 SDW_MSG_FLAG_WRITE, &value);
509 if (ret < 0)
510 return ret;
512 return sdw_transfer(bus, &msg);
515 int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr)
517 struct sdw_msg msg;
518 u8 buf;
519 int ret;
521 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
522 SDW_MSG_FLAG_READ, &buf);
523 if (ret < 0)
524 return ret;
526 ret = sdw_transfer_unlocked(bus, &msg);
527 if (ret < 0)
528 return ret;
530 return buf;
532 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked);
534 int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
536 struct sdw_msg msg;
537 int ret;
539 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
540 SDW_MSG_FLAG_WRITE, &value);
541 if (ret < 0)
542 return ret;
544 return sdw_transfer_unlocked(bus, &msg);
546 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked);
549 * sdw_read_no_pm() - Read a SDW Slave register with no PM
550 * @slave: SDW Slave
551 * @addr: Register address
553 int sdw_read_no_pm(struct sdw_slave *slave, u32 addr)
555 u8 buf;
556 int ret;
558 ret = sdw_nread_no_pm(slave, addr, 1, &buf);
559 if (ret < 0)
560 return ret;
561 else
562 return buf;
564 EXPORT_SYMBOL(sdw_read_no_pm);
566 int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
568 int tmp;
570 tmp = sdw_read_no_pm(slave, addr);
571 if (tmp < 0)
572 return tmp;
574 tmp = (tmp & ~mask) | val;
575 return sdw_write_no_pm(slave, addr, tmp);
577 EXPORT_SYMBOL(sdw_update_no_pm);
579 /* Read-Modify-Write Slave register */
580 int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
582 int tmp;
584 tmp = sdw_read(slave, addr);
585 if (tmp < 0)
586 return tmp;
588 tmp = (tmp & ~mask) | val;
589 return sdw_write(slave, addr, tmp);
591 EXPORT_SYMBOL(sdw_update);
594 * sdw_nread() - Read "n" contiguous SDW Slave registers
595 * @slave: SDW Slave
596 * @addr: Register address
597 * @count: length
598 * @val: Buffer for values to be read
600 * This version of the function will take a PM reference to the slave
601 * device.
602 * Note that if the message crosses a page boundary each page will be
603 * transferred under a separate invocation of the msg_lock.
605 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
607 int ret;
609 ret = pm_runtime_get_sync(&slave->dev);
610 if (ret < 0 && ret != -EACCES) {
611 pm_runtime_put_noidle(&slave->dev);
612 return ret;
615 ret = sdw_nread_no_pm(slave, addr, count, val);
617 pm_runtime_mark_last_busy(&slave->dev);
618 pm_runtime_put(&slave->dev);
620 return ret;
622 EXPORT_SYMBOL(sdw_nread);
625 * sdw_nwrite() - Write "n" contiguous SDW Slave registers
626 * @slave: SDW Slave
627 * @addr: Register address
628 * @count: length
629 * @val: Buffer for values to be written
631 * This version of the function will take a PM reference to the slave
632 * device.
633 * Note that if the message crosses a page boundary each page will be
634 * transferred under a separate invocation of the msg_lock.
636 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
638 int ret;
640 ret = pm_runtime_get_sync(&slave->dev);
641 if (ret < 0 && ret != -EACCES) {
642 pm_runtime_put_noidle(&slave->dev);
643 return ret;
646 ret = sdw_nwrite_no_pm(slave, addr, count, val);
648 pm_runtime_mark_last_busy(&slave->dev);
649 pm_runtime_put(&slave->dev);
651 return ret;
653 EXPORT_SYMBOL(sdw_nwrite);
656 * sdw_read() - Read a SDW Slave register
657 * @slave: SDW Slave
658 * @addr: Register address
660 * This version of the function will take a PM reference to the slave
661 * device.
663 int sdw_read(struct sdw_slave *slave, u32 addr)
665 u8 buf;
666 int ret;
668 ret = sdw_nread(slave, addr, 1, &buf);
669 if (ret < 0)
670 return ret;
672 return buf;
674 EXPORT_SYMBOL(sdw_read);
677 * sdw_write() - Write a SDW Slave register
678 * @slave: SDW Slave
679 * @addr: Register address
680 * @value: Register value
682 * This version of the function will take a PM reference to the slave
683 * device.
