1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Driver for Broadcom BCM2835 SPI Controllers
5 * Copyright (C) 2012 Chris Boot
6 * Copyright (C) 2013 Stephen Warren
7 * Copyright (C) 2015 Martin Sperl
9 * This driver is inspired by:
10 * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
11 * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
14 #include <linux/cleanup.h>
15 #include <linux/clk.h>
16 #include <linux/completion.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dmaengine.h>
21 #include <linux/err.h>
22 #include <linux/interrupt.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
27 #include <linux/of_address.h>
28 #include <linux/platform_device.h>
29 #include <linux/gpio/consumer.h>
30 #include <linux/gpio/machine.h> /* FIXME: using GPIO lookup tables */
31 #include <linux/of_irq.h>
32 #include <linux/overflow.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
36 /* SPI register offsets */
37 #define BCM2835_SPI_CS 0x00
38 #define BCM2835_SPI_FIFO 0x04
39 #define BCM2835_SPI_CLK 0x08
40 #define BCM2835_SPI_DLEN 0x0c
41 #define BCM2835_SPI_LTOH 0x10
42 #define BCM2835_SPI_DC 0x14
45 #define BCM2835_SPI_CS_LEN_LONG 0x02000000
46 #define BCM2835_SPI_CS_DMA_LEN 0x01000000
47 #define BCM2835_SPI_CS_CSPOL2 0x00800000
48 #define BCM2835_SPI_CS_CSPOL1 0x00400000
49 #define BCM2835_SPI_CS_CSPOL0 0x00200000
50 #define BCM2835_SPI_CS_RXF 0x00100000
51 #define BCM2835_SPI_CS_RXR 0x00080000
52 #define BCM2835_SPI_CS_TXD 0x00040000
53 #define BCM2835_SPI_CS_RXD 0x00020000
54 #define BCM2835_SPI_CS_DONE 0x00010000
55 #define BCM2835_SPI_CS_LEN 0x00002000
56 #define BCM2835_SPI_CS_REN 0x00001000
57 #define BCM2835_SPI_CS_ADCS 0x00000800
58 #define BCM2835_SPI_CS_INTR 0x00000400
59 #define BCM2835_SPI_CS_INTD 0x00000200
60 #define BCM2835_SPI_CS_DMAEN 0x00000100
61 #define BCM2835_SPI_CS_TA 0x00000080
62 #define BCM2835_SPI_CS_CSPOL 0x00000040
63 #define BCM2835_SPI_CS_CLEAR_RX 0x00000020
64 #define BCM2835_SPI_CS_CLEAR_TX 0x00000010
65 #define BCM2835_SPI_CS_CPOL 0x00000008
66 #define BCM2835_SPI_CS_CPHA 0x00000004
67 #define BCM2835_SPI_CS_CS_10 0x00000002
68 #define BCM2835_SPI_CS_CS_01 0x00000001
70 #define BCM2835_SPI_FIFO_SIZE 64
71 #define BCM2835_SPI_FIFO_SIZE_3_4 48
72 #define BCM2835_SPI_DMA_MIN_LENGTH 96
73 #define BCM2835_SPI_MODE_BITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
74 | SPI_NO_CS | SPI_3WIRE)
76 #define DRV_NAME "spi-bcm2835"
78 /* define polling limits */
79 static unsigned int polling_limit_us
= 30;
80 module_param(polling_limit_us
, uint
, 0664);
81 MODULE_PARM_DESC(polling_limit_us
,
82 "time in us to run a transfer in polling mode\n");
85 * struct bcm2835_spi - BCM2835 SPI controller
86 * @regs: base address of register map
87 * @clk: core clock, divided to calculate serial clock
88 * @cs_gpio: chip-select GPIO descriptor
89 * @clk_hz: core clock cached speed
90 * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
91 * @tfr: SPI transfer currently processed
92 * @ctlr: SPI controller reverse lookup
93 * @tx_buf: pointer whence next transmitted byte is read
94 * @rx_buf: pointer where next received byte is written
95 * @tx_len: remaining bytes to transmit
96 * @rx_len: remaining bytes to receive
97 * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
98 * length is not a multiple of 4 (to overcome hardware limitation)
99 * @rx_prologue: bytes received without DMA if first RX sglist entry's
100 * length is not a multiple of 4 (to overcome hardware limitation)
101 * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
102 * @debugfs_dir: the debugfs directory - neede to remove debugfs when
103 * unloading the module
104 * @count_transfer_polling: count of how often polling mode is used
105 * @count_transfer_irq: count of how often interrupt mode is used
106 * @count_transfer_irq_after_polling: count of how often we fall back to
107 * interrupt mode after starting in polling mode.
