1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
5 * Copyright (C) 2008-2012 ST-Ericsson AB
6 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
8 * Author: Linus Walleij <linus.walleij@stericsson.com>
10 * Initial version inspired by:
11 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
12 * Initial adoption to PL022 by:
13 * Sachin Verma <sachin.verma@st.com>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/device.h>
19 #include <linux/ioport.h>
20 #include <linux/errno.h>
21 #include <linux/interrupt.h>
22 #include <linux/spi/spi.h>
23 #include <linux/delay.h>
24 #include <linux/clk.h>
25 #include <linux/err.h>
26 #include <linux/amba/bus.h>
27 #include <linux/amba/pl022.h>
29 #include <linux/slab.h>
30 #include <linux/dmaengine.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/scatterlist.h>
33 #include <linux/pm_runtime.h>
35 #include <linux/pinctrl/consumer.h>
38 * This macro is used to define some register default values.
39 * reg is masked with mask, the OR:ed with an (again masked)
40 * val shifted sb steps to the left.
42 #define SSP_WRITE_BITS(reg, val, mask, sb) \
43 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
46 * This macro is also used to define some default values.
47 * It will just shift val by sb steps to the left and mask
48 * the result with mask.
50 #define GEN_MASK_BITS(val, mask, sb) \
51 (((val)<<(sb)) & (mask))
54 #define DO_NOT_DRIVE_TX 1
56 #define DO_NOT_QUEUE_DMA 0
63 * Macros to access SSP Registers with their offsets
65 #define SSP_CR0(r) (r + 0x000)
66 #define SSP_CR1(r) (r + 0x004)
67 #define SSP_DR(r) (r + 0x008)
68 #define SSP_SR(r) (r + 0x00C)
69 #define SSP_CPSR(r) (r + 0x010)
70 #define SSP_IMSC(r) (r + 0x014)
71 #define SSP_RIS(r) (r + 0x018)
72 #define SSP_MIS(r) (r + 0x01C)
73 #define SSP_ICR(r) (r + 0x020)
74 #define SSP_DMACR(r) (r + 0x024)
75 #define SSP_CSR(r) (r + 0x030) /* vendor extension */
76 #define SSP_ITCR(r) (r + 0x080)
77 #define SSP_ITIP(r) (r + 0x084)
78 #define SSP_ITOP(r) (r + 0x088)
79 #define SSP_TDR(r) (r + 0x08C)
81 #define SSP_PID0(r) (r + 0xFE0)
82 #define SSP_PID1(r) (r + 0xFE4)
83 #define SSP_PID2(r) (r + 0xFE8)
84 #define SSP_PID3(r) (r + 0xFEC)
86 #define SSP_CID0(r) (r + 0xFF0)
87 #define SSP_CID1(r) (r + 0xFF4)
88 #define SSP_CID2(r) (r + 0xFF8)
89 #define SSP_CID3(r) (r + 0xFFC)
92 * SSP Control Register 0 - SSP_CR0
94 #define SSP_CR0_MASK_DSS (0x0FUL << 0)
95 #define SSP_CR0_MASK_FRF (0x3UL << 4)
96 #define SSP_CR0_MASK_SPO (0x1UL << 6)
97 #define SSP_CR0_MASK_SPH (0x1UL << 7)
98 #define SSP_CR0_MASK_SCR (0xFFUL << 8)
101 * The ST version of this block moves som bits
102 * in SSP_CR0 and extends it to 32 bits
104 #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
105 #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
106 #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
107 #define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
110 * SSP Control Register 0 - SSP_CR1
112 #define SSP_CR1_MASK_LBM (0x1UL << 0)
113 #define SSP_CR1_MASK_SSE (0x1UL << 1)
114 #define SSP_CR1_MASK_MS (0x1UL << 2)
115 #define SSP_CR1_MASK_SOD (0x1UL << 3)
118 * The ST version of this block adds some bits
121 #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
122 #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
123 #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
124 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
125 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
126 /* This one is only in the PL023 variant */
127 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
130 * SSP Status Register - SSP_SR
132 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
133 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
134 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
135 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
136 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
139 * SSP Clock Prescale Register - SSP_CPSR
141 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
144 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
146 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
147 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
148 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
149 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
152 * SSP Raw Interrupt Status Register - SSP_RIS
154 /* Receive Overrun Raw Interrupt status */
155 #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
156 /* Receive Timeout Raw Interrupt status */
157 #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
158 /* Receive FIFO Raw Interrupt status */
159 #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
160 /* Transmit FIFO Raw Interrupt status */
161 #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
164 * SSP Masked Interrupt Status Register - SSP_MIS
166 /* Receive Overrun Masked Interrupt status */
167 #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
168 /* Receive Timeout Masked Interrupt status */
169 #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
170 /* Receive FIFO Masked Interrupt status */
171 #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
172 /* Transmit FIFO Masked Interrupt status */
173 #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
176 * SSP Interrupt Clear Register - SSP_ICR
178 /* Receive Overrun Raw Clear Interrupt bit */
179 #define SSP_ICR_MASK_RORIC (0x1UL << 0)
180 /* Receive Timeout Clear Interrupt bit */
181 #define SSP_ICR_MASK_RTIC (0x1UL << 1)
184 * SSP DMA Control Register - SSP_DMACR
186 /* Receive DMA Enable bit */
187 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
188 /* Transmit DMA Enable bit */
189 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
192 * SSP Chip Select Control Register - SSP_CSR
195 #define SSP_CSR_CSVALUE_MASK (0x1FUL << 0)
198 * SSP Integration Test control Register - SSP_ITCR
200 #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
201 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
204 * SSP Integration Test Input Register - SSP_ITIP
206 #define ITIP_MASK_SSPRXD (0x1UL << 0)
207 #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
208 #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
209 #define ITIP_MASK_RXDMAC (0x1UL << 3)
210 #define ITIP_MASK_TXDMAC (0x1UL << 4)
211 #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
214 * SSP Integration Test output Register - SSP_ITOP
216 #define ITOP_MASK_SSPTXD (0x1UL << 0)
217 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
218 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
219 #define ITOP_MASK_SSPOEn (0x1UL << 3)
220 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
221 #define ITOP_MASK_RORINTR (0x1UL << 5)
222 #define ITOP_MASK_RTINTR (0x1UL << 6)
223 #define ITOP_MASK_RXINTR (0x1UL << 7)
224 #define ITOP_MASK_TXINTR (0x1UL << 8)
225 #define ITOP_MASK_INTR (0x1UL << 9)
226 #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
227 #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
228 #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
229 #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
232 * SSP Test Data Register - SSP_TDR
234 #define TDR_MASK_TESTDATA (0xFFFFFFFF)
238 * we use the spi_message.state (void *) pointer to
239 * hold a single state value, that's why all this
240 * (void *) casting is done here.
