drm: add modifiers for MediaTek tiled formats
[drm/drm-misc.git] / drivers / spi / spi-atmel.c
blob89a6b46cd3191a991d838155296f20b5d7a2cc64
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for Atmel AT32 and AT91 SPI Controllers
5 * Copyright (C) 2006 Atmel Corporation
6 */
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
21 #include <linux/io.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/iopoll.h>
26 #include <trace/events/spi.h>
28 /* SPI register offsets */
29 #define SPI_CR 0x0000
30 #define SPI_MR 0x0004
31 #define SPI_RDR 0x0008
32 #define SPI_TDR 0x000c
33 #define SPI_SR 0x0010
34 #define SPI_IER 0x0014
35 #define SPI_IDR 0x0018
36 #define SPI_IMR 0x001c
37 #define SPI_CSR0 0x0030
38 #define SPI_CSR1 0x0034
39 #define SPI_CSR2 0x0038
40 #define SPI_CSR3 0x003c
41 #define SPI_FMR 0x0040
42 #define SPI_FLR 0x0044
43 #define SPI_VERSION 0x00fc
44 #define SPI_RPR 0x0100
45 #define SPI_RCR 0x0104
46 #define SPI_TPR 0x0108
47 #define SPI_TCR 0x010c
48 #define SPI_RNPR 0x0110
49 #define SPI_RNCR 0x0114
50 #define SPI_TNPR 0x0118
51 #define SPI_TNCR 0x011c
52 #define SPI_PTCR 0x0120
53 #define SPI_PTSR 0x0124
55 /* Bitfields in CR */
56 #define SPI_SPIEN_OFFSET 0
57 #define SPI_SPIEN_SIZE 1
58 #define SPI_SPIDIS_OFFSET 1
59 #define SPI_SPIDIS_SIZE 1
60 #define SPI_SWRST_OFFSET 7
61 #define SPI_SWRST_SIZE 1
62 #define SPI_LASTXFER_OFFSET 24
63 #define SPI_LASTXFER_SIZE 1
64 #define SPI_TXFCLR_OFFSET 16
65 #define SPI_TXFCLR_SIZE 1
66 #define SPI_RXFCLR_OFFSET 17
67 #define SPI_RXFCLR_SIZE 1
68 #define SPI_FIFOEN_OFFSET 30
69 #define SPI_FIFOEN_SIZE 1
70 #define SPI_FIFODIS_OFFSET 31
71 #define SPI_FIFODIS_SIZE 1
73 /* Bitfields in MR */
74 #define SPI_MSTR_OFFSET 0
75 #define SPI_MSTR_SIZE 1
76 #define SPI_PS_OFFSET 1
77 #define SPI_PS_SIZE 1
78 #define SPI_PCSDEC_OFFSET 2
79 #define SPI_PCSDEC_SIZE 1
80 #define SPI_FDIV_OFFSET 3
81 #define SPI_FDIV_SIZE 1
82 #define SPI_MODFDIS_OFFSET 4
83 #define SPI_MODFDIS_SIZE 1
84 #define SPI_WDRBT_OFFSET 5
85 #define SPI_WDRBT_SIZE 1
86 #define SPI_LLB_OFFSET 7
87 #define SPI_LLB_SIZE 1
88 #define SPI_PCS_OFFSET 16
89 #define SPI_PCS_SIZE 4
90 #define SPI_DLYBCS_OFFSET 24
91 #define SPI_DLYBCS_SIZE 8
93 /* Bitfields in RDR */
94 #define SPI_RD_OFFSET 0
95 #define SPI_RD_SIZE 16
97 /* Bitfields in TDR */
98 #define SPI_TD_OFFSET 0
99 #define SPI_TD_SIZE 16
101 /* Bitfields in SR */
102 #define SPI_RDRF_OFFSET 0
103 #define SPI_RDRF_SIZE 1
104 #define SPI_TDRE_OFFSET 1
105 #define SPI_TDRE_SIZE 1
106 #define SPI_MODF_OFFSET 2
107 #define SPI_MODF_SIZE 1
108 #define SPI_OVRES_OFFSET 3
109 #define SPI_OVRES_SIZE 1
110 #define SPI_ENDRX_OFFSET 4
111 #define SPI_ENDRX_SIZE 1
112 #define SPI_ENDTX_OFFSET 5
113 #define SPI_ENDTX_SIZE 1
114 #define SPI_RXBUFF_OFFSET 6
115 #define SPI_RXBUFF_SIZE 1
116 #define SPI_TXBUFE_OFFSET 7
117 #define SPI_TXBUFE_SIZE 1
118 #define SPI_NSSR_OFFSET 8
119 #define SPI_NSSR_SIZE 1
120 #define SPI_TXEMPTY_OFFSET 9
121 #define SPI_TXEMPTY_SIZE 1
122 #define SPI_SPIENS_OFFSET 16
123 #define SPI_SPIENS_SIZE 1
124 #define SPI_TXFEF_OFFSET 24
125 #define SPI_TXFEF_SIZE 1
126 #define SPI_TXFFF_OFFSET 25
127 #define SPI_TXFFF_SIZE 1
128 #define SPI_TXFTHF_OFFSET 26
129 #define SPI_TXFTHF_SIZE 1
130 #define SPI_RXFEF_OFFSET 27
131 #define SPI_RXFEF_SIZE 1
132 #define SPI_RXFFF_OFFSET 28
133 #define SPI_RXFFF_SIZE 1
134 #define SPI_RXFTHF_OFFSET 29
135 #define SPI_RXFTHF_SIZE 1
136 #define SPI_TXFPTEF_OFFSET 30
137 #define SPI_TXFPTEF_SIZE 1
138 #define SPI_RXFPTEF_OFFSET 31
139 #define SPI_RXFPTEF_SIZE 1
141 /* Bitfields in CSR0 */
142 #define SPI_CPOL_OFFSET 0
143 #define SPI_CPOL_SIZE 1
144 #define SPI_NCPHA_OFFSET 1
145 #define SPI_NCPHA_SIZE 1
146 #define SPI_CSAAT_OFFSET 3
147 #define SPI_CSAAT_SIZE 1
148 #define SPI_BITS_OFFSET 4
149 #define SPI_BITS_SIZE 4
150 #define SPI_SCBR_OFFSET 8
151 #define SPI_SCBR_SIZE 8
152 #define SPI_DLYBS_OFFSET 16
153 #define SPI_DLYBS_SIZE 8
154 #define SPI_DLYBCT_OFFSET 24
155 #define SPI_DLYBCT_SIZE 8
157 /* Bitfields in RCR */
158 #define SPI_RXCTR_OFFSET 0
159 #define SPI_RXCTR_SIZE 16
161 /* Bitfields in TCR */
162 #define SPI_TXCTR_OFFSET 0
163 #define SPI_TXCTR_SIZE 16
165 /* Bitfields in RNCR */
166 #define SPI_RXNCR_OFFSET 0
167 #define SPI_RXNCR_SIZE 16
169 /* Bitfields in TNCR */
170 #define SPI_TXNCR_OFFSET 0
171 #define SPI_TXNCR_SIZE 16
173 /* Bitfields in PTCR */
174 #define SPI_RXTEN_OFFSET 0
175 #define SPI_RXTEN_SIZE 1
176 #define SPI_RXTDIS_OFFSET 1
177 #define SPI_RXTDIS_SIZE 1
178 #define SPI_TXTEN_OFFSET 8
179 #define SPI_TXTEN_SIZE 1
180 #define SPI_TXTDIS_OFFSET 9
181 #define SPI_TXTDIS_SIZE 1
183 /* Bitfields in FMR */
184 #define SPI_TXRDYM_OFFSET 0
185 #define SPI_TXRDYM_SIZE 2
186 #define SPI_RXRDYM_OFFSET 4
187 #define SPI_RXRDYM_SIZE 2
188 #define SPI_TXFTHRES_OFFSET 16
189 #define SPI_TXFTHRES_SIZE 6
190 #define SPI_RXFTHRES_OFFSET 24
191 #define SPI_RXFTHRES_SIZE 6
193 /* Bitfields in FLR */
194 #define SPI_TXFL_OFFSET 0
195 #define SPI_TXFL_SIZE 6
196 #define SPI_RXFL_OFFSET 16
197 #define SPI_RXFL_SIZE 6
199 /* Constants for BITS */
200 #define SPI_BITS_8_BPT 0
201 #define SPI_BITS_9_BPT 1