108 * These are counted as well in @count_transfer_polling and
109 * @count_transfer_irq
110 * @count_transfer_dma: count how often dma mode is used
111 * @target: SPI target currently selected
112 * (used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs)
113 * @tx_dma_active: whether a TX DMA descriptor is in progress
114 * @rx_dma_active: whether a RX DMA descriptor is in progress
115 * (used by bcm2835_spi_dma_tx_done() to handle a race)
116 * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers
117 * (cyclically copies from zero page to TX FIFO)
118 * @fill_tx_addr: bus address of zero page
123 struct gpio_desc
*cs_gpio
;
124 unsigned long clk_hz
;
126 struct spi_transfer
*tfr
;
127 struct spi_controller
*ctlr
;
134 unsigned int tx_spillover
;
136 struct dentry
*debugfs_dir
;
137 u64 count_transfer_polling
;
138 u64 count_transfer_irq
;
139 u64 count_transfer_irq_after_polling
;
140 u64 count_transfer_dma
;
142 struct bcm2835_spidev
*target
;
143 unsigned int tx_dma_active
;
144 unsigned int rx_dma_active
;
145 struct dma_async_tx_descriptor
*fill_tx_desc
;
146 dma_addr_t fill_tx_addr
;
150 * struct bcm2835_spidev - BCM2835 SPI target
151 * @prepare_cs: precalculated CS register value for ->prepare_message()
152 * (uses target-specific clock polarity and phase settings)
153 * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers
154 * (cyclically clears RX FIFO by writing @clear_rx_cs to CS register)
155 * @clear_rx_addr: bus address of @clear_rx_cs
156 * @clear_rx_cs: precalculated CS register value to clear RX FIFO
157 * (uses target-specific clock polarity and phase settings)
159 struct bcm2835_spidev
{
161 struct dma_async_tx_descriptor
*clear_rx_desc
;
162 dma_addr_t clear_rx_addr
;
163 u32 clear_rx_cs ____cacheline_aligned
;
166 #if defined(CONFIG_DEBUG_FS)
167 static void bcm2835_debugfs_create(struct bcm2835_spi
*bs
,
174 snprintf(name
, sizeof(name
), "spi-bcm2835-%s", dname
);
176 /* the base directory */
177 dir
= debugfs_create_dir(name
, NULL
);
178 bs
->debugfs_dir
= dir
;
181 debugfs_create_u64("count_transfer_polling", 0444, dir
,
182 &bs
->count_transfer_polling
);
183 debugfs_create_u64("count_transfer_irq", 0444, dir
,
184 &bs
->count_transfer_irq
);
185 debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir
,
186 &bs
->count_transfer_irq_after_polling
);
187 debugfs_create_u64("count_transfer_dma", 0444, dir
,
188 &bs
->count_transfer_dma
);
191 static void bcm2835_debugfs_remove(struct bcm2835_spi
*bs
)
193 debugfs_remove_recursive(bs
->debugfs_dir
);
194 bs
->debugfs_dir
= NULL
;
197 static void bcm2835_debugfs_create(struct bcm2835_spi
*bs
,
202 static void bcm2835_debugfs_remove(struct bcm2835_spi
*bs
)
205 #endif /* CONFIG_DEBUG_FS */
207 static inline u32
bcm2835_rd(struct bcm2835_spi
*bs
, unsigned int reg
)
209 return readl(bs
->regs
+ reg
);
212 static inline void bcm2835_wr(struct bcm2835_spi
*bs
, unsigned int reg
, u32 val
)
214 writel(val
, bs
->regs
+ reg
);
217 static inline void bcm2835_rd_fifo(struct bcm2835_spi
*bs
)
221 while ((bs
->rx_len
) &&
222 (bcm2835_rd(bs
, BCM2835_SPI_CS
) & BCM2835_SPI_CS_RXD
)) {
223 byte
= bcm2835_rd(bs
, BCM2835_SPI_FIFO
);
225 *bs
->rx_buf
++ = byte
;
230 static inline void bcm2835_wr_fifo(struct bcm2835_spi
*bs
)
234 while ((bs
->tx_len
) &&
235 (bcm2835_rd(bs
, BCM2835_SPI_CS
) & BCM2835_SPI_CS_TXD
)) {
236 byte
= bs
->tx_buf
? *bs
->tx_buf
++ : 0;
237 bcm2835_wr(bs
, BCM2835_SPI_FIFO
, byte
);
243 * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
244 * @bs: BCM2835 SPI controller
245 * @count: bytes to read from RX FIFO
247 * The caller must ensure that @bs->rx_len is greater than or equal to @count,
248 * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
249 * in the CS register is set (such that a read from the FIFO register receives
250 * 32-bit instead of just 8-bit). Moreover @bs->rx_buf must not be %NULL.
252 static inline void bcm2835_rd_fifo_count(struct bcm2835_spi
*bs
, int count
)
260 val
= bcm2835_rd(bs
, BCM2835_SPI_FIFO
);
262 memcpy(bs
->rx_buf
, &val
, len
);
269 * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
270 * @bs: BCM2835 SPI controller
271 * @count: bytes to write to TX FIFO
273 * The caller must ensure that @bs->tx_len is greater than or equal to @count,
274 * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
275 * in the CS register is set (such that a write to the FIFO register transmits
276 * 32-bit instead of just 8-bit).
278 static inline void bcm2835_wr_fifo_count(struct bcm2835_spi
*bs
, int count
)
288 memcpy(&val
, bs
->tx_buf
, len
);
293 bcm2835_wr(bs
, BCM2835_SPI_FIFO
, val
);
299 * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
300 * @bs: BCM2835 SPI controller
302 * The caller must ensure that the RX FIFO can accommodate as many bytes
303 * as have been written to the TX FIFO: Transmission is halted once the
304 * RX FIFO is full, causing this function to spin forever.
306 static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi
*bs
)
308 while (!(bcm2835_rd(bs
, BCM2835_SPI_CS
) & BCM2835_SPI_CS_DONE
))
313 * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
314 * @bs: BCM2835 SPI controller
315 * @count: bytes available for reading in RX FIFO
317 static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi
*bs
, int count
)
321 count
= min(count
, bs
->rx_len
);
325 val
= bcm2835_rd(bs
, BCM2835_SPI_FIFO
);
332 * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
333 * @bs: BCM2835 SPI controller
334 * @count: bytes available for writing in TX FIFO
336 static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi
*bs
, int count
)
340 count
= min(count
, bs
->tx_len
);
344 val
= bs
->tx_buf
? *bs
->tx_buf
++ : 0;
345 bcm2835_wr(bs
, BCM2835_SPI_FIFO
, val
);
349 static void bcm2835_spi_reset_hw(struct bcm2835_spi
*bs
)
351 u32 cs
= bcm2835_rd(bs
, BCM2835_SPI_CS
);
353 /* Disable SPI interrupts and transfer */
354 cs
&= ~(BCM2835_SPI_CS_INTR
|
355 BCM2835_SPI_CS_INTD
|
356 BCM2835_SPI_CS_DMAEN
|
359 * Transmission sometimes breaks unless the DONE bit is written at the
360 * end of every transfer. The spec says it's a RO bit. Either the
361 * spec is wrong and the bit is actually of type RW1C, or it's a
364 cs
|= BCM2835_SPI_CS_DONE
;
365 /* and reset RX/TX FIFOS */
366 cs
|= BCM2835_SPI_CS_CLEAR_RX
| BCM2835_SPI_CS_CLEAR_TX
;
368 /* and reset the SPI_HW */
369 bcm2835_wr(bs
, BCM2835_SPI_CS
, cs
);
370 /* as well as DLEN */
371 bcm2835_wr(bs
, BCM2835_SPI_DLEN
, 0);
374 static irqreturn_t
bcm2835_spi_interrupt(int irq
, void *dev_id
)
376 struct bcm2835_spi
*bs
= dev_id
;
377 u32 cs
= bcm2835_rd(bs
, BCM2835_SPI_CS
);
379 /* Bail out early if interrupts are not enabled */
380 if (!(cs
& BCM2835_SPI_CS_INTR
))
384 * An interrupt is signaled either if DONE is set (TX FIFO empty)
385 * or if RXR is set (RX FIFO >= ¾ full).
