drm: add modifiers for MediaTek tiled formats
[drm/drm-misc.git] / drivers / spi / spi-aspeed-smc.c
blob8eb843ddb25f2e87df0a8acb0b22635891dfefe7
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * ASPEED FMC/SPI Memory Controller Driver
5 * Copyright (c) 2015-2022, IBM Corporation.
6 * Copyright (c) 2020, ASPEED Corporation.
7 */
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_platform.h>
13 #include <linux/platform_device.h>
14 #include <linux/spi/spi.h>
15 #include <linux/spi/spi-mem.h>
17 #define DEVICE_NAME "spi-aspeed-smc"
19 /* Type setting Register */
20 #define CONFIG_REG 0x0
21 #define CONFIG_TYPE_SPI 0x2
23 /* CE Control Register */
24 #define CE_CTRL_REG 0x4
26 /* CEx Control Register */
27 #define CE0_CTRL_REG 0x10
28 #define CTRL_IO_MODE_MASK GENMASK(30, 28)
29 #define CTRL_IO_SINGLE_DATA 0x0
30 #define CTRL_IO_DUAL_DATA BIT(29)
31 #define CTRL_IO_QUAD_DATA BIT(30)
32 #define CTRL_COMMAND_SHIFT 16
33 #define CTRL_IO_ADDRESS_4B BIT(13) /* AST2400 SPI only */
34 #define CTRL_IO_DUMMY_SET(dummy) \
35 (((((dummy) >> 2) & 0x1) << 14) | (((dummy) & 0x3) << 6))
36 #define CTRL_FREQ_SEL_SHIFT 8
37 #define CTRL_FREQ_SEL_MASK GENMASK(11, CTRL_FREQ_SEL_SHIFT)
38 #define CTRL_CE_STOP_ACTIVE BIT(2)
39 #define CTRL_IO_MODE_CMD_MASK GENMASK(1, 0)
40 #define CTRL_IO_MODE_NORMAL 0x0
41 #define CTRL_IO_MODE_READ 0x1
42 #define CTRL_IO_MODE_WRITE 0x2
43 #define CTRL_IO_MODE_USER 0x3
45 #define CTRL_IO_CMD_MASK 0xf0ff40c3
47 /* CEx Address Decoding Range Register */
48 #define CE0_SEGMENT_ADDR_REG 0x30
50 /* CEx Read timing compensation register */
51 #define CE0_TIMING_COMPENSATION_REG 0x94
53 enum aspeed_spi_ctl_reg_value {
54 ASPEED_SPI_BASE,
55 ASPEED_SPI_READ,
56 ASPEED_SPI_WRITE,
57 ASPEED_SPI_MAX,
60 struct aspeed_spi;
62 struct aspeed_spi_chip {
63 struct aspeed_spi *aspi;
64 u32 cs;
65 void __iomem *ctl;
66 void __iomem *ahb_base;
67 u32 ahb_window_size;
68 u32 ctl_val[ASPEED_SPI_MAX];
69 u32 clk_freq;
72 struct aspeed_spi_data {
73 u32 ctl0;
74 u32 max_cs;
75 bool hastype;
76 u32 mode_bits;
77 u32 we0;
78 u32 timing;
79 u32 hclk_mask;
80 u32 hdiv_max;
82 u32 (*segment_start)(struct aspeed_spi *aspi, u32 reg);
83 u32 (*segment_end)(struct aspeed_spi *aspi, u32 reg);
84 u32 (*segment_reg)(struct aspeed_spi *aspi, u32 start, u32 end);
85 int (*calibrate)(struct aspeed_spi_chip *chip, u32 hdiv,
86 const u8 *golden_buf, u8 *test_buf);
89 #define ASPEED_SPI_MAX_NUM_CS 5
91 struct aspeed_spi {
92 const struct aspeed_spi_data *data;
94 void __iomem *regs;
95 void __iomem *ahb_base;
96 u32 ahb_base_phy;
97 u32 ahb_window_size;
98 struct device *dev;
100 struct clk *clk;
101 u32 clk_freq;
103 struct aspeed_spi_chip chips[ASPEED_SPI_MAX_NUM_CS];
106 static u32 aspeed_spi_get_io_mode(const struct spi_mem_op *op)
108 switch (op->data.buswidth) {
109 case 1:
110 return CTRL_IO_SINGLE_DATA;
111 case 2:
112 return CTRL_IO_DUAL_DATA;
113 case 4:
114 return CTRL_IO_QUAD_DATA;
115 default:
116 return CTRL_IO_SINGLE_DATA;
120 static void aspeed_spi_set_io_mode(struct aspeed_spi_chip *chip, u32 io_mode)
122 u32 ctl;
124 if (io_mode > 0) {
125 ctl = readl(chip->ctl) & ~CTRL_IO_MODE_MASK;
126 ctl |= io_mode;
127 writel(ctl, chip->ctl);
131 static void aspeed_spi_start_user(struct aspeed_spi_chip *chip)
133 u32 ctl = chip->ctl_val[ASPEED_SPI_BASE];
135 ctl |= CTRL_IO_MODE_USER | CTRL_CE_STOP_ACTIVE;
136 writel(ctl, chip->ctl);
138 ctl &= ~CTRL_CE_STOP_ACTIVE;
139 writel(ctl, chip->ctl);
142 static void aspeed_spi_stop_user(struct aspeed_spi_chip *chip)
144 u32 ctl = chip->ctl_val[ASPEED_SPI_READ] |
145 CTRL_IO_MODE_USER | CTRL_CE_STOP_ACTIVE;
147 writel(ctl, chip->ctl);
149 /* Restore defaults */
150 writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl);
153 static int aspeed_spi_read_from_ahb(void *buf, void __iomem *src, size_t len)
155 size_t offset = 0;
157 if (IS_ALIGNED((uintptr_t)src, sizeof(uintptr_t)) &&
158 IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
159 ioread32_rep(src, buf, len >> 2);
160 offset = len & ~0x3;
161 len -= offset;
163 ioread8_rep(src, (u8 *)buf + offset, len);
