1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // Copyright (C) IBM Corporation 2020
4 #include <linux/bitfield.h>
5 #include <linux/bits.h>
7 #include <linux/jiffies.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
11 #include <linux/spi/spi.h>
13 #define FSI_ENGID_SPI 0x23
14 #define FSI_MBOX_ROOT_CTRL_8 0x2860
15 #define FSI_MBOX_ROOT_CTRL_8_SPI_MUX 0xf0000000
17 #define FSI2SPI_DATA0 0x00
18 #define FSI2SPI_DATA1 0x04
19 #define FSI2SPI_CMD 0x08
20 #define FSI2SPI_CMD_WRITE BIT(31)
21 #define FSI2SPI_RESET 0x18
22 #define FSI2SPI_STATUS 0x1c
23 #define FSI2SPI_STATUS_ANY_ERROR BIT(31)
24 #define FSI2SPI_IRQ 0x20
26 #define SPI_FSI_BASE 0x70000
27 #define SPI_FSI_TIMEOUT_MS 1000
28 #define SPI_FSI_MAX_RX_SIZE 8
29 #define SPI_FSI_MAX_TX_SIZE 40
31 #define SPI_FSI_ERROR 0x0
32 #define SPI_FSI_COUNTER_CFG 0x1
33 #define SPI_FSI_CFG1 0x2
34 #define SPI_FSI_CLOCK_CFG 0x3
35 #define SPI_FSI_CLOCK_CFG_MM_ENABLE BIT_ULL(32)
36 #define SPI_FSI_CLOCK_CFG_ECC_DISABLE (BIT_ULL(35) | BIT_ULL(33))
37 #define SPI_FSI_CLOCK_CFG_RESET1 (BIT_ULL(36) | BIT_ULL(38))
38 #define SPI_FSI_CLOCK_CFG_RESET2 (BIT_ULL(37) | BIT_ULL(39))
39 #define SPI_FSI_CLOCK_CFG_MODE (BIT_ULL(41) | BIT_ULL(42))
40 #define SPI_FSI_CLOCK_CFG_SCK_RECV_DEL GENMASK_ULL(51, 44)
41 #define SPI_FSI_CLOCK_CFG_SCK_NO_DEL BIT_ULL(51)
42 #define SPI_FSI_CLOCK_CFG_SCK_DIV GENMASK_ULL(63, 52)
43 #define SPI_FSI_MMAP 0x4
44 #define SPI_FSI_DATA_TX 0x5
45 #define SPI_FSI_DATA_RX 0x6
46 #define SPI_FSI_SEQUENCE 0x7
47 #define SPI_FSI_SEQUENCE_STOP 0x00
48 #define SPI_FSI_SEQUENCE_SEL_SLAVE(x) (0x10 | ((x) & 0xf))
49 #define SPI_FSI_SEQUENCE_SHIFT_OUT(x) (0x30 | ((x) & 0xf))
50 #define SPI_FSI_SEQUENCE_SHIFT_IN(x) (0x40 | ((x) & 0xf))
51 #define SPI_FSI_SEQUENCE_COPY_DATA_TX 0xc0
52 #define SPI_FSI_SEQUENCE_BRANCH(x) (0xe0 | ((x) & 0xf))
53 #define SPI_FSI_STATUS 0x8
54 #define SPI_FSI_STATUS_ERROR \
55 (GENMASK_ULL(31, 21) | GENMASK_ULL(15, 12))
56 #define SPI_FSI_STATUS_SEQ_STATE GENMASK_ULL(55, 48)
57 #define SPI_FSI_STATUS_SEQ_STATE_IDLE BIT_ULL(48)
58 #define SPI_FSI_STATUS_TDR_UNDERRUN BIT_ULL(57)
59 #define SPI_FSI_STATUS_TDR_OVERRUN BIT_ULL(58)
60 #define SPI_FSI_STATUS_TDR_FULL BIT_ULL(59)
61 #define SPI_FSI_STATUS_RDR_UNDERRUN BIT_ULL(61)
62 #define SPI_FSI_STATUS_RDR_OVERRUN BIT_ULL(62)
63 #define SPI_FSI_STATUS_RDR_FULL BIT_ULL(63)
64 #define SPI_FSI_STATUS_ANY_ERROR \
65 (SPI_FSI_STATUS_ERROR | \
66 SPI_FSI_STATUS_TDR_OVERRUN | SPI_FSI_STATUS_RDR_UNDERRUN | \
67 SPI_FSI_STATUS_RDR_OVERRUN)
68 #define SPI_FSI_PORT_CTRL 0x9
71 struct fsi_device
*fsi
; /* FSI2SPI CFAM engine device */
72 struct mutex lock
; /* lock access to the device */
76 struct device
*dev
; /* SPI controller device */
77 struct fsi2spi
*bridge
; /* FSI2SPI device */
81 struct fsi_spi_sequence
{
86 static int fsi_spi_check_mux(struct fsi_device
*fsi
, struct device
*dev
)
90 __be32 root_ctrl_8_be
;
92 rc
= fsi_slave_read(fsi
->slave
, FSI_MBOX_ROOT_CTRL_8
, &root_ctrl_8_be
,
93 sizeof(root_ctrl_8_be
));
97 root_ctrl_8
= be32_to_cpu(root_ctrl_8_be
);
98 dev_dbg(dev
