drm/nouveau: fix kernel-doc comments
[drm/drm-misc.git] / drivers / spi / spi-pl022.c
blobdd87cf4f70dd5678f348d2e16e933e8707ce3923
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
5 * Copyright (C) 2008-2012 ST-Ericsson AB
6 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
8 * Author: Linus Walleij <linus.walleij@stericsson.com>
10 * Initial version inspired by:
11 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
12 * Initial adoption to PL022 by:
13 * Sachin Verma <sachin.verma@st.com>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/device.h>
19 #include <linux/ioport.h>
20 #include <linux/errno.h>
21 #include <linux/interrupt.h>
22 #include <linux/spi/spi.h>
23 #include <linux/delay.h>
24 #include <linux/clk.h>
25 #include <linux/err.h>
26 #include <linux/amba/bus.h>
27 #include <linux/amba/pl022.h>
28 #include <linux/io.h>
29 #include <linux/slab.h>
30 #include <linux/dmaengine.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/scatterlist.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/of.h>
35 #include <linux/pinctrl/consumer.h>
38 * This macro is used to define some register default values.
39 * reg is masked with mask, the OR:ed with an (again masked)
40 * val shifted sb steps to the left.
42 #define SSP_WRITE_BITS(reg, val, mask, sb) \
43 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
46 * This macro is also used to define some default values.
47 * It will just shift val by sb steps to the left and mask
48 * the result with mask.
50 #define GEN_MASK_BITS(val, mask, sb) \
51 (((val)<<(sb)) & (mask))
53 #define DRIVE_TX 0
54 #define DO_NOT_DRIVE_TX 1
56 #define DO_NOT_QUEUE_DMA 0
57 #define QUEUE_DMA 1
59 #define RX_TRANSFER 1
60 #define TX_TRANSFER 2
63 * Macros to access SSP Registers with their offsets
65 #define SSP_CR0(r) (r + 0x000)
66 #define SSP_CR1(r) (r + 0x004)
67 #define SSP_DR(r) (r + 0x008)
68 #define SSP_SR(r) (r + 0x00C)
69 #define SSP_CPSR(r) (r + 0x010)
70 #define SSP_IMSC(r) (r + 0x014)
71 #define SSP_RIS(r) (r + 0x018)
72 #define SSP_MIS(r) (r + 0x01C)
73 #define SSP_ICR(r) (r + 0x020)
74 #define SSP_DMACR(r) (r + 0x024)
75 #define SSP_CSR(r) (r + 0x030) /* vendor extension */
76 #define SSP_ITCR(r) (r + 0x080)
77 #define SSP_ITIP(r) (r + 0x084)
78 #define SSP_ITOP(r) (r + 0x088)
79 #define SSP_TDR(r) (r + 0x08C)
81 #define SSP_PID0(r) (r + 0xFE0)
82 #define SSP_PID1(r) (r + 0xFE4)
83 #define SSP_PID2(r) (r + 0xFE8)
84 #define SSP_PID3(r) (r + 0xFEC)
86 #define SSP_CID0(r) (r + 0xFF0)
87 #define SSP_CID1(r) (r + 0xFF4)
88 #define SSP_CID2(r) (r + 0xFF8)
89 #define SSP_CID3(r) (r + 0xFFC)
92 * SSP Control Register 0 - SSP_CR0
94 #define SSP_CR0_MASK_DSS (0x0FUL << 0)
95 #define SSP_CR0_MASK_FRF (0x3UL << 4)
96 #define SSP_CR0_MASK_SPO (0x1UL << 6)
97 #define SSP_CR0_MASK_SPH (0x1UL << 7)
98 #define SSP_CR0_MASK_SCR (0xFFUL << 8)
101 * The ST version of this block moves som bits
102 * in SSP_CR0 and extends it to 32 bits
104 #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
105 #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
106 #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
107 #define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
110 * SSP Control Register 0 - SSP_CR1
112 #define SSP_CR1_MASK_LBM (0x1UL << 0)
113 #define SSP_CR1_MASK_SSE (0x1UL << 1)
114 #define SSP_CR1_MASK_MS (0x1UL << 2)
115 #define SSP_CR1_MASK_SOD (0x1UL << 3)
118 * The ST version of this block adds some bits
119 * in SSP_CR1
121 #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
122 #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
123 #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
124 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
125 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
126 /* This one is only in the PL023 variant */
127 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
130 * SSP Status Register - SSP_SR
132 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
133 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
134 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
135 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
136 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
139 * SSP Clock Prescale Register - SSP_CPSR
141 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
144 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
146 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
147 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
148 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
149 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
152 * SSP Raw Interrupt Status Register - SSP_RIS
154 /* Receive Overrun Raw Interrupt status */
155 #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
156 /* Receive Timeout Raw Interrupt status */
157 #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
158 /* Receive FIFO Raw Interrupt status */
159 #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
160 /* Transmit FIFO Raw Interrupt status */
161 #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
164 * SSP Masked Interrupt Status Register - SSP_MIS
166 /* Receive Overrun Masked Interrupt status */
167 #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
168 /* Receive Timeout Masked Interrupt status */
169 #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
170 /* Receive FIFO Masked Interrupt status */
171 #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
172 /* Transmit FIFO Masked Interrupt status */
173 #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
176 * SSP Interrupt Clear Register - SSP_ICR
178 /* Receive Overrun Raw Clear Interrupt bit */
179 #define SSP_ICR_MASK_RORIC (0x1UL << 0)
180 /* Receive Timeout Clear Interrupt bit */
181 #define SSP_ICR_MASK_RTIC (0x1UL << 1)
184 * SSP DMA Control Register - SSP_DMACR
186 /* Receive DMA Enable bit */
187 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
188 /* Transmit DMA Enable bit */
189 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
192 * SSP Chip Select Control Register - SSP_CSR
193 * (vendor extension)
195 #define SSP_CSR_CSVALUE_MASK (0x1FUL << 0)
198 * SSP Integration Test control Register - SSP_ITCR
200 #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
201 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
204 * SSP Integration Test Input Register - SSP_ITIP
206 #define ITIP_MASK_SSPRXD (0x1UL << 0)
207 #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
208 #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
209 #define ITIP_MASK_RXDMAC (0x1UL << 3)
210 #define ITIP_MASK_TXDMAC (0x1UL << 4)
211 #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
214 * SSP Integration Test output Register - SSP_ITOP
216 #define ITOP_MASK_SSPTXD (0x1UL << 0)
217 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
218 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
219 #define ITOP_MASK_SSPOEn (0x1UL << 3)
220 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
221 #define ITOP_MASK_RORINTR (0x1UL << 5)
222 #define ITOP_MASK_RTINTR (0x1UL << 6)
223 #define ITOP_MASK_RXINTR (0x1UL << 7)
224 #define ITOP_MASK_TXINTR (0x1UL << 8)
225 #define ITOP_MASK_INTR (0x1UL << 9)
226 #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
227 #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
228 #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
229 #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
232 * SSP Test Data Register - SSP_TDR
234 #define TDR_MASK_TESTDATA (0xFFFFFFFF)
237 * Message State
238 * we use the spi_message.state (void *) pointer to
239 * hold a single state value, that's why all this
240 * (void *) casting is done here.