387 if (cs
& BCM2835_SPI_CS_RXF
)
388 bcm2835_rd_fifo_blind(bs
, BCM2835_SPI_FIFO_SIZE
);
389 else if (cs
& BCM2835_SPI_CS_RXR
)
390 bcm2835_rd_fifo_blind(bs
, BCM2835_SPI_FIFO_SIZE_3_4
);
392 if (bs
->tx_len
&& cs
& BCM2835_SPI_CS_DONE
)
393 bcm2835_wr_fifo_blind(bs
, BCM2835_SPI_FIFO_SIZE
);
395 /* Read as many bytes as possible from FIFO */
397 /* Write as many bytes as possible to FIFO */
401 /* Transfer complete - reset SPI HW */
402 bcm2835_spi_reset_hw(bs
);
403 /* wake up the framework */
404 spi_finalize_current_transfer(bs
->ctlr
);
410 static int bcm2835_spi_transfer_one_irq(struct spi_controller
*ctlr
,
411 struct spi_device
*spi
,
412 struct spi_transfer
*tfr
,
413 u32 cs
, bool fifo_empty
)
415 struct bcm2835_spi
*bs
= spi_controller_get_devdata(ctlr
);
417 /* update usage statistics */
418 bs
->count_transfer_irq
++;
421 * Enable HW block, but with interrupts still disabled.
422 * Otherwise the empty TX FIFO would immediately trigger an interrupt.
424 bcm2835_wr(bs
, BCM2835_SPI_CS
, cs
| BCM2835_SPI_CS_TA
);
426 /* fill TX FIFO as much as possible */
428 bcm2835_wr_fifo_blind(bs
, BCM2835_SPI_FIFO_SIZE
);
431 /* enable interrupts */
432 cs
|= BCM2835_SPI_CS_INTR
| BCM2835_SPI_CS_INTD
| BCM2835_SPI_CS_TA
;
433 bcm2835_wr(bs
, BCM2835_SPI_CS
, cs
);
435 /* signal that we need to wait for completion */
440 * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
441 * @ctlr: SPI host controller
443 * @bs: BCM2835 SPI controller
446 * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
447 * Only the final write access is permitted to transmit less than 4 bytes, the
448 * SPI controller deduces its intended size from the DLEN register.
450 * If a TX or RX sglist contains multiple entries, one per page, and the first
451 * entry starts in the middle of a page, that first entry's length may not be
452 * a multiple of 4. Subsequent entries are fine because they span an entire
453 * page, hence do have a length that's a multiple of 4.
455 * This cannot happen with kmalloc'ed buffers (which is what most clients use)
456 * because they are contiguous in physical memory and therefore not split on
457 * page boundaries by spi_map_buf(). But it *can* happen with vmalloc'ed
460 * The DMA engine is incapable of combining sglist entries into a continuous
461 * stream of 4 byte chunks, it treats every entry separately: A TX entry is
462 * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
463 * entry is rounded up by throwing away received bytes.
465 * Overcome this limitation by transferring the first few bytes without DMA:
466 * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
467 * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
468 * The residue of 1 byte in the RX FIFO is picked up by DMA. Together with
469 * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
471 * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
472 * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
473 * Caution, the additional 4 bytes spill over to the second TX sglist entry
474 * if the length of the first is *exactly* 1.
476 * At most 6 bytes are written and at most 3 bytes read. Do we know the
477 * transfer has this many bytes? Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
479 * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
480 * by the DMA engine. Toggling the DMA Enable flag in the CS register switches
481 * the width but also garbles the FIFO's contents. The prologue must therefore
482 * be transmitted in 32-bit width to ensure that the following DMA transfer can
483 * pick up the residue in the RX FIFO in ungarbled form.
485 static void bcm2835_spi_transfer_prologue(struct spi_controller
*ctlr
,
486 struct spi_transfer
*tfr
,
487 struct bcm2835_spi
*bs
,
495 bs
->tx_spillover
= false;
497 if (bs
->tx_buf
&& !sg_is_last(&tfr
->tx_sg
.sgl
[0]))
498 bs
->tx_prologue
= sg_dma_len(&tfr
->tx_sg
.sgl
[0]) & 3;
500 if (bs
->rx_buf
&& !sg_is_last(&tfr
->rx_sg
.sgl
[0])) {
501 bs
->rx_prologue
= sg_dma_len(&tfr
->rx_sg
.sgl
[0]) & 3;
503 if (bs
->rx_prologue
> bs
->tx_prologue
) {
504 if (!bs
->tx_buf
|| sg_is_last(&tfr
->tx_sg
.sgl
[0])) {
505 bs
->tx_prologue
= bs
->rx_prologue
;
507 bs
->tx_prologue
+= 4;
509 !(sg_dma_len(&tfr
->tx_sg
.sgl
[0]) & ~3);
514 /* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
515 if (!bs
->tx_prologue
)
518 /* Write and read RX prologue. Adjust first entry in RX sglist. */
519 if (bs
->rx_prologue
) {
520 bcm2835_wr(bs
, BCM2835_SPI_DLEN
, bs
->rx_prologue
);
521 bcm2835_wr(bs
, BCM2835_SPI_CS
, cs
| BCM2835_SPI_CS_TA
522 | BCM2835_SPI_CS_DMAEN
);
523 bcm2835_wr_fifo_count(bs
, bs
->rx_prologue
);
524 bcm2835_wait_tx_fifo_empty(bs
);
525 bcm2835_rd_fifo_count(bs
, bs
->rx_prologue
);
526 bcm2835_wr(bs
, BCM2835_SPI_CS
, cs
| BCM2835_SPI_CS_CLEAR_RX
527 | BCM2835_SPI_CS_CLEAR_TX
528 | BCM2835_SPI_CS_DONE
);
530 dma_sync_single_for_device(ctlr
->dma_rx
->device
->dev
,
531 sg_dma_address(&tfr
->rx_sg
.sgl
[0]),
532 bs
->rx_prologue
, DMA_FROM_DEVICE
);
534 sg_dma_address(&tfr
->rx_sg
.sgl
[0]) += bs
->rx_prologue
;
535 sg_dma_len(&tfr
->rx_sg
.sgl
[0]) -= bs
->rx_prologue
;
542 * Write remaining TX prologue. Adjust first entry in TX sglist.
543 * Also adjust second entry if prologue spills over to it.
