1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (c) 2017-2018, The Linux foundation. All rights reserved.
5 #include <linux/dmaengine.h>
6 #include <linux/dma-mapping.h>
7 #include <linux/dma/qcom-gpi-dma.h>
8 #include <linux/interrupt.h>
10 #include <linux/log2.h>
11 #include <linux/module.h>
12 #include <linux/platform_device.h>
13 #include <linux/pm_opp.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/property.h>
16 #include <linux/soc/qcom/geni-se.h>
17 #include <linux/spi/spi.h>
18 #include <linux/spinlock.h>
20 /* SPI SE specific registers and respective register fields */
21 #define SE_SPI_CPHA 0x224
24 #define SE_SPI_LOOPBACK 0x22c
25 #define LOOPBACK_ENABLE 0x1
26 #define NORMAL_MODE 0x0
27 #define LOOPBACK_MSK GENMASK(1, 0)
29 #define SE_SPI_CPOL 0x230
32 #define SE_SPI_DEMUX_OUTPUT_INV 0x24c
33 #define CS_DEMUX_OUTPUT_INV_MSK GENMASK(3, 0)
35 #define SE_SPI_DEMUX_SEL 0x250
36 #define CS_DEMUX_OUTPUT_SEL GENMASK(3, 0)
38 #define SE_SPI_TRANS_CFG 0x25c
39 #define CS_TOGGLE BIT(1)
41 #define SE_SPI_WORD_LEN 0x268
42 #define WORD_LEN_MSK GENMASK(9, 0)
43 #define MIN_WORD_LEN 4
45 #define SE_SPI_TX_TRANS_LEN 0x26c
46 #define SE_SPI_RX_TRANS_LEN 0x270
47 #define TRANS_LEN_MSK GENMASK(23, 0)
49 #define SE_SPI_PRE_POST_CMD_DLY 0x274
51 #define SE_SPI_DELAY_COUNTERS 0x278
52 #define SPI_INTER_WORDS_DELAY_MSK GENMASK(9, 0)
53 #define SPI_CS_CLK_DELAY_MSK GENMASK(19, 10)
54 #define SPI_CS_CLK_DELAY_SHFT 10
56 #define SE_SPI_SLAVE_EN (0x2BC)
57 #define SPI_SLAVE_EN BIT(0)
59 /* M_CMD OP codes for SPI */
63 #define SPI_CS_ASSERT 8
64 #define SPI_CS_DEASSERT 9
65 #define SPI_SCK_ONLY 10
66 /* M_CMD params for SPI */
67 #define SPI_PRE_CMD_DELAY BIT(0)
68 #define TIMESTAMP_BEFORE BIT(1)
69 #define FRAGMENTATION BIT(2)
70 #define TIMESTAMP_AFTER BIT(3)
71 #define POST_CMD_DELAY BIT(4)
73 #define GSI_LOOPBACK_EN BIT(0)
74 #define GSI_CS_TOGGLE BIT(3)
75 #define GSI_CPHA BIT(4)
76 #define GSI_CPOL BIT(5)
78 struct spi_geni_master
{
85 unsigned long cur_speed_hz
;
86 unsigned long cur_sclk_hz
;
87 unsigned int cur_bits_per_word
;
88 unsigned int tx_rem_bytes
;
89 unsigned int rx_rem_bytes
;
90 const struct spi_transfer
*cur_xfer
;
91 struct completion cs_done
;
92 struct completion cancel_done
;
93 struct completion abort_done
;
94 struct completion tx_reset_done
;
95 struct completion rx_reset_done
;
96 unsigned int oversampling
;
106 static void spi_slv_setup(struct spi_geni_master
*mas
)
108 struct geni_se
*se
= &mas
->se
;
110 writel(SPI_SLAVE_EN
, se
->base
+ SE_SPI_SLAVE_EN
);
111 writel(GENI_IO_MUX_0_EN
, se
->base
+ GENI_OUTPUT_CTRL
);
112 writel(START_TRIGGER
, se
->base
+ SE_GENI_CFG_SEQ_START
);
113 dev_dbg(mas
->dev
, "spi slave setup done\n");
116 static int get_spi_clk_cfg(unsigned int speed_hz
,
117 struct spi_geni_master
*mas
,
118 unsigned int *clk_idx
,
119 unsigned int *clk_div
)
121 unsigned long sclk_freq
;
122 unsigned int actual_hz
;
125 ret
= geni_se_clk_freq_match(&mas
->se
,
126 speed_hz
* mas
->oversampling
,
127 clk_idx
, &sclk_freq
, false);
129 dev_err(mas
->dev
, "Failed(%d) to find src clk for %dHz\n",
134 *clk_div
= DIV_ROUND_UP(sclk_freq
, mas
->oversampling
* speed_hz
);
135 actual_hz
= sclk_freq
/ (mas
->oversampling
* *clk_div
);
137 dev_dbg(mas
->dev
, "req %u=>%u sclk %lu, idx %d, div %d\n", speed_hz
,
138 actual_hz
, sclk_freq
, *clk_idx
, *clk_div
);
139 ret
= dev_pm_opp_set_rate(mas
->dev
, sclk_freq
);
141 dev_err(mas
->dev
, "dev_pm_opp_set_rate failed %d\n", ret
);
143 mas
->cur_sclk_hz
= sclk_freq
;
148 static void handle_se_timeout(struct spi_controller
*spi
,
149 struct spi_message
*msg
)
151 struct spi_geni_master
*mas
= spi_controller_get_devdata(spi
);
152 unsigned long time_left
;
153 struct geni_se
*se
= &mas
->se
;
154 const struct spi_transfer
*xfer
;
156 spin_lock_irq(&mas
->lock
);
157 if (mas
->cur_xfer_mode
== GENI_SE_FIFO
)
158 writel(0, se
->base
+ SE_GENI_TX_WATERMARK_REG
);
160 xfer
= mas
->cur_xfer
;
161 mas
->cur_xfer
= NULL
;
165 * skip CMD Cancel sequnece since spi target
166 * doesn`t support CMD Cancel sequnece
168 spin_unlock_irq(&mas
->lock
);
172 reinit_completion(&mas
->cancel_done
);
173 geni_se_cancel_m_cmd(se
);
174 spin_unlock_irq(&mas
->lock
);
176 time_left
= wait_for_completion_timeout(&mas
->cancel_done
, HZ
);
180 spin_lock_irq(&mas
->lock
);
181 reinit_completion(&mas
->abort_done
);
182 geni_se_abort_m_cmd(se
);
183 spin_unlock_irq(&mas
->lock
);
185 time_left
= wait_for_completion_timeout(&mas
->abort_done
, HZ
);
187 dev_err(mas
->dev
, "Failed to cancel/abort m_cmd\n");
190 * No need for a lock since SPI core has a lock and we never
191 * access this from an interrupt.