202 #define SPI_BITS_10_BPT 2
203 #define SPI_BITS_11_BPT 3
204 #define SPI_BITS_12_BPT 4
205 #define SPI_BITS_13_BPT 5
206 #define SPI_BITS_14_BPT 6
207 #define SPI_BITS_15_BPT 7
208 #define SPI_BITS_16_BPT 8
209 #define SPI_ONE_DATA 0
210 #define SPI_TWO_DATA 1
211 #define SPI_FOUR_DATA 2
213 /* Bit manipulation macros */
214 #define SPI_BIT(name) \
215 (1 << SPI_##name##_OFFSET)
216 #define SPI_BF(name, value) \
217 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
218 #define SPI_BFEXT(name, value) \
219 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
220 #define SPI_BFINS(name, value, old) \
221 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
222 | SPI_BF(name, value))
224 /* Register access macros */
225 #define spi_readl(port, reg) \
226 readl_relaxed((port)->regs + SPI_##reg)
227 #define spi_writel(port, reg, value) \
228 writel_relaxed((value), (port)->regs + SPI_##reg)
229 #define spi_writew(port, reg, value) \
230 writew_relaxed((value), (port)->regs + SPI_##reg)
232 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
233 * cache operations; better heuristics consider wordsize and bitrate.
235 #define DMA_MIN_BYTES 16
237 #define AUTOSUSPEND_TIMEOUT 2000
239 struct atmel_spi_caps {
240 bool is_spi2;
241 bool has_wdrbt;
242 bool has_dma_support;
243 bool has_pdc_support;
247 * The core SPI transfer engine just talks to a register bank to set up
248 * DMA transfers; transfer queue progress is driven by IRQs. The clock
249 * framework provides the base clock, subdivided for each spi_device.
251 struct atmel_spi {
252 spinlock_t lock;
253 unsigned long flags;
255 phys_addr_t phybase;
256 void __iomem *regs;
257 int irq;
258 struct clk *clk;
259 struct platform_device *pdev;
260 unsigned long spi_clk;
262 struct spi_transfer *current_transfer;
263 int current_remaining_bytes;
264 int done_status;
265 dma_addr_t dma_addr_rx_bbuf;
266 dma_addr_t dma_addr_tx_bbuf;
267 void *addr_rx_bbuf;
268 void *addr_tx_bbuf;
270 struct completion xfer_completion;
272 struct atmel_spi_caps caps;
274 bool use_dma;
275 bool use_pdc;
277 bool keep_cs;
279 u32 fifo_size;
280 bool last_polarity;
281 u8 native_cs_free;
282 u8 native_cs_for_gpio;
285 /* Controller-specific per-slave state */
286 struct atmel_spi_device {
287 u32 csr;
290 #define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
291 #define INVALID_DMA_ADDRESS 0xffffffff
294 * This frequency can be anything supported by the controller, but to avoid
295 * unnecessary delay, the highest possible frequency is chosen.
297 * This frequency is the highest possible which is not interfering with other
298 * chip select registers (see Note for Serial Clock Bit Rate configuration in
299 * Atmel-11121F-ATARM-SAMA5D3-Series-Datasheet_02-Feb-16, page 1283)
301 #define DUMMY_MSG_FREQUENCY 0x02
303 * 8 bits is the minimum data the controller is capable of sending.
305 * This message can be anything as it should not be treated by any SPI device.
307 #define DUMMY_MSG 0xAA
310 * Version 2 of the SPI controller has
311 * - CR.LASTXFER
312 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
313 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
314 * - SPI_CSRx.CSAAT
315 * - SPI_CSRx.SBCR allows faster clocking
317 static bool atmel_spi_is_v2(struct atmel_spi *as)
319 return as->caps.is_spi2;
323 * Send a dummy message.
325 * This is sometimes needed when using a CS GPIO to force clock transition when
326 * switching between devices with different polarities.
328 static void atmel_spi_send_dummy(struct atmel_spi *as, struct spi_device *spi, int chip_select)
330 u32 status;
331 u32 csr;
334 * Set a clock frequency to allow sending message on SPI bus.
335 * The frequency here can be anything, but is needed for
336 * the controller to send the data.
338 csr = spi_readl(as, CSR0 + 4 * chip_select);
339 csr = SPI_BFINS(SCBR, DUMMY_MSG_FREQUENCY, csr);
340 spi_writel(as, CSR0 + 4 * chip_select, csr);
343 * Read all data coming from SPI bus, needed to be able to send
344 * the message.
346 spi_readl(as, RDR);
347 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
348 spi_readl(as, RDR);
349 cpu_relax();
352 spi_writel(as, TDR, DUMMY_MSG);
354 readl_poll_timeout_atomic(as->regs + SPI_SR, status,
355 (status & SPI_BIT(TXEMPTY)), 1, 1000);
360 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
361 * they assume that spi slave device state will not change on deselect, so
362 * that automagic deselection is OK. ("NPCSx rises if no data is to be
363 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
364 * controllers have CSAAT and friends.
366 * Even controller newer than ar91rm9200, using GPIOs can make sens as
367 * it lets us support active-high chipselects despite the controller's
368 * belief that only active-low devices/systems exists.
370 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
371 * right when driven with GPIO. ("Mode Fault does not allow more than one
372 * Master on Chip Select 0.") No workaround exists for that ... so for
373 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
374 * and (c) will trigger that first erratum in some cases.