545 tx_remaining
= bs
->tx_prologue
- bs
->rx_prologue
;
547 bcm2835_wr(bs
, BCM2835_SPI_DLEN
, tx_remaining
);
548 bcm2835_wr(bs
, BCM2835_SPI_CS
, cs
| BCM2835_SPI_CS_TA
549 | BCM2835_SPI_CS_DMAEN
);
550 bcm2835_wr_fifo_count(bs
, tx_remaining
);
551 bcm2835_wait_tx_fifo_empty(bs
);
552 bcm2835_wr(bs
, BCM2835_SPI_CS
, cs
| BCM2835_SPI_CS_CLEAR_TX
553 | BCM2835_SPI_CS_DONE
);
556 if (likely(!bs
->tx_spillover
)) {
557 sg_dma_address(&tfr
->tx_sg
.sgl
[0]) += bs
->tx_prologue
;
558 sg_dma_len(&tfr
->tx_sg
.sgl
[0]) -= bs
->tx_prologue
;
560 sg_dma_len(&tfr
->tx_sg
.sgl
[0]) = 0;
561 sg_dma_address(&tfr
->tx_sg
.sgl
[1]) += 4;
562 sg_dma_len(&tfr
->tx_sg
.sgl
[1]) -= 4;
567 * bcm2835_spi_undo_prologue() - reconstruct original sglist state
568 * @bs: BCM2835 SPI controller
570 * Undo changes which were made to an SPI transfer's sglist when transmitting
571 * the prologue. This is necessary to ensure the same memory ranges are
572 * unmapped that were originally mapped.
574 static void bcm2835_spi_undo_prologue(struct bcm2835_spi
*bs
)
576 struct spi_transfer
*tfr
= bs
->tfr
;
578 if (!bs
->tx_prologue
)
581 if (bs
->rx_prologue
) {
582 sg_dma_address(&tfr
->rx_sg
.sgl
[0]) -= bs
->rx_prologue
;
583 sg_dma_len(&tfr
->rx_sg
.sgl
[0]) += bs
->rx_prologue
;
589 if (likely(!bs
->tx_spillover
)) {
590 sg_dma_address(&tfr
->tx_sg
.sgl
[0]) -= bs
->tx_prologue
;
591 sg_dma_len(&tfr
->tx_sg
.sgl
[0]) += bs
->tx_prologue
;
593 sg_dma_len(&tfr
->tx_sg
.sgl
[0]) = bs
->tx_prologue
- 4;
594 sg_dma_address(&tfr
->tx_sg
.sgl
[1]) -= 4;
595 sg_dma_len(&tfr
->tx_sg
.sgl
[1]) += 4;
602 * bcm2835_spi_dma_rx_done() - callback for DMA RX channel
603 * @data: SPI host controller
605 * Used for bidirectional and RX-only transfers.
607 static void bcm2835_spi_dma_rx_done(void *data
)
609 struct spi_controller
*ctlr
= data
;
610 struct bcm2835_spi
*bs
= spi_controller_get_devdata(ctlr
);
612 /* terminate tx-dma as we do not have an irq for it
613 * because when the rx dma will terminate and this callback
614 * is called the tx-dma must have finished - can't get to this
615 * situation otherwise...
617 dmaengine_terminate_async(ctlr
->dma_tx
);
618 bs
->tx_dma_active
= false;
619 bs
->rx_dma_active
= false;
620 bcm2835_spi_undo_prologue(bs
);
622 /* reset fifo and HW */
623 bcm2835_spi_reset_hw(bs
);
625 /* and mark as completed */;
626 spi_finalize_current_transfer(ctlr
);
630 * bcm2835_spi_dma_tx_done() - callback for DMA TX channel
631 * @data: SPI host controller
633 * Used for TX-only transfers.
635 static void bcm2835_spi_dma_tx_done(void *data
)
637 struct spi_controller
*ctlr
= data
;
638 struct bcm2835_spi
*bs
= spi_controller_get_devdata(ctlr
);
640 /* busy-wait for TX FIFO to empty */
641 while (!(bcm2835_rd(bs
, BCM2835_SPI_CS
) & BCM2835_SPI_CS_DONE
))
642 bcm2835_wr(bs
, BCM2835_SPI_CS
, bs
->target
->clear_rx_cs
);
644 bs
->tx_dma_active
= false;
648 * In case of a very short transfer, RX DMA may not have been
649 * issued yet. The onus is then on bcm2835_spi_transfer_one_dma()
650 * to terminate it immediately after issuing.
652 if (cmpxchg(&bs
->rx_dma_active
, true, false))
653 dmaengine_terminate_async(ctlr
->dma_rx
);
655 bcm2835_spi_undo_prologue(bs
);
656 bcm2835_spi_reset_hw(bs
);
657 spi_finalize_current_transfer(ctlr
);
661 * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist
662 * @ctlr: SPI host controller
664 * @bs: BCM2835 SPI controller
665 * @target: BCM2835 SPI target
666 * @is_tx: whether to submit DMA descriptor for TX or RX sglist
668 * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr.
669 * Return 0 on success or a negative error number.
671 static int bcm2835_spi_prepare_sg(struct spi_controller
*ctlr
,
672 struct spi_transfer
*tfr
,
673 struct bcm2835_spi
*bs
,
674 struct bcm2835_spidev
*target
,
677 struct dma_chan
*chan
;
678 struct scatterlist
*sgl
;
680 enum dma_transfer_direction dir
;
683 struct dma_async_tx_descriptor
*desc
;
687 dir
= DMA_MEM_TO_DEV
;
689 nents
= tfr
->tx_sg
.nents
;
690 sgl
= tfr
->tx_sg
.sgl
;
691 flags
= tfr
->rx_buf
? 0 : DMA_PREP_INTERRUPT
;
693 dir
= DMA_DEV_TO_MEM
;
695 nents
= tfr
->rx_sg
.nents
;
696 sgl
= tfr
->rx_sg
.sgl
;
697 flags
= DMA_PREP_INTERRUPT
;
699 /* prepare the channel */
700 desc
= dmaengine_prep_slave_sg(chan
, sgl
, nents
, dir
, flags
);
705 * Completion is signaled by the RX channel for bidirectional and
706 * RX-only transfers; else by the TX channel for TX-only transfers.
709 desc
->callback
= bcm2835_spi_dma_rx_done
;
710 desc
->callback_param
= ctlr
;
711 } else if (!tfr
->rx_buf
) {
712 desc
->callback
= bcm2835_spi_dma_tx_done
;
713 desc
->callback_param
= ctlr
;
717 /* submit it to DMA-engine */
718 cookie
= dmaengine_submit(desc
);
720 return dma_submit_error(cookie
);
724 * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine
725 * @ctlr: SPI host controller
727 * @target: BCM2835 SPI target
730 * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up
731 * the TX and RX DMA channel to copy between memory and FIFO register.
