dma-fence: Add some more fence-merge-unwrap tests
[drm/drm-misc.git] / drivers / spi / spi-microchip-core-qspi.c
blobad2b5ffa6153433490f09bdd4c362273a0218432
1 // SPDX-License-Identifier: (GPL-2.0)
2 /*
3 * Microchip coreQSPI QSPI controller driver
5 * Copyright (C) 2018-2022 Microchip Technology Inc. and its subsidiaries
7 * Author: Naga Sureshkumar Relli <nagasuresh.relli@microchip.com>
9 */
11 #include <linux/clk.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/iopoll.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/of_irq.h>
20 #include <linux/platform_device.h>
21 #include <linux/spi/spi.h>
22 #include <linux/spi/spi-mem.h>
25 * QSPI Control register mask defines
27 #define CONTROL_ENABLE BIT(0)
28 #define CONTROL_MASTER BIT(1)
29 #define CONTROL_XIP BIT(2)
30 #define CONTROL_XIPADDR BIT(3)
31 #define CONTROL_CLKIDLE BIT(10)
32 #define CONTROL_SAMPLE_MASK GENMASK(12, 11)
33 #define CONTROL_MODE0 BIT(13)
34 #define CONTROL_MODE12_MASK GENMASK(15, 14)
35 #define CONTROL_MODE12_EX_RO BIT(14)
36 #define CONTROL_MODE12_EX_RW BIT(15)
37 #define CONTROL_MODE12_FULL GENMASK(15, 14)
38 #define CONTROL_FLAGSX4 BIT(16)
39 #define CONTROL_CLKRATE_MASK GENMASK(27, 24)
40 #define CONTROL_CLKRATE_SHIFT 24
43 * QSPI Frames register mask defines
45 #define FRAMES_TOTALBYTES_MASK GENMASK(15, 0)
46 #define FRAMES_CMDBYTES_MASK GENMASK(24, 16)
47 #define FRAMES_CMDBYTES_SHIFT 16
48 #define FRAMES_SHIFT 25
49 #define FRAMES_IDLE_MASK GENMASK(29, 26)
50 #define FRAMES_IDLE_SHIFT 26
51 #define FRAMES_FLAGBYTE BIT(30)
52 #define FRAMES_FLAGWORD BIT(31)
55 * QSPI Interrupt Enable register mask defines
57 #define IEN_TXDONE BIT(0)
58 #define IEN_RXDONE BIT(1)
59 #define IEN_RXAVAILABLE BIT(2)
60 #define IEN_TXAVAILABLE BIT(3)
61 #define IEN_RXFIFOEMPTY BIT(4)
62 #define IEN_TXFIFOFULL BIT(5)
65 * QSPI Status register mask defines
67 #define STATUS_TXDONE BIT(0)
68 #define STATUS_RXDONE BIT(1)
69 #define STATUS_RXAVAILABLE BIT(2)
70 #define STATUS_TXAVAILABLE BIT(3)
71 #define STATUS_RXFIFOEMPTY BIT(4)
72 #define STATUS_TXFIFOFULL BIT(5)
73 #define STATUS_READY BIT(7)
74 #define STATUS_FLAGSX4 BIT(8)
75 #define STATUS_MASK GENMASK(8, 0)
77 #define BYTESUPPER_MASK GENMASK(31, 16)
78 #define BYTESLOWER_MASK GENMASK(15, 0)
80 #define MAX_DIVIDER 16
81 #define MIN_DIVIDER 0
82 #define MAX_DATA_CMD_LEN 256
84 /* QSPI ready time out value */
85 #define TIMEOUT_MS 500
88 * QSPI Register offsets.
90 #define REG_CONTROL (0x00)
91 #define REG_FRAMES (0x04)
92 #define REG_IEN (0x0c)
93 #define REG_STATUS (0x10)
94 #define REG_DIRECT_ACCESS (0x14)
95 #define REG_UPPER_ACCESS (0x18)
96 #define REG_RX_DATA (0x40)
97 #define REG_TX_DATA (0x44)
98 #define REG_X4_RX_DATA (0x48)
99 #define REG_X4_TX_DATA (0x4c)
100 #define REG_FRAMESUP (0x50)
103 * struct mchp_coreqspi - Defines qspi driver instance
104 * @regs: Virtual address of the QSPI controller registers
105 * @clk: QSPI Operating clock
106 * @data_completion: completion structure
107 * @op_lock: lock access to the device
108 * @txbuf: TX buffer
109 * @rxbuf: RX buffer
110 * @irq: IRQ number
111 * @tx_len: Number of bytes left to transfer
112 * @rx_len: Number of bytes left to receive
114 struct mchp_coreqspi {
115 void __iomem *regs;
116 struct clk *clk;
117 struct completion data_completion;
118 struct mutex op_lock; /* lock access to the device */
119 u8 *txbuf;
120 u8 *rxbuf;
121 int irq;
122 int tx_len;
123 int rx_len;
126 static int mchp_coreqspi_set_mode(struct mchp_coreqspi *qspi, const struct spi_mem_op *op)
128 u32 control = readl_relaxed(qspi->regs + REG_CONTROL);
131 * The operating mode can be configured based on the command that needs to be send.