242 #define STATE_START ((void *) 0)
243 #define STATE_RUNNING ((void *) 1)
244 #define STATE_DONE ((void *) 2)
245 #define STATE_ERROR ((void *) -1)
246 #define STATE_TIMEOUT ((void *) -2)
249 * SSP State - Whether Enabled or Disabled
251 #define SSP_DISABLED (0)
252 #define SSP_ENABLED (1)
255 * SSP DMA State - Whether DMA Enabled or Disabled
257 #define SSP_DMA_DISABLED (0)
258 #define SSP_DMA_ENABLED (1)
261 * SSP Clock Defaults
263 #define SSP_DEFAULT_CLKRATE 0x2
264 #define SSP_DEFAULT_PRESCALE 0x40
267 * SSP Clock Parameter ranges
269 #define CPSDVR_MIN 0x02
270 #define CPSDVR_MAX 0xFE
271 #define SCR_MIN 0x00
272 #define SCR_MAX 0xFF
275 * SSP Interrupt related Macros
277 #define DEFAULT_SSP_REG_IMSC 0x0UL
278 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
279 #define ENABLE_ALL_INTERRUPTS ( \
280 SSP_IMSC_MASK_RORIM | \
281 SSP_IMSC_MASK_RTIM | \
282 SSP_IMSC_MASK_RXIM | \
283 SSP_IMSC_MASK_TXIM \
286 #define CLEAR_ALL_INTERRUPTS 0x3
288 #define SPI_POLLING_TIMEOUT 1000
291 * The type of reading going on this chip
293 enum ssp_reading {
294 READING_NULL,
295 READING_U8,
296 READING_U16,
297 READING_U32
301 * The type of writing going on this chip
303 enum ssp_writing {
304 WRITING_NULL,
305 WRITING_U8,
306 WRITING_U16,
307 WRITING_U32
311 * struct vendor_data - vendor-specific config parameters
312 * for PL022 derivates
313 * @fifodepth: depth of FIFOs (both)
314 * @max_bpw: maximum number of bits per word
315 * @unidir: supports unidirection transfers
316 * @extended_cr: 32 bit wide control register 0 with extra
317 * features and extra features in CR1 as found in the ST variants
318 * @pl023: supports a subset of the ST extensions called "PL023"
319 * @loopback: supports loopback mode
320 * @internal_cs_ctrl: supports chip select control register
322 struct vendor_data {
323 int fifodepth;
324 int max_bpw;
325 bool unidir;
326 bool extended_cr;
327 bool pl023;
328 bool loopback;
329 bool internal_cs_ctrl;
333 * struct pl022 - This is the private SSP driver data structure
334 * @adev: AMBA device model hookup
335 * @vendor: vendor data for the IP block
336 * @phybase: the physical memory where the SSP device resides
337 * @virtbase: the virtual memory where the SSP is mapped
338 * @clk: outgoing clock "SPICLK" for the SPI bus
339 * @host: SPI framework hookup
340 * @host_info: controller-specific data from machine setup
341 * @cur_transfer: Pointer to current spi_transfer
342 * @cur_chip: pointer to current clients chip(assigned from controller_state)
343 * @tx: current position in TX buffer to be read
344 * @tx_end: end position in TX buffer to be read
345 * @rx: current position in RX buffer to be written
346 * @rx_end: end position in RX buffer to be written
347 * @read: the type of read currently going on
348 * @write: the type of write currently going on
349 * @exp_fifo_level: expected FIFO level
350 * @rx_lev_trig: receive FIFO watermark level which triggers IRQ
351 * @tx_lev_trig: transmit FIFO watermark level which triggers IRQ
352 * @dma_rx_channel: optional channel for RX DMA
353 * @dma_tx_channel: optional channel for TX DMA
354 * @sgt_rx: scattertable for the RX transfer
355 * @sgt_tx: scattertable for the TX transfer
356 * @dummypage: a dummy page used for driving data on the bus with DMA
357 * @dma_running: indicates whether DMA is in operation
358 * @cur_cs: current chip select index
360 struct pl022 {
361 struct amba_device *adev;
362 struct vendor_data *vendor;
363 resource_size_t phybase;
364 void __iomem *virtbase;
365 struct clk *clk;
366 struct spi_controller *host;
367 struct pl022_ssp_controller *host_info;
368 struct spi_transfer *cur_transfer;
369 struct chip_data *cur_chip;
370 void *tx;
371 void *tx_end;
372 void *rx;
373 void *rx_end;
374 enum ssp_reading read;
375 enum ssp_writing write;
376 u32 exp_fifo_level;
377 enum ssp_rx_level_trig rx_lev_trig;
378 enum ssp_tx_level_trig tx_lev_trig;
379 /* DMA settings */
380 #ifdef CONFIG_DMA_ENGINE
381 struct dma_chan *dma_rx_channel;
382 struct dma_chan *dma_tx_channel;
383 struct sg_table sgt_rx;
384 struct sg_table sgt_tx;
385 char *dummypage;
386 bool dma_running;
387 #endif
388 int cur_cs;
392 * struct chip_data - To maintain runtime state of SSP for each client chip
393 * @cr0: Value of control register CR0 of SSP - on later ST variants this
394 * register is 32 bits wide rather than just 16
395 * @cr1: Value of control register CR1 of SSP
396 * @dmacr: Value of DMA control Register of SSP
397 * @cpsr: Value of Clock prescale register
398 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
399 * @enable_dma: Whether to enable DMA or not
400 * @read: function ptr to be used to read when doing xfer for this chip
401 * @write: function ptr to be used to write when doing xfer for this chip
402 * @xfer_type: polling/interrupt/DMA
404 * Runtime state of the SSP controller, maintained per chip,
405 * This would be set according to the current message that would be served
407 struct chip_data {
408 u32 cr0;
409 u16 cr1;
410 u16 dmacr;
411 u16 cpsr;
412 u8 n_bytes;
413 bool enable_dma;
414 enum ssp_reading read;
415 enum ssp_writing write;
416 int xfer_type;
420 * internal_cs_control - Control chip select signals via SSP_CSR.
421 * @pl022: SSP driver private data structure
422 * @enable: select/delect the chip
424 * Used on controller with internal chip select control via SSP_CSR register
425 * (vendor extension). Each of the 5 LSB in the register controls one chip
426 * select signal.