733 * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to
734 * memory is pointless. However not reading the RX FIFO isn't an option either
735 * because transmission is halted once it's full. As a workaround, cyclically
736 * clear the RX FIFO by setting the CLEAR_RX bit in the CS register.
738 * The CS register value is precalculated in bcm2835_spi_setup(). Normally
739 * this is called only once, on target registration. A DMA descriptor to write
740 * this value is preallocated in bcm2835_dma_init(). All that's left to do
741 * when performing a TX-only transfer is to submit this descriptor to the RX
742 * DMA channel. Latency is thereby minimized. The descriptor does not
743 * generate any interrupts while running. It must be terminated once the
744 * TX DMA channel is done.
746 * Clearing the RX FIFO is paced by the DREQ signal. The signal is asserted
747 * when the RX FIFO becomes half full, i.e. 32 bytes. (Tuneable with the DC
748 * register.) Reading 32 bytes from the RX FIFO would normally require 8 bus
749 * accesses, whereas clearing it requires only 1 bus access. So an 8-fold
750 * reduction in bus traffic and thus energy consumption is achieved.
752 * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically
753 * copying from the zero page. The DMA descriptor to do this is preallocated
754 * in bcm2835_dma_init(). It must be terminated once the RX DMA channel is
755 * done and can then be reused.
757 * The BCM2835 DMA driver autodetects when a transaction copies from the zero
758 * page and utilizes the DMA controller's ability to synthesize zeroes instead
759 * of copying them from memory. This reduces traffic on the memory bus. The
760 * feature is not available on so-called "lite" channels, but normally TX DMA
761 * is backed by a full-featured channel.
763 * Zero-filling the TX FIFO is paced by the DREQ signal. Unfortunately the
764 * BCM2835 SPI controller continues to assert DREQ even after the DLEN register
765 * has been counted down to zero (hardware erratum). Thus, when the transfer
766 * has finished, the DMA engine zero-fills the TX FIFO until it is half full.
767 * (Tuneable with the DC register.) So up to 9 gratuitous bus accesses are
768 * performed at the end of an RX-only transfer.
770 static int bcm2835_spi_transfer_one_dma(struct spi_controller
*ctlr
,
771 struct spi_transfer
*tfr
,
772 struct bcm2835_spidev
*target
,
775 struct bcm2835_spi
*bs
= spi_controller_get_devdata(ctlr
);
779 /* update usage statistics */
780 bs
->count_transfer_dma
++;
783 * Transfer first few bytes without DMA if length of first TX or RX
784 * sglist entry is not a multiple of 4 bytes (hardware limitation).
786 bcm2835_spi_transfer_prologue(ctlr
, tfr
, bs
, cs
);
790 ret
= bcm2835_spi_prepare_sg(ctlr
, tfr
, bs
, target
, true);
792 cookie
= dmaengine_submit(bs
->fill_tx_desc
);
793 ret
= dma_submit_error(cookie
);
798 /* set the DMA length */
799 bcm2835_wr(bs
, BCM2835_SPI_DLEN
, bs
->tx_len
);
802 bcm2835_wr(bs
, BCM2835_SPI_CS
,
803 cs
| BCM2835_SPI_CS_TA
| BCM2835_SPI_CS_DMAEN
);
805 bs
->tx_dma_active
= true;
809 dma_async_issue_pending(ctlr
->dma_tx
);
811 /* setup rx-DMA late - to run transfers while
812 * mapping of the rx buffers still takes place
813 * this saves 10us or more.
816 ret
= bcm2835_spi_prepare_sg(ctlr
, tfr
, bs
, target
, false);
818 cookie
= dmaengine_submit(target
->clear_rx_desc
);
819 ret
= dma_submit_error(cookie
);
822 /* need to reset on errors */
823 dmaengine_terminate_sync(ctlr
->dma_tx
);
824 bs
->tx_dma_active
= false;
828 /* start rx dma late */
829 dma_async_issue_pending(ctlr
->dma_rx
);
830 bs
->rx_dma_active
= true;
834 * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done()
835 * may run before RX DMA is issued. Terminate RX DMA if so.
837 if (!bs
->rx_buf
&& !bs
->tx_dma_active
&&
838 cmpxchg(&bs
->rx_dma_active
, true, false)) {
839 dmaengine_terminate_async(ctlr
->dma_rx
);
840 bcm2835_spi_reset_hw(bs
);
843 /* wait for wakeup in framework */
847 bcm2835_spi_reset_hw(bs
);
848 bcm2835_spi_undo_prologue(bs
);
852 static bool bcm2835_spi_can_dma(struct spi_controller
*ctlr
,
853 struct spi_device
*spi
,
854 struct spi_transfer
*tfr
)
856 /* we start DMA efforts only on bigger transfers */
857 if (tfr
->len
< BCM2835_SPI_DMA_MIN_LENGTH
)
864 static void bcm2835_dma_release(struct spi_controller
*ctlr
,
865 struct bcm2835_spi
*bs
)
868 dmaengine_terminate_sync(ctlr
->dma_tx
);
870 if (bs
->fill_tx_desc
)
871 dmaengine_desc_free(bs
->fill_tx_desc
);
873 if (bs
->fill_tx_addr
)
874 dma_unmap_page_attrs(ctlr
->dma_tx
->device
->dev
,
875 bs
->fill_tx_addr
, sizeof(u32
),
877 DMA_ATTR_SKIP_CPU_SYNC
);
879 dma_release_channel(ctlr
->dma_tx
);
884 dmaengine_terminate_sync(ctlr
->dma_rx
);
885 dma_release_channel(ctlr
->dma_rx
);
890 static int bcm2835_dma_init(struct spi_controller
*ctlr
, struct device
*dev
,
891 struct bcm2835_spi
*bs
)
893 struct dma_slave_config slave_config
;
895 dma_addr_t dma_reg_base
;
898 /* base address in dma-space */
899 addr
= of_get_address(ctlr
->dev
.of_node
, 0, NULL
, NULL
);
901 dev_err(dev
, "could not get DMA-register address - not using dma mode\n");
902 /* Fall back to interrupt mode */
905 dma_reg_base
= be32_to_cpup(addr
);
908 ctlr
->dma_tx
= dma_request_chan(dev
, "tx");
909 if (IS_ERR(ctlr
->dma_tx
)) {
910 ret
= dev_err_probe(dev
, PTR_ERR(ctlr
->dma_tx
),
911 "no tx-dma configuration found - not using dma mode\n");
915 ctlr
->dma_rx
= dma_request_chan(dev
, "rx");
916 if (IS_ERR(ctlr
->dma_rx
)) {
917 ret
= dev_err_probe(dev
, PTR_ERR(ctlr
->dma_rx
),
918 "no rx-dma configuration found - not using dma mode\n");
924 * The TX DMA channel either copies a transfer's TX buffer to the FIFO
925 * or, in case of an RX-only transfer, cyclically copies from the zero
926 * page to the FIFO using a preallocated, reusable descriptor.