164 return 0;
167 static int aspeed_spi_write_to_ahb(void __iomem *dst, const void *buf, size_t len)
169 size_t offset = 0;
171 if (IS_ALIGNED((uintptr_t)dst, sizeof(uintptr_t)) &&
172 IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
173 iowrite32_rep(dst, buf, len >> 2);
174 offset = len & ~0x3;
175 len -= offset;
177 iowrite8_rep(dst, (const u8 *)buf + offset, len);
178 return 0;
181 static int aspeed_spi_send_cmd_addr(struct aspeed_spi_chip *chip, u8 addr_nbytes,
182 u64 offset, u32 opcode)
184 __be32 temp;
185 u32 cmdaddr;
187 switch (addr_nbytes) {
188 case 3:
189 cmdaddr = offset & 0xFFFFFF;
190 cmdaddr |= opcode << 24;
192 temp = cpu_to_be32(cmdaddr);
193 aspeed_spi_write_to_ahb(chip->ahb_base, &temp, 4);
194 break;
195 case 4:
196 temp = cpu_to_be32(offset);
197 aspeed_spi_write_to_ahb(chip->ahb_base, &opcode, 1);
198 aspeed_spi_write_to_ahb(chip->ahb_base, &temp, 4);
199 break;
200 default:
201 WARN_ONCE(1, "Unexpected address width %u", addr_nbytes);
202 return -EOPNOTSUPP;
204 return 0;
207 static int aspeed_spi_read_reg(struct aspeed_spi_chip *chip,
208 const struct spi_mem_op *op)
210 aspeed_spi_start_user(chip);
211 aspeed_spi_write_to_ahb(chip->ahb_base, &op->cmd.opcode, 1);
212 aspeed_spi_read_from_ahb(op->data.buf.in,
213 chip->ahb_base, op->data.nbytes);
214 aspeed_spi_stop_user(chip);
215 return 0;
218 static int aspeed_spi_write_reg(struct aspeed_spi_chip *chip,
219 const struct spi_mem_op *op)
221 aspeed_spi_start_user(chip);
222 aspeed_spi_write_to_ahb(chip->ahb_base, &op->cmd.opcode, 1);
223 aspeed_spi_write_to_ahb(chip->ahb_base, op->data.buf.out,
224 op->data.nbytes);
225 aspeed_spi_stop_user(chip);
226 return 0;
229 static ssize_t aspeed_spi_read_user(struct aspeed_spi_chip *chip,
230 const struct spi_mem_op *op,
231 u64 offset, size_t len, void *buf)
233 int io_mode = aspeed_spi_get_io_mode(op);
234 u8 dummy = 0xFF;
235 int i;
236 int ret;
238 aspeed_spi_start_user(chip);
240 ret = aspeed_spi_send_cmd_addr(chip, op->addr.nbytes, offset, op->cmd.opcode);
241 if (ret < 0)
242 return ret;
244 if (op->dummy.buswidth && op->dummy.nbytes) {
245 for (i = 0; i < op->dummy.nbytes / op->dummy.buswidth; i++)
246 aspeed_spi_write_to_ahb(chip->ahb_base, &dummy, sizeof(dummy));
249 aspeed_spi_set_io_mode(chip, io_mode);
251 aspeed_spi_read_from_ahb(buf, chip->ahb_base, len);
252 aspeed_spi_stop_user(chip);
253 return 0;
256 static ssize_t aspeed_spi_write_user(struct aspeed_spi_chip *chip,
257 const struct spi_mem_op *op)
259 int ret;
261 aspeed_spi_start_user(chip);
262 ret = aspeed_spi_send_cmd_addr(chip, op->addr.nbytes, op->addr.val, op->cmd.opcode);
263 if (ret < 0)
264 return ret;
265 aspeed_spi_write_to_ahb(chip->ahb_base, op->data.buf.out, op->data.nbytes);
266 aspeed_spi_stop_user(chip);
267 return 0;
270 /* support for 1-1-1, 1-1-2 or 1-1-4 */
271 static bool aspeed_spi_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
273 if (op->cmd.buswidth > 1)
274 return false;
276 if (op->addr.nbytes != 0) {
277 if (op->addr.buswidth > 1)
278 return false;
279 if (op->addr.nbytes < 3 || op->addr.nbytes > 4)
280 return false;
283 if (op->dummy.nbytes != 0) {
284 if (op->dummy.buswidth > 1 || op->dummy.nbytes > 7)
285 return false;
288 if (op->data.nbytes != 0 && op->data.buswidth > 4)
289 return false;
291 return spi_mem_default_supports_op(mem, op);
294 static const struct aspeed_spi_data ast2400_spi_data;
296 static int do_aspeed_spi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
298 struct aspeed_spi *aspi = spi_controller_get_devdata(mem->spi->controller);
299 struct aspeed_spi_chip *chip = &aspi->chips[spi_get_chipselect(mem->spi, 0)];
300 u32 addr_mode, addr_mode_backup;
301 u32 ctl_val;
302 int ret = 0;
304 dev_dbg(aspi->dev,
305 "CE%d %s OP %#x mode:%d.%d.%d.%d naddr:%#x ndummies:%#x len:%#x",
306 chip->cs, op->data.dir == SPI_MEM_DATA_IN ? "read" : "write",
307 op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
308 op->dummy.buswidth, op->data.buswidth,
309 op->addr.nbytes, op->dummy.nbytes, op->data.nbytes);
311 addr_mode = readl(aspi->regs + CE_CTRL_REG);