376 * When changing the clock polarity, the SPI controller waits for the next
377 * transmission to enforce the default clock state. This may be an issue when
378 * using a GPIO as Chip Select: the clock level is applied only when the first
379 * packet is sent, once the CS has already been asserted. The workaround is to
380 * avoid this by sending a first (dummy) message before toggling the CS state.
382 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
384 struct atmel_spi_device *asd = spi->controller_state;
385 bool new_polarity;
386 int chip_select;
387 u32 mr;
389 if (spi_get_csgpiod(spi, 0))
390 chip_select = as->native_cs_for_gpio;
391 else
392 chip_select = spi_get_chipselect(spi, 0);
394 if (atmel_spi_is_v2(as)) {
395 spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
396 /* For the low SPI version, there is a issue that PDC transfer
397 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
399 spi_writel(as, CSR0, asd->csr);
400 if (as->caps.has_wdrbt) {
401 spi_writel(as, MR,
402 SPI_BF(PCS, ~(0x01 << chip_select))
403 | SPI_BIT(WDRBT)
404 | SPI_BIT(MODFDIS)
405 | SPI_BIT(MSTR));
406 } else {
407 spi_writel(as, MR,
408 SPI_BF(PCS, ~(0x01 << chip_select))
409 | SPI_BIT(MODFDIS)
410 | SPI_BIT(MSTR));
413 mr = spi_readl(as, MR);
416 * Ensures the clock polarity is valid before we actually
417 * assert the CS to avoid spurious clock edges to be
418 * processed by the spi devices.
420 if (spi_get_csgpiod(spi, 0)) {
421 new_polarity = (asd->csr & SPI_BIT(CPOL)) != 0;
422 if (new_polarity != as->last_polarity) {
424 * Need to disable the GPIO before sending the dummy
425 * message because it is already set by the spi core.
427 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), 0);
428 atmel_spi_send_dummy(as, spi, chip_select);
429 as->last_polarity = new_polarity;
430 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), 1);
433 } else {
434 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
435 int i;
436 u32 csr;
438 /* Make sure clock polarity is correct */
439 for (i = 0; i < spi->controller->num_chipselect; i++) {
440 csr = spi_readl(as, CSR0 + 4 * i);
441 if ((csr ^ cpol) & SPI_BIT(CPOL))
442 spi_writel(as, CSR0 + 4 * i,
443 csr ^ SPI_BIT(CPOL));
446 mr = spi_readl(as, MR);
447 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
448 spi_writel(as, MR, mr);
451 dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
454 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
456 int chip_select;
457 u32 mr;
459 if (spi_get_csgpiod(spi, 0))
460 chip_select = as->native_cs_for_gpio;
461 else
462 chip_select = spi_get_chipselect(spi, 0);
464 /* only deactivate *this* device; sometimes transfers to
465 * another device may be active when this routine is called.
467 mr = spi_readl(as, MR);
468 if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
469 mr = SPI_BFINS(PCS, 0xf, mr);
470 spi_writel(as, MR, mr);
473 dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
475 if (!spi_get_csgpiod(spi, 0))
476 spi_writel(as, CR, SPI_BIT(LASTXFER));
479 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
481 spin_lock_irqsave(&as->lock, as->flags);
484 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
486 spin_unlock_irqrestore(&as->lock, as->flags);
489 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
491 return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
494 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
495 struct spi_transfer *xfer)
497 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
500 static bool atmel_spi_can_dma(struct spi_controller *host,
501 struct spi_device *spi,
502 struct spi_transfer *xfer)
504 struct atmel_spi *as = spi_controller_get_devdata(host);
506 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
507 return atmel_spi_use_dma(as, xfer) &&
508 !atmel_spi_is_vmalloc_xfer(xfer);
509 else
510 return atmel_spi_use_dma(as, xfer);
514 static int atmel_spi_dma_slave_config(struct atmel_spi *as, u8 bits_per_word)
516 struct spi_controller *host = platform_get_drvdata(as->pdev);
517 struct dma_slave_config slave_config;
518 int err = 0;
520 if (bits_per_word > 8) {
521 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
522 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
523 } else {
524 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
525 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
528 slave_config.dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
529 slave_config.src_addr = (dma_addr_t)as->phybase + SPI_RDR;
530 slave_config.src_maxburst = 1;
531 slave_config.dst_maxburst = 1;
532 slave_config.device_fc = false;
535 * This driver uses fixed peripheral select mode (PS bit set to '0' in
536 * the Mode Register).
537 * So according to the datasheet, when FIFOs are available (and
538 * enabled), the Transmit FIFO operates in Multiple Data Mode.
539 * In this mode, up to 2 data, not 4, can be written into the Transmit
540 * Data Register in a single access.
541 * However, the first data has to be written into the lowest 16 bits and
542 * the second data into the highest 16 bits of the Transmit
543 * Data Register. For 8bit data (the most frequent case), it would
544 * require to rework tx_buf so each data would actually fit 16 bits.
545 * So we'd rather write only one data at the time. Hence the transmit
546 * path works the same whether FIFOs are available (and enabled) or not.
548 if (dmaengine_slave_config(host->dma_tx, &slave_config)) {
549 dev_err(&as->pdev->dev,
550 "failed to configure tx dma channel\n");
551 err = -EINVAL;
555 * This driver configures the spi controller for host mode (MSTR bit
556 * set to '1' in the Mode Register).
557 * So according to the datasheet, when FIFOs are available (and
558 * enabled), the Receive FIFO operates in Single Data Mode.
559 * So the receive path works the same whether FIFOs are available (and
560 * enabled) or not.
562 if (dmaengine_slave_config(host->dma_rx, &slave_config)) {
563 dev_err(&as->pdev->dev,
564 "failed to configure rx dma channel\n");
565 err = -EINVAL;
568 return err;
571 static int atmel_spi_configure_dma(struct spi_controller *host,
572 struct atmel_spi *as)
574 struct device *dev = &as->pdev->dev;
575 int err;
577 host->dma_tx = dma_request_chan(dev, "tx");
578 if (IS_ERR(host->dma_tx)) {
579 err = PTR_ERR(host->dma_tx);
580 dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
581 goto error_clear;
584 host->dma_rx = dma_request_chan(dev, "rx");
585 if (IS_ERR(host->dma_rx)) {
586 err = PTR_ERR(host->dma_rx);
588 * No reason to check EPROBE_DEFER here since we have already
589 * requested tx channel.