928 slave_config
.dst_addr
= (u32
)(dma_reg_base
+ BCM2835_SPI_FIFO
);
929 slave_config
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
931 ret
= dmaengine_slave_config(ctlr
->dma_tx
, &slave_config
);
935 bs
->fill_tx_addr
= dma_map_page_attrs(ctlr
->dma_tx
->device
->dev
,
936 ZERO_PAGE(0), 0, sizeof(u32
),
938 DMA_ATTR_SKIP_CPU_SYNC
);
939 if (dma_mapping_error(ctlr
->dma_tx
->device
->dev
, bs
->fill_tx_addr
)) {
940 dev_err(dev
, "cannot map zero page - not using DMA mode\n");
941 bs
->fill_tx_addr
= 0;
946 bs
->fill_tx_desc
= dmaengine_prep_dma_cyclic(ctlr
->dma_tx
,
950 if (!bs
->fill_tx_desc
) {
951 dev_err(dev
, "cannot prepare fill_tx_desc - not using DMA mode\n");
956 ret
= dmaengine_desc_set_reuse(bs
->fill_tx_desc
);
958 dev_err(dev
, "cannot reuse fill_tx_desc - not using DMA mode\n");
963 * The RX DMA channel is used bidirectionally: It either reads the
964 * RX FIFO or, in case of a TX-only transfer, cyclically writes a
965 * precalculated value to the CS register to clear the RX FIFO.
967 slave_config
.src_addr
= (u32
)(dma_reg_base
+ BCM2835_SPI_FIFO
);
968 slave_config
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
969 slave_config
.dst_addr
= (u32
)(dma_reg_base
+ BCM2835_SPI_CS
);
970 slave_config
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
972 ret
= dmaengine_slave_config(ctlr
->dma_rx
, &slave_config
);
976 /* all went well, so set can_dma */
977 ctlr
->can_dma
= bcm2835_spi_can_dma
;
982 dev_err(dev
, "issue configuring dma: %d - not using DMA mode\n",
985 bcm2835_dma_release(ctlr
, bs
);
988 * Only report error for deferred probing, otherwise fall back to
991 if (ret
!= -EPROBE_DEFER
)
997 static int bcm2835_spi_transfer_one_poll(struct spi_controller
*ctlr
,
998 struct spi_device
*spi
,
999 struct spi_transfer
*tfr
,
1002 struct bcm2835_spi
*bs
= spi_controller_get_devdata(ctlr
);
1003 unsigned long timeout
;
1005 /* update usage statistics */
1006 bs
->count_transfer_polling
++;
1008 /* enable HW block without interrupts */
1009 bcm2835_wr(bs
, BCM2835_SPI_CS
, cs
| BCM2835_SPI_CS_TA
);
1011 /* fill in the fifo before timeout calculations
1012 * if we are interrupted here, then the data is
1013 * getting transferred by the HW while we are interrupted
1015 bcm2835_wr_fifo_blind(bs
, BCM2835_SPI_FIFO_SIZE
);
1017 /* set the timeout to at least 2 jiffies */
1018 timeout
= jiffies
+ 2 + HZ
* polling_limit_us
/ 1000000;
1020 /* loop until finished the transfer */
1021 while (bs
->rx_len
) {
1022 /* fill in tx fifo with remaining data */
1023 bcm2835_wr_fifo(bs
);
1025 /* read from fifo as much as possible */
1026 bcm2835_rd_fifo(bs
);
1028 /* if there is still data pending to read
1029 * then check the timeout
1031 if (bs
->rx_len
&& time_after(jiffies
, timeout
)) {
1032 dev_dbg_ratelimited(&spi
->dev
,
1033 "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
1035 bs
->tx_len
, bs
->rx_len
);
1036 /* fall back to interrupt mode */
1038 /* update usage statistics */
1039 bs
->count_transfer_irq_after_polling
++;
1041 return bcm2835_spi_transfer_one_irq(ctlr
, spi
,
1046 /* Transfer complete - reset SPI HW */
1047 bcm2835_spi_reset_hw(bs
);
1048 /* and return without waiting for completion */
1052 static int bcm2835_spi_transfer_one(struct spi_controller
*ctlr
,
1053 struct spi_device
*spi
,
1054 struct spi_transfer
*tfr
)
1056 struct bcm2835_spi
*bs
= spi_controller_get_devdata(ctlr
);
1057 struct bcm2835_spidev
*target
= spi_get_ctldata(spi
);
1058 unsigned long spi_hz
, cdiv
;
1059 unsigned long hz_per_byte
, byte_limit
;
1060 u32 cs
= target
->prepare_cs
;
1063 spi_hz
= tfr
->speed_hz
;
1065 if (spi_hz
>= bs
->clk_hz
/ 2) {
1066 cdiv
= 2; /* clk_hz/2 is the fastest we can go */
1067 } else if (spi_hz
) {
1068 /* CDIV must be a multiple of two */
1069 cdiv
= DIV_ROUND_UP(bs
->clk_hz
, spi_hz
);
1073 cdiv
= 0; /* 0 is the slowest we can go */
1075 cdiv
= 0; /* 0 is the slowest we can go */
1077 tfr
->effective_speed_hz
= cdiv
? (bs
->clk_hz
/ cdiv
) : (bs
->clk_hz
/ 65536);
1078 bcm2835_wr(bs
, BCM2835_SPI_CLK
, cdiv
);
1080 /* handle all the 3-wire mode */
1081 if (spi
->mode
& SPI_3WIRE
&& tfr
->rx_buf
)
1082 cs
|= BCM2835_SPI_CS_REN
;
1084 /* set transmit buffers and length */
1085 bs
->tx_buf
= tfr
->tx_buf
;
1086 bs
->rx_buf
= tfr
->rx_buf
;
1087 bs
->tx_len
= tfr
->len
;
1088 bs
->rx_len
= tfr
->len
;
1090 /* Calculate the estimated time in us the transfer runs. Note that
1091 * there is 1 idle clocks cycles after each byte getting transferred
1092 * so we have 9 cycles/byte. This is used to find the number of Hz
1093 * per byte per polling limit. E.g., we can transfer 1 byte in 30 us
1094 * per 300,000 Hz of bus clock.