312 addr_mode_backup = addr_mode;
314 ctl_val = chip->ctl_val[ASPEED_SPI_BASE];
315 ctl_val &= ~CTRL_IO_CMD_MASK;
317 ctl_val |= op->cmd.opcode << CTRL_COMMAND_SHIFT;
319 /* 4BYTE address mode */
320 if (op->addr.nbytes) {
321 if (op->addr.nbytes == 4)
322 addr_mode |= (0x11 << chip->cs);
323 else
324 addr_mode &= ~(0x11 << chip->cs);
326 if (op->addr.nbytes == 4 && chip->aspi->data == &ast2400_spi_data)
327 ctl_val |= CTRL_IO_ADDRESS_4B;
330 if (op->dummy.nbytes)
331 ctl_val |= CTRL_IO_DUMMY_SET(op->dummy.nbytes / op->dummy.buswidth);
333 if (op->data.nbytes)
334 ctl_val |= aspeed_spi_get_io_mode(op);
336 if (op->data.dir == SPI_MEM_DATA_OUT)
337 ctl_val |= CTRL_IO_MODE_WRITE;
338 else
339 ctl_val |= CTRL_IO_MODE_READ;
341 if (addr_mode != addr_mode_backup)
342 writel(addr_mode, aspi->regs + CE_CTRL_REG);
343 writel(ctl_val, chip->ctl);
345 if (op->data.dir == SPI_MEM_DATA_IN) {
346 if (!op->addr.nbytes)
347 ret = aspeed_spi_read_reg(chip, op);
348 else
349 ret = aspeed_spi_read_user(chip, op, op->addr.val,
350 op->data.nbytes, op->data.buf.in);
351 } else {
352 if (!op->addr.nbytes)
353 ret = aspeed_spi_write_reg(chip, op);
354 else
355 ret = aspeed_spi_write_user(chip, op);
358 /* Restore defaults */
359 if (addr_mode != addr_mode_backup)
360 writel(addr_mode_backup, aspi->regs + CE_CTRL_REG);
361 writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl);
362 return ret;
365 static int aspeed_spi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
367 int ret;
369 ret = do_aspeed_spi_exec_op(mem, op);
370 if (ret)
371 dev_err(&mem->spi->dev, "operation failed: %d\n", ret);
372 return ret;
375 static const char *aspeed_spi_get_name(struct spi_mem *mem)
377 struct aspeed_spi *aspi = spi_controller_get_devdata(mem->spi->controller);
378 struct device *dev = aspi->dev;
380 return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
381 spi_get_chipselect(mem->spi, 0));
384 struct aspeed_spi_window {
385 u32 cs;
386 u32 offset;
387 u32 size;
390 static void aspeed_spi_get_windows(struct aspeed_spi *aspi,
391 struct aspeed_spi_window windows[ASPEED_SPI_MAX_NUM_CS])
393 const struct aspeed_spi_data *data = aspi->data;
394 u32 reg_val;
395 u32 cs;
397 for (cs = 0; cs < aspi->data->max_cs; cs++) {
398 reg_val = readl(aspi->regs + CE0_SEGMENT_ADDR_REG + cs * 4);
399 windows[cs].cs = cs;
400 windows[cs].size = data->segment_end(aspi, reg_val) -
401 data->segment_start(aspi, reg_val);
402 windows[cs].offset = data->segment_start(aspi, reg_val) - aspi->ahb_base_phy;
403 dev_vdbg(aspi->dev, "CE%d offset=0x%.8x size=0x%x\n", cs,
404 windows[cs].offset, windows[cs].size);
409 * On the AST2600, some CE windows are closed by default at reset but
410 * U-Boot should open all.
412 static int aspeed_spi_chip_set_default_window(struct aspeed_spi_chip *chip)
414 struct aspeed_spi *aspi = chip->aspi;
415 struct aspeed_spi_window windows[ASPEED_SPI_MAX_NUM_CS] = { 0 };
416 struct aspeed_spi_window *win = &windows[chip->cs];
418 /* No segment registers for the AST2400 SPI controller */
419 if (aspi->data == &ast2400_spi_data) {
420 win->offset = 0;
421 win->size = aspi->ahb_window_size;
422 } else {
423 aspeed_spi_get_windows(aspi, windows);
426 chip->ahb_base = aspi->ahb_base + win->offset;
427 chip->ahb_window_size = win->size;
429 dev_dbg(aspi->dev, "CE%d default window [ 0x%.8x - 0x%.8x ] %dMB",
430 chip->cs, aspi->ahb_base_phy + win->offset,
431 aspi->ahb_base_phy + win->offset + win->size - 1,
432 win->size >> 20);
434 return chip->ahb_window_size ? 0 : -1;
437 static int aspeed_spi_set_window(struct aspeed_spi *aspi,
438 const struct aspeed_spi_window *win)
440 u32 start = aspi->ahb_base_phy + win->offset;
441 u32 end = start + win->size;
442 void __iomem *seg_reg = aspi->regs + CE0_SEGMENT_ADDR_REG + win->cs * 4;
443 u32 seg_val_backup = readl(seg_reg);
444 u32 seg_val = aspi->data->segment_reg(aspi, start, end);
446 if (seg_val == seg_val_backup)
447 return 0;
449 writel(seg_val, seg_reg);
452 * Restore initial value if something goes wrong else we could
453 * loose access to the chip.