, "Root control register 8: %08x\n", root_ctrl_8
);
99 if ((root_ctrl_8
& FSI_MBOX_ROOT_CTRL_8_SPI_MUX
) ==
100 FSI_MBOX_ROOT_CTRL_8_SPI_MUX
)
106 static int fsi_spi_check_status(struct fsi_spi
*ctx
)
112 rc
= fsi_device_read(ctx
->bridge
->fsi
, FSI2SPI_STATUS
, &sts_be
,
117 sts
= be32_to_cpu(sts_be
);
118 if (sts
& FSI2SPI_STATUS_ANY_ERROR
) {
119 dev_err(ctx
->dev
, "Error with FSI2SPI interface: %08x.\n", sts
);
126 static int fsi_spi_read_reg(struct fsi_spi
*ctx
, u32 offset
, u64
*value
)
131 u32 cmd
= offset
+ ctx
->base
;
132 struct fsi2spi
*bridge
= ctx
->bridge
;
136 if (cmd
& FSI2SPI_CMD_WRITE
)
139 rc
= mutex_lock_interruptible(&bridge
->lock
);
143 cmd_be
= cpu_to_be32(cmd
);
144 rc
= fsi_device_write(bridge
->fsi
, FSI2SPI_CMD
, &cmd_be
,
149 rc
= fsi_spi_check_status(ctx
);
153 rc
= fsi_device_read(bridge
->fsi
, FSI2SPI_DATA0
, &data_be
,
158 *value
|= (u64
)be32_to_cpu(data_be
) << 32;
160 rc
= fsi_device_read(bridge
->fsi
, FSI2SPI_DATA1
, &data_be
,
165 *value
|= (u64
)be32_to_cpu(data_be
);
166 dev_dbg(ctx
->dev
, "Read %02x[%016llx].\n", offset
, *value
);
169 mutex_unlock(&bridge
->lock
);
173 static int fsi_spi_write_reg(struct fsi_spi
*ctx
, u32 offset
, u64 value
)
178 u32 cmd
= offset
+ ctx
->base
;
179 struct fsi2spi
*bridge
= ctx
->bridge
;
181 if (cmd
& FSI2SPI_CMD_WRITE
)
184 rc
= mutex_lock_interruptible(&bridge
->lock
);
188 dev_dbg(ctx
->dev
, "Write %02x[%016llx].\n", offset
, value
);
190 data_be
= cpu_to_be32(upper_32_bits(value
));
191 rc
= fsi_device_write(bridge
->fsi
, FSI2SPI_DATA0
, &data_be
,
196 data_be
= cpu_to_be32(lower_32_bits(value
));
197 rc
= fsi_device_write(bridge
->fsi
, FSI2SPI_DATA1
, &data_be
,
202 cmd_be
= cpu_to_be32(cmd
| FSI2SPI_CMD_WRITE
);
203 rc
= fsi_device_write(bridge
->fsi
, FSI2SPI_CMD
, &cmd_be
,
208 rc
= fsi_spi_check_status(ctx
);
211 mutex_unlock(&bridge
->lock
);
215 static int fsi_spi_data_in(u64 in
, u8
*rx
, int len
)
218 int num_bytes
= min(len
, 8);
220 for (i
= 0; i
< num_bytes
; ++i
)
221 rx
[i
] = (u8
)(in
>> (8 * ((num_bytes
- 1) - i
)));
226 static int fsi_spi_data_out(u64
*out
, const u8
*tx
, int len
)
229 int num_bytes
= min(len
, 8);
230 u8
*out_bytes
= (u8
*)out
;
232 /* Unused bytes of the tx data should be 0. */
235 for (i
= 0; i
< num_bytes
; ++i
)
236 out_bytes
[8 - (i
+ 1)] = tx
[i
];
241 static int fsi_spi_reset(struct fsi_spi
*ctx
)
245 dev_dbg(ctx
->dev
, "Resetting SPI controller.\n");
247 rc
= fsi_spi_write_reg(ctx
, SPI_FSI_CLOCK_CFG
,
248 SPI_FSI_CLOCK_CFG_RESET1
);
252 rc
= fsi_spi_write_reg(ctx
, SPI_FSI_CLOCK_CFG
,
253 SPI_FSI_CLOCK_CFG_RESET2
);
257 return fsi_spi_write_reg(ctx
, SPI_FSI_STATUS
, 0ULL);
260 static int fsi_spi_status(struct fsi_spi
*ctx
, u64
*status
, const char *dir
)
262 int rc
= fsi_spi_read_reg(ctx
, SPI_FSI_STATUS
, status
);
267 if (*status
& SPI_FSI_STATUS_ANY_ERROR
) {
268 dev_err(ctx
->dev
, "%s error: %016llx\n", dir
, *status
);
270 rc
= fsi_spi_reset(ctx
);
280 static void fsi_spi_sequence_add(struct fsi_spi_sequence
*seq
, u8 val
)
283 * Add the next byte of instruction to the 8-byte sequence register.