428 static void internal_cs_control(struct pl022 *pl022, bool enable)
430 u32 tmp;
432 tmp = readw(SSP_CSR(pl022->virtbase));
433 if (enable)
434 tmp &= ~BIT(pl022->cur_cs);
435 else
436 tmp |= BIT(pl022->cur_cs);
437 writew(tmp, SSP_CSR(pl022->virtbase));
440 static void pl022_cs_control(struct spi_device *spi, bool enable)
442 struct pl022 *pl022 = spi_controller_get_devdata(spi->controller);
443 if (pl022->vendor->internal_cs_ctrl)
444 internal_cs_control(pl022, enable);
448 * flush - flush the FIFO to reach a clean state
449 * @pl022: SSP driver private data structure
451 static int flush(struct pl022 *pl022)
453 unsigned long limit = loops_per_jiffy << 1;
455 dev_dbg(&pl022->adev->dev, "flush\n");
456 do {
457 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
458 readw(SSP_DR(pl022->virtbase));
459 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
461 pl022->exp_fifo_level = 0;
463 return limit;
467 * restore_state - Load configuration of current chip
468 * @pl022: SSP driver private data structure
470 static void restore_state(struct pl022 *pl022)
472 struct chip_data *chip = pl022->cur_chip;
474 if (pl022->vendor->extended_cr)
475 writel(chip->cr0, SSP_CR0(pl022->virtbase));
476 else
477 writew(chip->cr0, SSP_CR0(pl022->virtbase));
478 writew(chip->cr1, SSP_CR1(pl022->virtbase));
479 writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
480 writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
481 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
482 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
486 * Default SSP Register Values
488 #define DEFAULT_SSP_REG_CR0 ( \
489 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
490 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
491 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
492 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
493 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
496 /* ST versions have slightly different bit layout */
497 #define DEFAULT_SSP_REG_CR0_ST ( \
498 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
499 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
500 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
501 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
502 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
503 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
504 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
507 /* The PL023 version is slightly different again */
508 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
509 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
510 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
511 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
512 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
515 #define DEFAULT_SSP_REG_CR1 ( \
516 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
517 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
518 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
519 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
522 /* ST versions extend this register to use all 16 bits */
523 #define DEFAULT_SSP_REG_CR1_ST ( \
524 DEFAULT_SSP_REG_CR1 | \
525 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
526 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
527 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
528 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
529 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
533 * The PL023 variant has further differences: no loopback mode, no microwire
534 * support, and a new clock feedback delay setting.
536 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
537 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
538 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
539 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
540 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
541 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
542 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
543 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
544 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
547 #define DEFAULT_SSP_REG_CPSR ( \
548 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
551 #define DEFAULT_SSP_REG_DMACR (\
552 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
553 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
557 * load_ssp_default_config - Load default configuration for SSP
558 * @pl022: SSP driver private data structure
560 static void load_ssp_default_config(struct pl022 *pl022)
562 if (pl022->vendor->pl023) {
563 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
564 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
565 } else if (pl022->vendor->extended_cr) {
566 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
567 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
568 } else {
569 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
570 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
572 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
573 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
574 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
575 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
579 * This will write to TX and read from RX according to the parameters
580 * set in pl022.
582 static void readwriter(struct pl022 *pl022)
586 * The FIFO depth is different between primecell variants.
587 * I believe filling in too much in the FIFO might cause
588 * errons in 8bit wide transfers on ARM variants (just 8 words
589 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
591 * To prevent this issue, the TX FIFO is only filled to the
592 * unused RX FIFO fill length, regardless of what the TX
593 * FIFO status flag indicates.
595 dev_dbg(&pl022->adev->dev,
596 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
597 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
599 /* Read as much as you can */
600 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
601 && (pl022->rx < pl022->rx_end)) {
602 switch (pl022->read) {
603 case READING_NULL:
604 readw(SSP_DR(pl022->virtbase));
605 break;
606 case READING_U8:
607 *(u8 *) (pl022->rx) =
608 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
609 break;
610 case READING_U16:
611 *(u16 *) (pl022->rx) =
612 (u16) readw(SSP_DR(pl022->virtbase));
613 break;
614 case READING_U32:
615 *(u32 *) (pl022->rx) =
616 readl(SSP_DR(pl022->virtbase));
617 break;
619 pl022->rx += (pl022->cur_chip->n_bytes);
620 pl022->exp_fifo_level--;
623 * Write as much as possible up to the RX FIFO size
625 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
626 && (pl022->tx < pl022->tx_end)) {
627 switch (pl022->write) {
628 case WRITING_NULL:
629 writew(0x0, SSP_DR(pl022->virtbase));
630 break;
631 case WRITING_U8:
632 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
633 break;
634 case WRITING_U16:
635 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
636 break;
637 case WRITING_U32:
638 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
639 break;
641 pl022->tx += (pl022->cur_chip->n_bytes);
642 pl022->exp_fifo_level++;
644 * This inner reader takes care of things appearing in the RX
645 * FIFO as we're transmitting. This will happen a lot since the
646 * clock starts running when you put things into the TX FIFO,
647 * and then things are continuously clocked into the RX FIFO.
649 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
650 && (pl022->rx < pl022->rx_end)) {
651 switch (pl022->read) {
652 case READING_NULL:
653 readw(SSP_DR(pl022->virtbase));
654 break;
655 case READING_U8:
656 *(u8 *) (pl022->rx) =
657 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
658 break;
659 case READING_U16:
660 *(u16 *) (pl022->rx) =
661 (u16) readw(SSP_DR(pl022->virtbase));
662 break;
663 case READING_U32:
664 *(u32 *) (pl022->rx) =
665 readl(SSP_DR(pl022->virtbase));
666 break;
668 pl022->rx += (pl022->cur_chip->n_bytes);
669 pl022->exp_fifo_level--;
673 * When we exit here the TX FIFO should be full and the RX FIFO
674 * should be empty
679 * This DMA functionality is only compiled in if we have
680 * access to the generic DMA devices/DMA engine.
682 #ifdef CONFIG_DMA_ENGINE
683 static void unmap_free_dma_scatter(struct pl022 *pl022)
685 /* Unmap and free the SG tables */
686 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
687 pl022->sgt_tx.nents, DMA_TO_DEVICE);
688 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
689 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
690 sg_free_table(&pl022->sgt_rx);
691 sg_free_table(&pl022->sgt_tx);
694 static void dma_callback(void *data)
696 struct pl022 *pl022 = data;
698 BUG_ON(!pl022->sgt_rx.sgl);
700 #ifdef VERBOSE_DEBUG
702 * Optionally dump out buffers to inspect contents, this is
703 * good if you want to convince yourself that the loopback
704 * read/write contents are the same, when adopting to a new
705 * DMA engine.