1096 hz_per_byte
= polling_limit_us
? (9 * 1000000) / polling_limit_us
: 0;
1097 byte_limit
= hz_per_byte
? tfr
->effective_speed_hz
/ hz_per_byte
: 1;
1099 /* run in polling mode for short transfers */
1100 if (tfr
->len
< byte_limit
)
1101 return bcm2835_spi_transfer_one_poll(ctlr
, spi
, tfr
, cs
);
1103 /* run in dma mode if conditions are right
1104 * Note that unlike poll or interrupt mode DMA mode does not have
1105 * this 1 idle clock cycle pattern but runs the spi clock without gaps
1107 if (ctlr
->can_dma
&& bcm2835_spi_can_dma(ctlr
, spi
, tfr
))
1108 return bcm2835_spi_transfer_one_dma(ctlr
, tfr
, target
, cs
);
1110 /* run in interrupt-mode */
1111 return bcm2835_spi_transfer_one_irq(ctlr
, spi
, tfr
, cs
, true);
1114 static int bcm2835_spi_prepare_message(struct spi_controller
*ctlr
,
1115 struct spi_message
*msg
)
1117 struct spi_device
*spi
= msg
->spi
;
1118 struct bcm2835_spi
*bs
= spi_controller_get_devdata(ctlr
);
1119 struct bcm2835_spidev
*target
= spi_get_ctldata(spi
);
1122 * Set up clock polarity before spi_transfer_one_message() asserts
1123 * chip select to avoid a gratuitous clock signal edge.
1125 bcm2835_wr(bs
, BCM2835_SPI_CS
, target
->prepare_cs
);
1130 static void bcm2835_spi_handle_err(struct spi_controller
*ctlr
,
1131 struct spi_message
*msg
)
1133 struct bcm2835_spi
*bs
= spi_controller_get_devdata(ctlr
);
1135 /* if an error occurred and we have an active dma, then terminate */
1137 dmaengine_terminate_sync(ctlr
->dma_tx
);
1138 bs
->tx_dma_active
= false;
1141 dmaengine_terminate_sync(ctlr
->dma_rx
);
1142 bs
->rx_dma_active
= false;
1144 bcm2835_spi_undo_prologue(bs
);
1147 bcm2835_spi_reset_hw(bs
);
1150 static void bcm2835_spi_cleanup(struct spi_device
*spi
)
1152 struct bcm2835_spidev
*target
= spi_get_ctldata(spi
);
1153 struct spi_controller
*ctlr
= spi
->controller
;
1154 struct bcm2835_spi
*bs
= spi_controller_get_devdata(ctlr
);
1156 if (target
->clear_rx_desc
)
1157 dmaengine_desc_free(target
->clear_rx_desc
);
1159 if (target
->clear_rx_addr
)
1160 dma_unmap_single(ctlr
->dma_rx
->device
->dev
,
1161 target
->clear_rx_addr
,
1165 gpiod_put(bs
->cs_gpio
);
1166 spi_set_csgpiod(spi
, 0, NULL
);
1171 static int bcm2835_spi_setup_dma(struct spi_controller
*ctlr
,
1172 struct spi_device
*spi
,
1173 struct bcm2835_spi
*bs
,
1174 struct bcm2835_spidev
*target
)
1181 target
->clear_rx_addr
= dma_map_single(ctlr
->dma_rx
->device
->dev
,
1182 &target
->clear_rx_cs
,
1185 if (dma_mapping_error(ctlr
->dma_rx
->device
->dev
, target
->clear_rx_addr
)) {
1186 dev_err(&spi
->dev
, "cannot map clear_rx_cs\n");
1187 target
->clear_rx_addr
= 0;
1191 target
->clear_rx_desc
= dmaengine_prep_dma_cyclic(ctlr
->dma_rx
,
1192 target
->clear_rx_addr
,
1195 if (!target
->clear_rx_desc
) {
1196 dev_err(&spi
->dev
, "cannot prepare clear_rx_desc\n");
1200 ret
= dmaengine_desc_set_reuse(target
->clear_rx_desc
);
1202 dev_err(&spi
->dev
, "cannot reuse clear_rx_desc\n");
1209 static size_t bcm2835_spi_max_transfer_size(struct spi_device
*spi
)
1212 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by
1213 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO
1214 * aligned) if the limit is exceeded.
1216 if (spi
->controller
->can_dma
)
1222 static int bcm2835_spi_setup(struct spi_device
*spi
)
1224 struct spi_controller
*ctlr
= spi
->controller
;
1225 struct bcm2835_spi
*bs
= spi_controller_get_devdata(ctlr
);
1226 struct bcm2835_spidev
*target
= spi_get_ctldata(spi
);
1227 struct gpiod_lookup_table
*lookup
__free(kfree
) = NULL
;
1232 target
= kzalloc(ALIGN(sizeof(*target
), dma_get_cache_alignment()),
1237 spi_set_ctldata(spi
, target
);
1239 ret
= bcm2835_spi_setup_dma(ctlr
, spi
, bs
, target
);
1245 * Precalculate SPI target's CS register value for ->prepare_message():
1246 * The driver always uses software-controlled GPIO chip select, hence
1247 * set the hardware-controlled native chip select to an invalid value
1248 * to prevent it from interfering.
1250 cs
= BCM2835_SPI_CS_CS_10
| BCM2835_SPI_CS_CS_01
;
1251 if (spi
->mode
& SPI_CPOL
)
1252 cs
|= BCM2835_SPI_CS_CPOL
;
1253 if (spi
->mode
& SPI_CPHA
)
1254 cs
|= BCM2835_SPI_CS_CPHA
;
1255 target
->prepare_cs
= cs
;
1258 * Precalculate SPI target's CS register value to clear RX FIFO
1259 * in case of a TX-only DMA transfer.