685 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value)
687 return sdw_nwrite(slave, addr, 1, &value);
689 EXPORT_SYMBOL(sdw_write);
692 * SDW alert handling
695 /* called with bus_lock held */
696 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i)
698 struct sdw_slave *slave;
700 list_for_each_entry(slave, &bus->slaves, node) {
701 if (slave->dev_num == i)
702 return slave;
705 return NULL;
708 int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id)
710 if (slave->id.mfg_id != id.mfg_id ||
711 slave->id.part_id != id.part_id ||
712 slave->id.class_id != id.class_id ||
713 (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID &&
714 slave->id.unique_id != id.unique_id))
715 return -ENODEV;
717 return 0;
719 EXPORT_SYMBOL(sdw_compare_devid);
721 /* called with bus_lock held */
722 static int sdw_get_device_num(struct sdw_slave *slave)
724 struct sdw_bus *bus = slave->bus;
725 int bit;
727 if (bus->ops && bus->ops->get_device_num) {
728 bit = bus->ops->get_device_num(bus, slave);
729 if (bit < 0)
730 goto err;
731 } else {
732 bit = find_first_zero_bit(bus->assigned, SDW_MAX_DEVICES);
733 if (bit == SDW_MAX_DEVICES) {
734 bit = -ENODEV;
735 goto err;
740 * Do not update dev_num in Slave data structure here,
741 * Update once program dev_num is successful
743 set_bit(bit, bus->assigned);
745 err:
746 return bit;
749 static int sdw_assign_device_num(struct sdw_slave *slave)
751 struct sdw_bus *bus = slave->bus;
752 int ret, dev_num;
753 bool new_device = false;
755 /* check first if device number is assigned, if so reuse that */
756 if (!slave->dev_num) {
757 if (!slave->dev_num_sticky) {
758 mutex_lock(&slave->bus->bus_lock);
759 dev_num = sdw_get_device_num(slave);
760 mutex_unlock(&slave->bus->bus_lock);
761 if (dev_num < 0) {
762 dev_err(bus->dev, "Get dev_num failed: %d\n",
763 dev_num);
764 return dev_num;
766 slave->dev_num = dev_num;
767 slave->dev_num_sticky = dev_num;
768 new_device = true;
769 } else {
770 slave->dev_num = slave->dev_num_sticky;
774 if (!new_device)
775 dev_dbg(bus->dev,
776 "Slave already registered, reusing dev_num:%d\n",
777 slave->dev_num);
779 /* Clear the slave->dev_num to transfer message on device 0 */
780 dev_num = slave->dev_num;
781 slave->dev_num = 0;
783 ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num);
784 if (ret < 0) {
785 dev_err(bus->dev, "Program device_num %d failed: %d\n",
786 dev_num, ret);
787 return ret;
790 /* After xfer of msg, restore dev_num */
791 slave->dev_num = slave->dev_num_sticky;
793 if (bus->ops && bus->ops->new_peripheral_assigned)
794 bus->ops->new_peripheral_assigned(bus, slave, dev_num);
796 return 0;
799 void sdw_extract_slave_id(struct sdw_bus *bus,
800 u64 addr, struct sdw_slave_id *id)
802 dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr);
804 id->sdw_version = SDW_VERSION(addr);
805 id->unique_id = SDW_UNIQUE_ID(addr);
806 id->mfg_id = SDW_MFG_ID(addr);
807 id->part_id = SDW_PART_ID(addr);
808 id->class_id = SDW_CLASS_ID(addr);
810 dev_dbg(bus->dev,
811 "SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n",
812 id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version);
814 EXPORT_SYMBOL(sdw_extract_slave_id);
816 static int sdw_program_device_num(struct sdw_bus *bus, bool *programmed)
818 u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0};
819 struct sdw_slave *slave, *_s;
820 struct sdw_slave_id id;
821 struct sdw_msg msg;
822 bool found;
823 int count = 0, ret;
824 u64 addr;
826 *programmed = false;
828 /* No Slave, so use raw xfer api */
829 ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0,
830 SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf);
831 if (ret < 0)
832 return ret;
834 do {
835 ret = sdw_transfer(bus, &msg);
836 if (ret == -ENODATA) { /* end of device id reads */
837 dev_dbg(bus->dev, "No more devices to enumerate\n");
838 ret = 0;
839 break;
841 if (ret < 0) {
842 dev_err(bus->dev, "DEVID read fail:%d\n", ret);
843 break;
847 * Construct the addr and extract. Cast the higher shift
848 * bits to avoid truncation due to size limit.
850 addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) |
851 ((u64)buf[2] << 24) | ((u64)buf[1] << 32) |
852 ((u64)buf[0] << 40);
854 sdw_extract_slave_id(bus, addr, &id);
856 found = false;
857 /* Now compare with entries */
858 list_for_each_entry_safe(slave, _s, &bus->slaves, node) {
859 if (sdw_compare_devid(slave, id) == 0) {
860 found = true;
863 * To prevent skipping state-machine stages don't
864 * program a device until we've seen it UNATTACH.
865 * Must return here because no other device on #0
866 * can be detected until this one has been
867 * assigned a device ID.
869 if (slave->status != SDW_SLAVE_UNATTACHED)
870 return 0;
873 * Assign a new dev_num to this Slave and
874 * not mark it present. It will be marked
875 * present after it reports ATTACHED on new
876 * dev_num
878 ret = sdw_assign_device_num(slave);
879 if (ret < 0) {
880 dev_err(bus->dev,
881 "Assign dev_num failed:%d\n",
882 ret);
883 return ret;
886 *programmed = true;
888 break;
892 if (!found) {
893 /* TODO: Park this device in Group 13 */
896 * add Slave device even if there is no platform
897 * firmware description. There will be no driver probe
898 * but the user/integration will be able to see the
899 * device, enumeration status and device number in sysfs
901 sdw_slave_add(bus, &id, NULL);
903 dev_err(bus->dev, "Slave Entry not found\n");
906 count++;
909 * Check till error out or retry (count) exhausts.
910 * Device can drop off and rejoin during enumeration
911 * so count till twice the bound.