591 dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
592 goto error;
595 err = atmel_spi_dma_slave_config(as, 8);
596 if (err)
597 goto error;
599 dev_info(&as->pdev->dev,
600 "Using %s (tx) and %s (rx) for DMA transfers\n",
601 dma_chan_name(host->dma_tx),
602 dma_chan_name(host->dma_rx));
604 return 0;
605 error:
606 if (!IS_ERR(host->dma_rx))
607 dma_release_channel(host->dma_rx);
608 if (!IS_ERR(host->dma_tx))
609 dma_release_channel(host->dma_tx);
610 error_clear:
611 host->dma_tx = host->dma_rx = NULL;
612 return err;
615 static void atmel_spi_stop_dma(struct spi_controller *host)
617 if (host->dma_rx)
618 dmaengine_terminate_all(host->dma_rx);
619 if (host->dma_tx)
620 dmaengine_terminate_all(host->dma_tx);
623 static void atmel_spi_release_dma(struct spi_controller *host)
625 if (host->dma_rx) {
626 dma_release_channel(host->dma_rx);
627 host->dma_rx = NULL;
629 if (host->dma_tx) {
630 dma_release_channel(host->dma_tx);
631 host->dma_tx = NULL;
635 /* This function is called by the DMA driver from tasklet context */
636 static void dma_callback(void *data)
638 struct spi_controller *host = data;
639 struct atmel_spi *as = spi_controller_get_devdata(host);
641 if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
642 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
643 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
644 as->current_transfer->len);
646 complete(&as->xfer_completion);
650 * Next transfer using PIO without FIFO.
652 static void atmel_spi_next_xfer_single(struct spi_controller *host,
653 struct spi_transfer *xfer)
655 struct atmel_spi *as = spi_controller_get_devdata(host);
656 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
658 dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_pio\n");
660 /* Make sure data is not remaining in RDR */
661 spi_readl(as, RDR);
662 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
663 spi_readl(as, RDR);
664 cpu_relax();
667 if (xfer->bits_per_word > 8)
668 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
669 else
670 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
672 dev_dbg(host->dev.parent,
673 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
674 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
675 xfer->bits_per_word);
677 /* Enable relevant interrupts */
678 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
682 * Next transfer using PIO with FIFO.
684 static void atmel_spi_next_xfer_fifo(struct spi_controller *host,
685 struct spi_transfer *xfer)
687 struct atmel_spi *as = spi_controller_get_devdata(host);
688 u32 current_remaining_data, num_data;
689 u32 offset = xfer->len - as->current_remaining_bytes;
690 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
691 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset);
692 u16 td0, td1;
693 u32 fifomr;
695 dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_fifo\n");
697 /* Compute the number of data to transfer in the current iteration */
698 current_remaining_data = ((xfer->bits_per_word > 8) ?
699 ((u32)as->current_remaining_bytes >> 1) :
700 (u32)as->current_remaining_bytes);
701 num_data = min(current_remaining_data, as->fifo_size);
703 /* Flush RX and TX FIFOs */
704 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
705 while (spi_readl(as, FLR))
706 cpu_relax();
708 /* Set RX FIFO Threshold to the number of data to transfer */
709 fifomr = spi_readl(as, FMR);
710 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
712 /* Clear FIFO flags in the Status Register, especially RXFTHF */
713 (void)spi_readl(as, SR);
715 /* Fill TX FIFO */
716 while (num_data >= 2) {
717 if (xfer->bits_per_word > 8) {
718 td0 = *words++;
719 td1 = *words++;
720 } else {
721 td0 = *bytes++;
722 td1 = *bytes++;
725 spi_writel(as, TDR, (td1 << 16) | td0);
726 num_data -= 2;
729 if (num_data) {
730 if (xfer->bits_per_word > 8)
731 td0 = *words++;
732 else
733 td0 = *bytes++;
735 spi_writew(as, TDR, td0);
736 num_data--;
739 dev_dbg(host->dev.parent,
740 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
741 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
742 xfer->bits_per_word);
745 * Enable RX FIFO Threshold Flag interrupt to be notified about
746 * transfer completion.
748 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
752 * Next transfer using PIO.
754 static void atmel_spi_next_xfer_pio(struct spi_controller *host,
755 struct spi_transfer *xfer)
757 struct atmel_spi *as = spi_controller_get_devdata(host);
759 if (as->fifo_size)
760 atmel_spi_next_xfer_fifo(host, xfer);
761 else
762 atmel_spi_next_xfer_single(host, xfer);
766 * Submit next transfer for DMA.
768 static int atmel_spi_next_xfer_dma_submit(struct spi_controller *host,
769 struct spi_transfer *xfer,
770 u32 *plen)
772 struct atmel_spi *as = spi_controller_get_devdata(host);
773 struct dma_chan *rxchan = host->dma_rx;
774 struct dma_chan *txchan = host->dma_tx;
775 struct dma_async_tx_descriptor *rxdesc;
776 struct dma_async_tx_descriptor *txdesc;
777 dma_cookie_t cookie;
779 dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
781 /* Check that the channels are available */
782 if (!rxchan || !txchan)
783 return -ENODEV;
786 *plen = xfer->len;
788 if (atmel_spi_dma_slave_config(as, xfer->bits_per_word))
789 goto err_exit;
791 /* Send both scatterlists */
792 if (atmel_spi_is_vmalloc_xfer(xfer) &&
793 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
794 rxdesc = dmaengine_prep_slave_single(rxchan,
795 as->dma_addr_rx_bbuf,
796 xfer->len,
797 DMA_DEV_TO_MEM,
798 DMA_PREP_INTERRUPT |
799 DMA_CTRL_ACK);
800 } else {
801 rxdesc = dmaengine_prep_slave_sg(rxchan,
802 xfer->rx_sg.sgl,
803 xfer->rx_sg.nents,
804 DMA_DEV_TO_MEM,
805 DMA_PREP_INTERRUPT |
806 DMA_CTRL_ACK);
808 if (!rxdesc)
809 goto err_dma;
811 if (atmel_spi_is_vmalloc_xfer(xfer) &&
812 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
813 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
814 txdesc = dmaengine_prep_slave_single(txchan,
815 as->dma_addr_tx_bbuf,
816 xfer->len, DMA_MEM_TO_DEV,
817 DMA_PREP_INTERRUPT |
818 DMA_CTRL_ACK);
819 } else {
820 txdesc = dmaengine_prep_slave_sg(txchan,
821 xfer->tx_sg.sgl,
822 xfer->tx_sg.nents,
823 DMA_MEM_TO_DEV,
824 DMA_PREP_INTERRUPT |
825 DMA_CTRL_ACK);
827 if (!txdesc)
828 goto err_dma;
830 dev_dbg(host->dev.parent,
831 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
832 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
833 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
835 /* Enable relevant interrupts */
836 spi_writel(as, IER, SPI_BIT(OVRES));
838 /* Put the callback on the RX transfer only, that should finish last */
839 rxdesc->callback = dma_callback;
840 rxdesc->callback_param = host;
842 /* Submit and fire RX and TX with TX last so we're ready to read! */
843 cookie = rxdesc->tx_submit(rxdesc);
844 if (dma_submit_error(cookie))
845 goto err_dma;
846 cookie = txdesc->tx_submit(txdesc);
847 if (dma_submit_error(cookie))
848 goto err_dma;
849 rxchan->device->device_issue_pending(rxchan);
850 txchan->device->device_issue_pending(txchan);
852 return 0;
854 err_dma:
855 spi_writel(as, IDR, SPI_BIT(OVRES));
856 atmel_spi_stop_dma(host);
857 err_exit:
858 return -ENOMEM;
861 static void atmel_spi_next_xfer_data(struct spi_controller *host,
862 struct spi_transfer *xfer,
863 dma_addr_t *tx_dma,
864 dma_addr_t *rx_dma,
865 u32 *plen)
867 *rx_dma = xfer->rx_dma + xfer->len - *plen;
868 *tx_dma = xfer->tx_dma + xfer->len - *plen;
869 if (*plen > host->max_dma_len)
870 *plen = host->max_dma_len;
873 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
874 struct spi_device *spi,
875 struct spi_transfer *xfer)
877 u32 scbr, csr;
878 unsigned long bus_hz;
879 int chip_select;
881 if (spi_get_csgpiod(spi, 0))
882 chip_select = as->native_cs_for_gpio;
883 else
884 chip_select = spi_get_chipselect(spi, 0);
886 /* v1 chips start out at half the peripheral bus speed. */
887 bus_hz = as->spi_clk;
888 if (!atmel_spi_is_v2(as))
889 bus_hz /= 2;
892 * Calculate the lowest divider that satisfies the
893 * constraint, assuming div32/fdiv/mbz == 0.