132 * bits[15:14]: Sets whether multiple bit SPI operates in normal, extended or full modes.
133 * 00: Normal (single DQ0 TX and single DQ1 RX lines)
134 * 01: Extended RO (command and address bytes on DQ0 only)
135 * 10: Extended RW (command byte on DQ0 only)
136 * 11: Full. (command and address are on all DQ lines)
137 * bit[13]: Sets whether multiple bit SPI uses 2 or 4 bits of data
138 * 0: 2-bits (BSPI)
139 * 1: 4-bits (QSPI)
141 if (op->data.buswidth == 4 || op->data.buswidth == 2) {
142 control &= ~CONTROL_MODE12_MASK;
143 if (op->cmd.buswidth == 1 && (op->addr.buswidth == 1 || op->addr.buswidth == 0))
144 control |= CONTROL_MODE12_EX_RO;
145 else if (op->cmd.buswidth == 1)
146 control |= CONTROL_MODE12_EX_RW;
147 else
148 control |= CONTROL_MODE12_FULL;
150 control |= CONTROL_MODE0;
151 } else {
152 control &= ~(CONTROL_MODE12_MASK |
153 CONTROL_MODE0);
156 writel_relaxed(control, qspi->regs + REG_CONTROL);
158 return 0;
161 static inline void mchp_coreqspi_read_op(struct mchp_coreqspi *qspi)
163 u32 control, data;
165 if (!qspi->rx_len)
166 return;
168 control = readl_relaxed(qspi->regs + REG_CONTROL);
171 * Read 4-bytes from the SPI FIFO in single transaction and then read
172 * the reamaining data byte wise.
174 control |= CONTROL_FLAGSX4;
175 writel_relaxed(control, qspi->regs + REG_CONTROL);
177 while (qspi->rx_len >= 4) {
178 while (readl_relaxed(qspi->regs + REG_STATUS) & STATUS_RXFIFOEMPTY)
180 data = readl_relaxed(qspi->regs + REG_X4_RX_DATA);
181 *(u32 *)qspi->rxbuf = data;
182 qspi->rxbuf += 4;
183 qspi->rx_len -= 4;
186 control &= ~CONTROL_FLAGSX4;
187 writel_relaxed(control, qspi->regs + REG_CONTROL);
189 while (qspi->rx_len--) {
190 while (readl_relaxed(qspi->regs + REG_STATUS) & STATUS_RXFIFOEMPTY)
192 data = readl_relaxed(qspi->regs + REG_RX_DATA);
193 *qspi->rxbuf++ = (data & 0xFF);
197 static inline void mchp_coreqspi_write_op(struct mchp_coreqspi *qspi, bool word)
199 u32 control, data;
201 control = readl_relaxed(qspi->regs + REG_CONTROL);
202 control |= CONTROL_FLAGSX4;
203 writel_relaxed(control, qspi->regs + REG_CONTROL);
205 while (qspi->tx_len >= 4) {
206 while (readl_relaxed(qspi->regs + REG_STATUS) & STATUS_TXFIFOFULL)
208 data = *(u32 *)qspi->txbuf;
209 qspi->txbuf += 4;
210 qspi->tx_len -= 4;
211 writel_relaxed(data, qspi->regs + REG_X4_TX_DATA);
214 control &= ~CONTROL_FLAGSX4;
215 writel_relaxed(control, qspi->regs + REG_CONTROL);
217 while (qspi->tx_len--) {
218 while (readl_relaxed(qspi->regs + REG_STATUS) & STATUS_TXFIFOFULL)
220 data = *qspi->txbuf++;
221 writel_relaxed(data, qspi->regs + REG_TX_DATA);
225 static void mchp_coreqspi_enable_ints(struct mchp_coreqspi *qspi)
227 u32 mask = IEN_TXDONE |
228 IEN_RXDONE |
229 IEN_RXAVAILABLE;
231 writel_relaxed(mask, qspi->regs + REG_IEN);