284 * Then decrement the counter so that the next instruction will go in
285 * the right place. Return the index of the slot we just filled in the
288 seq
->data
|= (u64
)val
<< seq
->bit
;
292 static void fsi_spi_sequence_init(struct fsi_spi_sequence
*seq
)
298 static int fsi_spi_transfer_data(struct fsi_spi
*ctx
,
299 struct spi_transfer
*transfer
)
306 if (transfer
->tx_buf
) {
310 const u8
*tx
= transfer
->tx_buf
;
312 while (transfer
->len
> sent
) {
313 nb
= fsi_spi_data_out(&out
, &tx
[sent
],
314 (int)transfer
->len
- sent
);
316 rc
= fsi_spi_write_reg(ctx
, SPI_FSI_DATA_TX
, out
);
321 end
= jiffies
+ msecs_to_jiffies(SPI_FSI_TIMEOUT_MS
);
323 if (loops
++ && time_after(jiffies
, end
))
326 rc
= fsi_spi_status(ctx
, &status
, "TX");
329 } while (status
& SPI_FSI_STATUS_TDR_FULL
);
333 } else if (transfer
->rx_buf
) {
336 u8
*rx
= transfer
->rx_buf
;
338 while (transfer
->len
> recv
) {
340 end
= jiffies
+ msecs_to_jiffies(SPI_FSI_TIMEOUT_MS
);
342 if (loops
++ && time_after(jiffies
, end
))
345 rc
= fsi_spi_status(ctx
, &status
, "RX");
348 } while (!(status
& SPI_FSI_STATUS_RDR_FULL
));
350 rc
= fsi_spi_read_reg(ctx
, SPI_FSI_DATA_RX
, &in
);
354 recv
+= fsi_spi_data_in(in
, &rx
[recv
],
355 (int)transfer
->len
- recv
);
362 static int fsi_spi_transfer_init(struct fsi_spi
*ctx
)
369 u64 clock_cfg
= 0ULL;
371 u64 wanted_clock_cfg
= SPI_FSI_CLOCK_CFG_ECC_DISABLE
|
372 SPI_FSI_CLOCK_CFG_SCK_NO_DEL
|
373 FIELD_PREP(SPI_FSI_CLOCK_CFG_SCK_DIV
, 19);
375 end
= jiffies
+ msecs_to_jiffies(SPI_FSI_TIMEOUT_MS
);
377 if (loops
++ && time_after(jiffies
, end
))
380 rc
= fsi_spi_read_reg(ctx
, SPI_FSI_STATUS
, &status
);
384 seq_state
= status
& SPI_FSI_STATUS_SEQ_STATE
;
386 if (status
& (SPI_FSI_STATUS_ANY_ERROR
|
387 SPI_FSI_STATUS_TDR_FULL
|
388 SPI_FSI_STATUS_RDR_FULL
)) {
391 "Initialization error: %08llx\n",
396 rc
= fsi_spi_reset(ctx
);
403 } while (seq_state
&& (seq_state
!= SPI_FSI_STATUS_SEQ_STATE_IDLE
));
405 rc
= fsi_spi_write_reg(ctx
, SPI_FSI_COUNTER_CFG
, 0ULL);
409 rc
= fsi_spi_read_reg(ctx
, SPI_FSI_CLOCK_CFG
, &clock_cfg
);
413 if ((clock_cfg
& (SPI_FSI_CLOCK_CFG_MM_ENABLE
|
414 SPI_FSI_CLOCK_CFG_ECC_DISABLE
|
415 SPI_FSI_CLOCK_CFG_MODE
|
416 SPI_FSI_CLOCK_CFG_SCK_RECV_DEL
|
417 SPI_FSI_CLOCK_CFG_SCK_DIV
)) != wanted_clock_cfg
)
418 rc
= fsi_spi_write_reg(ctx
, SPI_FSI_CLOCK_CFG
,
424 static int fsi_spi_transfer_one_message(struct spi_controller
*ctlr
,
425 struct spi_message
*mesg
)
428 u8 seq_slave
= SPI_FSI_SEQUENCE_SEL_SLAVE(spi_get_chipselect(mesg
->spi
, 0) + 1);
430 struct spi_transfer
*transfer
;
431 struct fsi_spi
*ctx
= spi_controller_get_devdata(ctlr
);
433 rc
= fsi_spi_check_mux(ctx
->bridge
->fsi
, ctx
->dev
);
437 list_for_each_entry(transfer
, &mesg
->transfers
, transfer_list
) {