193 mas
->abort_failed
= true;
197 if (mas
->cur_xfer_mode
== GENI_SE_DMA
) {
200 spin_lock_irq(&mas
->lock
);
201 reinit_completion(&mas
->tx_reset_done
);
202 writel(1, se
->base
+ SE_DMA_TX_FSM_RST
);
203 spin_unlock_irq(&mas
->lock
);
204 time_left
= wait_for_completion_timeout(&mas
->tx_reset_done
, HZ
);
206 dev_err(mas
->dev
, "DMA TX RESET failed\n");
209 spin_lock_irq(&mas
->lock
);
210 reinit_completion(&mas
->rx_reset_done
);
211 writel(1, se
->base
+ SE_DMA_RX_FSM_RST
);
212 spin_unlock_irq(&mas
->lock
);
213 time_left
= wait_for_completion_timeout(&mas
->rx_reset_done
, HZ
);
215 dev_err(mas
->dev
, "DMA RX RESET failed\n");
219 * This can happen if a timeout happened and we had to wait
220 * for lock in this function because isr was holding the lock
221 * and handling transfer completion at that time.
223 dev_warn(mas
->dev
, "Cancel/Abort on completed SPI transfer\n");
228 static void handle_gpi_timeout(struct spi_controller
*spi
, struct spi_message
*msg
)
230 struct spi_geni_master
*mas
= spi_controller_get_devdata(spi
);
232 dmaengine_terminate_sync(mas
->tx
);
233 dmaengine_terminate_sync(mas
->rx
);
236 static void spi_geni_handle_err(struct spi_controller
*spi
, struct spi_message
*msg
)
238 struct spi_geni_master
*mas
= spi_controller_get_devdata(spi
);
240 switch (mas
->cur_xfer_mode
) {
243 handle_se_timeout(spi
, msg
);
246 handle_gpi_timeout(spi
, msg
);
249 dev_err(mas
->dev
, "Abort on Mode:%d not supported", mas
->cur_xfer_mode
);
253 static bool spi_geni_is_abort_still_pending(struct spi_geni_master
*mas
)
255 struct geni_se
*se
= &mas
->se
;
258 if (!mas
->abort_failed
)
262 * The only known case where a transfer times out and then a cancel
263 * times out then an abort times out is if something is blocking our
264 * interrupt handler from running. Avoid starting any new transfers
265 * until that sorts itself out.
267 spin_lock_irq(&mas
->lock
);
268 m_irq
= readl(se
->base
+ SE_GENI_M_IRQ_STATUS
);
269 m_irq_en
= readl(se
->base
+ SE_GENI_M_IRQ_EN
);
270 spin_unlock_irq(&mas
->lock
);
272 if (m_irq
& m_irq_en
) {
273 dev_err(mas
->dev
, "Interrupts pending after abort: %#010x\n",
279 * If we're here the problem resolved itself so no need to check more
280 * on future transfers.
282 mas
->abort_failed
= false;
287 static void spi_geni_set_cs(struct spi_device
*slv
, bool set_flag
)
289 struct spi_geni_master
*mas
= spi_controller_get_devdata(slv
->controller
);
290 struct spi_controller
*spi
= dev_get_drvdata(mas
->dev
);
291 struct geni_se
*se
= &mas
->se
;
292 unsigned long time_left
;
294 if (!(slv
->mode
& SPI_CS_HIGH
))
295 set_flag
= !set_flag
;
297 if (set_flag
== mas
->cs_flag
)
300 pm_runtime_get_sync(mas
->dev
);
302 if (spi_geni_is_abort_still_pending(mas
)) {
303 dev_err(mas
->dev
, "Can't set chip select\n");
307 spin_lock_irq(&mas
->lock
);
309 dev_err(mas
->dev
, "Can't set CS when prev xfer running\n");
310 spin_unlock_irq(&mas
->lock
);
314 mas
->cs_flag
= set_flag
;
315 /* set xfer_mode to FIFO to complete cs_done in isr */
316 mas
->cur_xfer_mode
= GENI_SE_FIFO
;
317 geni_se_select_mode(se
, mas
->cur_xfer_mode
);
319 reinit_completion(&mas
->cs_done
);
321 geni_se_setup_m_cmd(se
, SPI_CS_ASSERT
, 0);
323 geni_se_setup_m_cmd(se
, SPI_CS_DEASSERT
, 0);
324 spin_unlock_irq(&mas
->lock
);
326 time_left
= wait_for_completion_timeout(&mas
->cs_done
, HZ
);
328 dev_warn(mas
->dev
, "Timeout setting chip select\n");
329 handle_se_timeout(spi
, NULL
);
333 pm_runtime_put(mas
->dev
);
336 static void spi_setup_word_len(struct spi_geni_master
*mas
, u16 mode
,
337 unsigned int bits_per_word
)
339 unsigned int pack_words
;
340 bool msb_first
= (mode
& SPI_LSB_FIRST
) ? false : true;
341 struct geni_se
*se
= &mas
->se
;
345 * If bits_per_word isn't a byte aligned value, set the packing to be
346 * 1 SPI word per FIFO word.