455 if (seg_val != readl(seg_reg)) {
456 dev_err(aspi->dev, "CE%d invalid window [ 0x%.8x - 0x%.8x ] %dMB",
457 win->cs, start, end - 1, win->size >> 20);
458 writel(seg_val_backup, seg_reg);
459 return -EIO;
462 if (win->size)
463 dev_dbg(aspi->dev, "CE%d new window [ 0x%.8x - 0x%.8x ] %dMB",
464 win->cs, start, end - 1, win->size >> 20);
465 else
466 dev_dbg(aspi->dev, "CE%d window closed", win->cs);
468 return 0;
472 * Yet to be done when possible :
473 * - Align mappings on flash size (we don't have the info)
474 * - ioremap each window, not strictly necessary since the overall window
475 * is correct.
477 static const struct aspeed_spi_data ast2500_spi_data;
478 static const struct aspeed_spi_data ast2600_spi_data;
479 static const struct aspeed_spi_data ast2600_fmc_data;
481 static int aspeed_spi_chip_adjust_window(struct aspeed_spi_chip *chip,
482 u32 local_offset, u32 size)
484 struct aspeed_spi *aspi = chip->aspi;
485 struct aspeed_spi_window windows[ASPEED_SPI_MAX_NUM_CS] = { 0 };
486 struct aspeed_spi_window *win = &windows[chip->cs];
487 int ret;
489 /* No segment registers for the AST2400 SPI controller */
490 if (aspi->data == &ast2400_spi_data)
491 return 0;
494 * Due to an HW issue on the AST2500 SPI controller, the CE0
495 * window size should be smaller than the maximum 128MB.
497 if (aspi->data == &ast2500_spi_data && chip->cs == 0 && size == SZ_128M) {
498 size = 120 << 20;
499 dev_info(aspi->dev, "CE%d window resized to %dMB (AST2500 HW quirk)",
500 chip->cs, size >> 20);
504 * The decoding size of AST2600 SPI controller should set at
505 * least 2MB.
507 if ((aspi->data == &ast2600_spi_data || aspi->data == &ast2600_fmc_data) &&
508 size < SZ_2M) {
509 size = SZ_2M;
510 dev_info(aspi->dev, "CE%d window resized to %dMB (AST2600 Decoding)",
511 chip->cs, size >> 20);
514 aspeed_spi_get_windows(aspi, windows);
516 /* Adjust this chip window */
517 win->offset += local_offset;
518 win->size = size;
520 if (win->offset + win->size > aspi->ahb_window_size) {
521 win->size = aspi->ahb_window_size - win->offset;
522 dev_warn(aspi->dev, "CE%d window resized to %dMB", chip->cs, win->size >> 20);
525 ret = aspeed_spi_set_window(aspi, win);
526 if (ret)
527 return ret;
529 /* Update chip mapping info */
530 chip->ahb_base = aspi->ahb_base + win->offset;
531 chip->ahb_window_size = win->size;
534 * Also adjust next chip window to make sure that it does not
535 * overlap with the current window.
537 if (chip->cs < aspi->data->max_cs - 1) {
538 struct aspeed_spi_window *next = &windows[chip->cs + 1];
540 /* Change offset and size to keep the same end address */
541 if ((next->offset + next->size) > (win->offset + win->size))
542 next->size = (next->offset + next->size) - (win->offset + win->size);
543 else
544 next->size = 0;
545 next->offset = win->offset + win->size;
547 aspeed_spi_set_window(aspi, next);
549 return 0;
552 static int aspeed_spi_do_calibration(struct aspeed_spi_chip *chip);
554 static int aspeed_spi_dirmap_create(struct spi_mem_dirmap_desc *desc)
556 struct aspeed_spi *aspi = spi_controller_get_devdata(desc->mem->spi->controller);
557 struct aspeed_spi_chip *chip = &aspi->chips[spi_get_chipselect(desc->mem->spi, 0)];
558 struct spi_mem_op *op = &desc->info.op_tmpl;
559 u32 ctl_val;
560 int ret = 0;
562 dev_dbg(aspi->dev,
563 "CE%d %s dirmap [ 0x%.8llx - 0x%.8llx ] OP %#x mode:%d.%d.%d.%d naddr:%#x ndummies:%#x\n",
564 chip->cs, op->data.dir == SPI_MEM_DATA_IN ? "read" : "write",
565 desc->info.offset, desc->info.offset + desc->info.length,
566 op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
567 op->dummy.buswidth, op->data.buswidth,
568 op->addr.nbytes, op->dummy.nbytes);
570 chip->clk_freq = desc->mem->spi->max_speed_hz;
572 /* Only for reads */
573 if (op->data.dir != SPI_MEM_DATA_IN)
574 return -EOPNOTSUPP;
576 aspeed_spi_chip_adjust_window(chip, desc->info.offset, desc->info.length);
578 if (desc->info.length > chip->ahb_window_size)
579 dev_warn(aspi->dev, "CE%d window (%dMB) too small for mapping",
580 chip->cs, chip->ahb_window_size >> 20);
582 /* Define the default IO read settings */
583 ctl_val = readl(chip->ctl) & ~CTRL_IO_CMD_MASK;
584 ctl_val |= aspeed_spi_get_io_mode(op) |
585 op->cmd.opcode << CTRL_COMMAND_SHIFT |
586 CTRL_IO_MODE_READ;
588 if (op->dummy.nbytes)
589 ctl_val |= CTRL_IO_DUMMY_SET(op->dummy.nbytes / op->dummy.buswidth);
591 /* Tune 4BYTE address mode */
592 if (op->addr.nbytes) {
593 u32 addr_mode = readl(aspi->regs + CE_CTRL_REG);
595 if (op->addr.nbytes == 4)
596 addr_mode |= (0x11 << chip->cs);
597 else
598 addr_mode &= ~(0x11 << chip->cs);
599 writel(addr_mode, aspi->regs + CE_CTRL_REG);
601 /* AST2400 SPI controller sets 4BYTE address mode in
602 * CE0 Control Register
604 if (op->addr.nbytes == 4 && chip->aspi->data == &ast2400_spi_data)
605 ctl_val |= CTRL_IO_ADDRESS_4B;
608 /* READ mode is the controller default setting */
609 chip->ctl_val[ASPEED_SPI_READ] = ctl_val;