895 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
898 * If the resulting divider doesn't fit into the
899 * register bitfield, we can't satisfy the constraint.
901 if (scbr >= (1 << SPI_SCBR_SIZE)) {
902 dev_err(&spi->dev,
903 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
904 xfer->speed_hz, scbr, bus_hz/255);
905 return -EINVAL;
907 if (scbr == 0) {
908 dev_err(&spi->dev,
909 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
910 xfer->speed_hz, scbr, bus_hz);
911 return -EINVAL;
913 csr = spi_readl(as, CSR0 + 4 * chip_select);
914 csr = SPI_BFINS(SCBR, scbr, csr);
915 spi_writel(as, CSR0 + 4 * chip_select, csr);
916 xfer->effective_speed_hz = bus_hz / scbr;
918 return 0;
922 * Submit next transfer for PDC.
923 * lock is held, spi irq is blocked
925 static void atmel_spi_pdc_next_xfer(struct spi_controller *host,
926 struct spi_transfer *xfer)
928 struct atmel_spi *as = spi_controller_get_devdata(host);
929 u32 len;
930 dma_addr_t tx_dma, rx_dma;
932 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
934 len = as->current_remaining_bytes;
935 atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len);
936 as->current_remaining_bytes -= len;
938 spi_writel(as, RPR, rx_dma);
939 spi_writel(as, TPR, tx_dma);
941 if (xfer->bits_per_word > 8)
942 len >>= 1;
943 spi_writel(as, RCR, len);
944 spi_writel(as, TCR, len);
946 dev_dbg(&host->dev,
947 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
948 xfer, xfer->len, xfer->tx_buf,
949 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
950 (unsigned long long)xfer->rx_dma);
952 if (as->current_remaining_bytes) {
953 len = as->current_remaining_bytes;
954 atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len);
955 as->current_remaining_bytes -= len;
957 spi_writel(as, RNPR, rx_dma);
958 spi_writel(as, TNPR, tx_dma);
960 if (xfer->bits_per_word > 8)
961 len >>= 1;
962 spi_writel(as, RNCR, len);
963 spi_writel(as, TNCR, len);
965 dev_dbg(&host->dev,
966 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
967 xfer, xfer->len, xfer->tx_buf,
968 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
969 (unsigned long long)xfer->rx_dma);
972 /* REVISIT: We're waiting for RXBUFF before we start the next
973 * transfer because we need to handle some difficult timing
974 * issues otherwise. If we wait for TXBUFE in one transfer and
975 * then starts waiting for RXBUFF in the next, it's difficult
976 * to tell the difference between the RXBUFF interrupt we're
977 * actually waiting for and the RXBUFF interrupt of the
978 * previous transfer.
980 * It should be doable, though. Just not now...
982 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
983 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
987 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
988 * - The buffer is either valid for CPU access, else NULL
989 * - If the buffer is valid, so is its DMA address
991 static int
992 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
994 struct device *dev = &as->pdev->dev;
996 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
997 if (xfer->tx_buf) {
998 /* tx_buf is a const void* where we need a void * for the dma
999 * mapping */
1000 void *nonconst_tx = (void *)xfer->tx_buf;
1002 xfer->tx_dma = dma_map_single(dev,
1003 nonconst_tx, xfer->len,
1004 DMA_TO_DEVICE);
1005 if (dma_mapping_error(dev, xfer->tx_dma))
1006 return -ENOMEM;
1008 if (xfer->rx_buf) {
1009 xfer->rx_dma = dma_map_single(dev,
1010 xfer->rx_buf, xfer->len,
1011 DMA_FROM_DEVICE);
1012 if (dma_mapping_error(dev, xfer->rx_dma)) {
1013 if (xfer->tx_buf)
1014 dma_unmap_single(dev,
1015 xfer->tx_dma, xfer->len,
1016 DMA_TO_DEVICE);
1017 return -ENOMEM;
1020 return 0;
1023 static void atmel_spi_dma_unmap_xfer(struct spi_controller *host,
1024 struct spi_transfer *xfer)
1026 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
1027 dma_unmap_single(host->dev.parent, xfer->tx_dma,
1028 xfer->len, DMA_TO_DEVICE);
1029 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
1030 dma_unmap_single(host->dev.parent, xfer->rx_dma,
1031 xfer->len, DMA_FROM_DEVICE);
1034 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
1036 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1039 static void
1040 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1042 u8 *rxp;
1043 u16 *rxp16;
1044 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
1046 if (xfer->bits_per_word > 8) {
1047 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1048 *rxp16 = spi_readl(as, RDR);
1049 } else {
1050 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1051 *rxp = spi_readl(as, RDR);
1053 if (xfer->bits_per_word > 8) {
1054 if (as->current_remaining_bytes > 2)
1055 as->current_remaining_bytes -= 2;
1056 else
1057 as->current_remaining_bytes = 0;
1058 } else {
1059 as->current_remaining_bytes--;
1063 static void
1064 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1066 u32 fifolr = spi_readl(as, FLR);
1067 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1068 u32 offset = xfer->len - as->current_remaining_bytes;
1069 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1070 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset);
1071 u16 rd; /* RD field is the lowest 16 bits of RDR */
1073 /* Update the number of remaining bytes to transfer */
1074 num_bytes = ((xfer->bits_per_word > 8) ?