348 if (!(mas
->fifo_width_bits
% bits_per_word
))
349 pack_words
= mas
->fifo_width_bits
/ bits_per_word
;
352 geni_se_config_packing(&mas
->se
, bits_per_word
, pack_words
, msb_first
,
354 word_len
= (bits_per_word
- MIN_WORD_LEN
) & WORD_LEN_MSK
;
355 writel(word_len
, se
->base
+ SE_SPI_WORD_LEN
);
358 static int geni_spi_set_clock_and_bw(struct spi_geni_master
*mas
,
359 unsigned long clk_hz
)
361 u32 clk_sel
, m_clk_cfg
, idx
, div
;
362 struct geni_se
*se
= &mas
->se
;
365 if (clk_hz
== mas
->cur_speed_hz
)
368 ret
= get_spi_clk_cfg(clk_hz
, mas
, &idx
, &div
);
370 dev_err(mas
->dev
, "Err setting clk to %lu: %d\n", clk_hz
, ret
);
375 * SPI core clock gets configured with the requested frequency
376 * or the frequency closer to the requested frequency.
377 * For that reason requested frequency is stored in the
378 * cur_speed_hz and referred in the consecutive transfer instead
379 * of calling clk_get_rate() API.
381 mas
->cur_speed_hz
= clk_hz
;
383 clk_sel
= idx
& CLK_SEL_MSK
;
384 m_clk_cfg
= (div
<< CLK_DIV_SHFT
) | SER_CLK_EN
;
385 writel(clk_sel
, se
->base
+ SE_GENI_CLK_SEL
);
386 writel(m_clk_cfg
, se
->base
+ GENI_SER_M_CLK_CFG
);
388 /* Set BW quota for CPU as driver supports FIFO mode only. */
389 se
->icc_paths
[CPU_TO_GENI
].avg_bw
= Bps_to_icc(mas
->cur_speed_hz
);
390 ret
= geni_icc_set_bw(se
);
397 static int setup_fifo_params(struct spi_device
*spi_slv
,
398 struct spi_controller
*spi
)
400 struct spi_geni_master
*mas
= spi_controller_get_devdata(spi
);
401 struct geni_se
*se
= &mas
->se
;
402 u32 loopback_cfg
= 0, cpol
= 0, cpha
= 0, demux_output_inv
= 0;
405 if (mas
->last_mode
!= spi_slv
->mode
) {
406 if (spi_slv
->mode
& SPI_LOOP
)
407 loopback_cfg
= LOOPBACK_ENABLE
;
409 if (spi_slv
->mode
& SPI_CPOL
)
412 if (spi_slv
->mode
& SPI_CPHA
)
415 if (spi_slv
->mode
& SPI_CS_HIGH
)
416 demux_output_inv
= BIT(spi_get_chipselect(spi_slv
, 0));
418 demux_sel
= spi_get_chipselect(spi_slv
, 0);
419 mas
->cur_bits_per_word
= spi_slv
->bits_per_word
;
421 spi_setup_word_len(mas
, spi_slv
->mode
, spi_slv
->bits_per_word
);
422 writel(loopback_cfg
, se
->base
+ SE_SPI_LOOPBACK
);
423 writel(demux_sel
, se
->base
+ SE_SPI_DEMUX_SEL
);
424 writel(cpha
, se
->base
+ SE_SPI_CPHA
);
425 writel(cpol
, se
->base
+ SE_SPI_CPOL
);
426 writel(demux_output_inv
, se
->base
+ SE_SPI_DEMUX_OUTPUT_INV
);
428 mas
->last_mode
= spi_slv
->mode
;
431 return geni_spi_set_clock_and_bw(mas
, spi_slv
->max_speed_hz
);
435 spi_gsi_callback_result(void *cb
, const struct dmaengine_result
*result
)
437 struct spi_controller
*spi
= cb
;
439 spi
->cur_msg
->status
= -EIO
;
440 if (result
->result
!= DMA_TRANS_NOERROR
) {
441 dev_err(&spi
->dev
, "DMA txn failed: %d\n", result
->result
);
442 spi_finalize_current_transfer(spi
);
446 if (!result
->residue
) {
447 spi
->cur_msg
->status
= 0;
448 dev_dbg(&spi
->dev
, "DMA txn completed\n");
450 dev_err(&spi
->dev
, "DMA xfer has pending: %d\n", result
->residue
);
453 spi_finalize_current_transfer(spi
);
456 static int setup_gsi_xfer(struct spi_transfer
*xfer
, struct spi_geni_master
*mas
,
457 struct spi_device
*spi_slv
, struct spi_controller
*spi
)
459 unsigned long flags
= DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
;
460 struct dma_slave_config config
= {};
461 struct gpi_spi_config peripheral
= {};
462 struct dma_async_tx_descriptor
*tx_desc
, *rx_desc
;
465 config
.peripheral_config
= &peripheral
;
466 config
.peripheral_size
= sizeof(peripheral
);
467 peripheral
.set_config
= true;
469 if (xfer
->bits_per_word
!= mas
->cur_bits_per_word
||
470 xfer
->speed_hz
!= mas
->cur_speed_hz
) {
471 mas
->cur_bits_per_word
= xfer
->bits_per_word
;
472 mas
->cur_speed_hz
= xfer
->speed_hz
;
475 if (xfer
->tx_buf
&& xfer
->rx_buf
) {
476 peripheral
.cmd
= SPI_DUPLEX
;
477 } else if (xfer
->tx_buf
) {
478 peripheral
.cmd
= SPI_TX
;
479 peripheral
.rx_len
= 0;
480 } else if (xfer
->rx_buf
) {
481 peripheral
.cmd
= SPI_RX
;
482 if (!(mas
->cur_bits_per_word
% MIN_WORD_LEN
)) {
483 peripheral
.rx_len
= ((xfer
->len
<< 3) / mas
->cur_bits_per_word
);
485 int bytes_per_word
= (mas
->cur_bits_per_word
/ BITS_PER_BYTE
) + 1;
487 peripheral
.rx_len
= (xfer
->len
/ bytes_per_word
);
491 peripheral
.loopback_en
= !!(spi_slv