438 struct fsi_spi_sequence seq
;
439 struct spi_transfer
*next
= NULL
;
441 /* Sequencer must do shift out (tx) first. */
442 if (!transfer
->tx_buf
|| transfer
->len
> SPI_FSI_MAX_TX_SIZE
) {
447 dev_dbg(ctx
->dev
, "Start tx of %d bytes.\n", transfer
->len
);
449 rc
= fsi_spi_transfer_init(ctx
);
453 fsi_spi_sequence_init(&seq
);
454 fsi_spi_sequence_add(&seq
, seq_slave
);
458 fsi_spi_sequence_add(&seq
,
459 SPI_FSI_SEQUENCE_SHIFT_OUT(8));
462 fsi_spi_sequence_add(&seq
, SPI_FSI_SEQUENCE_SHIFT_OUT(len
));
464 if (!list_is_last(&transfer
->transfer_list
,
466 next
= list_next_entry(transfer
, transfer_list
);
468 /* Sequencer can only do shift in (rx) after tx. */
472 if (next
->len
> SPI_FSI_MAX_RX_SIZE
) {
477 dev_dbg(ctx
->dev
, "Sequence rx of %d bytes.\n",
480 shift
= SPI_FSI_SEQUENCE_SHIFT_IN(next
->len
);
481 fsi_spi_sequence_add(&seq
, shift
);
487 fsi_spi_sequence_add(&seq
, SPI_FSI_SEQUENCE_SEL_SLAVE(0));
489 rc
= fsi_spi_write_reg(ctx
, SPI_FSI_SEQUENCE
, seq
.data
);
493 rc
= fsi_spi_transfer_data(ctx
, transfer
);
498 rc
= fsi_spi_transfer_data(ctx
, next
);
508 spi_finalize_current_message(ctlr
);
513 static size_t fsi_spi_max_transfer_size(struct spi_device
*spi
)
515 return SPI_FSI_MAX_RX_SIZE
;
518 static int fsi_spi_probe(struct device
*dev
)
521 struct device_node
*np
;
522 int num_controllers_registered
= 0;
523 struct fsi2spi
*bridge
;
524 struct fsi_device
*fsi
= to_fsi_dev(dev
);
526 rc
= fsi_spi_check_mux(fsi
, dev
);
530 bridge
= devm_kzalloc(dev
, sizeof(*bridge
), GFP_KERNEL
);
535 mutex_init(&bridge
->lock
);
537 for_each_available_child_of_node(dev
->of_node
, np
) {
540 struct spi_controller
*ctlr
;
542 if (of_property_read_u32(np
, "reg", &base
))
545 ctlr
= spi_alloc_host(dev
, sizeof(*ctx
));
551 ctlr
->dev
.of_node
= np
;
552 ctlr
->num_chipselect
= of_get_available_child_count(np
) ?: 1;
553 ctlr
->flags
= SPI_CONTROLLER_HALF_DUPLEX
;
554 ctlr
->max_transfer_size
= fsi_spi_max_transfer_size
;
555 ctlr
->transfer_one_message
= fsi_spi_transfer_one_message
;
557 ctx
= spi_controller_get_devdata(ctlr
);
558 ctx
->dev
= &ctlr
->dev
;
559 ctx
->bridge
= bridge
;
560 ctx
->base
= base
+ SPI_FSI_BASE
;
562 rc
= devm_spi_register_controller(dev
, ctlr
);
564 spi_controller_put(ctlr
);
566 num_controllers_registered
++;
569 if (!num_controllers_registered
)
575 static const struct fsi_device_id fsi_spi_ids
[] = {
576 { FSI_ENGID_SPI
, FSI_VERSION_ANY
},
579 MODULE_DEVICE_TABLE(fsi
, fsi_spi_ids
);
581 static struct fsi_driver fsi_spi_driver
= {
582 .id_table
= fsi_spi_ids
,
585 .bus
= &fsi_bus_type
,
586 .probe
= fsi_spi_probe
,
589 module_fsi_driver(fsi_spi_driver
);
591 MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
592 MODULE_DESCRIPTION("FSI attached SPI controller");
593 MODULE_LICENSE("GPL");