914 } while (ret == 0 && count < (SDW_MAX_DEVICES * 2));
916 return ret;
919 static void sdw_modify_slave_status(struct sdw_slave *slave,
920 enum sdw_slave_status status)
922 struct sdw_bus *bus = slave->bus;
924 mutex_lock(&bus->bus_lock);
926 dev_vdbg(bus->dev,
927 "changing status slave %d status %d new status %d\n",
928 slave->dev_num, slave->status, status);
930 if (status == SDW_SLAVE_UNATTACHED) {
931 dev_dbg(&slave->dev,
932 "initializing enumeration and init completion for Slave %d\n",
933 slave->dev_num);
935 reinit_completion(&slave->enumeration_complete);
936 reinit_completion(&slave->initialization_complete);
938 } else if ((status == SDW_SLAVE_ATTACHED) &&
939 (slave->status == SDW_SLAVE_UNATTACHED)) {
940 dev_dbg(&slave->dev,
941 "signaling enumeration completion for Slave %d\n",
942 slave->dev_num);
944 complete_all(&slave->enumeration_complete);
946 slave->status = status;
947 mutex_unlock(&bus->bus_lock);
950 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave,
951 enum sdw_clk_stop_mode mode,
952 enum sdw_clk_stop_type type)
954 int ret = 0;
956 mutex_lock(&slave->sdw_dev_lock);
958 if (slave->probed) {
959 struct device *dev = &slave->dev;
960 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
962 if (drv->ops && drv->ops->clk_stop)
963 ret = drv->ops->clk_stop(slave, mode, type);
966 mutex_unlock(&slave->sdw_dev_lock);
968 return ret;
971 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave,
972 enum sdw_clk_stop_mode mode,
973 bool prepare)
975 bool wake_en;
976 u32 val = 0;
977 int ret;
979 wake_en = slave->prop.wake_capable;
981 if (prepare) {
982 val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP;
984 if (mode == SDW_CLK_STOP_MODE1)
985 val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1;
987 if (wake_en)
988 val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN;
989 } else {
990 ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL);
991 if (ret < 0) {
992 if (ret != -ENODATA)
993 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret);
994 return ret;
996 val = ret;
997 val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP);
1000 ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val);
1002 if (ret < 0 && ret != -ENODATA)
1003 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret);
1005 return ret;
1008 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num, bool prepare)
1010 int retry = bus->clk_stop_timeout;
1011 int val;
1013 do {
1014 val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT);
1015 if (val < 0) {
1016 if (val != -ENODATA)
1017 dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val);
1018 return val;
1020 val &= SDW_SCP_STAT_CLK_STP_NF;
1021 if (!val) {
1022 dev_dbg(bus->dev, "clock stop %s done slave:%d\n",
1023 prepare ? "prepare" : "deprepare",
1024 dev_num);
1025 return 0;
1028 usleep_range(1000, 1500);
1029 retry--;
1030 } while (retry);
1032 dev_dbg(bus->dev, "clock stop %s did not complete for slave:%d\n",
1033 prepare ? "prepare" : "deprepare",
1034 dev_num);
1036 return -ETIMEDOUT;
1040 * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
1042 * @bus: SDW bus instance
1044 * Query Slave for clock stop mode and prepare for that mode.
1046 int sdw_bus_prep_clk_stop(struct sdw_bus *bus)
1048 bool simple_clk_stop = true;
1049 struct sdw_slave *slave;
1050 bool is_slave = false;
1051 int ret = 0;
1054 * In order to save on transition time, prepare
1055 * each Slave and then wait for all Slave(s) to be
1056 * prepared for clock stop.
1057 * If one of the Slave devices has lost sync and
1058 * replies with Command Ignored/-ENODATA, we continue
1059 * the loop
1061 list_for_each_entry(slave, &bus->slaves, node) {
1062 if (!slave->dev_num)
1063 continue;
1065 if (slave->status != SDW_SLAVE_ATTACHED &&
1066 slave->status != SDW_SLAVE_ALERT)
1067 continue;
1069 /* Identify if Slave(s) are available on Bus */
1070 is_slave = true;
1072 ret = sdw_slave_clk_stop_callback(slave,
1073 SDW_CLK_STOP_MODE0,
1074 SDW_CLK_PRE_PREPARE);
1075 if (ret < 0 && ret != -ENODATA) {
1076 dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret);
1077 return ret;
1080 /* Only prepare a Slave device if needed */
1081 if (!slave->prop.simple_clk_stop_capable) {
1082 simple_clk_stop = false;
1084 ret = sdw_slave_clk_stop_prepare(slave,
1085 SDW_CLK_STOP_MODE0,
1086 true);
1087 if (ret < 0 && ret != -ENODATA) {
1088 dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret);
1089 return ret;
1094 /* Skip remaining clock stop preparation if no Slave is attached */
1095 if (!is_slave)
1096 return 0;
1099 * Don't wait for all Slaves to be ready if they follow the simple
1100 * state machine
1102 if (!simple_clk_stop) {
1103 ret = sdw_bus_wait_for_clk_prep_deprep(bus,
1104 SDW_BROADCAST_DEV_NUM, true);
1106 * if there are no Slave devices present and the reply is
1107 * Command_Ignored/-ENODATA, we don't need to continue with the
1108 * flow and can just return here. The error code is not modified
1109 * and its handling left as an exercise for the caller.