->mode
& SPI_LOOP
);
492 peripheral
.clock_pol_high
= !!(spi_slv
->mode
& SPI_CPOL
);
493 peripheral
.data_pol_high
= !!(spi_slv
->mode
& SPI_CPHA
);
494 peripheral
.cs
= spi_get_chipselect(spi_slv
, 0);
495 peripheral
.pack_en
= true;
496 peripheral
.word_len
= xfer
->bits_per_word
- MIN_WORD_LEN
;
498 ret
= get_spi_clk_cfg(mas
->cur_speed_hz
, mas
,
499 &peripheral
.clk_src
, &peripheral
.clk_div
);
501 dev_err(mas
->dev
, "Err in get_spi_clk_cfg() :%d\n", ret
);
505 if (!xfer
->cs_change
) {
506 if (!list_is_last(&xfer
->transfer_list
, &spi
->cur_msg
->transfers
))
507 peripheral
.fragmentation
= FRAGMENTATION
;
510 if (peripheral
.cmd
& SPI_RX
) {
511 dmaengine_slave_config(mas
->rx
, &config
);
512 rx_desc
= dmaengine_prep_slave_sg(mas
->rx
, xfer
->rx_sg
.sgl
, xfer
->rx_sg
.nents
,
513 DMA_DEV_TO_MEM
, flags
);
515 dev_err(mas
->dev
, "Err setting up rx desc\n");
521 * Prepare the TX always, even for RX or tx_buf being null, we would
522 * need TX to be prepared per GSI spec
524 dmaengine_slave_config(mas
->tx
, &config
);
525 tx_desc
= dmaengine_prep_slave_sg(mas
->tx
, xfer
->tx_sg
.sgl
, xfer
->tx_sg
.nents
,
526 DMA_MEM_TO_DEV
, flags
);
528 dev_err(mas
->dev
, "Err setting up tx desc\n");
532 tx_desc
->callback_result
= spi_gsi_callback_result
;
533 tx_desc
->callback_param
= spi
;
535 if (peripheral
.cmd
& SPI_RX
)
536 dmaengine_submit(rx_desc
);
537 dmaengine_submit(tx_desc
);
539 if (peripheral
.cmd
& SPI_RX
)
540 dma_async_issue_pending(mas
->rx
);
542 dma_async_issue_pending(mas
->tx
);
546 static u32
get_xfer_len_in_words(struct spi_transfer
*xfer
,
547 struct spi_geni_master
*mas
)
551 if (!(mas
->cur_bits_per_word
% MIN_WORD_LEN
))
552 len
= xfer
->len
* BITS_PER_BYTE
/ mas
->cur_bits_per_word
;
554 len
= xfer
->len
/ (mas
->cur_bits_per_word
/ BITS_PER_BYTE
+ 1);
555 len
&= TRANS_LEN_MSK
;
560 static bool geni_can_dma(struct spi_controller
*ctlr
,
561 struct spi_device
*slv
, struct spi_transfer
*xfer
)
563 struct spi_geni_master
*mas
= spi_controller_get_devdata(slv
->controller
);
566 if (mas
->cur_xfer_mode
== GENI_GPI_DMA
)
569 /* Set SE DMA mode for SPI target. */
573 len
= get_xfer_len_in_words(xfer
, mas
);
574 fifo_size
= mas
->tx_fifo_depth
* mas
->fifo_width_bits
/ mas
->cur_bits_per_word
;
582 static int spi_geni_prepare_message(struct spi_controller
*spi
,
583 struct spi_message
*spi_msg
)
585 struct spi_geni_master
*mas
= spi_controller_get_devdata(spi
);
588 switch (mas
->cur_xfer_mode
) {
591 if (spi_geni_is_abort_still_pending(mas
))
593 ret
= setup_fifo_params(spi_msg
->spi
, spi
);
595 dev_err(mas
->dev
, "Couldn't select mode %d\n", ret
);
599 /* nothing to do for GPI DMA */
603 dev_err(mas
->dev
, "Mode not supported %d", mas
->cur_xfer_mode
);
607 static void spi_geni_release_dma_chan(void *data
)
609 struct spi_geni_master
*mas
= data
;
612 dma_release_channel(mas
->rx
);
617 dma_release_channel(mas
->tx
);
622 static int spi_geni_grab_gpi_chan(struct spi_geni_master
*mas
)
626 mas
->tx
= dma_request_chan(mas
->dev
, "tx");
627 if (IS_ERR(mas
->tx
)) {
628 ret
= dev_err_probe(mas
->dev
, PTR_ERR(mas
->tx
),
629 "Failed to get tx DMA ch\n");
633 mas
->rx
= dma_request_chan(mas
->dev
, "rx");
634 if (IS_ERR(mas
->rx
)) {
635 ret
= dev_err_probe(mas
->dev
, PTR_ERR(mas
->rx
),
636 "Failed to get rx DMA ch\n");
640 ret
= devm_add_action_or_reset(mas
->dev
, spi_geni_release_dma_chan
, mas
);
642 dev_err(mas
->dev
, "Unable to add action.\n");
650 dma_release_channel(mas
->tx
);
656 static int spi_geni_init(struct spi_geni_master
*mas
)
658 struct spi_controller
*spi
= dev_get_drvdata(mas
->dev
);
659 struct geni_se
*se
= &mas
->se
;
660 unsigned int proto
, major
, minor
, ver
;
661 u32 spi_tx_cfg
, fifo_disable
;
664 pm_runtime_get_sync(mas
->dev
);
666 proto
= geni_se_read_proto(se
);
669 if (proto
!= GENI_SE_SPI_SLAVE
) {
670 dev_err(mas
->dev
, "Invalid proto %d\n", proto
);
674 } else if (proto
!= GENI_SE_SPI
) {
675 dev_err(mas
->dev
, "Invalid proto %d\n", proto
);
678 mas
->tx_fifo_depth
= geni_se_get_tx_fifo_depth(se
);
680 /* Width of Tx and Rx FIFO is same */
681 mas
->fifo_width_bits
= geni_se_get_tx_fifo_width(se
);
684 * Hardware programming guide suggests to configure
685 * RX FIFO RFR level to fifo_depth-2.