708 struct scatterlist *sg;
709 unsigned int i;
711 dma_sync_sg_for_cpu(&pl022->adev->dev,
712 pl022->sgt_rx.sgl,
713 pl022->sgt_rx.nents,
714 DMA_FROM_DEVICE);
716 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
717 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
718 print_hex_dump(KERN_ERR, "SPI RX: ",
719 DUMP_PREFIX_OFFSET,
722 sg_virt(sg),
723 sg_dma_len(sg),
726 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
727 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
728 print_hex_dump(KERN_ERR, "SPI TX: ",
729 DUMP_PREFIX_OFFSET,
732 sg_virt(sg),
733 sg_dma_len(sg),
737 #endif
739 unmap_free_dma_scatter(pl022);
741 spi_finalize_current_transfer(pl022->host);
744 static void setup_dma_scatter(struct pl022 *pl022,
745 void *buffer,
746 unsigned int length,
747 struct sg_table *sgtab)
749 struct scatterlist *sg;
750 int bytesleft = length;
751 void *bufp = buffer;
752 int mapbytes;
753 int i;
755 if (buffer) {
756 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
758 * If there are less bytes left than what fits
759 * in the current page (plus page alignment offset)
760 * we just feed in this, else we stuff in as much
761 * as we can.
763 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
764 mapbytes = bytesleft;
765 else
766 mapbytes = PAGE_SIZE - offset_in_page(bufp);
767 sg_set_page(sg, virt_to_page(bufp),
768 mapbytes, offset_in_page(bufp));
769 bufp += mapbytes;
770 bytesleft -= mapbytes;
771 dev_dbg(&pl022->adev->dev,
772 "set RX/TX target page @ %p, %d bytes, %d left\n",
773 bufp, mapbytes, bytesleft);
775 } else {
776 /* Map the dummy buffer on every page */
777 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
778 if (bytesleft < PAGE_SIZE)
779 mapbytes = bytesleft;
780 else
781 mapbytes = PAGE_SIZE;
782 sg_set_page(sg, virt_to_page(pl022->dummypage),
783 mapbytes, 0);
784 bytesleft -= mapbytes;
785 dev_dbg(&pl022->adev->dev,
786 "set RX/TX to dummy page %d bytes, %d left\n",
787 mapbytes, bytesleft);
791 BUG_ON(bytesleft);
795 * configure_dma - configures the channels for the next transfer
796 * @pl022: SSP driver's private data structure
798 static int configure_dma(struct pl022 *pl022)
800 struct dma_slave_config rx_conf = {
801 .src_addr = SSP_DR(pl022->phybase),
802 .direction = DMA_DEV_TO_MEM,
803 .device_fc = false,
805 struct dma_slave_config tx_conf = {
806 .dst_addr = SSP_DR(pl022->phybase),
807 .direction = DMA_MEM_TO_DEV,
808 .device_fc = false,
810 unsigned int pages;
811 int ret;
812 int rx_sglen, tx_sglen;
813 struct dma_chan *rxchan = pl022->dma_rx_channel;
814 struct dma_chan *txchan = pl022->dma_tx_channel;
815 struct dma_async_tx_descriptor *rxdesc;
816 struct dma_async_tx_descriptor *txdesc;
818 /* Check that the channels are available */
819 if (!rxchan || !txchan)
820 return -ENODEV;
823 * If supplied, the DMA burstsize should equal the FIFO trigger level.
824 * Notice that the DMA engine uses one-to-one mapping. Since we can
825 * not trigger on 2 elements this needs explicit mapping rather than
826 * calculation.
828 switch (pl022->rx_lev_trig) {
829 case SSP_RX_1_OR_MORE_ELEM:
830 rx_conf.src_maxburst = 1;
831 break;
832 case SSP_RX_4_OR_MORE_ELEM:
833 rx_conf.src_maxburst = 4;
834 break;
835 case SSP_RX_8_OR_MORE_ELEM:
836 rx_conf.src_maxburst = 8;
837 break;
838 case SSP_RX_16_OR_MORE_ELEM:
839 rx_conf.src_maxburst = 16;
840 break;
841 case SSP_RX_32_OR_MORE_ELEM:
842 rx_conf.src_maxburst = 32;
843 break;
844 default:
845 rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
846 break;
849 switch (pl022->tx_lev_trig) {
850 case SSP_TX_1_OR_MORE_EMPTY_LOC:
851 tx_conf.dst_maxburst = 1;
852 break;
853 case SSP_TX_4_OR_MORE_EMPTY_LOC:
854 tx_conf.dst_maxburst = 4;
855 break;
856 case SSP_TX_8_OR_MORE_EMPTY_LOC:
857 tx_conf.dst_maxburst = 8;
858 break;
859 case SSP_TX_16_OR_MORE_EMPTY_LOC:
860 tx_conf.dst_maxburst = 16;
861 break;
862 case SSP_TX_32_OR_MORE_EMPTY_LOC:
863 tx_conf.dst_maxburst = 32;
864 break;
865 default:
866 tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
867 break;
870 switch (pl022->read) {
871 case READING_NULL:
872 /* Use the same as for writing */
873 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
874 break;
875 case READING_U8:
876 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
877 break;
878 case READING_U16:
879 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
880 break;
881 case READING_U32:
882 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
883 break;
886 switch (pl022->write) {
887 case WRITING_NULL:
888 /* Use the same as for reading */
889 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
890 break;
891 case WRITING_U8:
892 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
893 break;
894 case WRITING_U16:
895 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
896 break;
897 case WRITING_U32:
898 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
899 break;
902 /* SPI peculiarity: we need to read and write the same width */
903 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
904 rx_conf.src_addr_width = tx_conf.dst_addr_width;
905 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
906 tx_conf.dst_addr_width = rx_conf.src_addr_width;
907 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
909 dmaengine_slave_config(rxchan, &rx_conf);
910 dmaengine_slave_config(txchan, &tx_conf);
912 /* Create sglists for the transfers */
913 pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
914 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
916 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
917 if (ret)
918 goto err_alloc_rx_sg;
920 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
921 if (ret)
922 goto err_alloc_tx_sg;
924 /* Fill in the scatterlists for the RX+TX buffers */
925 setup_dma_scatter(pl022, pl022->rx,
926 pl022->cur_transfer->len, &pl022->sgt_rx);
927 setup_dma_scatter(pl022, pl022->tx,
928 pl022->cur_transfer->len, &pl022->sgt_tx);
930 /* Map DMA buffers */
931 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
932 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
933 if (!rx_sglen)
934 goto err_rx_sgmap;
936 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
937 pl022->sgt_tx.nents, DMA_TO_DEVICE);
938 if (!tx_sglen)
939 goto err_tx_sgmap;
941 /* Send both scatterlists */
942 rxdesc = dmaengine_prep_slave_sg(rxchan,
943 pl022->sgt_rx.sgl,
944 rx_sglen,
945 DMA_DEV_TO_MEM,
946 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
947 if (!rxdesc)
948 goto err_rxdesc;
950 txdesc = dmaengine_prep_slave_sg(txchan,
951 pl022->sgt_tx.sgl,
952 tx_sglen,
953 DMA_MEM_TO_DEV,
954 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
955 if (!txdesc)
956 goto err_txdesc;
958 /* Put the callback on the RX transfer only, that should finish last */
959 rxdesc->callback = dma_callback;
960 rxdesc->callback_param = pl022;
962 /* Submit and fire RX and TX with TX last so we're ready to read! */
963 dmaengine_submit(rxdesc);
964 dmaengine_submit(txdesc);
965 dma_async_issue_pending(rxchan);
966 dma_async_issue_pending(txchan);
967 pl022->dma_running = true;
969 return 0;
971 err_txdesc:
972 dmaengine_terminate_all(txchan);
973 err_rxdesc:
974 dmaengine_terminate_all(rxchan);
975 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
976 pl022->sgt_tx.nents, DMA_TO_DEVICE);
977 err_tx_sgmap:
978 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
979 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
980 err_rx_sgmap:
981 sg_free_table(&pl022->sgt_tx);
982 err_alloc_tx_sg:
983 sg_free_table(&pl022->sgt_rx);
984 err_alloc_rx_sg:
985 return -ENOMEM;
988 static int pl022_dma_probe(struct pl022 *pl022)
990 dma_cap_mask_t mask;
992 /* Try to acquire a generic DMA engine slave channel */
993 dma_cap_zero(mask);
994 dma_cap_set(DMA_SLAVE, mask);
996 * We need both RX and TX channels to do DMA, else do none
997 * of them.