242 #define STATE_START ((void *) 0)
243 #define STATE_RUNNING ((void *) 1)
244 #define STATE_DONE ((void *) 2)
245 #define STATE_ERROR ((void *) -1)
246 #define STATE_TIMEOUT ((void *) -2)
249 * SSP State - Whether Enabled or Disabled
251 #define SSP_DISABLED (0)
252 #define SSP_ENABLED (1)
255 * SSP DMA State - Whether DMA Enabled or Disabled
257 #define SSP_DMA_DISABLED (0)
258 #define SSP_DMA_ENABLED (1)
263 #define SSP_DEFAULT_CLKRATE 0x2
264 #define SSP_DEFAULT_PRESCALE 0x40
267 * SSP Clock Parameter ranges
269 #define CPSDVR_MIN 0x02
270 #define CPSDVR_MAX 0xFE
275 * SSP Interrupt related Macros
277 #define DEFAULT_SSP_REG_IMSC 0x0UL
278 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
279 #define ENABLE_ALL_INTERRUPTS ( \
280 SSP_IMSC_MASK_RORIM | \
281 SSP_IMSC_MASK_RTIM | \
282 SSP_IMSC_MASK_RXIM | \
286 #define CLEAR_ALL_INTERRUPTS 0x3
288 #define SPI_POLLING_TIMEOUT 1000
291 * The type of reading going on this chip
301 * The type of writing going on this chip
311 * struct vendor_data - vendor-specific config parameters
312 * for PL022 derivates
313 * @fifodepth: depth of FIFOs (both)
314 * @max_bpw: maximum number of bits per word
315 * @unidir: supports unidirection transfers
316 * @extended_cr: 32 bit wide control register 0 with extra
317 * features and extra features in CR1 as found in the ST variants
318 * @pl023: supports a subset of the ST extensions called "PL023"
319 * @loopback: supports loopback mode
320 * @internal_cs_ctrl: supports chip select control register
329 bool internal_cs_ctrl
;
333 * struct pl022 - This is the private SSP driver data structure
334 * @adev: AMBA device model hookup
335 * @vendor: vendor data for the IP block
336 * @phybase: the physical memory where the SSP device resides
337 * @virtbase: the virtual memory where the SSP is mapped
338 * @clk: outgoing clock "SPICLK" for the SPI bus
339 * @host: SPI framework hookup
340 * @host_info: controller-specific data from machine setup
341 * @cur_transfer: Pointer to current spi_transfer
342 * @cur_chip: pointer to current clients chip(assigned from controller_state)
343 * @tx: current position in TX buffer to be read
344 * @tx_end: end position in TX buffer to be read
345 * @rx: current position in RX buffer to be written
346 * @rx_end: end position in RX buffer to be written
347 * @read: the type of read currently going on
348 * @write: the type of write currently going on
349 * @exp_fifo_level: expected FIFO level
350 * @rx_lev_trig: receive FIFO watermark level which triggers IRQ
351 * @tx_lev_trig: transmit FIFO watermark level which triggers IRQ
352 * @dma_rx_channel: optional channel for RX DMA
353 * @dma_tx_channel: optional channel for TX DMA
354 * @sgt_rx: scattertable for the RX transfer
355 * @sgt_tx: scattertable for the TX transfer
356 * @dummypage: a dummy page used for driving data on the bus with DMA
357 * @dma_running: indicates whether DMA is in operation
358 * @cur_cs: current chip select index
361 struct amba_device
*adev
;
362 struct vendor_data
*vendor
;
363 resource_size_t phybase
;
364 void __iomem
*virtbase
;
366 struct spi_controller
*host
;
367 struct pl022_ssp_controller
*host_info
;
368 struct spi_transfer
*cur_transfer
;
369 struct chip_data
*cur_chip
;
374 enum ssp_reading read
;
375 enum ssp_writing write
;
377 enum ssp_rx_level_trig rx_lev_trig
;
378 enum ssp_tx_level_trig tx_lev_trig
;
380 #ifdef CONFIG_DMA_ENGINE
381 struct dma_chan
*dma_rx_channel
;
382 struct dma_chan
*dma_tx_channel
;
383 struct sg_table sgt_rx
;
384 struct sg_table sgt_tx
;
392 * struct chip_data - To maintain runtime state of SSP for each client chip
393 * @cr0: Value of control register CR0 of SSP - on later ST variants this
394 * register is 32 bits wide rather than just 16
395 * @cr1: Value of control register CR1 of SSP
396 * @dmacr: Value of DMA control Register of SSP
397 * @cpsr: Value of Clock prescale register
398 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
399 * @enable_dma: Whether to enable DMA or not
400 * @read: function ptr to be used to read when doing xfer for this chip
401 * @write: function ptr to be used to write when doing xfer for this chip
402 * @xfer_type: polling/interrupt/DMA
404 * Runtime state of the SSP controller, maintained per chip,
405 * This would be set according to the current message that would be served
414 enum ssp_reading read
;
415 enum ssp_writing write
;
420 * internal_cs_control - Control chip select signals via SSP_CSR.
421 * @pl022: SSP driver private data structure
422 * @enable: select/delect the chip
424 * Used on controller with internal chip select control via SSP_CSR register
425 * (vendor extension). Each of the 5 LSB in the register controls one chip
428 static void internal_cs_control(struct pl022
*pl022
, bool enable
)
432 tmp
= readw(SSP_CSR(pl022
->virtbase
));
434 tmp
&= ~BIT(pl022
->cur_cs
);
436 tmp
|= BIT(pl022
->cur_cs
);
437 writew(tmp
, SSP_CSR(pl022
->virtbase
));
440 static void pl022_cs_control(struct spi_device
*spi
, bool enable
)
442 struct pl022
*pl022
= spi_controller_get_devdata(spi
->controller
);
443 if (pl022
->vendor
->internal_cs_ctrl
)
444 internal_cs_control(pl022
, enable
);
448 * flush - flush the FIFO to reach a clean state
449 * @pl022: SSP driver private data structure
451 static int flush(struct pl022
*pl022
)
453 unsigned long limit
= loops_per_jiffy
<< 1;
455 dev_dbg(&pl022
->adev
->dev
, "flush\n");
457 while (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
458 readw(SSP_DR(pl022
->virtbase
));
459 } while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_BSY
) && limit
--);
461 pl022
->exp_fifo_level
= 0;
467 * restore_state - Load configuration of current chip
468 * @pl022: SSP driver private data structure
470 static void restore_state(struct pl022
*pl022
)
472 struct chip_data
*chip
= pl022
->cur_chip
;
474 if (pl022
->vendor
->extended_cr
)
475 writel(chip
->cr0
, SSP_CR0(pl022
->virtbase
));
477 writew(chip
->cr0
, SSP_CR0(pl022
->virtbase
));
478 writew(chip
->cr1
, SSP_CR1(pl022
->virtbase
));
479 writew(chip
->dmacr
, SSP_DMACR(pl022
->virtbase
));
480 writew(chip
->cpsr
, SSP_CPSR(pl022
->virtbase
));
481 writew(DISABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
482 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
486 * Default SSP Register Values
488 #define DEFAULT_SSP_REG_CR0 ( \
489 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
490 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
491 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
492 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
493 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
496 /* ST versions have slightly different bit layout */
497 #define DEFAULT_SSP_REG_CR0_ST ( \
498 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
499 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
500 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
501 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
502 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
503 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
504 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
507 /* The PL023 version is slightly different again */
508 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
509 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
510 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
511 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
512 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
515 #define DEFAULT_SSP_REG_CR1 ( \
516 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
517 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
518 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
519 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
522 /* ST versions extend this register to use all 16 bits */
523 #define DEFAULT_SSP_REG_CR1_ST ( \
524 DEFAULT_SSP_REG_CR1 | \
525 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
526 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
527 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
528 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
529 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
533 * The PL023 variant has further differences: no loopback mode, no microwire
534 * support, and a new clock feedback delay setting.
536 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
537 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
538 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
539 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
540 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
541 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
542 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
543 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
544 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
547 #define DEFAULT_SSP_REG_CPSR ( \
548 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
551 #define DEFAULT_SSP_REG_DMACR (\
552 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
553 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
557 * load_ssp_default_config - Load default configuration for SSP
558 * @pl022: SSP driver private data structure
560 static void load_ssp_default_config(struct pl022
*pl022
)
562 if (pl022
->vendor
->pl023
) {
563 writel(DEFAULT_SSP_REG_CR0_ST_PL023
, SSP_CR0(pl022
->virtbase
));
564 writew(DEFAULT_SSP_REG_CR1_ST_PL023
, SSP_CR1(pl022
->virtbase
));
565 } else if (pl022
->vendor
->extended_cr
) {
566 writel(DEFAULT_SSP_REG_CR0_ST
, SSP_CR0(pl022
->virtbase
));
567 writew(DEFAULT_SSP_REG_CR1_ST
, SSP_CR1(pl022
->virtbase
));
569 writew(DEFAULT_SSP_REG_CR0
, SSP_CR0(pl022
->virtbase
));
570 writew(DEFAULT_SSP_REG_CR1
, SSP_CR1(pl022
->virtbase
));
572 writew(DEFAULT_SSP_REG_DMACR
, SSP_DMACR(pl022
->virtbase
));
573 writew(DEFAULT_SSP_REG_CPSR
, SSP_CPSR(pl022
->virtbase
));
574 writew(DISABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
575 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
579 * This will write to TX and read from RX according to the parameters
582 static void readwriter(struct pl022
*pl022
)
586 * The FIFO depth is different between primecell variants.
587 * I believe filling in too much in the FIFO might cause
588 * errons in 8bit wide transfers on ARM variants (just 8 words
589 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
591 * To prevent this issue, the TX FIFO is only filled to the
592 * unused RX FIFO fill length, regardless of what the TX
593 * FIFO status flag indicates.