1111 if (ret < 0)
1112 return ret;
1115 /* Inform slaves that prep is done */
1116 list_for_each_entry(slave, &bus->slaves, node) {
1117 if (!slave->dev_num)
1118 continue;
1120 if (slave->status != SDW_SLAVE_ATTACHED &&
1121 slave->status != SDW_SLAVE_ALERT)
1122 continue;
1124 ret = sdw_slave_clk_stop_callback(slave,
1125 SDW_CLK_STOP_MODE0,
1126 SDW_CLK_POST_PREPARE);
1128 if (ret < 0 && ret != -ENODATA) {
1129 dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret);
1130 return ret;
1134 return 0;
1136 EXPORT_SYMBOL(sdw_bus_prep_clk_stop);
1139 * sdw_bus_clk_stop: stop bus clock
1141 * @bus: SDW bus instance
1143 * After preparing the Slaves for clock stop, stop the clock by broadcasting
1144 * write to SCP_CTRL register.
1146 int sdw_bus_clk_stop(struct sdw_bus *bus)
1148 int ret;
1151 * broadcast clock stop now, attached Slaves will ACK this,
1152 * unattached will ignore
1154 ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM,
1155 SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW);
1156 if (ret < 0) {
1157 if (ret != -ENODATA)
1158 dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret);
1159 return ret;
1162 return 0;
1164 EXPORT_SYMBOL(sdw_bus_clk_stop);
1167 * sdw_bus_exit_clk_stop: Exit clock stop mode
1169 * @bus: SDW bus instance
1171 * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
1172 * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
1173 * back.
1175 int sdw_bus_exit_clk_stop(struct sdw_bus *bus)
1177 bool simple_clk_stop = true;
1178 struct sdw_slave *slave;
1179 bool is_slave = false;
1180 int ret;
1183 * In order to save on transition time, de-prepare
1184 * each Slave and then wait for all Slave(s) to be
1185 * de-prepared after clock resume.
1187 list_for_each_entry(slave, &bus->slaves, node) {
1188 if (!slave->dev_num)
1189 continue;
1191 if (slave->status != SDW_SLAVE_ATTACHED &&
1192 slave->status != SDW_SLAVE_ALERT)
1193 continue;
1195 /* Identify if Slave(s) are available on Bus */
1196 is_slave = true;
1198 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1199 SDW_CLK_PRE_DEPREPARE);
1200 if (ret < 0)
1201 dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret);
1203 /* Only de-prepare a Slave device if needed */
1204 if (!slave->prop.simple_clk_stop_capable) {
1205 simple_clk_stop = false;
1207 ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0,
1208 false);
1210 if (ret < 0)
1211 dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret);
1215 /* Skip remaining clock stop de-preparation if no Slave is attached */
1216 if (!is_slave)
1217 return 0;
1220 * Don't wait for all Slaves to be ready if they follow the simple
1221 * state machine
1223 if (!simple_clk_stop) {
1224 ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM, false);
1225 if (ret < 0)
1226 dev_warn(bus->dev, "clock stop deprepare wait failed:%d\n", ret);
1229 list_for_each_entry(slave, &bus->slaves, node) {
1230 if (!slave->dev_num)
1231 continue;
1233 if (slave->status != SDW_SLAVE_ATTACHED &&
1234 slave->status != SDW_SLAVE_ALERT)
1235 continue;
1237 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1238 SDW_CLK_POST_DEPREPARE);
1239 if (ret < 0)
1240 dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret);
1243 return 0;
1245 EXPORT_SYMBOL(sdw_bus_exit_clk_stop);
1247 int sdw_configure_dpn_intr(struct sdw_slave *slave,
1248 int port, bool enable, int mask)
1250 u32 addr;
1251 int ret;
1252 u8 val = 0;
1254 if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) {
1255 dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n",
1256 enable ? "on" : "off");
1257 mask |= SDW_DPN_INT_TEST_FAIL;
1260 addr = SDW_DPN_INTMASK(port);
1262 /* Set/Clear port ready interrupt mask */
1263 if (enable) {
1264 val |= mask;
1265 val |= SDW_DPN_INT_PORT_READY;
1266 } else {
1267 val &= ~(mask);
1268 val &= ~SDW_DPN_INT_PORT_READY;
1271 ret = sdw_update_no_pm(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val);
1272 if (ret < 0)
1273 dev_err(&slave->dev,
1274 "SDW_DPN_INTMASK write failed:%d\n", val);
1276 return ret;
1279 static int sdw_slave_set_frequency(struct sdw_slave *slave)
1281 u32 mclk_freq = slave->bus->prop.mclk_freq;
1282 u32 curr_freq = slave->bus->params.curr_dr_freq >> 1;
1283 unsigned int scale;
1284 u8 scale_index;
1285 u8 base;
1286 int ret;
1289 * frequency base and scale registers are required for SDCA
1290 * devices. They may also be used for 1.2+/non-SDCA devices.
1291 * Driver can set the property, we will need a DisCo property
1292 * to discover this case from platform firmware.
1294 if (!slave->id.class_id && !slave->prop.clock_reg_supported)
1295 return 0;
1297 if (!mclk_freq) {
1298 dev_err(&slave->dev,
1299 "no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n");
1300 return -EINVAL;
1304 * map base frequency using Table 89 of SoundWire 1.2 spec.
1305 * The order of the tests just follows the specification, this
1306 * is not a selection between possible values or a search for
1307 * the best value but just a mapping. Only one case per platform
1308 * is relevant.
1309 * Some BIOS have inconsistent values for mclk_freq but a
1310 * correct root so we force the mclk_freq to avoid variations.