999 pl022->dma_rx_channel = dma_request_channel(mask,
1000 pl022->host_info->dma_filter,
1001 pl022->host_info->dma_rx_param);
1002 if (!pl022->dma_rx_channel) {
1003 dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1004 goto err_no_rxchan;
1007 pl022->dma_tx_channel = dma_request_channel(mask,
1008 pl022->host_info->dma_filter,
1009 pl022->host_info->dma_tx_param);
1010 if (!pl022->dma_tx_channel) {
1011 dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1012 goto err_no_txchan;
1015 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1016 if (!pl022->dummypage)
1017 goto err_no_dummypage;
1019 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1020 dma_chan_name(pl022->dma_rx_channel),
1021 dma_chan_name(pl022->dma_tx_channel));
1023 return 0;
1025 err_no_dummypage:
1026 dma_release_channel(pl022->dma_tx_channel);
1027 err_no_txchan:
1028 dma_release_channel(pl022->dma_rx_channel);
1029 pl022->dma_rx_channel = NULL;
1030 err_no_rxchan:
1031 dev_err(&pl022->adev->dev,
1032 "Failed to work in dma mode, work without dma!\n");
1033 return -ENODEV;
1036 static int pl022_dma_autoprobe(struct pl022 *pl022)
1038 struct device *dev = &pl022->adev->dev;
1039 struct dma_chan *chan;
1040 int err;
1042 /* automatically configure DMA channels from platform, normally using DT */
1043 chan = dma_request_chan(dev, "rx");
1044 if (IS_ERR(chan)) {
1045 err = PTR_ERR(chan);
1046 goto err_no_rxchan;
1049 pl022->dma_rx_channel = chan;
1051 chan = dma_request_chan(dev, "tx");
1052 if (IS_ERR(chan)) {
1053 err = PTR_ERR(chan);
1054 goto err_no_txchan;
1057 pl022->dma_tx_channel = chan;
1059 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1060 if (!pl022->dummypage) {
1061 err = -ENOMEM;
1062 goto err_no_dummypage;
1065 return 0;
1067 err_no_dummypage:
1068 dma_release_channel(pl022->dma_tx_channel);
1069 pl022->dma_tx_channel = NULL;
1070 err_no_txchan:
1071 dma_release_channel(pl022->dma_rx_channel);
1072 pl022->dma_rx_channel = NULL;
1073 err_no_rxchan:
1074 return err;
1077 static void terminate_dma(struct pl022 *pl022)
1079 if (!pl022->dma_running)
1080 return;
1082 struct dma_chan *rxchan = pl022->dma_rx_channel;
1083 struct dma_chan *txchan = pl022->dma_tx_channel;
1085 dmaengine_terminate_all(rxchan);
1086 dmaengine_terminate_all(txchan);
1087 unmap_free_dma_scatter(pl022);
1088 pl022->dma_running = false;
1091 static void pl022_dma_remove(struct pl022 *pl022)
1093 terminate_dma(pl022);
1094 if (pl022->dma_tx_channel)
1095 dma_release_channel(pl022->dma_tx_channel);
1096 if (pl022->dma_rx_channel)
1097 dma_release_channel(pl022->dma_rx_channel);
1098 kfree(pl022->dummypage);
1101 #else
1102 static inline int configure_dma(struct pl022 *pl022)
1104 return -ENODEV;
1107 static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1109 return 0;
1112 static inline int pl022_dma_probe(struct pl022 *pl022)
1114 return 0;
1117 static inline void terminate_dma(struct pl022 *pl022)
1121 static inline void pl022_dma_remove(struct pl022 *pl022)
1124 #endif
1127 * pl022_interrupt_handler - Interrupt handler for SSP controller
1128 * @irq: IRQ number
1129 * @dev_id: Local device data
1131 * This function handles interrupts generated for an interrupt based transfer.
1132 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1133 * current message's state as STATE_ERROR and schedule the tasklet
1134 * pump_transfers which will do the postprocessing of the current message by
1135 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1136 * more data, and writes data in TX FIFO till it is not full. If we complete
1137 * the transfer we move to the next transfer and schedule the tasklet.
1139 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1141 struct pl022 *pl022 = dev_id;
1142 u16 irq_status = 0;
1143 /* Read the Interrupt Status Register */
1144 irq_status = readw(SSP_MIS(pl022->virtbase));
1146 if (unlikely(!irq_status))
1147 return IRQ_NONE;
1150 * This handles the FIFO interrupts, the timeout
1151 * interrupts are flatly ignored, they cannot be
1152 * trusted.
1154 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1156 * Overrun interrupt - bail out since our Data has been
1157 * corrupted
1159 dev_err(&pl022->adev->dev, "FIFO overrun\n");
1160 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1161 dev_err(&pl022->adev->dev,
1162 "RXFIFO is full\n");
1165 * Disable and clear interrupts, disable SSP,
1166 * mark message with bad status so it can be
1167 * retried.
1169 writew(DISABLE_ALL_INTERRUPTS,
1170 SSP_IMSC(pl022->virtbase));
1171 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1172 writew((readw(SSP_CR1(pl022->virtbase)) &
1173 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1174 pl022->cur_transfer->error |= SPI_TRANS_FAIL_IO;
1175 spi_finalize_current_transfer(pl022->host);
1176 return IRQ_HANDLED;
1179 readwriter(pl022);
1181 if (pl022->tx == pl022->tx_end) {
1182 /* Disable Transmit interrupt, enable receive interrupt */
1183 writew((readw(SSP_IMSC(pl022->virtbase)) &
1184 ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1185 SSP_IMSC(pl022->virtbase));
1189 * Since all transactions must write as much as shall be read,
1190 * we can conclude the entire transaction once RX is complete.