595 dev_dbg(&pl022
->adev
->dev
,
596 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
597 __func__
, pl022
->rx
, pl022
->rx_end
, pl022
->tx
, pl022
->tx_end
);
599 /* Read as much as you can */
600 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
601 && (pl022
->rx
< pl022
->rx_end
)) {
602 switch (pl022
->read
) {
604 readw(SSP_DR(pl022
->virtbase
));
607 *(u8
*) (pl022
->rx
) =
608 readw(SSP_DR(pl022
->virtbase
)) & 0xFFU
;
611 *(u16
*) (pl022
->rx
) =
612 (u16
) readw(SSP_DR(pl022
->virtbase
));
615 *(u32
*) (pl022
->rx
) =
616 readl(SSP_DR(pl022
->virtbase
));
619 pl022
->rx
+= (pl022
->cur_chip
->n_bytes
);
620 pl022
->exp_fifo_level
--;
623 * Write as much as possible up to the RX FIFO size
625 while ((pl022
->exp_fifo_level
< pl022
->vendor
->fifodepth
)
626 && (pl022
->tx
< pl022
->tx_end
)) {
627 switch (pl022
->write
) {
629 writew(0x0, SSP_DR(pl022
->virtbase
));
632 writew(*(u8
*) (pl022
->tx
), SSP_DR(pl022
->virtbase
));
635 writew((*(u16
*) (pl022
->tx
)), SSP_DR(pl022
->virtbase
));
638 writel(*(u32
*) (pl022
->tx
), SSP_DR(pl022
->virtbase
));
641 pl022
->tx
+= (pl022
->cur_chip
->n_bytes
);
642 pl022
->exp_fifo_level
++;
644 * This inner reader takes care of things appearing in the RX
645 * FIFO as we're transmitting. This will happen a lot since the
646 * clock starts running when you put things into the TX FIFO,
647 * and then things are continuously clocked into the RX FIFO.
649 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
650 && (pl022
->rx
< pl022
->rx_end
)) {
651 switch (pl022
->read
) {
653 readw(SSP_DR(pl022
->virtbase
));
656 *(u8
*) (pl022
->rx
) =
657 readw(SSP_DR(pl022
->virtbase
)) & 0xFFU
;
660 *(u16
*) (pl022
->rx
) =
661 (u16
) readw(SSP_DR(pl022
->virtbase
));
664 *(u32
*) (pl022
->rx
) =
665 readl(SSP_DR(pl022
->virtbase
));
668 pl022
->rx
+= (pl022
->cur_chip
->n_bytes
);
669 pl022
->exp_fifo_level
--;
673 * When we exit here the TX FIFO should be full and the RX FIFO
679 * This DMA functionality is only compiled in if we have
680 * access to the generic DMA devices/DMA engine.
682 #ifdef CONFIG_DMA_ENGINE
683 static void unmap_free_dma_scatter(struct pl022
*pl022
)
685 /* Unmap and free the SG tables */
686 dma_unmap_sg(pl022
->dma_tx_channel
->device
->dev
, pl022
->sgt_tx
.sgl
,
687 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
688 dma_unmap_sg(pl022
->dma_rx_channel
->device
->dev
, pl022
->sgt_rx
.sgl
,
689 pl022
->sgt_rx
.nents
, DMA_FROM_DEVICE
);
690 sg_free_table(&pl022
->sgt_rx
);
691 sg_free_table(&pl022
->sgt_tx
);
694 static void dma_callback(void *data
)
696 struct pl022
*pl022
= data
;
698 BUG_ON(!pl022
->sgt_rx
.sgl
);
702 * Optionally dump out buffers to inspect contents, this is
703 * good if you want to convince yourself that the loopback
704 * read/write contents are the same, when adopting to a new
708 struct scatterlist
*sg
;
711 dma_sync_sg_for_cpu(&pl022
->adev
->dev
,
716 for_each_sg(pl022
->sgt_rx
.sgl
, sg
, pl022
->sgt_rx
.nents
, i
) {
717 dev_dbg(&pl022
->adev
->dev
, "SPI RX SG ENTRY: %d", i
);
718 print_hex_dump(KERN_ERR
, "SPI RX: ",
726 for_each_sg(pl022
->sgt_tx
.sgl
, sg
, pl022
->sgt_tx
.nents
, i
) {
727 dev_dbg(&pl022
->adev
->dev
, "SPI TX SG ENTRY: %d", i
);
728 print_hex_dump(KERN_ERR
, "SPI TX: ",
739 unmap_free_dma_scatter(pl022
);
741 spi_finalize_current_transfer(pl022
->host
);
744 static void setup_dma_scatter(struct pl022
*pl022
,
747 struct sg_table
*sgtab
)
749 struct scatterlist
*sg
;
750 int bytesleft
= length
;
756 for_each_sg(sgtab
->sgl
, sg
, sgtab
->nents
, i
) {
758 * If there are less bytes left than what fits
759 * in the current page (plus page alignment offset)
760 * we just feed in this, else we stuff in as much
763 if (bytesleft
< (PAGE_SIZE
- offset_in_page(bufp
)))
764 mapbytes
= bytesleft
;
766 mapbytes
= PAGE_SIZE
- offset_in_page(bufp
);
767 sg_set_page(sg
, virt_to_page(bufp
),
768 mapbytes
, offset_in_page(bufp
));
770 bytesleft
-= mapbytes
;
771 dev_dbg(&pl022
->adev
->dev
,
772 "set RX/TX target page @ %p, %d bytes, %d left\n",
773 bufp
, mapbytes
, bytesleft
);
776 /* Map the dummy buffer on every page */
777 for_each_sg(sgtab
->sgl
, sg
, sgtab
->nents
, i
) {
778 if (bytesleft
< PAGE_SIZE
)
779 mapbytes
= bytesleft
;
781 mapbytes
= PAGE_SIZE
;
782 sg_set_page(sg
, virt_to_page(pl022
->dummypage
),
784 bytesleft
-= mapbytes
;
785 dev_dbg(&pl022
->adev
->dev
,
786 "set RX/TX to dummy page %d bytes, %d left\n",
787 mapbytes
, bytesleft
);
795 * configure_dma - configures the channels for the next transfer
796 * @pl022: SSP driver's private data structure
798 static int configure_dma(struct pl022
*pl022
)
800 struct dma_slave_config rx_conf
= {
801 .src_addr
= SSP_DR(pl022
->phybase
),
802 .direction
= DMA_DEV_TO_MEM
,
805 struct dma_slave_config tx_conf
= {
806 .dst_addr
= SSP_DR(pl022
->phybase
),
807 .direction
= DMA_MEM_TO_DEV
,
812 int rx_sglen
, tx_sglen
;
813 struct dma_chan
*rxchan
= pl022
->dma_rx_channel
;
814 struct dma_chan
*txchan
= pl022
->dma_tx_channel
;
815 struct dma_async_tx_descriptor
*rxdesc
;
816 struct dma_async_tx_descriptor
*txdesc
;
818 /* Check that the channels are available */
819 if (!rxchan
|| !txchan
)
823 * If supplied, the DMA burstsize should equal the FIFO trigger level.