1312 if (!(19200000 % mclk_freq)) {
1313 mclk_freq = 19200000;
1314 base = SDW_SCP_BASE_CLOCK_19200000_HZ;
1315 } else if (!(22579200 % mclk_freq)) {
1316 mclk_freq = 22579200;
1317 base = SDW_SCP_BASE_CLOCK_22579200_HZ;
1318 } else if (!(24576000 % mclk_freq)) {
1319 mclk_freq = 24576000;
1320 base = SDW_SCP_BASE_CLOCK_24576000_HZ;
1321 } else if (!(32000000 % mclk_freq)) {
1322 mclk_freq = 32000000;
1323 base = SDW_SCP_BASE_CLOCK_32000000_HZ;
1324 } else if (!(96000000 % mclk_freq)) {
1325 mclk_freq = 24000000;
1326 base = SDW_SCP_BASE_CLOCK_24000000_HZ;
1327 } else {
1328 dev_err(&slave->dev,
1329 "Unsupported clock base, mclk %d\n",
1330 mclk_freq);
1331 return -EINVAL;
1334 if (mclk_freq % curr_freq) {
1335 dev_err(&slave->dev,
1336 "mclk %d is not multiple of bus curr_freq %d\n",
1337 mclk_freq, curr_freq);
1338 return -EINVAL;
1341 scale = mclk_freq / curr_freq;
1344 * map scale to Table 90 of SoundWire 1.2 spec - and check
1345 * that the scale is a power of two and maximum 64
1347 scale_index = ilog2(scale);
1349 if (BIT(scale_index) != scale || scale_index > 6) {
1350 dev_err(&slave->dev,
1351 "No match found for scale %d, bus mclk %d curr_freq %d\n",
1352 scale, mclk_freq, curr_freq);
1353 return -EINVAL;
1355 scale_index++;
1357 ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base);
1358 if (ret < 0) {
1359 dev_err(&slave->dev,
1360 "SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret);
1361 return ret;
1364 /* initialize scale for both banks */
1365 ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index);
1366 if (ret < 0) {
1367 dev_err(&slave->dev,
1368 "SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret);
1369 return ret;
1371 ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index);
1372 if (ret < 0)
1373 dev_err(&slave->dev,
1374 "SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret);
1376 dev_dbg(&slave->dev,
1377 "Configured bus base %d, scale %d, mclk %d, curr_freq %d\n",
1378 base, scale_index, mclk_freq, curr_freq);
1380 return ret;
1383 static int sdw_initialize_slave(struct sdw_slave *slave)
1385 struct sdw_slave_prop *prop = &slave->prop;
1386 int status;
1387 int ret;
1388 u8 val;
1390 ret = sdw_slave_set_frequency(slave);
1391 if (ret < 0)
1392 return ret;
1394 if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) {
1395 /* Clear bus clash interrupt before enabling interrupt mask */
1396 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1397 if (status < 0) {
1398 dev_err(&slave->dev,
1399 "SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status);
1400 return status;
1402 if (status & SDW_SCP_INT1_BUS_CLASH) {
1403 dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n");
1404 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH);
1405 if (ret < 0) {
1406 dev_err(&slave->dev,
1407 "SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret);
1408 return ret;
1412 if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) &&
1413 !(prop->quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) {
1414 /* Clear parity interrupt before enabling interrupt mask */
1415 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1416 if (status < 0) {
1417 dev_err(&slave->dev,
1418 "SDW_SCP_INT1 (PARITY) read failed:%d\n", status);
1419 return status;
1421 if (status & SDW_SCP_INT1_PARITY) {
1422 dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n");
1423 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY);
1424 if (ret < 0) {
1425 dev_err(&slave->dev,
1426 "SDW_SCP_INT1 (PARITY) write failed:%d\n", ret);
1427 return ret;
1433 * Set SCP_INT1_MASK register, typically bus clash and
1434 * implementation-defined interrupt mask. The Parity detection
1435 * may not always be correct on startup so its use is
1436 * device-dependent, it might e.g. only be enabled in
1437 * steady-state after a couple of frames.