1191 * At this point, all TX will always be finished.
1193 if (pl022->rx >= pl022->rx_end) {
1194 writew(DISABLE_ALL_INTERRUPTS,
1195 SSP_IMSC(pl022->virtbase));
1196 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1197 if (unlikely(pl022->rx > pl022->rx_end)) {
1198 dev_warn(&pl022->adev->dev, "read %u surplus "
1199 "bytes (did you request an odd "
1200 "number of bytes on a 16bit bus?)\n",
1201 (u32) (pl022->rx - pl022->rx_end));
1203 spi_finalize_current_transfer(pl022->host);
1204 return IRQ_HANDLED;
1207 return IRQ_HANDLED;
1211 * This sets up the pointers to memory for the next message to
1212 * send out on the SPI bus.
1214 static int set_up_next_transfer(struct pl022 *pl022,
1215 struct spi_transfer *transfer)
1217 int residue;
1219 /* Sanity check the message for this bus width */
1220 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1221 if (unlikely(residue != 0)) {
1222 dev_err(&pl022->adev->dev,
1223 "message of %u bytes to transmit but the current "
1224 "chip bus has a data width of %u bytes!\n",
1225 pl022->cur_transfer->len,
1226 pl022->cur_chip->n_bytes);
1227 dev_err(&pl022->adev->dev, "skipping this message\n");
1228 return -EIO;
1230 pl022->tx = (void *)transfer->tx_buf;
1231 pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1232 pl022->rx = (void *)transfer->rx_buf;
1233 pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1234 pl022->write =
1235 pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1236 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1237 return 0;
1240 static int do_interrupt_dma_transfer(struct pl022 *pl022)
1242 int ret;
1245 * Default is to enable all interrupts except RX -
1246 * this will be enabled once TX is complete
1248 u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1250 ret = set_up_next_transfer(pl022, pl022->cur_transfer);
1251 if (ret)
1252 return ret;
1254 /* If we're using DMA, set up DMA here */
1255 if (pl022->cur_chip->enable_dma) {
1256 /* Configure DMA transfer */
1257 if (configure_dma(pl022)) {
1258 dev_dbg(&pl022->adev->dev,
1259 "configuration of DMA failed, fall back to interrupt mode\n");
1260 goto err_config_dma;
1262 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1263 irqflags = DISABLE_ALL_INTERRUPTS;
1265 err_config_dma:
1266 /* Enable SSP, turn on interrupts */
1267 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1268 SSP_CR1(pl022->virtbase));
1269 writew(irqflags, SSP_IMSC(pl022->virtbase));
1270 return 1;
1273 static void print_current_status(struct pl022 *pl022)
1275 u32 read_cr0;
1276 u16 read_cr1, read_dmacr, read_sr;
1278 if (pl022->vendor->extended_cr)
1279 read_cr0 = readl(SSP_CR0(pl022->virtbase));
1280 else
1281 read_cr0 = readw(SSP_CR0(pl022->virtbase));
1282 read_cr1 = readw(SSP_CR1(pl022->virtbase));
1283 read_dmacr = readw(SSP_DMACR(pl022->virtbase));
1284 read_sr = readw(SSP_SR(pl022->virtbase));
1286 dev_warn(&pl022->adev->dev, "spi-pl022 CR0: %x\n", read_cr0);
1287 dev_warn(&pl022->adev->dev, "spi-pl022 CR1: %x\n", read_cr1);
1288 dev_warn(&pl022->adev->dev, "spi-pl022 DMACR: %x\n", read_dmacr);
1289 dev_warn(&pl022->adev->dev, "spi-pl022 SR: %x\n", read_sr);
1290 dev_warn(&pl022->adev->dev,
1291 "spi-pl022 exp_fifo_level/fifodepth: %u/%d\n",
1292 pl022->exp_fifo_level,
1293 pl022->vendor->fifodepth);
1297 static int do_polling_transfer(struct pl022 *pl022)
1299 int ret;
1300 unsigned long time, timeout;
1302 /* Configuration Changing Per Transfer */
1303 ret = set_up_next_transfer(pl022, pl022->cur_transfer);
1304 if (ret)
1305 return ret;
1306 /* Flush FIFOs and enable SSP */
1307 flush(pl022);
1308 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1309 SSP_CR1(pl022->virtbase));
1311 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1313 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1314 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1315 time = jiffies;
1316 readwriter(pl022);
1317 if (time_after(time, timeout)) {
1318 dev_warn(&pl022->adev->dev,
1319 "%s: timeout!\n", __func__);
1320 print_current_status(pl022);
1321 return -ETIMEDOUT;
1323 cpu_relax();
1326 return 0;
1329 static int pl022_transfer_one(struct spi_controller *host, struct spi_device *spi,
1330 struct spi_transfer *transfer)
1332 struct pl022 *pl022 = spi_controller_get_devdata(host);
1334 pl022->cur_transfer = transfer;
1336 /* Setup the SPI using the per chip configuration */
1337 pl022->cur_chip = spi_get_ctldata(spi);
1338 pl022->cur_cs = spi_get_chipselect(spi, 0);
1340 restore_state(pl022);
1341 flush(pl022);
1343 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1344 return do_polling_transfer(pl022);
1345 else
1346 return do_interrupt_dma_transfer(pl022);
1349 static void pl022_handle_err(struct spi_controller *ctlr, struct spi_message *message)
1351 struct pl022 *pl022 = spi_controller_get_devdata(ctlr);
1353 terminate_dma(pl022);
1354 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
1355 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1358 static int pl022_unprepare_transfer_hardware(struct spi_controller *host)
1360 struct pl022 *pl022 = spi_controller_get_devdata(host);
1362 /* nothing more to do - disable spi/ssp and power off */
1363 writew((readw(SSP_CR1(pl022->virtbase)) &
1364 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1366 return 0;
1369 static int verify_controller_parameters(struct pl022 *pl022,
1370 struct pl022_config_chip const *chip_info)
1372 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1373 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1374 dev_err(&pl022->adev->dev,
1375 "interface is configured incorrectly\n");
1376 return -EINVAL;
1378 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1379 (!pl022->vendor->unidir)) {
1380 dev_err(&pl022->adev->dev,
1381 "unidirectional mode not supported in this "
1382 "hardware version\n");
1383 return -EINVAL;
1385 if ((chip_info->hierarchy != SSP_MASTER)
1386 && (chip_info->hierarchy != SSP_SLAVE)) {
1387 dev_err(&pl022->adev->dev,
1388 "hierarchy is configured incorrectly\n");
1389 return -EINVAL;