824 * Notice that the DMA engine uses one-to-one mapping. Since we can
825 * not trigger on 2 elements this needs explicit mapping rather than
828 switch (pl022
->rx_lev_trig
) {
829 case SSP_RX_1_OR_MORE_ELEM
:
830 rx_conf
.src_maxburst
= 1;
832 case SSP_RX_4_OR_MORE_ELEM
:
833 rx_conf
.src_maxburst
= 4;
835 case SSP_RX_8_OR_MORE_ELEM
:
836 rx_conf
.src_maxburst
= 8;
838 case SSP_RX_16_OR_MORE_ELEM
:
839 rx_conf
.src_maxburst
= 16;
841 case SSP_RX_32_OR_MORE_ELEM
:
842 rx_conf
.src_maxburst
= 32;
845 rx_conf
.src_maxburst
= pl022
->vendor
->fifodepth
>> 1;
849 switch (pl022
->tx_lev_trig
) {
850 case SSP_TX_1_OR_MORE_EMPTY_LOC
:
851 tx_conf
.dst_maxburst
= 1;
853 case SSP_TX_4_OR_MORE_EMPTY_LOC
:
854 tx_conf
.dst_maxburst
= 4;
856 case SSP_TX_8_OR_MORE_EMPTY_LOC
:
857 tx_conf
.dst_maxburst
= 8;
859 case SSP_TX_16_OR_MORE_EMPTY_LOC
:
860 tx_conf
.dst_maxburst
= 16;
862 case SSP_TX_32_OR_MORE_EMPTY_LOC
:
863 tx_conf
.dst_maxburst
= 32;
866 tx_conf
.dst_maxburst
= pl022
->vendor
->fifodepth
>> 1;
870 switch (pl022
->read
) {
872 /* Use the same as for writing */
873 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_UNDEFINED
;
876 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
879 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
882 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
886 switch (pl022
->write
) {
888 /* Use the same as for reading */
889 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_UNDEFINED
;
892 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
895 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
898 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
902 /* SPI peculiarity: we need to read and write the same width */
903 if (rx_conf
.src_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
904 rx_conf
.src_addr_width
= tx_conf
.dst_addr_width
;
905 if (tx_conf
.dst_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
906 tx_conf
.dst_addr_width
= rx_conf
.src_addr_width
;
907 BUG_ON(rx_conf
.src_addr_width
!= tx_conf
.dst_addr_width
);
909 dmaengine_slave_config(rxchan
, &rx_conf
);
910 dmaengine_slave_config(txchan
, &tx_conf
);
912 /* Create sglists for the transfers */
913 pages
= DIV_ROUND_UP(pl022
->cur_transfer
->len
, PAGE_SIZE
);
914 dev_dbg(&pl022
->adev
->dev
, "using %d pages for transfer\n", pages
);
916 ret
= sg_alloc_table(&pl022
->sgt_rx
, pages
, GFP_ATOMIC
);
918 goto err_alloc_rx_sg
;
920 ret
= sg_alloc_table(&pl022
->sgt_tx
, pages
, GFP_ATOMIC
);
922 goto err_alloc_tx_sg
;
924 /* Fill in the scatterlists for the RX+TX buffers */
925 setup_dma_scatter(pl022
, pl022
->rx
,
926 pl022
->cur_transfer
->len
, &pl022
->sgt_rx
);
927 setup_dma_scatter(pl022
, pl022
->tx
,
928 pl022
->cur_transfer
->len
, &pl022
->sgt_tx
);
930 /* Map DMA buffers */
931 rx_sglen
= dma_map_sg(rxchan
->device
->dev
, pl022
->sgt_rx
.sgl
,
932 pl022
->sgt_rx
.nents
, DMA_FROM_DEVICE
);
936 tx_sglen
= dma_map_sg(txchan
->device
->dev
, pl022
->sgt_tx
.sgl
,
937 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
941 /* Send both scatterlists */
942 rxdesc
= dmaengine_prep_slave_sg(rxchan
,
946 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
950 txdesc
= dmaengine_prep_slave_sg(txchan
,
954 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
958 /* Put the callback on the RX transfer only, that should finish last */
959 rxdesc
->callback
= dma_callback
;
960 rxdesc
->callback_param
= pl022
;
962 /* Submit and fire RX and TX with TX last so we're ready to read! */
963 dmaengine_submit(rxdesc
);
964 dmaengine_submit(txdesc
);
965 dma_async_issue_pending(rxchan
);
966 dma_async_issue_pending(txchan
);
967 pl022
->dma_running
= true;
972 dmaengine_terminate_all(txchan
);
974 dmaengine_terminate_all(rxchan
);
975 dma_unmap_sg(txchan
->device
->dev
, pl022
->sgt_tx
.sgl
,
976 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
978 dma_unmap_sg(rxchan
->device
->dev
, pl022
->sgt_rx
.sgl
,
979 pl022
->sgt_rx
.nents
, DMA_FROM_DEVICE
);
981 sg_free_table(&pl022
->sgt_tx
);
983 sg_free_table(&pl022
->sgt_rx
);
988 static int pl022_dma_probe(struct pl022
*pl022
)
992 /* Try to acquire a generic DMA engine slave channel */
994 dma_cap_set(DMA_SLAVE
, mask
);
996 * We need both RX and TX channels to do DMA, else do none
999 pl022
->dma_rx_channel
= dma_request_channel(mask
,
1000 pl022
->host_info
->dma_filter
,
1001 pl022
->host_info
->dma_rx_param
);
1002 if (!pl022
->dma_rx_channel
) {
1003 dev_dbg(&pl022
->adev
->dev
, "no RX DMA channel!\n");
1007 pl022
->dma_tx_channel
= dma_request_channel(mask
,
1008 pl022
->host_info
->dma_filter
,
1009 pl022
->host_info
->dma_tx_param
);
1010 if (!pl022
->dma_tx_channel
) {
1011 dev_dbg(&pl022
->adev
->dev
, "no TX DMA channel!\n");
1015 pl022
->dummypage
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
1016 if (!pl022
->dummypage
)
1017 goto err_no_dummypage
;
1019 dev_info(&pl022
->adev
->dev
, "setup for DMA on RX %s, TX %s\n",
1020 dma_chan_name(pl022
->dma_rx_channel
),
1021 dma_chan_name(pl022
->dma_tx_channel
));
1026 dma_release_channel(pl022
->dma_tx_channel
);
1028 dma_release_channel(pl022
->dma_rx_channel
);
1029 pl022
->dma_rx_channel
= NULL
;
1031 dev_err(&pl022
->adev
->dev
,
1032 "Failed to work in dma mode, work without dma!\n");
1036 static int pl022_dma_autoprobe(struct pl022
*pl022
)
1038 struct device
*dev
= &pl022
->adev
->dev
;
1039 struct dma_chan
*chan
;
1042 /* automatically configure DMA channels from platform, normally using DT */
1043 chan
= dma_request_chan(dev
, "rx");
1045 err
= PTR_ERR(chan
);
1049 pl022
->dma_rx_channel
= chan
;
1051 chan
= dma_request_chan(dev
, "tx");
1053 err
= PTR_ERR(chan
);
1057 pl022
->dma_tx_channel
= chan
;
1059 pl022
->dummypage
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
1060 if (!pl022
->dummypage
) {
1062 goto err_no_dummypage
;
1068 dma_release_channel(pl022
->dma_tx_channel
);
1069 pl022
->dma_tx_channel
= NULL
;
1071 dma_release_channel(pl022
->dma_rx_channel
);
1072 pl022
->dma_rx_channel
= NULL
;
1077 static void terminate_dma(struct pl022
*pl022
)
1079 if (!pl022
->dma_running
)
1082 struct dma_chan
*rxchan
= pl022
->dma_rx_channel
;
1083 struct dma_chan
*txchan
= pl022
->dma_tx_channel
;
1085 dmaengine_terminate_all(rxchan
);
1086 dmaengine_terminate_all(txchan
);
1087 unmap_free_dma_scatter(pl022
);
1088 pl022
->dma_running
= false;
1091 static void pl022_dma_remove(struct pl022
*pl022
)
1093 terminate_dma(pl022
);
1094 if (pl022
->dma_tx_channel
)
1095 dma_release_channel(pl022
->dma_tx_channel
);
1096 if (pl022
->dma_rx_channel
)
1097 dma_release_channel(pl022
->dma_rx_channel
);
1098 kfree(pl022
->dummypage
);
1102 static inline int configure_dma(struct pl022
*pl022
)
1107 static inline int pl022_dma_autoprobe(struct pl022
*pl022
)
1112 static inline int pl022_dma_probe(struct pl022
*pl022
)
1117 static inline void terminate_dma(struct pl022
*pl022
)
1121 static inline void pl022_dma_remove(struct pl022
*pl022
)
1127 * pl022_interrupt_handler - Interrupt handler for SSP controller
1129 * @dev_id: Local device data
1131 * This function handles interrupts generated for an interrupt based transfer.
1132 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1133 * current message's state as STATE_ERROR and schedule the tasklet
1134 * pump_transfers which will do the postprocessing of the current message by
1135 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1136 * more data, and writes data in TX FIFO till it is not full. If we complete
1137 * the transfer we move to the next transfer and schedule the tasklet.
1139 static irqreturn_t
pl022_interrupt_handler(int irq
, void *dev_id
)
1141 struct pl022
*pl022
= dev_id
;
1143 /* Read the Interrupt Status Register */
1144 irq_status
= readw(SSP_MIS(pl022
->virtbase
));
1146 if (unlikely(!irq_status
))
1150 * This handles the FIFO interrupts, the timeout
1151 * interrupts are flatly ignored, they cannot be
1154 if (unlikely(irq_status
& SSP_MIS_MASK_RORMIS
)) {
1156 * Overrun interrupt - bail out since our Data has been
1159 dev_err(&pl022
->adev
->dev
, "FIFO overrun\n");
1160 if (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RFF
)
1161 dev_err(&pl022
->adev
->dev
,
1162 "RXFIFO is full\n");
1165 * Disable and clear interrupts, disable SSP,
1166 * mark message with bad status so it can be
1169 writew(DISABLE_ALL_INTERRUPTS
,
1170 SSP_IMSC(pl022
->virtbase
));
1171 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
1172 writew((readw(SSP_CR1(pl022
->virtbase
)) &
1173 (~SSP_CR1_MASK_SSE
)), SSP_CR1(pl022
->virtbase
));
1174 pl022
->cur_transfer
->error
|= SPI_TRANS_FAIL_IO
;
1175 spi_finalize_current_transfer(pl022
->host
);
1181 if (pl022
->tx
== pl022
->tx_end
) {
1182 /* Disable Transmit interrupt, enable receive interrupt */
1183 writew((readw(SSP_IMSC(pl022
->virtbase
)) &
1184 ~SSP_IMSC_MASK_TXIM
) | SSP_IMSC_MASK_RXIM
,
1185 SSP_IMSC(pl022
->virtbase
));
1189 * Since all transactions must write as much as shall be read,
1190 * we can conclude the entire transaction once RX is complete.