1262 target
->clear_rx_cs
= cs
| BCM2835_SPI_CS_TA
|
1263 BCM2835_SPI_CS_DMAEN
|
1264 BCM2835_SPI_CS_CLEAR_RX
;
1265 dma_sync_single_for_device(ctlr
->dma_rx
->device
->dev
,
1266 target
->clear_rx_addr
,
1272 * sanity checking the native-chipselects
1274 if (spi
->mode
& SPI_NO_CS
)
1277 * The SPI core has successfully requested the CS GPIO line from the
1278 * device tree, so we are done.
1280 if (spi_get_csgpiod(spi
, 0))
1282 if (spi_get_chipselect(spi
, 0) > 1) {
1283 /* error in the case of native CS requested with CS > 1
1284 * officially there is a CS2, but it is not documented
1285 * which GPIO is connected with that...
1288 "setup: only two native chip-selects are supported\n");
1294 * TODO: The code below is a slightly better alternative to the utter
1295 * abuse of the GPIO API that I found here before. It creates a
1296 * temporary lookup table, assigns it to the SPI device, gets the GPIO
1297 * descriptor and then releases the lookup table.
1299 * More on the problem that it addresses:
1300 * https://www.spinics.net/lists/linux-gpio/msg36218.html
1302 lookup
= kzalloc(struct_size(lookup
, table
, 2), GFP_KERNEL
);
1308 lookup
->dev_id
= dev_name(&spi
->dev
);
1309 lookup
->table
[0] = GPIO_LOOKUP("pinctrl-bcm2835",
1310 8 - (spi_get_chipselect(spi
, 0)),
1311 "cs", GPIO_LOOKUP_FLAGS_DEFAULT
);
1313 gpiod_add_lookup_table(lookup
);
1315 bs
->cs_gpio
= gpiod_get(&spi
->dev
, "cs", GPIOD_OUT_LOW
);
1316 gpiod_remove_lookup_table(lookup
);
1317 if (IS_ERR(bs
->cs_gpio
)) {
1318 ret
= PTR_ERR(bs
->cs_gpio
);
1322 spi_set_csgpiod(spi
, 0, bs
->cs_gpio
);
1324 /* and set up the "mode" and level */
1325 dev_info(&spi
->dev
, "setting up native-CS%i to use GPIO\n",
1326 spi_get_chipselect(spi
, 0));
1331 bcm2835_spi_cleanup(spi
);
1335 static int bcm2835_spi_probe(struct platform_device
*pdev
)
1337 struct spi_controller
*ctlr
;
1338 struct bcm2835_spi
*bs
;
1341 ctlr
= devm_spi_alloc_host(&pdev
->dev
, sizeof(*bs
));
1345 platform_set_drvdata(pdev
, ctlr
);
1347 ctlr
->use_gpio_descriptors
= true;
1348 ctlr
->mode_bits
= BCM2835_SPI_MODE_BITS
;
1349 ctlr
->bits_per_word_mask
= SPI_BPW_MASK(8);
1350 ctlr
->num_chipselect
= 3;
1351 ctlr
->max_transfer_size
= bcm2835_spi_max_transfer_size
;
1352 ctlr
->setup
= bcm2835_spi_setup
;
1353 ctlr
->cleanup
= bcm2835_spi_cleanup
;
1354 ctlr
->transfer_one
= bcm2835_spi_transfer_one
;
1355 ctlr
->handle_err
= bcm2835_spi_handle_err
;
1356 ctlr
->prepare_message
= bcm2835_spi_prepare_message
;
1357 ctlr
->dev
.of_node
= pdev
->dev
.of_node
;
1359 bs
= spi_controller_get_devdata(ctlr
);
1362 bs
->regs
= devm_platform_ioremap_resource(pdev
, 0);
1363 if (IS_ERR(bs
->regs
))
1364 return PTR_ERR(bs
->regs
);
1366 bs
->clk
= devm_clk_get_enabled(&pdev
->dev
, NULL
);
1367 if (IS_ERR(bs
->clk
))
1368 return dev_err_probe(&pdev
->dev
, PTR_ERR(bs
->clk
),
1369 "could not get clk\n");
1371 ctlr
->max_speed_hz
= clk_get_rate(bs
->clk
) / 2;
1373 bs
->irq
= platform_get_irq(pdev
, 0);
1377 bs
->clk_hz
= clk_get_rate(bs
->clk
);
1379 err
= bcm2835_dma_init(ctlr
, &pdev
->dev
, bs
);
1383 /* initialise the hardware with the default polarities */
1384 bcm2835_wr(bs
, BCM2835_SPI_CS
,
1385 BCM2835_SPI_CS_CLEAR_RX
| BCM2835_SPI_CS_CLEAR_TX
);
1387 err
= devm_request_irq(&pdev
->dev
, bs
->irq
, bcm2835_spi_interrupt
,
1388 IRQF_SHARED
, dev_name(&pdev
->dev
), bs
);
1390 dev_err(&pdev
->dev
, "could not request IRQ: %d\n", err
);
1391 goto out_dma_release
;
1394 err
= spi_register_controller(ctlr
);
1396 dev_err(&pdev
->dev
, "could not register SPI controller: %d\n",
1398 goto out_dma_release
;
1401 bcm2835_debugfs_create(bs
, dev_name(&pdev
->dev
));
1406 bcm2835_dma_release(ctlr
, bs
);
1410 static void bcm2835_spi_remove(struct platform_device
*pdev
)
1412 struct spi_controller
*ctlr
= platform_get_drvdata(pdev
);
1413 struct bcm2835_spi
*bs
= spi_controller_get_devdata(ctlr
);
1415 bcm2835_debugfs_remove(bs
);
1417 spi_unregister_controller(ctlr
);
1419 bcm2835_dma_release(ctlr
, bs
);
1421 /* Clear FIFOs, and disable the HW block */
1422 bcm2835_wr(bs
, BCM2835_SPI_CS
,
1423 BCM2835_SPI_CS_CLEAR_RX
| BCM2835_SPI_CS_CLEAR_TX
);
1426 static const struct of_device_id bcm2835_spi_match
[] = {
1427 { .compatible
= "brcm,bcm2835-spi", },
1430 MODULE_DEVICE_TABLE(of
, bcm2835_spi_match
);
1432 static struct platform_driver bcm2835_spi_driver
= {
1435 .of_match_table
= bcm2835_spi_match
,
1437 .probe
= bcm2835_spi_probe
,
1438 .remove
= bcm2835_spi_remove
,
1439 .shutdown
= bcm2835_spi_remove
,
1441 module_platform_driver(bcm2835_spi_driver
);
1443 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
1444 MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
1445 MODULE_LICENSE("GPL");