1391 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1392 && (chip_info->com_mode != DMA_TRANSFER)
1393 && (chip_info->com_mode != POLLING_TRANSFER)) {
1394 dev_err(&pl022->adev->dev,
1395 "Communication mode is configured incorrectly\n");
1396 return -EINVAL;
1398 switch (chip_info->rx_lev_trig) {
1399 case SSP_RX_1_OR_MORE_ELEM:
1400 case SSP_RX_4_OR_MORE_ELEM:
1401 case SSP_RX_8_OR_MORE_ELEM:
1402 /* These are always OK, all variants can handle this */
1403 break;
1404 case SSP_RX_16_OR_MORE_ELEM:
1405 if (pl022->vendor->fifodepth < 16) {
1406 dev_err(&pl022->adev->dev,
1407 "RX FIFO Trigger Level is configured incorrectly\n");
1408 return -EINVAL;
1410 break;
1411 case SSP_RX_32_OR_MORE_ELEM:
1412 if (pl022->vendor->fifodepth < 32) {
1413 dev_err(&pl022->adev->dev,
1414 "RX FIFO Trigger Level is configured incorrectly\n");
1415 return -EINVAL;
1417 break;
1418 default:
1419 dev_err(&pl022->adev->dev,
1420 "RX FIFO Trigger Level is configured incorrectly\n");
1421 return -EINVAL;
1423 switch (chip_info->tx_lev_trig) {
1424 case SSP_TX_1_OR_MORE_EMPTY_LOC:
1425 case SSP_TX_4_OR_MORE_EMPTY_LOC:
1426 case SSP_TX_8_OR_MORE_EMPTY_LOC:
1427 /* These are always OK, all variants can handle this */
1428 break;
1429 case SSP_TX_16_OR_MORE_EMPTY_LOC:
1430 if (pl022->vendor->fifodepth < 16) {
1431 dev_err(&pl022->adev->dev,
1432 "TX FIFO Trigger Level is configured incorrectly\n");
1433 return -EINVAL;
1435 break;
1436 case SSP_TX_32_OR_MORE_EMPTY_LOC:
1437 if (pl022->vendor->fifodepth < 32) {
1438 dev_err(&pl022->adev->dev,
1439 "TX FIFO Trigger Level is configured incorrectly\n");
1440 return -EINVAL;
1442 break;
1443 default:
1444 dev_err(&pl022->adev->dev,
1445 "TX FIFO Trigger Level is configured incorrectly\n");
1446 return -EINVAL;
1448 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1449 if ((chip_info->ctrl_len < SSP_BITS_4)
1450 || (chip_info->ctrl_len > SSP_BITS_32)) {
1451 dev_err(&pl022->adev->dev,
1452 "CTRL LEN is configured incorrectly\n");
1453 return -EINVAL;
1455 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1456 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1457 dev_err(&pl022->adev->dev,
1458 "Wait State is configured incorrectly\n");
1459 return -EINVAL;
1461 /* Half duplex is only available in the ST Micro version */
1462 if (pl022->vendor->extended_cr) {
1463 if ((chip_info->duplex !=
1464 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1465 && (chip_info->duplex !=
1466 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1467 dev_err(&pl022->adev->dev,
1468 "Microwire duplex mode is configured incorrectly\n");
1469 return -EINVAL;
1471 } else {
1472 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) {
1473 dev_err(&pl022->adev->dev,
1474 "Microwire half duplex mode requested,"
1475 " but this is only available in the"
1476 " ST version of PL022\n");
1477 return -EINVAL;
1481 return 0;
1484 static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1486 return rate / (cpsdvsr * (1 + scr));
1489 static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1490 ssp_clock_params * clk_freq)
1492 /* Lets calculate the frequency parameters */
1493 u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1494 u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1495 best_scr = 0, tmp, found = 0;
1497 rate = clk_get_rate(pl022->clk);
1498 /* cpsdvscr = 2 & scr 0 */
1499 max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1500 /* cpsdvsr = 254 & scr = 255 */
1501 min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1503 if (freq > max_tclk)
1504 dev_warn(&pl022->adev->dev,
1505 "Max speed that can be programmed is %d Hz, you requested %d\n",
1506 max_tclk, freq);
1508 if (freq < min_tclk) {
1509 dev_err(&pl022->adev->dev,
1510 "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1511 freq, min_tclk);
1512 return -EINVAL;
1516 * best_freq will give closest possible available rate (<= requested
1517 * freq) for all values of scr & cpsdvsr.
1519 while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1520 while (scr <= SCR_MAX) {
1521 tmp = spi_rate(rate, cpsdvsr, scr);
1523 if (tmp > freq) {
1524 /* we need lower freq */
1525 scr++;
1526 continue;
1530 * If found exact value, mark found and break.
1531 * If found more closer value, update and break.
1533 if (tmp > best_freq) {
1534 best_freq = tmp;
1535 best_cpsdvsr = cpsdvsr;
1536 best_scr = scr;
1538 if (tmp == freq)
1539 found = 1;
1542 * increased scr will give lower rates, which are not
1543 * required
1545 break;
1547 cpsdvsr += 2;
1548 scr = SCR_MIN;
1551 WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1552 freq);
1554 clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1555 clk_freq->scr = (u8) (best_scr & 0xFF);
1556 dev_dbg(&pl022->adev->dev,
1557 "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1558 freq, best_freq);
1559 dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1560 clk_freq->cpsdvsr, clk_freq->scr);
1562 return 0;
1566 * A piece of default chip info unless the platform
1567 * supplies it.
1569 static const struct pl022_config_chip pl022_default_chip_info = {
1570 .com_mode = INTERRUPT_TRANSFER,
1571 .iface = SSP_INTERFACE_MOTOROLA_SPI,
1572 .hierarchy = SSP_MASTER,
1573 .slave_tx_disable = DO_NOT_DRIVE_TX,
1574 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1575 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1576 .ctrl_len = SSP_BITS_8,
1577 .wait_state = SSP_MWIRE_WAIT_ZERO,
1578 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1582 * pl022_setup - setup function registered to SPI host framework
1583 * @spi: spi device which is requesting setup
1585 * This function is registered to the SPI framework for this SPI host
1586 * controller. If it is the first time when setup is called by this device,
1587 * this function will initialize the runtime state for this chip and save
1588 * the same in the device structure. Else it will update the runtime info
1589 * with the updated chip info. Nothing is really being written to the
1590 * controller hardware here, that is not done until the actual transfer
1591 * commence.