1191 * At this point, all TX will always be finished.
1193 if (pl022
->rx
>= pl022
->rx_end
) {
1194 writew(DISABLE_ALL_INTERRUPTS
,
1195 SSP_IMSC(pl022
->virtbase
));
1196 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
1197 if (unlikely(pl022
->rx
> pl022
->rx_end
)) {
1198 dev_warn(&pl022
->adev
->dev
, "read %u surplus "
1199 "bytes (did you request an odd "
1200 "number of bytes on a 16bit bus?)\n",
1201 (u32
) (pl022
->rx
- pl022
->rx_end
));
1203 spi_finalize_current_transfer(pl022
->host
);
1211 * This sets up the pointers to memory for the next message to
1212 * send out on the SPI bus.
1214 static int set_up_next_transfer(struct pl022
*pl022
,
1215 struct spi_transfer
*transfer
)
1219 /* Sanity check the message for this bus width */
1220 residue
= pl022
->cur_transfer
->len
% pl022
->cur_chip
->n_bytes
;
1221 if (unlikely(residue
!= 0)) {
1222 dev_err(&pl022
->adev
->dev
,
1223 "message of %u bytes to transmit but the current "
1224 "chip bus has a data width of %u bytes!\n",
1225 pl022
->cur_transfer
->len
,
1226 pl022
->cur_chip
->n_bytes
);
1227 dev_err(&pl022
->adev
->dev
, "skipping this message\n");
1230 pl022
->tx
= (void *)transfer
->tx_buf
;
1231 pl022
->tx_end
= pl022
->tx
+ pl022
->cur_transfer
->len
;
1232 pl022
->rx
= (void *)transfer
->rx_buf
;
1233 pl022
->rx_end
= pl022
->rx
+ pl022
->cur_transfer
->len
;
1235 pl022
->tx
? pl022
->cur_chip
->write
: WRITING_NULL
;
1236 pl022
->read
= pl022
->rx
? pl022
->cur_chip
->read
: READING_NULL
;
1240 static int do_interrupt_dma_transfer(struct pl022
*pl022
)
1245 * Default is to enable all interrupts except RX -
1246 * this will be enabled once TX is complete
1248 u32 irqflags
= (u32
)(ENABLE_ALL_INTERRUPTS
& ~SSP_IMSC_MASK_RXIM
);
1250 ret
= set_up_next_transfer(pl022
, pl022
->cur_transfer
);
1254 /* If we're using DMA, set up DMA here */
1255 if (pl022
->cur_chip
->enable_dma
) {
1256 /* Configure DMA transfer */
1257 if (configure_dma(pl022
)) {
1258 dev_dbg(&pl022
->adev
->dev
,
1259 "configuration of DMA failed, fall back to interrupt mode\n");
1260 goto err_config_dma
;
1262 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1263 irqflags
= DISABLE_ALL_INTERRUPTS
;
1266 /* Enable SSP, turn on interrupts */
1267 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
1268 SSP_CR1(pl022
->virtbase
));
1269 writew(irqflags
, SSP_IMSC(pl022
->virtbase
));
1273 static void print_current_status(struct pl022
*pl022
)
1276 u16 read_cr1
, read_dmacr
, read_sr
;
1278 if (pl022
->vendor
->extended_cr
)
1279 read_cr0
= readl(SSP_CR0(pl022
->virtbase
));
1281 read_cr0
= readw(SSP_CR0(pl022
->virtbase
));
1282 read_cr1
= readw(SSP_CR1(pl022
->virtbase
));
1283 read_dmacr
= readw(SSP_DMACR(pl022
->virtbase
));
1284 read_sr
= readw(SSP_SR(pl022
->virtbase
));
1286 dev_warn(&pl022
->adev
->dev
, "spi-pl022 CR0: %x\n", read_cr0
);
1287 dev_warn(&pl022
->adev
->dev
, "spi-pl022 CR1: %x\n", read_cr1
);
1288 dev_warn(&pl022
->adev
->dev
, "spi-pl022 DMACR: %x\n", read_dmacr
);
1289 dev_warn(&pl022
->adev
->dev
, "spi-pl022 SR: %x\n", read_sr
);
1290 dev_warn(&pl022
->adev
->dev
,
1291 "spi-pl022 exp_fifo_level/fifodepth: %u/%d\n",
1292 pl022
->exp_fifo_level
,
1293 pl022
->vendor
->fifodepth
);
1297 static int do_polling_transfer(struct pl022
*pl022
)
1300 unsigned long time
, timeout
;
1302 /* Configuration Changing Per Transfer */
1303 ret
= set_up_next_transfer(pl022
, pl022
->cur_transfer
);
1306 /* Flush FIFOs and enable SSP */
1308 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
1309 SSP_CR1(pl022
->virtbase
));
1311 dev_dbg(&pl022
->adev
->dev
, "polling transfer ongoing ...\n");
1313 timeout
= jiffies
+ msecs_to_jiffies(SPI_POLLING_TIMEOUT
);
1314 while (pl022
->tx
< pl022
->tx_end
|| pl022
->rx
< pl022
->rx_end
) {
1317 if (time_after(time
, timeout
)) {
1318 dev_warn(&pl022
->adev
->dev
,
1319 "%s: timeout!\n", __func__
);
1320 print_current_status(pl022
);
1329 static int pl022_transfer_one(struct spi_controller
*host
, struct spi_device
*spi
,
1330 struct spi_transfer
*transfer
)
1332 struct pl022
*pl022
= spi_controller_get_devdata(host
);
1334 pl022
->cur_transfer
= transfer
;
1336 /* Setup the SPI using the per chip configuration */
1337 pl022
->cur_chip
= spi_get_ctldata(spi
);
1338 pl022
->cur_cs
= spi_get_chipselect(spi
, 0);
1340 restore_state(pl022
);
1343 if (pl022
->cur_chip
->xfer_type
== POLLING_TRANSFER
)
1344 return do_polling_transfer(pl022
);
1346 return do_interrupt_dma_transfer(pl022
);
1349 static void pl022_handle_err(struct spi_controller
*ctlr
, struct spi_message
*message
)
1351 struct pl022
*pl022
= spi_controller_get_devdata(ctlr
);
1353 terminate_dma(pl022
);
1354 writew(DISABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
1355 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
1358 static int pl022_unprepare_transfer_hardware(struct spi_controller
*host
)
1360 struct pl022
*pl022
= spi_controller_get_devdata(host
);
1362 /* nothing more to do - disable spi/ssp and power off */
1363 writew((readw(SSP_CR1(pl022
->virtbase
)) &
1364 (~SSP_CR1_MASK_SSE
)), SSP_CR1(pl022
->virtbase
));
1369 static int verify_controller_parameters(struct pl022
*pl022
,
1370 struct pl022_config_chip
const *chip_info
)
1372 if ((chip_info
->iface
< SSP_INTERFACE_MOTOROLA_SPI
)
1373 || (chip_info
->iface
> SSP_INTERFACE_UNIDIRECTIONAL
)) {
1374 dev_err(&pl022
->adev
->dev
,
1375 "interface is configured incorrectly\n");
1378 if ((chip_info
->iface
== SSP_INTERFACE_UNIDIRECTIONAL
) &&
1379 (!pl022
->vendor
->unidir
)) {
1380 dev_err(&pl022
->adev
->dev
,
1381 "unidirectional mode not supported in this "
1382 "hardware version\n");
1385 if ((chip_info
->hierarchy
!= SSP_MASTER
)
1386 && (chip_info
->hierarchy
!= SSP_SLAVE
)) {
1387 dev_err(&pl022
->adev
->dev
,
1388 "hierarchy is configured incorrectly\n");
1391 if ((chip_info
->com_mode
!= INTERRUPT_TRANSFER
)
1392 && (chip_info
->com_mode
!= DMA_TRANSFER
)
1393 && (chip_info
->com_mode
!= POLLING_TRANSFER
)) {
1394 dev_err(&pl022
->adev
->dev
,
1395 "Communication mode is configured incorrectly\n");