687 geni_se_init(se
, mas
->tx_fifo_depth
- 3, mas
->tx_fifo_depth
- 2);
688 /* Transmit an entire FIFO worth of data per IRQ */
690 ver
= geni_se_get_qup_hw_version(se
);
691 major
= GENI_SE_VERSION_MAJOR(ver
);
692 minor
= GENI_SE_VERSION_MINOR(ver
);
694 if (major
== 1 && minor
== 0)
695 mas
->oversampling
= 2;
697 mas
->oversampling
= 1;
699 fifo_disable
= readl(se
->base
+ GENI_IF_DISABLE_RO
) & FIFO_IF_DISABLE
;
700 switch (fifo_disable
) {
702 ret
= spi_geni_grab_gpi_chan(mas
);
703 if (!ret
) { /* success case */
704 mas
->cur_xfer_mode
= GENI_GPI_DMA
;
705 geni_se_select_mode(se
, GENI_GPI_DMA
);
706 dev_dbg(mas
->dev
, "Using GPI DMA mode for SPI\n");
708 } else if (ret
== -EPROBE_DEFER
) {
712 * in case of failure to get gpi dma channel, we can still do the
713 * FIFO mode, so fallthrough
715 dev_warn(mas
->dev
, "FIFO mode disabled, but couldn't get DMA, fall back to FIFO mode\n");
719 mas
->cur_xfer_mode
= GENI_SE_FIFO
;
720 geni_se_select_mode(se
, GENI_SE_FIFO
);
725 /* We always control CS manually */
727 spi_tx_cfg
= readl(se
->base
+ SE_SPI_TRANS_CFG
);
728 spi_tx_cfg
&= ~CS_TOGGLE
;
729 writel(spi_tx_cfg
, se
->base
+ SE_SPI_TRANS_CFG
);
733 pm_runtime_put(mas
->dev
);
737 static unsigned int geni_byte_per_fifo_word(struct spi_geni_master
*mas
)
740 * Calculate how many bytes we'll put in each FIFO word. If the
741 * transfer words don't pack cleanly into a FIFO word we'll just put
742 * one transfer word in each FIFO word. If they do pack we'll pack 'em.
744 if (mas
->fifo_width_bits
% mas
->cur_bits_per_word
)
745 return roundup_pow_of_two(DIV_ROUND_UP(mas
->cur_bits_per_word
,
748 return mas
->fifo_width_bits
/ BITS_PER_BYTE
;
751 static bool geni_spi_handle_tx(struct spi_geni_master
*mas
)
753 struct geni_se
*se
= &mas
->se
;
754 unsigned int max_bytes
;
756 unsigned int bytes_per_fifo_word
= geni_byte_per_fifo_word(mas
);
759 /* Stop the watermark IRQ if nothing to send */
760 if (!mas
->cur_xfer
) {
761 writel(0, se
->base
+ SE_GENI_TX_WATERMARK_REG
);
765 max_bytes
= (mas
->tx_fifo_depth
- mas
->tx_wm
) * bytes_per_fifo_word
;
766 if (mas
->tx_rem_bytes
< max_bytes
)
767 max_bytes
= mas
->tx_rem_bytes
;
769 tx_buf
= mas
->cur_xfer
->tx_buf
+ mas
->cur_xfer
->len
- mas
->tx_rem_bytes
;
770 while (i
< max_bytes
) {
772 unsigned int bytes_to_write
;
774 u8
*fifo_byte
= (u8
*)&fifo_word
;
776 bytes_to_write
= min(bytes_per_fifo_word
, max_bytes
- i
);
777 for (j
= 0; j
< bytes_to_write
; j
++)
778 fifo_byte
[j
] = tx_buf
[i
++];
779 iowrite32_rep(se
->base
+ SE_GENI_TX_FIFOn
, &fifo_word
, 1);
781 mas
->tx_rem_bytes
-= max_bytes
;
782 if (!mas
->tx_rem_bytes
) {
783 writel(0, se
->base
+ SE_GENI_TX_WATERMARK_REG
);
789 static void geni_spi_handle_rx(struct spi_geni_master
*mas
)
791 struct geni_se
*se
= &mas
->se
;
793 unsigned int rx_bytes
;
794 unsigned int rx_last_byte_valid
;
796 unsigned int bytes_per_fifo_word
= geni_byte_per_fifo_word(mas
);
799 rx_fifo_status
= readl(se
->base
+ SE_GENI_RX_FIFO_STATUS
);
800 rx_bytes
= (rx_fifo_status
& RX_FIFO_WC_MSK
) * bytes_per_fifo_word
;
801 if (rx_fifo_status
& RX_LAST
) {
802 rx_last_byte_valid
= rx_fifo_status