234 static void mchp_coreqspi_disable_ints(struct mchp_coreqspi *qspi)
236 writel_relaxed(0, qspi->regs + REG_IEN);
239 static irqreturn_t mchp_coreqspi_isr(int irq, void *dev_id)
241 struct mchp_coreqspi *qspi = (struct mchp_coreqspi *)dev_id;
242 irqreturn_t ret = IRQ_NONE;
243 int intfield = readl_relaxed(qspi->regs + REG_STATUS) & STATUS_MASK;
245 if (intfield == 0)
246 return ret;
248 if (intfield & IEN_TXDONE) {
249 writel_relaxed(IEN_TXDONE, qspi->regs + REG_STATUS);
250 ret = IRQ_HANDLED;
253 if (intfield & IEN_RXAVAILABLE) {
254 writel_relaxed(IEN_RXAVAILABLE, qspi->regs + REG_STATUS);
255 mchp_coreqspi_read_op(qspi);
256 ret = IRQ_HANDLED;
259 if (intfield & IEN_RXDONE) {
260 writel_relaxed(IEN_RXDONE, qspi->regs + REG_STATUS);
261 complete(&qspi->data_completion);
262 ret = IRQ_HANDLED;
265 return ret;
268 static int mchp_coreqspi_setup_clock(struct mchp_coreqspi *qspi, struct spi_device *spi)
270 unsigned long clk_hz;
271 u32 control, baud_rate_val = 0;
273 clk_hz = clk_get_rate(qspi->clk);
274 if (!clk_hz)
275 return -EINVAL;
277 baud_rate_val = DIV_ROUND_UP(clk_hz, 2 * spi->max_speed_hz);
278 if (baud_rate_val > MAX_DIVIDER || baud_rate_val < MIN_DIVIDER) {
279 dev_err(&spi->dev,
280 "could not configure the clock for spi clock %d Hz & system clock %ld Hz\n",
281 spi->max_speed_hz, clk_hz);
282 return -EINVAL;
285 control = readl_relaxed(qspi->regs + REG_CONTROL);
286 control &= ~CONTROL_CLKRATE_MASK;
287 control |= baud_rate_val << CONTROL_CLKRATE_SHIFT;
288 writel_relaxed(control, qspi->regs + REG_CONTROL);
289 control = readl_relaxed(qspi->regs + REG_CONTROL);
291 if ((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA))
292 control |= CONTROL_CLKIDLE;
293 else
294 control &= ~CONTROL_CLKIDLE;
296 writel_relaxed(control, qspi->regs + REG_CONTROL);
298 return 0;
301 static int mchp_coreqspi_setup_op(struct spi_device *spi_dev)
303 struct spi_controller *ctlr = spi_dev->controller;
304 struct mchp_coreqspi *qspi = spi_controller_get_devdata(ctlr);
305 u32 control = readl_relaxed(qspi->regs + REG_CONTROL);
307 control |= (CONTROL_MASTER | CONTROL_ENABLE);
308 control &= ~CONTROL_CLKIDLE;
309 writel_relaxed(control, qspi->regs + REG_CONTROL);
311 return 0;
314 static inline void mchp_coreqspi_config_op(struct mchp_coreqspi *qspi, const struct spi_mem_op *op)
316 u32 idle_cycles = 0;
317 int total_bytes, cmd_bytes, frames, ctrl;
319 cmd_bytes = op->cmd.nbytes + op->addr.nbytes;
320 total_bytes = cmd_bytes + op->data.nbytes;
323 * As per the coreQSPI IP spec,the number of command and data bytes are
324 * controlled by the frames register for each SPI sequence. This supports
325 * the SPI flash memory read and writes sequences as below. so configure
326 * the cmd and total bytes accordingly.