610 writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl);
612 ret = aspeed_spi_do_calibration(chip);
614 dev_info(aspi->dev, "CE%d read buswidth:%d [0x%08x]\n",
615 chip->cs, op->data.buswidth, chip->ctl_val[ASPEED_SPI_READ]);
617 return ret;
620 static ssize_t aspeed_spi_dirmap_read(struct spi_mem_dirmap_desc *desc,
621 u64 offset, size_t len, void *buf)
623 struct aspeed_spi *aspi = spi_controller_get_devdata(desc->mem->spi->controller);
624 struct aspeed_spi_chip *chip = &aspi->chips[spi_get_chipselect(desc->mem->spi, 0)];
626 /* Switch to USER command mode if mapping window is too small */
627 if (chip->ahb_window_size < offset + len) {
628 int ret;
630 ret = aspeed_spi_read_user(chip, &desc->info.op_tmpl, offset, len, buf);
631 if (ret < 0)
632 return ret;
633 } else {
634 memcpy_fromio(buf, chip->ahb_base + offset, len);
637 return len;
640 static const struct spi_controller_mem_ops aspeed_spi_mem_ops = {
641 .supports_op = aspeed_spi_supports_op,
642 .exec_op = aspeed_spi_exec_op,
643 .get_name = aspeed_spi_get_name,
644 .dirmap_create = aspeed_spi_dirmap_create,
645 .dirmap_read = aspeed_spi_dirmap_read,
648 static void aspeed_spi_chip_set_type(struct aspeed_spi *aspi, unsigned int cs, int type)
650 u32 reg;
652 reg = readl(aspi->regs + CONFIG_REG);
653 reg &= ~(0x3 << (cs * 2));
654 reg |= type << (cs * 2);
655 writel(reg, aspi->regs + CONFIG_REG);
658 static void aspeed_spi_chip_enable(struct aspeed_spi *aspi, unsigned int cs, bool enable)
660 u32 we_bit = BIT(aspi->data->we0 + cs);
661 u32 reg = readl(aspi->regs + CONFIG_REG);
663 if (enable)
664 reg |= we_bit;
665 else
666 reg &= ~we_bit;
667 writel(reg, aspi->regs + CONFIG_REG);
670 static int aspeed_spi_setup(struct spi_device *spi)
672 struct aspeed_spi *aspi = spi_controller_get_devdata(spi->controller);
673 const struct aspeed_spi_data *data = aspi->data;
674 unsigned int cs = spi_get_chipselect(spi, 0);
675 struct aspeed_spi_chip *chip = &aspi->chips[cs];
677 chip->aspi = aspi;
678 chip->cs = cs;
679 chip->ctl = aspi->regs + data->ctl0 + cs * 4;
681 /* The driver only supports SPI type flash */
682 if (data->hastype)
683 aspeed_spi_chip_set_type(aspi, cs, CONFIG_TYPE_SPI);
685 if (aspeed_spi_chip_set_default_window(chip) < 0) {
686 dev_warn(aspi->dev, "CE%d window invalid", cs);
687 return -EINVAL;
690 aspeed_spi_chip_enable(aspi, cs, true);
692 chip->ctl_val[ASPEED_SPI_BASE] = CTRL_CE_STOP_ACTIVE | CTRL_IO_MODE_USER;
694 dev_dbg(aspi->dev, "CE%d setup done\n", cs);
695 return 0;
698 static void aspeed_spi_cleanup(struct spi_device *spi)
700 struct aspeed_spi *aspi = spi_controller_get_devdata(spi->controller);
701 unsigned int cs = spi_get_chipselect(spi, 0);
703 aspeed_spi_chip_enable(aspi, cs, false);
705 dev_dbg(aspi->dev, "CE%d cleanup done\n", cs);
708 static void aspeed_spi_enable(struct aspeed_spi *aspi, bool enable)
710 int cs;
712 for (cs = 0; cs < aspi->data->max_cs; cs++)
713 aspeed_spi_chip_enable(aspi, cs, enable);
716 static int aspeed_spi_probe(struct platform_device *pdev)
718 struct device *dev = &pdev->dev;
719 const struct aspeed_spi_data *data;
720 struct spi_controller *ctlr;
721 struct aspeed_spi *aspi;
722 struct resource *res;
723 int ret;
725 data = of_device_get_match_data(&pdev->dev);
726 if (!data)
727 return -ENODEV;
729 ctlr = devm_spi_alloc_host(dev, sizeof(*aspi));
730 if (!ctlr)
731 return -ENOMEM;
733 aspi = spi_controller_get_devdata(ctlr);
734 platform_set_drvdata(pdev, aspi);
735 aspi->data = data;
736 aspi->dev = dev;
738 aspi->regs = devm_platform_ioremap_resource(pdev, 0);
739 if (IS_ERR(aspi->regs))
740 return PTR_ERR(aspi->regs);
742 aspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res);
743 if (IS_ERR(aspi->ahb_base)) {
744 dev_err(dev, "missing AHB mapping window\n");
745 return PTR_ERR(aspi->ahb_base);
748 aspi->ahb_window_size = resource_size(res);
749 aspi->ahb_base_phy = res->start;
751 aspi->clk = devm_clk_get_enabled(&pdev->dev, NULL);
752 if (IS_ERR(aspi->clk)) {
753 dev_err(dev, "missing clock\n");
754 return PTR_ERR(aspi->clk);
757 aspi->clk_freq = clk_get_rate(aspi->clk);
758 if (!aspi->clk_freq) {
759 dev_err(dev, "invalid clock\n");
760 return -EINVAL;
763 /* IRQ is for DMA, which the driver doesn't support yet */
765 ctlr->mode_bits = SPI_RX_DUAL | SPI_TX_DUAL | data->mode_bits;
766 ctlr->bus_num = pdev->id;
767 ctlr->mem_ops = &aspeed_spi_mem_ops;
768 ctlr->setup = aspeed_spi_setup;
769 ctlr->cleanup = aspeed_spi_cleanup;
770 ctlr->num_chipselect = data->max_cs;
771 ctlr->dev.of_node = dev->of_node;
773 ret = devm_spi_register_controller(dev, ctlr);
774 if (ret)
775 dev_err(&pdev->dev, "spi_register_controller failed\n");
777 return ret;
780 static void aspeed_spi_remove(struct platform_device *pdev)
782 struct aspeed_spi *aspi = platform_get_drvdata(pdev);
784 aspeed_spi_enable(aspi, false);
788 * AHB mappings
792 * The Segment Registers of the AST2400 and AST2500 use a 8MB unit.