& RX_LAST_BYTE_VALID_MSK
;
803 rx_last_byte_valid
>>= RX_LAST_BYTE_VALID_SHFT
;
804 if (rx_last_byte_valid
&& rx_last_byte_valid
< 4)
805 rx_bytes
-= bytes_per_fifo_word
- rx_last_byte_valid
;
808 /* Clear out the FIFO and bail if nowhere to put it */
809 if (!mas
->cur_xfer
) {
810 for (i
= 0; i
< DIV_ROUND_UP(rx_bytes
, bytes_per_fifo_word
); i
++)
811 readl(se
->base
+ SE_GENI_RX_FIFOn
);
815 if (mas
->rx_rem_bytes
< rx_bytes
)
816 rx_bytes
= mas
->rx_rem_bytes
;
818 rx_buf
= mas
->cur_xfer
->rx_buf
+ mas
->cur_xfer
->len
- mas
->rx_rem_bytes
;
819 while (i
< rx_bytes
) {
821 u8
*fifo_byte
= (u8
*)&fifo_word
;
822 unsigned int bytes_to_read
;
825 bytes_to_read
= min(bytes_per_fifo_word
, rx_bytes
- i
);
826 ioread32_rep(se
->base
+ SE_GENI_RX_FIFOn
, &fifo_word
, 1);
827 for (j
= 0; j
< bytes_to_read
; j
++)
828 rx_buf
[i
++] = fifo_byte
[j
];
830 mas
->rx_rem_bytes
-= rx_bytes
;
833 static int setup_se_xfer(struct spi_transfer
*xfer
,
834 struct spi_geni_master
*mas
,
835 u16 mode
, struct spi_controller
*spi
)
839 struct geni_se
*se
= &mas
->se
;
843 * Ensure that our interrupt handler isn't still running from some
844 * prior command before we start messing with the hardware behind
845 * its back. We don't need to _keep_ the lock here since we're only
846 * worried about racing with out interrupt handler. The SPI core
847 * already handles making sure that we're not trying to do two
848 * transfers at once or setting a chip select and doing a transfer
851 * NOTE: we actually _can't_ hold the lock here because possibly we
852 * might call clk_set_rate() which needs to be able to sleep.
854 spin_lock_irq(&mas
->lock
);
855 spin_unlock_irq(&mas
->lock
);
857 if (xfer
->bits_per_word
!= mas
->cur_bits_per_word
) {
858 spi_setup_word_len(mas
, mode
, xfer
->bits_per_word
);
859 mas
->cur_bits_per_word
= xfer
->bits_per_word
;
862 /* Speed and bits per word can be overridden per transfer */
863 ret
= geni_spi_set_clock_and_bw(mas
, xfer
->speed_hz
);
867 mas
->tx_rem_bytes
= 0;
868 mas
->rx_rem_bytes
= 0;
870 len
= get_xfer_len_in_words(xfer
, mas
);
872 mas
->cur_xfer
= xfer
;
874 m_cmd
|= SPI_TX_ONLY
;
875 mas
->tx_rem_bytes
= xfer
->len
;
876 writel(len
, se
->base
+ SE_SPI_TX_TRANS_LEN
);
880 m_cmd
|= SPI_RX_ONLY
;
881 writel(len
, se
->base
+ SE_SPI_RX_TRANS_LEN
);
882 mas
->rx_rem_bytes
= xfer
->len
;
886 * Select DMA mode if sgt are present; and with only 1 entry
887 * This is not a serious limitation because the xfer buffers are
888 * expected to fit into in 1 entry almost always, and if any
889 * doesn't for any reason we fall back to FIFO mode anyway
891 if (!xfer
->tx_sg
.nents
&& !xfer
->rx_sg
.nents
)
892 mas
->cur_xfer_mode
= GENI_SE_FIFO
;
893 else if (xfer
->tx_sg
.nents
> 1 || xfer
->rx_sg
.nents
> 1) {
894 dev_warn_once(mas
->dev
, "Doing FIFO, cannot handle tx_nents-%d, rx_nents-%d\n",
895 xfer
->tx_sg
.nents
, xfer
->rx_sg
.nents
);
896 mas
->cur_xfer_mode
= GENI_SE_FIFO
;
898 mas
->cur_xfer_mode
= GENI_SE_DMA
;
899 geni_se_select_mode(se
, mas
->cur_xfer_mode
);
902 * Lock around right before we start the transfer since our
903 * interrupt could come in at any time now.