1398 switch (chip_info
->rx_lev_trig
) {
1399 case SSP_RX_1_OR_MORE_ELEM
:
1400 case SSP_RX_4_OR_MORE_ELEM
:
1401 case SSP_RX_8_OR_MORE_ELEM
:
1402 /* These are always OK, all variants can handle this */
1404 case SSP_RX_16_OR_MORE_ELEM
:
1405 if (pl022
->vendor
->fifodepth
< 16) {
1406 dev_err(&pl022
->adev
->dev
,
1407 "RX FIFO Trigger Level is configured incorrectly\n");
1411 case SSP_RX_32_OR_MORE_ELEM
:
1412 if (pl022
->vendor
->fifodepth
< 32) {
1413 dev_err(&pl022
->adev
->dev
,
1414 "RX FIFO Trigger Level is configured incorrectly\n");
1419 dev_err(&pl022
->adev
->dev
,
1420 "RX FIFO Trigger Level is configured incorrectly\n");
1423 switch (chip_info
->tx_lev_trig
) {
1424 case SSP_TX_1_OR_MORE_EMPTY_LOC
:
1425 case SSP_TX_4_OR_MORE_EMPTY_LOC
:
1426 case SSP_TX_8_OR_MORE_EMPTY_LOC
:
1427 /* These are always OK, all variants can handle this */
1429 case SSP_TX_16_OR_MORE_EMPTY_LOC
:
1430 if (pl022
->vendor
->fifodepth
< 16) {
1431 dev_err(&pl022
->adev
->dev
,
1432 "TX FIFO Trigger Level is configured incorrectly\n");
1436 case SSP_TX_32_OR_MORE_EMPTY_LOC
:
1437 if (pl022
->vendor
->fifodepth
< 32) {
1438 dev_err(&pl022
->adev
->dev
,
1439 "TX FIFO Trigger Level is configured incorrectly\n");
1444 dev_err(&pl022
->adev
->dev
,
1445 "TX FIFO Trigger Level is configured incorrectly\n");
1448 if (chip_info
->iface
== SSP_INTERFACE_NATIONAL_MICROWIRE
) {
1449 if ((chip_info
->ctrl_len
< SSP_BITS_4
)
1450 || (chip_info
->ctrl_len
> SSP_BITS_32
)) {
1451 dev_err(&pl022
->adev
->dev
,
1452 "CTRL LEN is configured incorrectly\n");
1455 if ((chip_info
->wait_state
!= SSP_MWIRE_WAIT_ZERO
)
1456 && (chip_info
->wait_state
!= SSP_MWIRE_WAIT_ONE
)) {
1457 dev_err(&pl022
->adev
->dev
,
1458 "Wait State is configured incorrectly\n");
1461 /* Half duplex is only available in the ST Micro version */
1462 if (pl022
->vendor
->extended_cr
) {
1463 if ((chip_info
->duplex
!=
1464 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
)
1465 && (chip_info
->duplex
!=
1466 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX
)) {
1467 dev_err(&pl022
->adev
->dev
,
1468 "Microwire duplex mode is configured incorrectly\n");
1472 if (chip_info
->duplex
!= SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
) {
1473 dev_err(&pl022
->adev
->dev
,
1474 "Microwire half duplex mode requested,"
1475 " but this is only available in the"
1476 " ST version of PL022\n");
1484 static inline u32
spi_rate(u32 rate
, u16 cpsdvsr
, u16 scr
)
1486 return rate
/ (cpsdvsr
* (1 + scr
));
1489 static int calculate_effective_freq(struct pl022
*pl022
, int freq
, struct
1490 ssp_clock_params
* clk_freq
)
1492 /* Lets calculate the frequency parameters */
1493 u16 cpsdvsr
= CPSDVR_MIN
, scr
= SCR_MIN
;
1494 u32 rate
, max_tclk
, min_tclk
, best_freq
= 0, best_cpsdvsr
= 0,
1495 best_scr
= 0, tmp
, found
= 0;
1497 rate
= clk_get_rate(pl022
->clk
);
1498 /* cpsdvscr = 2 & scr 0 */
1499 max_tclk
= spi_rate(rate
, CPSDVR_MIN
, SCR_MIN
);
1500 /* cpsdvsr = 254 & scr = 255 */
1501 min_tclk
= spi_rate(rate
, CPSDVR_MAX
, SCR_MAX
);
1503 if (freq
> max_tclk
)
1504 dev_warn(&pl022
->adev
->dev
,
1505 "Max speed that can be programmed is %d Hz, you requested %d\n",
1508 if (freq
< min_tclk
) {
1509 dev_err(&pl022
->adev
->dev
,
1510 "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1516 * best_freq will give closest possible available rate (<= requested
1517 * freq) for all values of scr & cpsdvsr.
1519 while ((cpsdvsr
<= CPSDVR_MAX
) && !found
) {
1520 while (scr
<= SCR_MAX
) {
1521 tmp
= spi_rate(rate
, cpsdvsr
, scr
);
1524 /* we need lower freq */
1530 * If found exact value, mark found and break.
1531 * If found more closer value, update and break.
1533 if (tmp
> best_freq
) {
1535 best_cpsdvsr
= cpsdvsr
;
1542 * increased scr will give lower rates, which are not
1551 WARN(!best_freq
, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1554 clk_freq
->cpsdvsr
= (u8
) (best_cpsdvsr
& 0xFF);
1555 clk_freq
->scr
= (u8
) (best_scr
& 0xFF);
1556 dev_dbg(&pl022
->adev
->dev
,
1557 "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1559 dev_dbg(&pl022
->adev
->dev
, "SSP cpsdvsr = %d, scr = %d\n",
1560 clk_freq
->cpsdvsr
, clk_freq
->scr
);
1566 * A piece of default chip info unless the platform
1569 static const struct pl022_config_chip pl022_default_chip_info
= {
1570 .com_mode
= INTERRUPT_TRANSFER
,
1571 .iface
= SSP_INTERFACE_MOTOROLA_SPI
,
1572 .hierarchy
= SSP_MASTER
,
1573 .slave_tx_disable
= DO_NOT_DRIVE_TX
,
1574 .rx_lev_trig
= SSP_RX_1_OR_MORE_ELEM
,
1575 .tx_lev_trig
= SSP_TX_1_OR_MORE_EMPTY_LOC
,
1576 .ctrl_len
= SSP_BITS_8
,
1577 .wait_state
= SSP_MWIRE_WAIT_ZERO
,
1578 .duplex
= SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
,
1582 * pl022_setup - setup function registered to SPI host framework
1583 * @spi: spi device which is requesting setup
1585 * This function is registered to the SPI framework for this SPI host
1586 * controller. If it is the first time when setup is called by this device,
1587 * this function will initialize the runtime state for this chip and save
1588 * the same in the device structure. Else it will update the runtime info
1589 * with the updated chip info. Nothing is really being written to the
1590 * controller hardware here, that is not done until the actual transfer
1593 static int pl022_setup(struct spi_device
*spi
)
1595 struct pl022_config_chip
const *chip_info
;
1596 struct pl022_config_chip chip_info_dt
;
1597 struct chip_data
*chip
;
1598 struct ssp_clock_params clk_freq
= { .cpsdvsr
= 0, .scr
= 0};
1600 struct pl022
*pl022
= spi_controller_get_devdata(spi
->controller
);
1601 unsigned int bits
= spi
->bits_per_word
;
1603 struct device_node
*np
= spi
->dev
.of_node
;
1605 if (!spi
->max_speed_hz
)
1608 /* Get controller_state if one is supplied */
1609 chip
= spi_get_ctldata(spi
);
1612 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1616 "allocated memory for controller's runtime state\n");
1619 /* Get controller data if one is supplied */
1620 chip_info
= spi