327 * ---------------------------------------------------------------------
328 * TOTAL BYTES | CMD BYTES | What happens |
329 * ______________________________________________________________________
330 * | | |
331 * 1 | 1 | The SPI core will transmit a single byte |
332 * | | and receive data is discarded |
333 * | | |
334 * 1 | 0 | The SPI core will transmit a single byte |
335 * | | and return a single byte |
336 * | | |
337 * 10 | 4 | The SPI core will transmit 4 command |
338 * | | bytes discarding the receive data and |
339 * | | transmits 6 dummy bytes returning the 6 |
340 * | | received bytes and return a single byte |
341 * | | |
342 * 10 | 10 | The SPI core will transmit 10 command |
343 * | | |
344 * 10 | 0 | The SPI core will transmit 10 command |
345 * | | bytes and returning 10 received bytes |
346 * ______________________________________________________________________
348 if (!(op->data.dir == SPI_MEM_DATA_IN))
349 cmd_bytes = total_bytes;
351 frames = total_bytes & BYTESUPPER_MASK;
352 writel_relaxed(frames, qspi->regs + REG_FRAMESUP);
353 frames = total_bytes & BYTESLOWER_MASK;
354 frames |= cmd_bytes << FRAMES_CMDBYTES_SHIFT;
356 if (op->dummy.buswidth)
357 idle_cycles = op->dummy.nbytes * 8 / op->dummy.buswidth;
359 frames |= idle_cycles << FRAMES_IDLE_SHIFT;
360 ctrl = readl_relaxed(qspi->regs + REG_CONTROL);
362 if (ctrl & CONTROL_MODE12_MASK)
363 frames |= (1 << FRAMES_SHIFT);
365 frames |= FRAMES_FLAGWORD;
366 writel_relaxed(frames, qspi->regs + REG_FRAMES);
369 static int mchp_qspi_wait_for_ready(struct spi_mem *mem)
371 struct mchp_coreqspi *qspi = spi_controller_get_devdata
372 (mem->spi->controller);
373 u32 status;
374 int ret;
376 ret = readl_poll_timeout(qspi->regs + REG_STATUS, status,
377 (status & STATUS_READY), 0,
378 TIMEOUT_MS);
379 if (ret) {
380 dev_err(&mem->spi->dev,
381 "Timeout waiting on QSPI ready.\n");
382 return -ETIMEDOUT;
385 return ret;
388 static int mchp_coreqspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
390 struct mchp_coreqspi *qspi = spi_controller_get_devdata
391 (mem->spi->controller);
392 u32 address = op->addr.val;
393 u8 opcode = op->cmd.opcode;
394 u8 opaddr[5];
395 int err, i;
397 mutex_lock(&qspi->op_lock);
398 err = mchp_qspi_wait_for_ready(mem);
399 if (err)
400 goto error;
402 err = mchp_coreqspi_setup_clock(qspi, mem->spi);
403 if (err)
404 goto error;
406 err = mchp_coreqspi_set_mode(qspi, op);
407 if (err)
408 goto error;
410 reinit_completion(&qspi->data_completion);
411 mchp_coreqspi_config_op(qspi, op);
412 if (op->cmd.opcode) {
413 qspi->txbuf = &opcode;
414 qspi->rxbuf = NULL;
415 qspi->tx_len = op->cmd.nbytes;
416 qspi->rx_len = 0;
417 mchp_coreqspi_write_op(qspi, false);
420 qspi->txbuf = &opaddr[0];
421 if (op->addr.nbytes) {
422 for (i = 0; i < op->addr.nbytes; i++)
423 qspi->txbuf[i] = address >> (8 * (op->addr.nbytes - i - 1));
425 qspi->rxbuf = NULL;
426 qspi->tx_len = op->addr.nbytes;
427 qspi->rx_len = 0;
428 mchp_coreqspi_write_op(qspi, false);
431 if (op->data.nbytes) {
432 if (op->data.dir == SPI_MEM_DATA_OUT) {
433 qspi->txbuf = (u8 *)op->data.buf.out;
434 qspi->rxbuf = NULL;
435 qspi->rx_len = 0;
436 qspi->tx_len = op->data.nbytes;
437 mchp_coreqspi_write_op(qspi, true);
438 } else {
439 qspi->txbuf = NULL;
440 qspi->rxbuf = (u8 *)op->data.buf.in;
441 qspi->rx_len = op->data.nbytes;
442 qspi->tx_len = 0;
446 mchp_coreqspi_enable_ints(qspi);
448 if (!wait_for_completion_timeout(&qspi->data_completion, msecs_to_jiffies(1000)))
449 err = -ETIMEDOUT;
451 error:
452 mutex_unlock(&qspi->op_lock);
453 mchp_coreqspi_disable_ints(qspi);
455 return err;
458 static bool mchp_coreqspi_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
460 if (!spi_mem_default_supports_op(mem, op))
461 return false;
463 if ((op->data.buswidth == 4 || op->data.buswidth == 2) &&
464 (op->cmd.buswidth == 1 && (op->addr.buswidth == 1 || op->addr.buswidth == 0))) {
466 * If the command and address are on DQ0 only, then this
467 * controller doesn't support sending data on dual and
468 * quad lines. but it supports reading data on dual and
469 * quad lines with same configuration as command and
470 * address on DQ0.