905 spin_lock_irq(&mas
->lock
);
906 geni_se_setup_m_cmd(se
, m_cmd
, FRAGMENTATION
);
908 if (mas
->cur_xfer_mode
== GENI_SE_DMA
) {
909 if (m_cmd
& SPI_RX_ONLY
)
910 geni_se_rx_init_dma(se
, sg_dma_address(xfer
->rx_sg
.sgl
),
911 sg_dma_len(xfer
->rx_sg
.sgl
));
912 if (m_cmd
& SPI_TX_ONLY
)
913 geni_se_tx_init_dma(se
, sg_dma_address(xfer
->tx_sg
.sgl
),
914 sg_dma_len(xfer
->tx_sg
.sgl
));
915 } else if (m_cmd
& SPI_TX_ONLY
) {
916 if (geni_spi_handle_tx(mas
))
917 writel(mas
->tx_wm
, se
->base
+ SE_GENI_TX_WATERMARK_REG
);
920 spin_unlock_irq(&mas
->lock
);
924 static int spi_geni_transfer_one(struct spi_controller
*spi
,
925 struct spi_device
*slv
,
926 struct spi_transfer
*xfer
)
928 struct spi_geni_master
*mas
= spi_controller_get_devdata(spi
);
931 if (spi_geni_is_abort_still_pending(mas
))
934 /* Terminate and return success for 0 byte length transfer */
938 if (mas
->cur_xfer_mode
== GENI_SE_FIFO
|| mas
->cur_xfer_mode
== GENI_SE_DMA
) {
939 ret
= setup_se_xfer(xfer
, mas
, slv
->mode
, spi
);
940 /* SPI framework expects +ve ret code to wait for transfer complete */
945 return setup_gsi_xfer(xfer
, mas
, slv
, spi
);
948 static irqreturn_t
geni_spi_isr(int irq
, void *data
)
950 struct spi_controller
*spi
= data
;
951 struct spi_geni_master
*mas
= spi_controller_get_devdata(spi
);
952 struct geni_se
*se
= &mas
->se
;
955 m_irq
= readl(se
->base
+ SE_GENI_M_IRQ_STATUS
);
959 if (m_irq
& (M_CMD_OVERRUN_EN
| M_ILLEGAL_CMD_EN
| M_CMD_FAILURE_EN
|
960 M_RX_FIFO_RD_ERR_EN
| M_RX_FIFO_WR_ERR_EN
|
961 M_TX_FIFO_RD_ERR_EN
| M_TX_FIFO_WR_ERR_EN
))
962 dev_warn(mas
->dev
, "Unexpected IRQ err status %#010x\n", m_irq
);
964 spin_lock(&mas
->lock
);
966 if (mas
->cur_xfer_mode
== GENI_SE_FIFO
) {
967 if ((m_irq
& M_RX_FIFO_WATERMARK_EN
) || (m_irq
& M_RX_FIFO_LAST_EN
))
968 geni_spi_handle_rx(mas
);
970 if (m_irq
& M_TX_FIFO_WATERMARK_EN
)
971 geni_spi_handle_tx(mas
);
973 if (m_irq
& M_CMD_DONE_EN
) {
975 spi_finalize_current_transfer(spi
);
976 mas
->cur_xfer
= NULL
;
978 * If this happens, then a CMD_DONE came before all the
979 * Tx buffer bytes were sent out. This is unusual, log
980 * this condition and disable the WM interrupt to
981 * prevent the system from stalling due an interrupt
984 * If this happens when all Rx bytes haven't been
985 * received, log the condition. The only known time
986 * this can happen is if bits_per_word != 8 and some
987 * registers that expect xfer lengths in num spi_words
988 * weren't written correctly.
990 if (mas
->tx_rem_bytes
) {
991 writel(0, se
->base
+ SE_GENI_TX_WATERMARK_REG
);
992 dev_err(mas
->dev
, "Premature done. tx_rem = %d bpw%d\n",
993 mas
->tx_rem_bytes
, mas
->cur_bits_per_word
);
995 if (mas
->rx_rem_bytes
)
996 dev_err(mas
->dev
, "Premature done. rx_rem = %d bpw%d\n",
997 mas
->rx_rem_bytes
, mas
->cur_bits_per_word
);
999 complete(&mas
->cs_done
);
1002 } else if (mas
->cur_xfer_mode
== GENI_SE_DMA
) {
1003 const struct spi_transfer
*xfer
= mas
->cur_xfer
;
1004 u32 dma_tx_status
= readl_relaxed(se
->base
+ SE_DMA_TX_IRQ_STAT
);
1005 u32 dma_rx_status
= readl_relaxed(se
->base
+ SE_DMA_RX_IRQ_STAT
);
1008 writel(dma_tx_status
, se
->base
+ SE_DMA_TX_IRQ_CLR
);
1010 writel(dma_rx_status
, se
->base
+ SE_DMA_RX_IRQ_CLR
);
1011 if (dma_tx_status
& TX_DMA_DONE
)
1012 mas
->tx_rem_bytes
= 0;
1013 if (dma_rx_status
& RX_DMA_DONE
)
1014 mas
->rx_rem_bytes
= 0;
1015 if (dma_tx_status
& TX_RESET_DONE
)
1016 complete(&mas
->tx_reset_done
);
1017 if (dma_rx_status
& RX_RESET_DONE
)
1018 complete(&mas
->rx_reset_done
);
1019 if (!mas
->tx_rem_bytes
&& !mas
->rx_rem_bytes
&& xfer
) {
1020 spi_finalize_current_transfer(spi
);
1021 mas
->cur_xfer
= NULL
;
1025 if (m_irq
& M_CMD_CANCEL_EN
)
1026 complete(&mas
->cancel_done
);
1027 if (m_irq
& M_CMD_ABORT_EN
)
1028 complete(&mas
->abort_done
);
1031 * It's safe or a good idea to Ack all of our interrupts at the end
1032 * of the function. Specifically:
1033 * - M_CMD_DONE_EN / M_RX_FIFO_LAST_EN: Edge triggered interrupts and
1034 * clearing Acks. Clearing at the end relies on nobody else having
1035 * started a new transfer yet or else we could be clearing _their_
1036 * done bit, but everyone grabs the spinlock before starting a new
1038 * - M_RX_FIFO_WATERMARK_EN / M_TX_FIFO_WATERMARK_EN: These appear
1039 * to be "latched level" interrupts so it's important to clear them
1040 * _after_ you've handled the condition and always safe to do so
1041 * since they'll re-assert if they're still happening.