1439 val = prop->scp_int1_mask;
1441 /* Enable SCP interrupts */
1442 ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val);
1443 if (ret < 0) {
1444 dev_err(&slave->dev,
1445 "SDW_SCP_INTMASK1 write failed:%d\n", ret);
1446 return ret;
1449 /* No need to continue if DP0 is not present */
1450 if (!prop->dp0_prop)
1451 return 0;
1453 /* Enable DP0 interrupts */
1454 val = prop->dp0_prop->imp_def_interrupts;
1455 val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE;
1457 ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val);
1458 if (ret < 0)
1459 dev_err(&slave->dev,
1460 "SDW_DP0_INTMASK read failed:%d\n", ret);
1461 return ret;
1464 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status)
1466 u8 clear, impl_int_mask;
1467 int status, status2, ret, count = 0;
1469 status = sdw_read_no_pm(slave, SDW_DP0_INT);
1470 if (status < 0) {
1471 dev_err(&slave->dev,
1472 "SDW_DP0_INT read failed:%d\n", status);
1473 return status;
1476 do {
1477 clear = status & ~(SDW_DP0_INTERRUPTS | SDW_DP0_SDCA_CASCADE);
1479 if (status & SDW_DP0_INT_TEST_FAIL) {
1480 dev_err(&slave->dev, "Test fail for port 0\n");
1481 clear |= SDW_DP0_INT_TEST_FAIL;
1485 * Assumption: PORT_READY interrupt will be received only for
1486 * ports implementing Channel Prepare state machine (CP_SM)
1489 if (status & SDW_DP0_INT_PORT_READY) {
1490 complete(&slave->port_ready[0]);
1491 clear |= SDW_DP0_INT_PORT_READY;
1494 if (status & SDW_DP0_INT_BRA_FAILURE) {
1495 dev_err(&slave->dev, "BRA failed\n");
1496 clear |= SDW_DP0_INT_BRA_FAILURE;
1499 impl_int_mask = SDW_DP0_INT_IMPDEF1 |
1500 SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3;
1502 if (status & impl_int_mask) {
1503 clear |= impl_int_mask;
1504 *slave_status = clear;
1507 /* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */
1508 ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear);
1509 if (ret < 0) {
1510 dev_err(&slave->dev,
1511 "SDW_DP0_INT write failed:%d\n", ret);
1512 return ret;
1515 /* Read DP0 interrupt again */
1516 status2 = sdw_read_no_pm(slave, SDW_DP0_INT);
1517 if (status2 < 0) {
1518 dev_err(&slave->dev,
1519 "SDW_DP0_INT read failed:%d\n", status2);
1520 return status2;
1522 /* filter to limit loop to interrupts identified in the first status read */
1523 status &= status2;
1525 count++;
1527 /* we can get alerts while processing so keep retrying */
1528 } while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1530 if (count == SDW_READ_INTR_CLEAR_RETRY)
1531 dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n");
1533 return ret;
1536 static int sdw_handle_port_interrupt(struct sdw_slave *slave,
1537 int port, u8 *slave_status)
1539 u8 clear, impl_int_mask;
1540 int status, status2, ret, count = 0;
1541 u32 addr;
1543 if (port == 0)
1544 return sdw_handle_dp0_interrupt(slave, slave_status);
1546 addr = SDW_DPN_INT(port);
1547 status = sdw_read_no_pm(slave, addr);
1548 if (status < 0) {
1549 dev_err(&slave->dev,
1550 "SDW_DPN_INT read failed:%d\n", status);
1552 return status;
1555 do {
1556 clear = status & ~SDW_DPN_INTERRUPTS;
1558 if (status & SDW_DPN_INT_TEST_FAIL) {
1559 dev_err(&slave->dev, "Test fail for port:%d\n", port);
1560 clear |= SDW_DPN_INT_TEST_FAIL;
1564 * Assumption: PORT_READY interrupt will be received only
1565 * for ports implementing CP_SM.
1567 if (status & SDW_DPN_INT_PORT_READY) {
1568 complete(&slave->port_ready[port]);
1569 clear |= SDW_DPN_INT_PORT_READY;
1572 impl_int_mask = SDW_DPN_INT_IMPDEF1 |
1573 SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3;
1575 if (status & impl_int_mask) {
1576 clear |= impl_int_mask;
1577 *slave_status = clear;
1580 /* clear the interrupt but don't touch reserved fields */
1581 ret = sdw_write_no_pm(slave, addr, clear);
1582 if (ret < 0) {
1583 dev_err(&slave->dev,
1584 "SDW_DPN_INT write failed:%d\n", ret);
1585 return ret;
1588 /* Read DPN interrupt again */
1589 status2 = sdw_read_no_pm(slave, addr);
1590 if (status2 < 0) {
1591 dev_err(&slave->dev,
1592 "SDW_DPN_INT read failed:%d\n", status2);
1593 return status2;
1595 /* filter to limit loop to interrupts identified in the first status read */
1596 status &= status2;
1598 count++;
1600 /* we can get alerts while processing so keep retrying */
1601 } while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1603 if (count == SDW_READ_INTR_CLEAR_RETRY)
1604 dev_warn(&slave->dev, "Reached MAX_RETRY on port read");
1606 return ret;
1609 static int sdw_handle_slave_alerts(struct sdw_slave *slave)
1611 struct sdw_slave_intr_status slave_intr;
1612 u8 clear = 0, bit, port_status[15] = {0};
1613 int port_num, stat, ret, count = 0;
1614 unsigned long port;
1615 bool slave_notify;
1616 u8 sdca_cascade = 0;
1617 u8 buf, buf2[2];
1618 bool parity_check;
1619 bool parity_quirk;
1621 sdw_modify_slave_status(slave, SDW_SLAVE_ALERT);
1623 ret = pm_runtime_get_sync(&slave->dev);
1624 if (ret < 0 && ret != -EACCES) {
1625 dev_err(&slave->dev, "Failed to resume device: %d\n", ret);
1626 pm_runtime_put_noidle(&slave->dev);
1627 return ret;
1630 /* Read Intstat 1, Intstat 2 and Intstat 3 registers */
1631 ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1632 if (ret < 0) {
1633 dev_err(&slave->dev,
1634 "SDW_SCP_INT1 read failed:%d\n", ret);
1635 goto io_err;
1637 buf = ret;
1639 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1640 if (ret < 0) {
1641 dev_err(&slave->dev,
1642 "SDW_SCP_INT2/3 read failed:%d\n", ret);
1643 goto io_err;
1646 if (slave->id.class_id) {
1647 ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1648 if (ret < 0) {
1649 dev_err(&slave->dev,
1650 "SDW_DP0_INT read failed:%d\n", ret);
1651 goto io_err;
1653 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1656 do {
1657 slave_notify = false;
1660 * Check parity, bus clash and Slave (impl defined)
1661 * interrupt
1663 if (buf & SDW_SCP_INT1_PARITY) {
1664 parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY;
1665 parity_quirk = !slave->first_interrupt_done &&
1666 (slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY);
1668 if (parity_check && !parity_quirk)
1669 dev_err(&slave->dev, "Parity error detected\n");
1670 clear |= SDW_SCP_INT1_PARITY;
1673 if (buf & SDW_SCP_INT1_BUS_CLASH) {
1674 if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH)
1675 dev_err(&slave->dev, "Bus clash detected\n");
1676 clear |= SDW_SCP_INT1_BUS_CLASH;
1680 * When bus clash or parity errors are detected, such errors
1681 * are unlikely to be recoverable errors.