793 * The address range is encoded with absolute addresses in the overall
794 * mapping window.
796 static u32 aspeed_spi_segment_start(struct aspeed_spi *aspi, u32 reg)
798 return ((reg >> 16) & 0xFF) << 23;
801 static u32 aspeed_spi_segment_end(struct aspeed_spi *aspi, u32 reg)
803 return ((reg >> 24) & 0xFF) << 23;
806 static u32 aspeed_spi_segment_reg(struct aspeed_spi *aspi, u32 start, u32 end)
808 return (((start >> 23) & 0xFF) << 16) | (((end >> 23) & 0xFF) << 24);
812 * The Segment Registers of the AST2600 use a 1MB unit. The address
813 * range is encoded with offsets in the overall mapping window.
816 #define AST2600_SEG_ADDR_MASK 0x0ff00000
818 static u32 aspeed_spi_segment_ast2600_start(struct aspeed_spi *aspi,
819 u32 reg)
821 u32 start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK;
823 return aspi->ahb_base_phy + start_offset;
826 static u32 aspeed_spi_segment_ast2600_end(struct aspeed_spi *aspi,
827 u32 reg)
829 u32 end_offset = reg & AST2600_SEG_ADDR_MASK;
831 /* segment is disabled */
832 if (!end_offset)
833 return aspi->ahb_base_phy;
835 return aspi->ahb_base_phy + end_offset + 0x100000;
838 static u32 aspeed_spi_segment_ast2600_reg(struct aspeed_spi *aspi,
839 u32 start, u32 end)
841 /* disable zero size segments */
842 if (start == end)
843 return 0;
845 return ((start & AST2600_SEG_ADDR_MASK) >> 16) |
846 ((end - 1) & AST2600_SEG_ADDR_MASK);
850 * Read timing compensation sequences
853 #define CALIBRATE_BUF_SIZE SZ_16K
855 static bool aspeed_spi_check_reads(struct aspeed_spi_chip *chip,
856 const u8 *golden_buf, u8 *test_buf)
858 int i;
860 for (i = 0; i < 10; i++) {
861 memcpy_fromio(test_buf, chip->ahb_base, CALIBRATE_BUF_SIZE);
862 if (memcmp(test_buf, golden_buf, CALIBRATE_BUF_SIZE) != 0) {
863 #if defined(VERBOSE_DEBUG)
864 print_hex_dump_bytes(DEVICE_NAME " fail: ", DUMP_PREFIX_NONE,
865 test_buf, 0x100);
866 #endif
867 return false;
870 return true;
873 #define FREAD_TPASS(i) (((i) / 2) | (((i) & 1) ? 0 : 8))
876 * The timing register is shared by all devices. Only update for CE0.
878 static int aspeed_spi_calibrate(struct aspeed_spi_chip *chip, u32 hdiv,
879 const u8 *golden_buf, u8 *test_buf)
881 struct aspeed_spi *aspi = chip->aspi;
882 const struct aspeed_spi_data *data = aspi->data;
883 int i;
884 int good_pass = -1, pass_count = 0;
885 u32 shift = (hdiv - 1) << 2;
886 u32 mask = ~(0xfu << shift);
887 u32 fread_timing_val = 0;
889 /* Try HCLK delay 0..5, each one with/without delay and look for a
890 * good pair.
892 for (i = 0; i < 12; i++) {
893 bool pass;
895 if (chip->cs == 0) {
896 fread_timing_val &= mask;
897 fread_timing_val |= FREAD_TPASS(i) << shift;
898 writel(fread_timing_val, aspi->regs + data->timing);
900 pass = aspeed_spi_check_reads(chip, golden_buf, test_buf);
901 dev_dbg(aspi->dev,
902 " * [%08x] %d HCLK delay, %dns DI delay : %s",
903 fread_timing_val, i / 2, (i & 1) ? 0 : 4,
904 pass ? "PASS" : "FAIL");
905 if (pass) {
906 pass_count++;
907 if (pass_count == 3) {
908 good_pass = i - 1;
909 break;
911 } else {
912 pass_count = 0;
916 /* No good setting for this frequency */
917 if (good_pass < 0)
918 return -1;
920 /* We have at least one pass of margin, let's use first pass */
921 if (chip->cs == 0) {
922 fread_timing_val &= mask;
923 fread_timing_val |= FREAD_TPASS(good_pass) << shift;
924 writel(fread_timing_val, aspi->regs + data->timing);
926 dev_dbg(aspi->dev, " * -> good is pass %d [0x%08x]",
927 good_pass, fread_timing_val);
928 return 0;
931 static bool aspeed_spi_check_calib_data(const u8 *test_buf, u32 size)
933 const u32 *tb32 = (const u32 *)test_buf;
934 u32 i, cnt = 0;
936 /* We check if we have enough words that are neither all 0
937 * nor all 1's so the calibration can be considered valid.