1043 writel(m_irq
, se
->base
+ SE_GENI_M_IRQ_CLEAR
);
1045 spin_unlock(&mas
->lock
);
1050 static int spi_geni_probe(struct platform_device
*pdev
)
1053 struct spi_controller
*spi
;
1054 struct spi_geni_master
*mas
;
1057 struct device
*dev
= &pdev
->dev
;
1059 irq
= platform_get_irq(pdev
, 0);
1063 ret
= dma_set_mask_and_coherent(dev
, DMA_BIT_MASK(64));
1065 return dev_err_probe(dev
, ret
, "could not set DMA mask\n");
1067 base
= devm_platform_ioremap_resource(pdev
, 0);
1069 return PTR_ERR(base
);
1071 clk
= devm_clk_get(dev
, "se");
1073 return PTR_ERR(clk
);
1075 spi
= devm_spi_alloc_host(dev
, sizeof(*mas
));
1079 platform_set_drvdata(pdev
, spi
);
1080 mas
= spi_controller_get_devdata(spi
);
1084 mas
->se
.wrapper
= dev_get_drvdata(dev
->parent
);
1085 mas
->se
.base
= base
;
1088 ret
= devm_pm_opp_set_clkname(&pdev
->dev
, "se");
1091 /* OPP table is optional */
1092 ret
= devm_pm_opp_of_add_table(&pdev
->dev
);
1093 if (ret
&& ret
!= -ENODEV
) {
1094 dev_err(&pdev
->dev
, "invalid OPP table in device tree\n");
1099 spi
->dev
.of_node
= dev
->of_node
;
1100 spi
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_LOOP
| SPI_CS_HIGH
;
1101 spi
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 32);
1102 spi
->num_chipselect
= 4;
1103 spi
->max_speed_hz
= 50000000;
1104 spi
->max_dma_len
= 0xffff0; /* 24 bits for tx/rx dma length */
1105 spi
->prepare_message
= spi_geni_prepare_message
;
1106 spi
->transfer_one
= spi_geni_transfer_one
;
1107 spi
->can_dma
= geni_can_dma
;
1108 spi
->dma_map_dev
= dev
->parent
;
1109 spi
->auto_runtime_pm
= true;
1110 spi
->handle_err
= spi_geni_handle_err
;
1111 spi
->use_gpio_descriptors
= true;
1113 init_completion(&mas
->cs_done
);
1114 init_completion(&mas
->cancel_done
);
1115 init_completion(&mas
->abort_done
);
1116 init_completion(&mas
->tx_reset_done
);
1117 init_completion(&mas
->rx_reset_done
);
1118 spin_lock_init(&mas
->lock
);
1120 ret
= geni_icc_get(&mas
->se
, NULL
);
1124 pm_runtime_use_autosuspend(&pdev
->dev
);
1125 pm_runtime_set_autosuspend_delay(&pdev
->dev
, 250);
1126 ret
= devm_pm_runtime_enable(dev
);
1130 if (device_property_read_bool(&pdev
->dev
, "spi-slave"))
1133 /* Set the bus quota to a reasonable value for register access */
1134 mas
->se
.icc_paths
[GENI_TO_CORE
].avg_bw
= Bps_to_icc(CORE_2X_50_MHZ
);
1135 mas
->se
.icc_paths
[CPU_TO_GENI
].avg_bw
= GENI_DEFAULT_BW
;
1137 ret
= geni_icc_set_bw(&mas
->se
);
1141 ret
= spi_geni_init(mas
);
1146 * check the mode supported and set_cs for fifo mode only
1147 * for dma (gsi) mode, the gsi will set cs based on params passed in
1150 if (!spi
->target
&& mas
->cur_xfer_mode
== GENI_SE_FIFO
)
1151 spi
->set_cs
= spi_geni_set_cs
;
1154 * TX is required per GSI spec, see setup_gsi_xfer().
1156 if (mas
->cur_xfer_mode
== GENI_GPI_DMA
)
1157 spi
->flags
= SPI_CONTROLLER_MUST_TX
;
1159 ret
= devm_request_irq(dev
, mas
->irq
, geni_spi_isr
, 0, dev_name(dev
), spi
);
1163 return devm_spi_register_controller(dev
, spi
);
1166 static int __maybe_unused
spi_geni_runtime_suspend(struct device
*dev
)
1168 struct spi_controller
*spi
= dev_get_drvdata(dev
);
1169 struct spi_geni_master
*mas
= spi_controller_get_devdata(spi
);
1172 /* Drop the performance state vote */
1173 dev_pm_opp_set_rate(dev
, 0);
1175 ret
= geni_se_resources_off(&mas
->se
);
1179 return geni_icc_disable(&mas
->se
);
1182 static int __maybe_unused
spi_geni_runtime_resume(struct device
*dev
)
1184 struct spi_controller
*spi
= dev_get_drvdata(dev
);
1185 struct spi_geni_master
*mas
= spi_controller_get_devdata(spi
);
1188 ret
= geni_icc_enable(&mas
->se
);
1192 ret
= geni_se_resources_on(&mas
->se
);
1196 return dev_pm_opp_set_rate(mas
->dev
, mas
->cur_sclk_hz
);
1199 static int __maybe_unused
spi_geni_suspend(struct device
*dev
)
1201 struct spi_controller
*spi
= dev_get_drvdata(dev
);
1204 ret
= spi_controller_suspend(spi
);
1208 ret
= pm_runtime_force_suspend(dev
);
1210 spi_controller_resume(spi
);
1215 static int __maybe_unused
spi_geni_resume(struct device
*dev
)
1217 struct spi_controller
*spi
= dev_get_drvdata(dev
);
1220 ret
= pm_runtime_force_resume(dev
);
1224 ret
= spi_controller_resume(spi
);
1226 pm_runtime_force_suspend(dev
);
1231 static const struct dev_pm_ops spi_geni_pm_ops
= {
1232 SET_RUNTIME_PM_OPS(spi_geni_runtime_suspend
,
1233 spi_geni_runtime_resume
, NULL
)
1234 SET_SYSTEM_SLEEP_PM_OPS(spi_geni_suspend
, spi_geni_resume
)
1237 static const struct of_device_id spi_geni_dt_match
[] = {
1238 { .compatible
= "qcom,geni-spi" },
1241 MODULE_DEVICE_TABLE(of
, spi_geni_dt_match
);
1243 static struct platform_driver spi_geni_driver
= {
1244 .probe
= spi_geni_probe
,
1247 .pm
= &spi_geni_pm_ops
,
1248 .of_match_table
= spi_geni_dt_match
,
1251 module_platform_driver(spi_geni_driver
);
1253 MODULE_DESCRIPTION("SPI driver for GENI based QUP cores");
1254 MODULE_LICENSE("GPL v2");