1075 (num_data << 1) :
1076 num_data);
1078 if (as->current_remaining_bytes > num_bytes)
1079 as->current_remaining_bytes -= num_bytes;
1080 else
1081 as->current_remaining_bytes = 0;
1083 /* Handle odd number of bytes when data are more than 8bit width */
1084 if (xfer->bits_per_word > 8)
1085 as->current_remaining_bytes &= ~0x1;
1087 /* Read data */
1088 while (num_data) {
1089 rd = spi_readl(as, RDR);
1090 if (xfer->bits_per_word > 8)
1091 *words++ = rd;
1092 else
1093 *bytes++ = rd;
1094 num_data--;
1098 /* Called from IRQ
1100 * Must update "current_remaining_bytes" to keep track of data
1101 * to transfer.
1103 static void
1104 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1106 if (as->fifo_size)
1107 atmel_spi_pump_fifo_data(as, xfer);
1108 else
1109 atmel_spi_pump_single_data(as, xfer);
1112 /* Interrupt
1115 static irqreturn_t
1116 atmel_spi_pio_interrupt(int irq, void *dev_id)
1118 struct spi_controller *host = dev_id;
1119 struct atmel_spi *as = spi_controller_get_devdata(host);
1120 u32 status, pending, imr;
1121 struct spi_transfer *xfer;
1122 int ret = IRQ_NONE;
1124 imr = spi_readl(as, IMR);
1125 status = spi_readl(as, SR);
1126 pending = status & imr;
1128 if (pending & SPI_BIT(OVRES)) {
1129 ret = IRQ_HANDLED;
1130 spi_writel(as, IDR, SPI_BIT(OVRES));
1131 dev_warn(host->dev.parent, "overrun\n");
1134 * When we get an overrun, we disregard the current
1135 * transfer. Data will not be copied back from any
1136 * bounce buffer and msg->actual_len will not be
1137 * updated with the last xfer.
1139 * We will also not process any remaning transfers in
1140 * the message.
1142 as->done_status = -EIO;
1143 smp_wmb();
1145 /* Clear any overrun happening while cleaning up */
1146 spi_readl(as, SR);
1148 complete(&as->xfer_completion);
1150 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1151 atmel_spi_lock(as);
1153 if (as->current_remaining_bytes) {
1154 ret = IRQ_HANDLED;
1155 xfer = as->current_transfer;
1156 atmel_spi_pump_pio_data(as, xfer);
1157 if (!as->current_remaining_bytes)
1158 spi_writel(as, IDR, pending);
1160 complete(&as->xfer_completion);
1163 atmel_spi_unlock(as);
1164 } else {
1165 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1166 ret = IRQ_HANDLED;
1167 spi_writel(as, IDR, pending);
1170 return ret;
1173 static irqreturn_t
1174 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1176 struct spi_controller *host = dev_id;
1177 struct atmel_spi *as = spi_controller_get_devdata(host);
1178 u32 status, pending, imr;
1179 int ret = IRQ_NONE;
1181 imr = spi_readl(as, IMR);
1182 status = spi_readl(as, SR);
1183 pending = status & imr;
1185 if (pending & SPI_BIT(OVRES)) {
1187 ret = IRQ_HANDLED;
1189 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1190 | SPI_BIT(OVRES)));
1192 /* Clear any overrun happening while cleaning up */
1193 spi_readl(as, SR);
1195 as->done_status = -EIO;
1197 complete(&as->xfer_completion);
1199 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1200 ret = IRQ_HANDLED;
1202 spi_writel(as, IDR, pending);
1204 complete(&as->xfer_completion);
1207 return ret;
1210 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1212 struct spi_delay *delay = &spi->word_delay;
1213 u32 value = delay->value;
1215 switch (delay->unit) {
1216 case SPI_DELAY_UNIT_NSECS:
1217 value /= 1000;
1218 break;
1219 case SPI_DELAY_UNIT_USECS:
1220 break;
1221 default:
1222 return -EINVAL;
1225 return (as->spi_clk / 1000000 * value) >> 5;
1228 static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1230 int i;
1231 struct spi_controller *host = platform_get_drvdata(as->pdev);
1233 if (!as->native_cs_free)
1234 return; /* already initialized */
1236 if (!host->cs_gpiods)
1237 return; /* No CS GPIO */
1240 * On the first version of the controller (AT91RM9200), CS0
1241 * can't be used associated with GPIO
1243 if (atmel_spi_is_v2(as))
1244 i = 0;
1245 else
1246 i = 1;
1248 for (; i < 4; i++)
1249 if (host->cs_gpiods[i])
1250 as->native_cs_free |= BIT(i);
1252 if (as->native_cs_free)
1253 as->native_cs_for_gpio = ffs(as->native_cs_free);
1256 static int atmel_spi_setup(struct spi_device *spi)
1258 struct atmel_spi *as;
1259 struct atmel_spi_device *asd;
1260 u32 csr;
1261 unsigned int bits = spi->bits_per_word;
1262 int chip_select;
1263 int word_delay_csr;
1265 as = spi_controller_get_devdata(spi->controller);
1267 /* see notes above re chipselect */
1268 if (!spi_get_csgpiod(spi, 0) && (spi->mode & SPI_CS_HIGH)) {
1269 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1270 return -EINVAL;
1273 /* Setup() is called during spi_register_controller(aka
1274 * spi_register_master) but after all membmers of the cs_gpiod
1275 * array have been filled, so we can looked for which native
1276 * CS will be free for using with GPIO
1278 initialize_native_cs_for_gpio(as);
1280 if (spi_get_csgpiod(spi, 0) && as->native_cs_free) {
1281 dev_err(&spi->dev,
1282 "No native CS available to support this GPIO CS\n");
1283 return -EBUSY;
1286 if (spi_get_csgpiod(spi, 0))
1287 chip_select = as->native_cs_for_gpio;
1288 else
1289 chip_select = spi_get_chipselect(spi, 0);
1291 csr = SPI_BF(BITS, bits - 8);
1292 if (spi->mode & SPI_CPOL)
1293 csr |= SPI_BIT(CPOL);
1294 if (!(spi->mode & SPI_CPHA))
1295 csr |= SPI_BIT(NCPHA);
1297 if (!spi_get_csgpiod(spi, 0))
1298 csr |= SPI_BIT(CSAAT);
1299 csr |= SPI_BF(DLYBS, 0);
1301 word_delay_csr = atmel_word_delay_csr(spi, as);
1302 if (word_delay_csr < 0)
1303 return word_delay_csr;
1305 /* DLYBCT adds delays between words. This is useful for slow devices
1306 * that need a bit of time to setup the next transfer.