939 * I use an arbitrary threshold for now of 64
941 size >>= 2;
942 for (i = 0; i < size; i++) {
943 if (tb32[i] != 0 && tb32[i] != 0xffffffff)
944 cnt++;
946 return cnt >= 64;
949 static const u32 aspeed_spi_hclk_divs[] = {
950 0xf, /* HCLK */
951 0x7, /* HCLK/2 */
952 0xe, /* HCLK/3 */
953 0x6, /* HCLK/4 */
954 0xd, /* HCLK/5 */
957 #define ASPEED_SPI_HCLK_DIV(i) \
958 (aspeed_spi_hclk_divs[(i) - 1] << CTRL_FREQ_SEL_SHIFT)
960 static int aspeed_spi_do_calibration(struct aspeed_spi_chip *chip)
962 struct aspeed_spi *aspi = chip->aspi;
963 const struct aspeed_spi_data *data = aspi->data;
964 u32 ahb_freq = aspi->clk_freq;
965 u32 max_freq = chip->clk_freq;
966 u32 ctl_val;
967 u8 *golden_buf = NULL;
968 u8 *test_buf = NULL;
969 int i, rc, best_div = -1;
971 dev_dbg(aspi->dev, "calculate timing compensation - AHB freq: %d MHz",
972 ahb_freq / 1000000);
975 * use the related low frequency to get check calibration data
976 * and get golden data.
978 ctl_val = chip->ctl_val[ASPEED_SPI_READ] & data->hclk_mask;
979 writel(ctl_val, chip->ctl);
981 test_buf = kzalloc(CALIBRATE_BUF_SIZE * 2, GFP_KERNEL);
982 if (!test_buf)
983 return -ENOMEM;
985 golden_buf = test_buf + CALIBRATE_BUF_SIZE;
987 memcpy_fromio(golden_buf, chip->ahb_base, CALIBRATE_BUF_SIZE);
988 if (!aspeed_spi_check_calib_data(golden_buf, CALIBRATE_BUF_SIZE)) {
989 dev_info(aspi->dev, "Calibration area too uniform, using low speed");
990 goto no_calib;
993 #if defined(VERBOSE_DEBUG)
994 print_hex_dump_bytes(DEVICE_NAME " good: ", DUMP_PREFIX_NONE,
995 golden_buf, 0x100);
996 #endif
998 /* Now we iterate the HCLK dividers until we find our breaking point */
999 for (i = ARRAY_SIZE(aspeed_spi_hclk_divs); i > data->hdiv_max - 1; i--) {
1000 u32 tv, freq;
1002 freq = ahb_freq / i;
1003 if (freq > max_freq)
1004 continue;
1006 /* Set the timing */
1007 tv = chip->ctl_val[ASPEED_SPI_READ] | ASPEED_SPI_HCLK_DIV(i);
1008 writel(tv, chip->ctl);
1009 dev_dbg(aspi->dev, "Trying HCLK/%d [%08x] ...", i, tv);
1010 rc = data->calibrate(chip, i, golden_buf, test_buf);
1011 if (rc == 0)
1012 best_div = i;
1015 /* Nothing found ? */
1016 if (best_div < 0) {
1017 dev_warn(aspi->dev, "No good frequency, using dumb slow");
1018 } else {
1019 dev_dbg(aspi->dev, "Found good read timings at HCLK/%d", best_div);
1021 /* Record the freq */
1022 for (i = 0; i < ASPEED_SPI_MAX; i++)
1023 chip->ctl_val[i] = (chip->ctl_val[i] & data->hclk_mask) |
1024 ASPEED_SPI_HCLK_DIV(best_div);
1027 no_calib:
1028 writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl);
1029 kfree(test_buf);
1030 return 0;
1033 #define TIMING_DELAY_DI BIT(3)
1034 #define TIMING_DELAY_HCYCLE_MAX 5
1035 #define TIMING_REG_AST2600(chip) \
1036 ((chip)->aspi->regs + (chip)->aspi->data->timing + \
1037 (chip)->cs * 4)
1039 static int aspeed_spi_ast2600_calibrate(struct aspeed_spi_chip *chip, u32 hdiv,
1040 const u8 *golden_buf, u8 *test_buf)
1042 struct aspeed_spi *aspi = chip->aspi;
1043 int hcycle;
1044 u32 shift = (hdiv - 2) << 3;
1045 u32 mask = ~(0xfu << shift);
1046 u32 fread_timing_val = 0;
1048 for (hcycle = 0; hcycle <= TIMING_DELAY_HCYCLE_MAX; hcycle++) {
1049 int delay_ns;
1050 bool pass = false;
1052 fread_timing_val &= mask;
1053 fread_timing_val |= hcycle << shift;
1055 /* no DI input delay first */
1056 writel(fread_timing_val, TIMING_REG_AST2600(chip));
1057 pass = aspeed_spi_check_reads(chip, golden_buf, test_buf);
1058 dev_dbg(aspi->dev,
1059 " * [%08x] %d HCLK delay, DI delay none : %s",
1060 fread_timing_val, hcycle, pass ? "PASS" : "FAIL");
1061 if (pass)
1062 return 0;
1064 /* Add DI input delays */
1065 fread_timing_val &= mask;
1066 fread_timing_val |= (TIMING_DELAY_DI | hcycle) << shift;
1068 for (delay_ns = 0; delay_ns < 0x10; delay_ns++) {
1069 fread_timing_val &= ~(0xf << (4 + shift));
1070 fread_timing_val |= delay_ns << (4 + shift);
1072 writel(fread_timing_val, TIMING_REG_AST2600(chip));
1073 pass = aspeed_spi_check_reads(chip, golden_buf, test_buf);
1074 dev_dbg(aspi->dev,
1075 " * [%08x] %d HCLK delay, DI delay %d.%dns : %s",
1076 fread_timing_val, hcycle, (delay_ns + 1) / 2,
1077 (delay_ns + 1) & 1 ? 5 : 5, pass ? "PASS" : "FAIL");
1079 * TODO: This is optimistic. We should look
1080 * for a working interval and save the middle
1081 * value in the read timing register.