->controller_data
;
1622 if (chip_info
== NULL
) {
1624 chip_info_dt
= pl022_default_chip_info
;
1626 chip_info_dt
.hierarchy
= SSP_MASTER
;
1627 of_property_read_u32(np
, "pl022,interface",
1628 &chip_info_dt
.iface
);
1629 of_property_read_u32(np
, "pl022,com-mode",
1630 &chip_info_dt
.com_mode
);
1631 of_property_read_u32(np
, "pl022,rx-level-trig",
1632 &chip_info_dt
.rx_lev_trig
);
1633 of_property_read_u32(np
, "pl022,tx-level-trig",
1634 &chip_info_dt
.tx_lev_trig
);
1635 of_property_read_u32(np
, "pl022,ctrl-len",
1636 &chip_info_dt
.ctrl_len
);
1637 of_property_read_u32(np
, "pl022,wait-state",
1638 &chip_info_dt
.wait_state
);
1639 of_property_read_u32(np
, "pl022,duplex",
1640 &chip_info_dt
.duplex
);
1642 chip_info
= &chip_info_dt
;
1644 chip_info
= &pl022_default_chip_info
;
1645 /* spi_board_info.controller_data not is supplied */
1647 "using default controller_data settings\n");
1651 "using user supplied controller_data settings\n");
1654 * We can override with custom divisors, else we use the board
1657 if ((0 == chip_info
->clk_freq
.cpsdvsr
)
1658 && (0 == chip_info
->clk_freq
.scr
)) {
1659 status
= calculate_effective_freq(pl022
,
1663 goto err_config_params
;
1665 memcpy(&clk_freq
, &chip_info
->clk_freq
, sizeof(clk_freq
));
1666 if ((clk_freq
.cpsdvsr
% 2) != 0)
1668 clk_freq
.cpsdvsr
- 1;
1670 if ((clk_freq
.cpsdvsr
< CPSDVR_MIN
)
1671 || (clk_freq
.cpsdvsr
> CPSDVR_MAX
)) {
1674 "cpsdvsr is configured incorrectly\n");
1675 goto err_config_params
;
1678 status
= verify_controller_parameters(pl022
, chip_info
);
1680 dev_err(&spi
->dev
, "controller data is incorrect");
1681 goto err_config_params
;
1684 pl022
->rx_lev_trig
= chip_info
->rx_lev_trig
;
1685 pl022
->tx_lev_trig
= chip_info
->tx_lev_trig
;
1687 /* Now set controller state based on controller data */
1688 chip
->xfer_type
= chip_info
->com_mode
;
1690 /* Check bits per word with vendor specific range */
1691 if ((bits
<= 3) || (bits
> pl022
->vendor
->max_bpw
)) {
1693 dev_err(&spi
->dev
, "illegal data size for this controller!\n");
1694 dev_err(&spi
->dev
, "This controller can only handle 4 <= n <= %d bit words\n",
1695 pl022
->vendor
->max_bpw
);
1696 goto err_config_params
;
1697 } else if (bits
<= 8) {
1698 dev_dbg(&spi
->dev
, "4 <= n <=8 bits per word\n");
1700 chip
->read
= READING_U8
;
1701 chip
->write
= WRITING_U8
;
1702 } else if (bits
<= 16) {
1703 dev_dbg(&spi
->dev
, "9 <= n <= 16 bits per word\n");
1705 chip
->read
= READING_U16
;
1706 chip
->write
= WRITING_U16
;
1708 dev_dbg(&spi
->dev
, "17 <= n <= 32 bits per word\n");
1710 chip
->read
= READING_U32
;
1711 chip
->write
= WRITING_U32
;
1714 /* Now Initialize all register settings required for this chip */
1719 if ((chip_info
->com_mode
== DMA_TRANSFER
)
1720 && ((pl022
->host_info
)->enable_dma
)) {
1721 chip
->enable_dma
= true;
1722 dev_dbg(&spi
->dev
, "DMA mode set in controller state\n");
1723 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_ENABLED
,
1724 SSP_DMACR_MASK_RXDMAE
, 0);
1725 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_ENABLED
,
1726 SSP_DMACR_MASK_TXDMAE
, 1);
1728 chip
->enable_dma
= false;
1729 dev_dbg(&spi
->dev
, "DMA mode NOT set in controller state\n");
1730 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_DISABLED
,
1731 SSP_DMACR_MASK_RXDMAE
, 0);
1732 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_DISABLED
,
1733 SSP_DMACR_MASK_TXDMAE
, 1);
1736 chip
->cpsr
= clk_freq
.cpsdvsr
;
1738 /* Special setup for the ST micro extended control registers */
1739 if (pl022
->vendor
->extended_cr
) {
1742 if (pl022
->vendor
->pl023
) {
1743 /* These bits are only in the PL023 */
1744 SSP_WRITE_BITS(chip
->cr1
, chip_info
->clkdelay
,
1745 SSP_CR1_MASK_FBCLKDEL_ST
, 13);
1747 /* These bits are in the PL022 but not PL023 */
1748 SSP_WRITE_BITS(chip
->cr0
, chip_info
->duplex
,
1749 SSP_CR0_MASK_HALFDUP_ST
, 5);
1750 SSP_WRITE_BITS(chip
->cr0
, chip_info
->ctrl_len
,
1751 SSP_CR0_MASK_CSS_ST
, 16);
1752 SSP_WRITE_BITS(chip
->cr0
, chip_info
->iface
,
1753 SSP_CR0_MASK_FRF_ST
, 21);
1754 SSP_WRITE_BITS(chip
->cr1
, chip_info
->wait_state
,
1755 SSP_CR1_MASK_MWAIT_ST
, 6);
1757 SSP_WRITE_BITS(chip
->cr0
, bits
- 1,
1758 SSP_CR0_MASK_DSS_ST
, 0);
1760 if (spi
->mode
& SPI_LSB_FIRST
) {
1767 SSP_WRITE_BITS(chip
->cr1
, tmp
, SSP_CR1_MASK_RENDN_ST
, 4);
1768 SSP_WRITE_BITS(chip
->cr1
, etx
, SSP_CR1_MASK_TENDN_ST
, 5);
1769 SSP_WRITE_BITS(chip
->cr1
, chip_info
->rx_lev_trig
,
1770 SSP_CR1_MASK_RXIFLSEL_ST
, 7);
1771 SSP_WRITE_BITS(chip
->cr1
, chip_info
->tx_lev_trig
,
1772 SSP_CR1_MASK_TXIFLSEL_ST
, 10);
1774 SSP_WRITE_BITS(chip
->cr0
, bits
- 1,
1775 SSP_CR0_MASK_DSS
, 0);
1776 SSP_WRITE_BITS(chip
->cr0
, chip_info
->iface
,
1777 SSP_CR0_MASK_FRF
, 4);
1780 /* Stuff that is common for all versions */
1781 if (spi
->mode
& SPI_CPOL
)
1782 tmp
= SSP_CLK_POL_IDLE_HIGH
;
1784 tmp
= SSP_CLK_POL_IDLE_LOW
;
1785 SSP_WRITE_BITS(chip
->cr0
, tmp
, SSP_CR0_MASK_SPO
, 6);
1787 if (spi
->mode
& SPI_CPHA
)
1788 tmp
= SSP_CLK_SECOND_EDGE
;
1790 tmp
= SSP_CLK_FIRST_EDGE
;
1791 SSP_WRITE_BITS(chip
->cr0
, tmp
, SSP_CR0_MASK_SPH
, 7);
1793 SSP_WRITE_BITS(chip
->cr0
, clk_freq
.scr
, SSP_CR0_MASK_SCR
, 8);
1794 /* Loopback is available on all versions except PL023 */
1795 if (pl022
->vendor
->loopback
) {
1796 if (spi
->mode
& SPI_LOOP
)
1797 tmp
= LOOPBACK_ENABLED
;
1799 tmp
= LOOPBACK_DISABLED
;
1800 SSP_WRITE_BITS(chip
->cr1
, tmp
, SSP_CR1_MASK_LBM
, 0);
1802 SSP_WRITE_BITS(chip
->cr1
, SSP_DISABLED
, SSP_CR1_MASK_SSE
, 1);
1803 SSP_WRITE_BITS(chip
->cr1
, chip_info
->hierarchy
, SSP_CR1_MASK_MS
, 2);
1804 SSP_WRITE_BITS(chip
->cr1
, chip_info
->slave_tx_disable
, SSP_CR1_MASK_SOD
,
1807 /* Save controller_state */
1808 spi_set_ctldata(spi
, chip
);
1811 spi_set_ctldata(spi
, NULL
);
1817 * pl022_cleanup - cleanup function registered to SPI host framework
1818 * @spi: spi device which is requesting cleanup
1820 * This function is registered to the SPI framework for this SPI host
1821 * controller. It will free the runtime state of chip.