1682 * TODO: In such scenario, reset bus. Make this configurable
1683 * via sysfs property with bus reset being the default.
1686 if (buf & SDW_SCP_INT1_IMPL_DEF) {
1687 if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) {
1688 dev_dbg(&slave->dev, "Slave impl defined interrupt\n");
1689 slave_notify = true;
1691 clear |= SDW_SCP_INT1_IMPL_DEF;
1694 /* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */
1695 if (sdca_cascade)
1696 slave_notify = true;
1698 /* Check port 0 - 3 interrupts */
1699 port = buf & SDW_SCP_INT1_PORT0_3;
1701 /* To get port number corresponding to bits, shift it */
1702 port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port);
1703 for_each_set_bit(bit, &port, 8) {
1704 sdw_handle_port_interrupt(slave, bit,
1705 &port_status[bit]);
1708 /* Check if cascade 2 interrupt is present */
1709 if (buf & SDW_SCP_INT1_SCP2_CASCADE) {
1710 port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10;
1711 for_each_set_bit(bit, &port, 8) {
1712 /* scp2 ports start from 4 */
1713 port_num = bit + 4;
1714 sdw_handle_port_interrupt(slave,
1715 port_num,
1716 &port_status[port_num]);
1720 /* now check last cascade */
1721 if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) {
1722 port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14;
1723 for_each_set_bit(bit, &port, 8) {
1724 /* scp3 ports start from 11 */
1725 port_num = bit + 11;
1726 sdw_handle_port_interrupt(slave,
1727 port_num,
1728 &port_status[port_num]);
1732 /* Update the Slave driver */
1733 if (slave_notify) {
1734 mutex_lock(&slave->sdw_dev_lock);
1736 if (slave->probed) {
1737 struct device *dev = &slave->dev;
1738 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1740 if (slave->prop.use_domain_irq && slave->irq)
1741 handle_nested_irq(slave->irq);
1743 if (drv->ops && drv->ops->interrupt_callback) {
1744 slave_intr.sdca_cascade = sdca_cascade;
1745 slave_intr.control_port = clear;
1746 memcpy(slave_intr.port, &port_status,
1747 sizeof(slave_intr.port));
1749 drv->ops->interrupt_callback(slave, &slave_intr);
1753 mutex_unlock(&slave->sdw_dev_lock);
1756 /* Ack interrupt */
1757 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear);
1758 if (ret < 0) {
1759 dev_err(&slave->dev,
1760 "SDW_SCP_INT1 write failed:%d\n", ret);
1761 goto io_err;
1764 /* at this point all initial interrupt sources were handled */
1765 slave->first_interrupt_done = true;
1768 * Read status again to ensure no new interrupts arrived
1769 * while servicing interrupts.
1771 ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1772 if (ret < 0) {
1773 dev_err(&slave->dev,
1774 "SDW_SCP_INT1 recheck read failed:%d\n", ret);
1775 goto io_err;
1777 buf = ret;
1779 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1780 if (ret < 0) {
1781 dev_err(&slave->dev,
1782 "SDW_SCP_INT2/3 recheck read failed:%d\n", ret);
1783 goto io_err;
1786 if (slave->id.class_id) {
1787 ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1788 if (ret < 0) {
1789 dev_err(&slave->dev,
1790 "SDW_DP0_INT recheck read failed:%d\n", ret);
1791 goto io_err;
1793 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1797 * Make sure no interrupts are pending
1799 stat = buf || buf2[0] || buf2[1] || sdca_cascade;
1802 * Exit loop if Slave is continuously in ALERT state even
1803 * after servicing the interrupt multiple times.