1083 if (pass)
1084 return 0;
1088 /* No good setting for this frequency */
1089 return -1;
1093 * Platform definitions
1095 static const struct aspeed_spi_data ast2400_fmc_data = {
1096 .max_cs = 5,
1097 .hastype = true,
1098 .we0 = 16,
1099 .ctl0 = CE0_CTRL_REG,
1100 .timing = CE0_TIMING_COMPENSATION_REG,
1101 .hclk_mask = 0xfffff0ff,
1102 .hdiv_max = 1,
1103 .calibrate = aspeed_spi_calibrate,
1104 .segment_start = aspeed_spi_segment_start,
1105 .segment_end = aspeed_spi_segment_end,
1106 .segment_reg = aspeed_spi_segment_reg,
1109 static const struct aspeed_spi_data ast2400_spi_data = {
1110 .max_cs = 1,
1111 .hastype = false,
1112 .we0 = 0,
1113 .ctl0 = 0x04,
1114 .timing = 0x14,
1115 .hclk_mask = 0xfffff0ff,
1116 .hdiv_max = 1,
1117 .calibrate = aspeed_spi_calibrate,
1118 /* No segment registers */
1121 static const struct aspeed_spi_data ast2500_fmc_data = {
1122 .max_cs = 3,
1123 .hastype = true,
1124 .we0 = 16,
1125 .ctl0 = CE0_CTRL_REG,
1126 .timing = CE0_TIMING_COMPENSATION_REG,
1127 .hclk_mask = 0xffffd0ff,
1128 .hdiv_max = 1,
1129 .calibrate = aspeed_spi_calibrate,
1130 .segment_start = aspeed_spi_segment_start,
1131 .segment_end = aspeed_spi_segment_end,
1132 .segment_reg = aspeed_spi_segment_reg,
1135 static const struct aspeed_spi_data ast2500_spi_data = {
1136 .max_cs = 2,
1137 .hastype = false,
1138 .we0 = 16,
1139 .ctl0 = CE0_CTRL_REG,
1140 .timing = CE0_TIMING_COMPENSATION_REG,
1141 .hclk_mask = 0xffffd0ff,
1142 .hdiv_max = 1,
1143 .calibrate = aspeed_spi_calibrate,
1144 .segment_start = aspeed_spi_segment_start,
1145 .segment_end = aspeed_spi_segment_end,
1146 .segment_reg = aspeed_spi_segment_reg,
1149 static const struct aspeed_spi_data ast2600_fmc_data = {
1150 .max_cs = 3,
1151 .hastype = false,
1152 .mode_bits = SPI_RX_QUAD | SPI_TX_QUAD,
1153 .we0 = 16,
1154 .ctl0 = CE0_CTRL_REG,
1155 .timing = CE0_TIMING_COMPENSATION_REG,
1156 .hclk_mask = 0xf0fff0ff,
1157 .hdiv_max = 2,
1158 .calibrate = aspeed_spi_ast2600_calibrate,
1159 .segment_start = aspeed_spi_segment_ast2600_start,
1160 .segment_end = aspeed_spi_segment_ast2600_end,
1161 .segment_reg = aspeed_spi_segment_ast2600_reg,
1164 static const struct aspeed_spi_data ast2600_spi_data = {
1165 .max_cs = 2,
1166 .hastype = false,
1167 .mode_bits = SPI_RX_QUAD | SPI_TX_QUAD,
1168 .we0 = 16,
1169 .ctl0 = CE0_CTRL_REG,
1170 .timing = CE0_TIMING_COMPENSATION_REG,
1171 .hclk_mask = 0xf0fff0ff,
1172 .hdiv_max = 2,
1173 .calibrate = aspeed_spi_ast2600_calibrate,
1174 .segment_start = aspeed_spi_segment_ast2600_start,
1175 .segment_end = aspeed_spi_segment_ast2600_end,
1176 .segment_reg = aspeed_spi_segment_ast2600_reg,
1179 static const struct of_device_id aspeed_spi_matches[] = {
1180 { .compatible = "aspeed,ast2400-fmc", .data = &ast2400_fmc_data },
1181 { .compatible = "aspeed,ast2400-spi", .data = &ast2400_spi_data },
1182 { .compatible = "aspeed,ast2500-fmc", .data = &ast2500_fmc_data },
1183 { .compatible = "aspeed,ast2500-spi", .data = &ast2500_spi_data },
1184 { .compatible = "aspeed,ast2600-fmc", .data = &ast2600_fmc_data },
1185 { .compatible = "aspeed,ast2600-spi", .data = &ast2600_spi_data },
1188 MODULE_DEVICE_TABLE(of, aspeed_spi_matches);
1190 static struct platform_driver aspeed_spi_driver = {
1191 .probe = aspeed_spi_probe,
1192 .remove = aspeed_spi_remove,
1193 .driver = {
1194 .name = DEVICE_NAME,
1195 .of_match_table = aspeed_spi_matches,
1199 module_platform_driver(aspeed_spi_driver);
1201 MODULE_DESCRIPTION("ASPEED Static Memory Controller Driver");
1202 MODULE_AUTHOR("Chin-Ting Kuo <chin-ting_kuo@aspeedtech.com>");
1203 MODULE_AUTHOR("Cedric Le Goater <clg@kaod.org>");
1204 MODULE_LICENSE("GPL v2");