1308 csr |= SPI_BF(DLYBCT, word_delay_csr);
1310 asd = spi->controller_state;
1311 if (!asd) {
1312 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1313 if (!asd)
1314 return -ENOMEM;
1316 spi->controller_state = asd;
1319 asd->csr = csr;
1321 dev_dbg(&spi->dev,
1322 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1323 bits, spi->mode, spi_get_chipselect(spi, 0), csr);
1325 if (!atmel_spi_is_v2(as))
1326 spi_writel(as, CSR0 + 4 * chip_select, csr);
1328 return 0;
1331 static void atmel_spi_set_cs(struct spi_device *spi, bool enable)
1333 struct atmel_spi *as = spi_controller_get_devdata(spi->controller);
1334 /* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
1335 * since we already have routines for activate/deactivate translate
1336 * high/low to active/inactive
1338 enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
1340 if (enable) {
1341 cs_activate(as, spi);
1342 } else {
1343 cs_deactivate(as, spi);
1348 static int atmel_spi_one_transfer(struct spi_controller *host,
1349 struct spi_device *spi,
1350 struct spi_transfer *xfer)
1352 struct atmel_spi *as;
1353 u8 bits;
1354 u32 len;
1355 struct atmel_spi_device *asd;
1356 int timeout;
1357 int ret;
1358 unsigned int dma_timeout;
1359 long ret_timeout;
1361 as = spi_controller_get_devdata(host);
1363 asd = spi->controller_state;
1364 bits = (asd->csr >> 4) & 0xf;
1365 if (bits != xfer->bits_per_word - 8) {
1366 dev_dbg(&spi->dev,
1367 "you can't yet change bits_per_word in transfers\n");
1368 return -ENOPROTOOPT;
1372 * DMA map early, for performance (empties dcache ASAP) and
1373 * better fault reporting.
1375 if (as->use_pdc) {
1376 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1377 return -ENOMEM;
1380 atmel_spi_set_xfer_speed(as, spi, xfer);
1382 as->done_status = 0;
1383 as->current_transfer = xfer;
1384 as->current_remaining_bytes = xfer->len;
1385 while (as->current_remaining_bytes) {
1386 reinit_completion(&as->xfer_completion);
1388 if (as->use_pdc) {
1389 atmel_spi_lock(as);
1390 atmel_spi_pdc_next_xfer(host, xfer);
1391 atmel_spi_unlock(as);
1392 } else if (atmel_spi_use_dma(as, xfer)) {
1393 len = as->current_remaining_bytes;
1394 ret = atmel_spi_next_xfer_dma_submit(host,
1395 xfer, &len);
1396 if (ret) {
1397 dev_err(&spi->dev,
1398 "unable to use DMA, fallback to PIO\n");
1399 as->done_status = ret;
1400 break;
1401 } else {
1402 as->current_remaining_bytes -= len;
1403 if (as->current_remaining_bytes < 0)
1404 as->current_remaining_bytes = 0;
1406 } else {
1407 atmel_spi_lock(as);
1408 atmel_spi_next_xfer_pio(host, xfer);
1409 atmel_spi_unlock(as);
1412 dma_timeout = msecs_to_jiffies(spi_controller_xfer_timeout(host, xfer));
1413 ret_timeout = wait_for_completion_timeout(&as->xfer_completion, dma_timeout);
1414 if (!ret_timeout) {
1415 dev_err(&spi->dev, "spi transfer timeout\n");
1416 as->done_status = -EIO;
1419 if (as->done_status)
1420 break;
1423 if (as->done_status) {
1424 if (as->use_pdc) {
1425 dev_warn(host->dev.parent,
1426 "overrun (%u/%u remaining)\n",
1427 spi_readl(as, TCR), spi_readl(as, RCR));
1430 * Clean up DMA registers and make sure the data
1431 * registers are empty.
1433 spi_writel(as, RNCR, 0);
1434 spi_writel(as, TNCR, 0);
1435 spi_writel(as, RCR, 0);
1436 spi_writel(as, TCR, 0);
1437 for (timeout = 1000; timeout; timeout--)
1438 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1439 break;
1440 if (!timeout)
1441 dev_warn(host->dev.parent,
1442 "timeout waiting for TXEMPTY");
1443 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1444 spi_readl(as, RDR);
1446 /* Clear any overrun happening while cleaning up */
1447 spi_readl(as, SR);
1449 } else if (atmel_spi_use_dma(as, xfer)) {
1450 atmel_spi_stop_dma(host);
1454 if (as->use_pdc)
1455 atmel_spi_dma_unmap_xfer(host, xfer);
1457 if (as->use_pdc)
1458 atmel_spi_disable_pdc_transfer(as);
1460 return as->done_status;
1463 static void atmel_spi_cleanup(struct spi_device *spi)
1465 struct atmel_spi_device *asd = spi->controller_state;
1467 if (!asd)
1468 return;
1470 spi->controller_state = NULL;
1471 kfree(asd);
1474 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1476 return spi_readl(as, VERSION) & 0x00000fff;
1479 static void atmel_get_caps(struct atmel_spi *as)
1481 unsigned int version;
1483 version = atmel_get_version(as);
1485 as->caps.is_spi2 = version > 0x121;
1486 as->caps.has_wdrbt = version >= 0x210;
1487 as->caps.has_dma_support = version >= 0x212;
1488 as->caps.has_pdc_support = version < 0x212;
1491 static void atmel_spi_init(struct atmel_spi *as)
1493 spi_writel(as, CR, SPI_BIT(SWRST));
1494 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1496 /* It is recommended to enable FIFOs first thing after reset */
1497 if (as->fifo_size)
1498 spi_writel(as, CR, SPI_BIT(FIFOEN));
1500 if (as->caps.has_wdrbt) {
1501 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1502 | SPI_BIT(MSTR));
1503 } else {
1504 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1507 if (as->use_pdc)
1508 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1509 spi_writel(as, CR, SPI_BIT(SPIEN));
1512 static int atmel_spi_probe(struct platform_device *pdev)
1514 struct resource *regs;
1515 int irq;
1516 struct clk *clk;
1517 int ret;
1518 struct spi_controller *host;
1519 struct atmel_spi *as;
1521 /* Select default pin state */
1522 pinctrl_pm_select_default_state(&pdev->dev);
1524 irq = platform_get_irq(pdev, 0);
1525 if (irq < 0)
1526 return irq;
1528 clk = devm_clk_get(&pdev->dev, "spi_clk");
1529 if (IS_ERR(clk))
1530 return PTR_ERR(clk);
1532 /* setup spi core then atmel-specific driver state */
1533 host = spi_alloc_host(&pdev->dev, sizeof(*as));
1534 if (!host)
1535 return -ENOMEM;
1537 /* the spi->mode bits understood by this driver: */
1538 host->use_gpio_descriptors = true;
1539 host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1540 host->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1541 host->dev.of_node = pdev->dev.of_node;
1542 host->bus_num = pdev->id;
1543 host->num_chipselect = 4;
1544 host->setup = atmel_spi_setup;
1545 host->flags = (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX |
1546 SPI_CONTROLLER_GPIO_SS);
1547 host->transfer_one = atmel_spi_one_transfer;
1548 host->set_cs = atmel_spi_set_cs;
1549 host->cleanup = atmel_spi_cleanup;