471 * i.e. The control register[15:13] :EX_RO(read only) is
472 * meant only for the command and address are on DQ0 but
473 * not to write data, it is just to read.
474 * Ex: 0x34h is Quad Load Program Data which is not
475 * supported. Then the spi-mem layer will iterate over
476 * each command and it will chose the supported one.
478 if (op->data.dir == SPI_MEM_DATA_OUT)
479 return false;
482 return true;
485 static int mchp_coreqspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
487 if (op->data.dir == SPI_MEM_DATA_OUT || op->data.dir == SPI_MEM_DATA_IN) {
488 if (op->data.nbytes > MAX_DATA_CMD_LEN)
489 op->data.nbytes = MAX_DATA_CMD_LEN;
492 return 0;
495 static const struct spi_controller_mem_ops mchp_coreqspi_mem_ops = {
496 .adjust_op_size = mchp_coreqspi_adjust_op_size,
497 .supports_op = mchp_coreqspi_supports_op,
498 .exec_op = mchp_coreqspi_exec_op,
501 static int mchp_coreqspi_probe(struct platform_device *pdev)
503 struct spi_controller *ctlr;
504 struct mchp_coreqspi *qspi;
505 struct device *dev = &pdev->dev;
506 struct device_node *np = dev->of_node;
507 int ret;
509 ctlr = devm_spi_alloc_host(&pdev->dev, sizeof(*qspi));
510 if (!ctlr)
511 return dev_err_probe(&pdev->dev, -ENOMEM,
512 "unable to allocate host for QSPI controller\n");
514 qspi = spi_controller_get_devdata(ctlr);
515 platform_set_drvdata(pdev, qspi);
517 qspi->regs = devm_platform_ioremap_resource(pdev, 0);
518 if (IS_ERR(qspi->regs))
519 return dev_err_probe(&pdev->dev, PTR_ERR(qspi->regs),
520 "failed to map registers\n");
522 qspi->clk = devm_clk_get_enabled(&pdev->dev, NULL);
523 if (IS_ERR(qspi->clk))
524 return dev_err_probe(&pdev->dev, PTR_ERR(qspi->clk),
525 "could not get clock\n");
527 init_completion(&qspi->data_completion);
528 mutex_init(&qspi->op_lock);
530 qspi->irq = platform_get_irq(pdev, 0);
531 if (qspi->irq < 0)
532 return qspi->irq;
534 ret = devm_request_irq(&pdev->dev, qspi->irq, mchp_coreqspi_isr,
535 IRQF_SHARED, pdev->name, qspi);
536 if (ret) {
537 dev_err(&pdev->dev, "request_irq failed %d\n", ret);
538 return ret;
541 ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
542 ctlr->mem_ops = &mchp_coreqspi_mem_ops;
543 ctlr->setup = mchp_coreqspi_setup_op;
544 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD |
545 SPI_TX_DUAL | SPI_TX_QUAD;
546 ctlr->dev.of_node = np;
548 ret = devm_spi_register_controller(&pdev->dev, ctlr);
549 if (ret)
550 return dev_err_probe(&pdev->dev, ret,
551 "spi_register_controller failed\n");
553 return 0;
556 static void mchp_coreqspi_remove(struct platform_device *pdev)
558 struct mchp_coreqspi *qspi = platform_get_drvdata(pdev);
559 u32 control = readl_relaxed(qspi->regs + REG_CONTROL);
561 mchp_coreqspi_disable_ints(qspi);
562 control &= ~CONTROL_ENABLE;
563 writel_relaxed(control, qspi->regs + REG_CONTROL);
566 static const struct of_device_id mchp_coreqspi_of_match[] = {
567 { .compatible = "microchip,coreqspi-rtl-v2" },
568 { /* sentinel */ }
570 MODULE_DEVICE_TABLE(of, mchp_coreqspi_of_match);
572 static struct platform_driver mchp_coreqspi_driver = {
573 .probe = mchp_coreqspi_probe,
574 .driver = {
575 .name = "microchip,coreqspi",
576 .of_match_table = mchp_coreqspi_of_match,
578 .remove = mchp_coreqspi_remove,
580 module_platform_driver(mchp_coreqspi_driver);
582 MODULE_AUTHOR("Naga Sureshkumar Relli <nagasuresh.relli@microchip.com");
583 MODULE_DESCRIPTION("Microchip coreQSPI QSPI controller driver");
584 MODULE_LICENSE("GPL");