1805 count++;
1807 /* we can get alerts while processing so keep retrying */
1808 } while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1810 if (count == SDW_READ_INTR_CLEAR_RETRY)
1811 dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n");
1813 io_err:
1814 pm_runtime_mark_last_busy(&slave->dev);
1815 pm_runtime_put_autosuspend(&slave->dev);
1817 return ret;
1820 static int sdw_update_slave_status(struct sdw_slave *slave,
1821 enum sdw_slave_status status)
1823 int ret = 0;
1825 mutex_lock(&slave->sdw_dev_lock);
1827 if (slave->probed) {
1828 struct device *dev = &slave->dev;
1829 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1831 if (drv->ops && drv->ops->update_status)
1832 ret = drv->ops->update_status(slave, status);
1835 mutex_unlock(&slave->sdw_dev_lock);
1837 return ret;
1841 * sdw_handle_slave_status() - Handle Slave status
1842 * @bus: SDW bus instance
1843 * @status: Status for all Slave(s)
1845 int sdw_handle_slave_status(struct sdw_bus *bus,
1846 enum sdw_slave_status status[])
1848 enum sdw_slave_status prev_status;
1849 struct sdw_slave *slave;
1850 bool attached_initializing, id_programmed;
1851 int i, ret = 0;
1853 /* first check if any Slaves fell off the bus */
1854 for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1855 mutex_lock(&bus->bus_lock);
1856 if (test_bit(i, bus->assigned) == false) {
1857 mutex_unlock(&bus->bus_lock);
1858 continue;
1860 mutex_unlock(&bus->bus_lock);
1862 slave = sdw_get_slave(bus, i);
1863 if (!slave)
1864 continue;
1866 if (status[i] == SDW_SLAVE_UNATTACHED &&
1867 slave->status != SDW_SLAVE_UNATTACHED) {
1868 dev_warn(&slave->dev, "Slave %d state check1: UNATTACHED, status was %d\n",
1869 i, slave->status);
1870 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1872 /* Ensure driver knows that peripheral unattached */
1873 ret = sdw_update_slave_status(slave, status[i]);
1874 if (ret < 0)
1875 dev_warn(&slave->dev, "Update Slave status failed:%d\n", ret);
1879 if (status[0] == SDW_SLAVE_ATTACHED) {
1880 dev_dbg(bus->dev, "Slave attached, programming device number\n");
1883 * Programming a device number will have side effects,
1884 * so we deal with other devices at a later time.
1885 * This relies on those devices reporting ATTACHED, which will
1886 * trigger another call to this function. This will only
1887 * happen if at least one device ID was programmed.
1888 * Error returns from sdw_program_device_num() are currently
1889 * ignored because there's no useful recovery that can be done.
1890 * Returning the error here could result in the current status
1891 * of other devices not being handled, because if no device IDs
1892 * were programmed there's nothing to guarantee a status change
1893 * to trigger another call to this function.
1895 sdw_program_device_num(bus, &id_programmed);
1896 if (id_programmed)
1897 return 0;
1900 /* Continue to check other slave statuses */
1901 for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1902 mutex_lock(&bus->bus_lock);
1903 if (test_bit(i, bus->assigned) == false) {
1904 mutex_unlock(&bus->bus_lock);
1905 continue;
1907 mutex_unlock(&bus->bus_lock);
1909 slave = sdw_get_slave(bus, i);
1910 if (!slave)
1911 continue;
1913 attached_initializing = false;
1915 switch (status[i]) {
1916 case SDW_SLAVE_UNATTACHED:
1917 if (slave->status == SDW_SLAVE_UNATTACHED)
1918 break;
1920 dev_warn(&slave->dev, "Slave %d state check2: UNATTACHED, status was %d\n",
1921 i, slave->status);
1923 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1924 break;
1926 case SDW_SLAVE_ALERT:
1927 ret = sdw_handle_slave_alerts(slave);
1928 if (ret < 0)
1929 dev_err(&slave->dev,
1930 "Slave %d alert handling failed: %d\n",
1931 i, ret);
1932 break;
1934 case SDW_SLAVE_ATTACHED:
1935 if (slave->status == SDW_SLAVE_ATTACHED)
1936 break;
1938 prev_status = slave->status;
1939 sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED);
1941 if (prev_status == SDW_SLAVE_ALERT)
1942 break;
1944 attached_initializing = true;
1946 ret = sdw_initialize_slave(slave);
1947 if (ret < 0)
1948 dev_err(&slave->dev,
1949 "Slave %d initialization failed: %d\n",
1950 i, ret);
1952 break;
1954 default:
1955 dev_err(&slave->dev, "Invalid slave %d status:%d\n",
1956 i, status[i]);
1957 break;
1960 ret = sdw_update_slave_status(slave, status[i]);
1961 if (ret < 0)
1962 dev_err(&slave->dev,
1963 "Update Slave status failed:%d\n", ret);
1964 if (attached_initializing) {
1965 dev_dbg(&slave->dev,
1966 "signaling initialization completion for Slave %d\n",
1967 slave->dev_num);
1969 complete_all(&slave->initialization_complete);
1972 * If the manager became pm_runtime active, the peripherals will be
1973 * restarted and attach, but their pm_runtime status may remain
1974 * suspended. If the 'update_slave_status' callback initiates
1975 * any sort of deferred processing, this processing would not be
1976 * cancelled on pm_runtime suspend.
1977 * To avoid such zombie states, we queue a request to resume.
1978 * This would be a no-op in case the peripheral was being resumed
1979 * by e.g. the ALSA/ASoC framework.
1981 pm_request_resume(&slave->dev);
1985 return ret;
1987 EXPORT_SYMBOL(sdw_handle_slave_status);
1989 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request)
1991 struct sdw_slave *slave;
1992 int i;
1994 /* Check all non-zero devices */
1995 for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1996 mutex_lock(&bus->bus_lock);
1997 if (test_bit(i, bus->assigned) == false) {
1998 mutex_unlock(&bus->bus_lock);
1999 continue;
2001 mutex_unlock(&bus->bus_lock);
2003 slave = sdw_get_slave(bus, i);
2004 if (!slave)
2005 continue;
2007 if (slave->status != SDW_SLAVE_UNATTACHED) {
2008 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
2009 slave->first_interrupt_done = false;
2010 sdw_update_slave_status(slave, SDW_SLAVE_UNATTACHED);
2013 /* keep track of request, used in pm_runtime resume */
2014 slave->unattach_request = request;
2017 EXPORT_SYMBOL(sdw_clear_slave_status);