1550 host->auto_runtime_pm = true;
1551 host->max_dma_len = SPI_MAX_DMA_XFER;
1552 host->can_dma = atmel_spi_can_dma;
1553 platform_set_drvdata(pdev, host);
1555 as = spi_controller_get_devdata(host);
1557 spin_lock_init(&as->lock);
1559 as->pdev = pdev;
1560 as->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &regs);
1561 if (IS_ERR(as->regs)) {
1562 ret = PTR_ERR(as->regs);
1563 goto out_unmap_regs;
1565 as->phybase = regs->start;
1566 as->irq = irq;
1567 as->clk = clk;
1569 init_completion(&as->xfer_completion);
1571 atmel_get_caps(as);
1573 as->use_dma = false;
1574 as->use_pdc = false;
1575 if (as->caps.has_dma_support) {
1576 ret = atmel_spi_configure_dma(host, as);
1577 if (ret == 0) {
1578 as->use_dma = true;
1579 } else if (ret == -EPROBE_DEFER) {
1580 goto out_unmap_regs;
1582 } else if (as->caps.has_pdc_support) {
1583 as->use_pdc = true;
1586 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1587 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1588 SPI_MAX_DMA_XFER,
1589 &as->dma_addr_rx_bbuf,
1590 GFP_KERNEL | GFP_DMA);
1591 if (!as->addr_rx_bbuf) {
1592 as->use_dma = false;
1593 } else {
1594 as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1595 SPI_MAX_DMA_XFER,
1596 &as->dma_addr_tx_bbuf,
1597 GFP_KERNEL | GFP_DMA);
1598 if (!as->addr_tx_bbuf) {
1599 as->use_dma = false;
1600 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1601 as->addr_rx_bbuf,
1602 as->dma_addr_rx_bbuf);
1605 if (!as->use_dma)
1606 dev_info(host->dev.parent,
1607 " can not allocate dma coherent memory\n");
1610 if (as->caps.has_dma_support && !as->use_dma)
1611 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1613 if (as->use_pdc) {
1614 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1615 0, dev_name(&pdev->dev), host);
1616 } else {
1617 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1618 0, dev_name(&pdev->dev), host);
1620 if (ret)
1621 goto out_unmap_regs;
1623 /* Initialize the hardware */
1624 ret = clk_prepare_enable(clk);
1625 if (ret)
1626 goto out_free_irq;
1628 as->spi_clk = clk_get_rate(clk);
1630 as->fifo_size = 0;
1631 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1632 &as->fifo_size)) {
1633 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1636 atmel_spi_init(as);
1638 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1639 pm_runtime_use_autosuspend(&pdev->dev);
1640 pm_runtime_set_active(&pdev->dev);
1641 pm_runtime_enable(&pdev->dev);
1643 ret = devm_spi_register_controller(&pdev->dev, host);
1644 if (ret)
1645 goto out_free_dma;
1647 /* go! */
1648 dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1649 atmel_get_version(as), (unsigned long)regs->start,
1650 irq);
1652 return 0;
1654 out_free_dma:
1655 pm_runtime_disable(&pdev->dev);
1656 pm_runtime_set_suspended(&pdev->dev);
1658 if (as->use_dma)
1659 atmel_spi_release_dma(host);
1661 spi_writel(as, CR, SPI_BIT(SWRST));
1662 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1663 clk_disable_unprepare(clk);
1664 out_free_irq:
1665 out_unmap_regs:
1666 spi_controller_put(host);
1667 return ret;
1670 static void atmel_spi_remove(struct platform_device *pdev)
1672 struct spi_controller *host = platform_get_drvdata(pdev);
1673 struct atmel_spi *as = spi_controller_get_devdata(host);
1675 pm_runtime_get_sync(&pdev->dev);
1677 /* reset the hardware and block queue progress */
1678 if (as->use_dma) {
1679 atmel_spi_stop_dma(host);
1680 atmel_spi_release_dma(host);
1681 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1682 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1683 as->addr_tx_bbuf,
1684 as->dma_addr_tx_bbuf);
1685 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1686 as->addr_rx_bbuf,
1687 as->dma_addr_rx_bbuf);
1691 spin_lock_irq(&as->lock);
1692 spi_writel(as, CR, SPI_BIT(SWRST));
1693 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1694 spi_readl(as, SR);
1695 spin_unlock_irq(&as->lock);
1697 clk_disable_unprepare(as->clk);
1699 pm_runtime_put_noidle(&pdev->dev);
1700 pm_runtime_disable(&pdev->dev);
1703 static int atmel_spi_runtime_suspend(struct device *dev)
1705 struct spi_controller *host = dev_get_drvdata(dev);
1706 struct atmel_spi *as = spi_controller_get_devdata(host);
1708 clk_disable_unprepare(as->clk);
1709 pinctrl_pm_select_sleep_state(dev);
1711 return 0;
1714 static int atmel_spi_runtime_resume(struct device *dev)
1716 struct spi_controller *host = dev_get_drvdata(dev);
1717 struct atmel_spi *as = spi_controller_get_devdata(host);
1719 pinctrl_pm_select_default_state(dev);
1721 return clk_prepare_enable(as->clk);
1724 static int atmel_spi_suspend(struct device *dev)
1726 struct spi_controller *host = dev_get_drvdata(dev);
1727 int ret;
1729 /* Stop the queue running */
1730 ret = spi_controller_suspend(host);
1731 if (ret)
1732 return ret;
1734 if (!pm_runtime_suspended(dev))
1735 atmel_spi_runtime_suspend(dev);
1737 return 0;
1740 static int atmel_spi_resume(struct device *dev)
1742 struct spi_controller *host = dev_get_drvdata(dev);
1743 struct atmel_spi *as = spi_controller_get_devdata(host);
1744 int ret;
1746 ret = clk_prepare_enable(as->clk);
1747 if (ret)
1748 return ret;
1750 atmel_spi_init(as);
1752 clk_disable_unprepare(as->clk);
1754 if (!pm_runtime_suspended(dev)) {
1755 ret = atmel_spi_runtime_resume(dev);
1756 if (ret)
1757 return ret;
1760 /* Start the queue running */
1761 return spi_controller_resume(host);
1764 static const struct dev_pm_ops atmel_spi_pm_ops = {
1765 SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1766 RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1767 atmel_spi_runtime_resume, NULL)
1770 static const struct of_device_id atmel_spi_dt_ids[] = {
1771 { .compatible = "atmel,at91rm9200-spi" },
1772 { /* sentinel */ }
1775 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1777 static struct platform_driver atmel_spi_driver = {
1778 .driver = {
1779 .name = "atmel_spi",
1780 .pm = pm_ptr(&atmel_spi_pm_ops),
1781 .of_match_table = atmel_spi_dt_ids,
1783 .probe = atmel_spi_probe,
1784 .remove = atmel_spi_remove,
1786 module_platform_driver(atmel_spi_driver);
1788 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1789 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1790 MODULE_LICENSE("GPL");
1791 MODULE_ALIAS("platform:atmel_spi");