1823 static void pl022_cleanup(struct spi_device
*spi
)
1825 struct chip_data
*chip
= spi_get_ctldata(spi
);
1827 spi_set_ctldata(spi
, NULL
);
1831 static struct pl022_ssp_controller
*
1832 pl022_platform_data_dt_get(struct device
*dev
)
1834 struct device_node
*np
= dev
->of_node
;
1835 struct pl022_ssp_controller
*pd
;
1838 dev_err(dev
, "no dt node defined\n");
1842 pd
= devm_kzalloc(dev
, sizeof(struct pl022_ssp_controller
), GFP_KERNEL
);
1847 of_property_read_u32(np
, "pl022,autosuspend-delay",
1848 &pd
->autosuspend_delay
);
1849 pd
->rt
= of_property_read_bool(np
, "pl022,rt");
1854 static int pl022_probe(struct amba_device
*adev
, const struct amba_id
*id
)
1856 struct device
*dev
= &adev
->dev
;
1857 struct pl022_ssp_controller
*platform_info
=
1858 dev_get_platdata(&adev
->dev
);
1859 struct spi_controller
*host
;
1860 struct pl022
*pl022
= NULL
; /*Data for this driver */
1863 dev_info(&adev
->dev
,
1864 "ARM PL022 driver, device ID: 0x%08x\n", adev
->periphid
);
1865 if (!platform_info
&& IS_ENABLED(CONFIG_OF
))
1866 platform_info
= pl022_platform_data_dt_get(dev
);
1868 if (!platform_info
) {
1869 dev_err(dev
, "probe: no platform data defined\n");
1873 /* Allocate host with space for data */
1874 host
= spi_alloc_host(dev
, sizeof(struct pl022
));
1876 dev_err(&adev
->dev
, "probe - cannot alloc SPI host\n");
1880 pl022
= spi_controller_get_devdata(host
);
1882 pl022
->host_info
= platform_info
;
1884 pl022
->vendor
= id
->data
;
1887 * Bus Number Which has been Assigned to this SSP controller
1890 host
->bus_num
= platform_info
->bus_id
;
1891 host
->cleanup
= pl022_cleanup
;
1892 host
->setup
= pl022_setup
;
1893 host
->auto_runtime_pm
= true;
1894 host
->transfer_one
= pl022_transfer_one
;
1895 host
->set_cs
= pl022_cs_control
;
1896 host
->handle_err
= pl022_handle_err
;
1897 host
->unprepare_transfer_hardware
= pl022_unprepare_transfer_hardware
;
1898 host
->rt
= platform_info
->rt
;
1899 host
->dev
.of_node
= dev
->of_node
;
1900 host
->use_gpio_descriptors
= true;
1903 * Supports mode 0-3, loopback, and active low CS. Transfers are
1904 * always MS bit first on the original pl022.
1906 host
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
| SPI_LOOP
;
1907 if (pl022
->vendor
->extended_cr
)
1908 host
->mode_bits
|= SPI_LSB_FIRST
;
1910 dev_dbg(&adev
->dev
, "BUSNO: %d\n", host
->bus_num
);
1912 status
= amba_request_regions(adev
, NULL
);
1914 goto err_no_ioregion
;
1916 pl022
->phybase
= adev
->res
.start
;
1917 pl022
->virtbase
= devm_ioremap(dev
, adev
->res
.start
,
1918 resource_size(&adev
->res
));
1919 if (pl022
->virtbase
== NULL
) {
1921 goto err_no_ioremap
;
1923 dev_info(&adev
->dev
, "mapped registers from %pa to %p\n",
1924 &adev
->res
.start
, pl022
->virtbase
);
1926 pl022
->clk
= devm_clk_get_enabled(&adev
->dev
, NULL
);
1927 if (IS_ERR(pl022
->clk
)) {
1928 status
= PTR_ERR(pl022
->clk
);
1929 dev_err(&adev
->dev
, "could not retrieve SSP/SPI bus clock\n");
1934 writew((readw(SSP_CR1(pl022
->virtbase
)) & (~SSP_CR1_MASK_SSE
)),
1935 SSP_CR1(pl022
->virtbase
));
1936 load_ssp_default_config(pl022
);
1938 status
= devm_request_irq(dev
, adev
->irq
[0], pl022_interrupt_handler
,
1941 dev_err(&adev
->dev
, "probe - cannot get IRQ (%d)\n", status
);
1945 /* Get DMA channels, try autoconfiguration first */
1946 status
= pl022_dma_autoprobe(pl022
);
1947 if (status
== -EPROBE_DEFER
) {
1948 dev_dbg(dev
, "deferring probe to get DMA channel\n");
1952 /* If that failed, use channels from platform_info */
1954 platform_info
->enable_dma
= 1;
1955 else if (platform_info
->enable_dma
) {
1956 status
= pl022_dma_probe(pl022
);
1958 platform_info
->enable_dma
= 0;
1961 /* Register with the SPI framework */
1962 amba_set_drvdata(adev
, pl022
);
1963 status
= devm_spi_register_controller(&adev
->dev
, host
);
1965 dev_err_probe(&adev
->dev
, status
,
1966 "problem registering spi host\n");
1967 goto err_spi_register
;
1969 dev_dbg(dev
, "probe succeeded\n");
1971 /* let runtime pm put suspend */
1972 if (platform_info
->autosuspend_delay
> 0) {
1973 dev_info(&adev
->dev
,
1974 "will use autosuspend for runtime pm, delay %dms\n",
1975 platform_info
->autosuspend_delay
);
1976 pm_runtime_set_autosuspend_delay(dev
,
1977 platform_info
->autosuspend_delay
);
1978 pm_runtime_use_autosuspend(dev
);
1980 pm_runtime_put(dev
);
1985 if (platform_info
->enable_dma
)
1986 pl022_dma_remove(pl022
);
1990 amba_release_regions(adev
);
1992 spi_controller_put(host
);
1997 pl022_remove(struct amba_device
*adev
)
1999 struct pl022
*pl022
= amba_get_drvdata(adev
);
2005 * undo pm_runtime_put() in probe. I assume that we're not
2006 * accessing the primecell here.
2008 pm_runtime_get_noresume(&adev
->dev
);
2010 load_ssp_default_config(pl022
);
2011 if (pl022
->host_info
->enable_dma
)
2012 pl022_dma_remove(pl022
);
2014 amba_release_regions(adev
);
2017 #ifdef CONFIG_PM_SLEEP
2018 static int pl022_suspend(struct device
*dev
)
2020 struct pl022
*pl022
= dev_get_drvdata(dev
);
2023 ret
= spi_controller_suspend(pl022
->host
);
2027 ret
= pm_runtime_force_suspend(dev
);
2029 spi_controller_resume(pl022
->host
);
2033 pinctrl_pm_select_sleep_state(dev
);
2035 dev_dbg(dev
, "suspended\n");
2039 static int pl022_resume(struct device
*dev
)
2041 struct pl022
*pl022
= dev_get_drvdata(dev
);
2044 ret
= pm_runtime_force_resume(dev
);
2046 dev_err(dev
, "problem resuming\n");
2048 /* Start the queue running */
2049 ret
= spi_controller_resume(pl022
->host
);
2051 dev_dbg(dev
, "resumed\n");
2058 static int pl022_runtime_suspend(struct device
*dev
)
2060 struct pl022
*pl022
= dev_get_drvdata(dev
);
2062 clk_disable_unprepare(pl022
->clk
);
2063 pinctrl_pm_select_idle_state(dev
);
2068 static int pl022_runtime_resume(struct device
*dev
)
2070 struct pl022
*pl022
= dev_get_drvdata(dev
);
2072 pinctrl_pm_select_default_state(dev
);
2073 clk_prepare_enable(pl022
->clk
);
2079 static const struct dev_pm_ops pl022_dev_pm_ops
= {
2080 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend
, pl022_resume
)
2081 SET_RUNTIME_PM_OPS(pl022_runtime_suspend
, pl022_runtime_resume
, NULL
)
2084 static struct vendor_data vendor_arm
= {
2088 .extended_cr
= false,
2091 .internal_cs_ctrl
= false,
2094 static struct vendor_data vendor_st
= {
2098 .extended_cr
= true,
2101 .internal_cs_ctrl
= false,
2104 static struct vendor_data vendor_st_pl023
= {
2108 .extended_cr
= true,
2111 .internal_cs_ctrl
= false,
2114 static struct vendor_data vendor_lsi
= {
2118 .extended_cr
= false,
2121 .internal_cs_ctrl
= true,
2124 static const struct amba_id pl022_ids
[] = {
2127 * ARM PL022 variant, this has a 16bit wide
2128 * and 8 locations deep TX/RX FIFO
2132 .data
= &vendor_arm
,
2136 * ST Micro derivative, this has 32bit wide
2137 * and 32 locations deep TX/RX FIFO
2145 * ST-Ericsson derivative "PL023" (this is not
2146 * an official ARM number), this is a PL022 SSP block
2147 * stripped to SPI mode only, it has 32bit wide
2148 * and 32 locations deep TX/RX FIFO but no extended
2153 .data
= &vendor_st_pl023
,
2157 * PL022 variant that has a chip select control register whih
2158 * allows control of 5 output signals nCS[0:4].
2162 .data
= &vendor_lsi
,
2167 MODULE_DEVICE_TABLE(amba
, pl022_ids
);
2169 static struct amba_driver pl022_driver
= {
2171 .name
= "ssp-pl022",
2172 .pm
= &pl022_dev_pm_ops
,
2174 .id_table
= pl022_ids
,
2175 .probe
= pl022_probe
,
2176 .remove
= pl022_remove
,
2179 static int __init
pl022_init(void)
2181 return amba_driver_register(&pl022_driver
);
2183 subsys_initcall(pl022_init
);
2185 static void __exit
pl022_exit(void)
2187 amba_driver_unregister(&pl022_driver
);
2189 module_exit(pl022_exit
);
2191 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2192 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2193 MODULE_LICENSE("GPL");