1593 static int pl022_setup(struct spi_device *spi)
1595 struct pl022_config_chip const *chip_info;
1596 struct pl022_config_chip chip_info_dt;
1597 struct chip_data *chip;
1598 struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1599 int status = 0;
1600 struct pl022 *pl022 = spi_controller_get_devdata(spi->controller);
1601 unsigned int bits = spi->bits_per_word;
1602 u32 tmp;
1603 struct device_node *np = spi->dev.of_node;
1605 if (!spi->max_speed_hz)
1606 return -EINVAL;
1608 /* Get controller_state if one is supplied */
1609 chip = spi_get_ctldata(spi);
1611 if (chip == NULL) {
1612 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1613 if (!chip)
1614 return -ENOMEM;
1615 dev_dbg(&spi->dev,
1616 "allocated memory for controller's runtime state\n");
1619 /* Get controller data if one is supplied */
1620 chip_info = spi->controller_data;
1622 if (chip_info == NULL) {
1623 if (np) {
1624 chip_info_dt = pl022_default_chip_info;
1626 chip_info_dt.hierarchy = SSP_MASTER;
1627 of_property_read_u32(np, "pl022,interface",
1628 &chip_info_dt.iface);
1629 of_property_read_u32(np, "pl022,com-mode",
1630 &chip_info_dt.com_mode);
1631 of_property_read_u32(np, "pl022,rx-level-trig",
1632 &chip_info_dt.rx_lev_trig);
1633 of_property_read_u32(np, "pl022,tx-level-trig",
1634 &chip_info_dt.tx_lev_trig);
1635 of_property_read_u32(np, "pl022,ctrl-len",
1636 &chip_info_dt.ctrl_len);
1637 of_property_read_u32(np, "pl022,wait-state",
1638 &chip_info_dt.wait_state);
1639 of_property_read_u32(np, "pl022,duplex",
1640 &chip_info_dt.duplex);
1642 chip_info = &chip_info_dt;
1643 } else {
1644 chip_info = &pl022_default_chip_info;
1645 /* spi_board_info.controller_data not is supplied */
1646 dev_dbg(&spi->dev,
1647 "using default controller_data settings\n");
1649 } else
1650 dev_dbg(&spi->dev,
1651 "using user supplied controller_data settings\n");
1654 * We can override with custom divisors, else we use the board
1655 * frequency setting
1657 if ((0 == chip_info->clk_freq.cpsdvsr)
1658 && (0 == chip_info->clk_freq.scr)) {
1659 status = calculate_effective_freq(pl022,
1660 spi->max_speed_hz,
1661 &clk_freq);
1662 if (status < 0)
1663 goto err_config_params;
1664 } else {
1665 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1666 if ((clk_freq.cpsdvsr % 2) != 0)
1667 clk_freq.cpsdvsr =
1668 clk_freq.cpsdvsr - 1;
1670 if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1671 || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1672 status = -EINVAL;
1673 dev_err(&spi->dev,
1674 "cpsdvsr is configured incorrectly\n");
1675 goto err_config_params;
1678 status = verify_controller_parameters(pl022, chip_info);
1679 if (status) {
1680 dev_err(&spi->dev, "controller data is incorrect");
1681 goto err_config_params;
1684 pl022->rx_lev_trig = chip_info->rx_lev_trig;
1685 pl022->tx_lev_trig = chip_info->tx_lev_trig;
1687 /* Now set controller state based on controller data */
1688 chip->xfer_type = chip_info->com_mode;
1690 /* Check bits per word with vendor specific range */
1691 if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1692 status = -ENOTSUPP;
1693 dev_err(&spi->dev, "illegal data size for this controller!\n");
1694 dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1695 pl022->vendor->max_bpw);
1696 goto err_config_params;
1697 } else if (bits <= 8) {
1698 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1699 chip->n_bytes = 1;
1700 chip->read = READING_U8;
1701 chip->write = WRITING_U8;
1702 } else if (bits <= 16) {
1703 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1704 chip->n_bytes = 2;
1705 chip->read = READING_U16;
1706 chip->write = WRITING_U16;
1707 } else {
1708 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1709 chip->n_bytes = 4;
1710 chip->read = READING_U32;
1711 chip->write = WRITING_U32;
1714 /* Now Initialize all register settings required for this chip */
1715 chip->cr0 = 0;
1716 chip->cr1 = 0;
1717 chip->dmacr = 0;
1718 chip->cpsr = 0;
1719 if ((chip_info->com_mode == DMA_TRANSFER)
1720 && ((pl022->host_info)->enable_dma)) {
1721 chip->enable_dma = true;
1722 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1723 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1724 SSP_DMACR_MASK_RXDMAE, 0);
1725 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1726 SSP_DMACR_MASK_TXDMAE, 1);
1727 } else {
1728 chip->enable_dma = false;
1729 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1730 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1731 SSP_DMACR_MASK_RXDMAE, 0);
1732 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1733 SSP_DMACR_MASK_TXDMAE, 1);
1736 chip->cpsr = clk_freq.cpsdvsr;
1738 /* Special setup for the ST micro extended control registers */
1739 if (pl022->vendor->extended_cr) {
1740 u32 etx;
1742 if (pl022->vendor->pl023) {
1743 /* These bits are only in the PL023 */
1744 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1745 SSP_CR1_MASK_FBCLKDEL_ST, 13);
1746 } else {
1747 /* These bits are in the PL022 but not PL023 */
1748 SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1749 SSP_CR0_MASK_HALFDUP_ST, 5);
1750 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1751 SSP_CR0_MASK_CSS_ST, 16);
1752 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1753 SSP_CR0_MASK_FRF_ST, 21);
1754 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1755 SSP_CR1_MASK_MWAIT_ST, 6);
1757 SSP_WRITE_BITS(chip->cr0, bits - 1,
1758 SSP_CR0_MASK_DSS_ST, 0);
1760 if (spi->mode & SPI_LSB_FIRST) {
1761 tmp = SSP_RX_LSB;
1762 etx = SSP_TX_LSB;
1763 } else {
1764 tmp = SSP_RX_MSB;
1765 etx = SSP_TX_MSB;
1767 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
1768 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
1769 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
1770 SSP_CR1_MASK_RXIFLSEL_ST, 7);
1771 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
1772 SSP_CR1_MASK_TXIFLSEL_ST, 10);
1773 } else {
1774 SSP_WRITE_BITS(chip->cr0, bits - 1,
1775 SSP_CR0_MASK_DSS, 0);
1776 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1777 SSP_CR0_MASK_FRF, 4);
1780 /* Stuff that is common for all versions */
1781 if (spi->mode & SPI_CPOL)
1782 tmp = SSP_CLK_POL_IDLE_HIGH;
1783 else
1784 tmp = SSP_CLK_POL_IDLE_LOW;
1785 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
1787 if (spi->mode & SPI_CPHA)
1788 tmp = SSP_CLK_SECOND_EDGE;
1789 else
1790 tmp = SSP_CLK_FIRST_EDGE;
1791 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
1793 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
1794 /* Loopback is available on all versions except PL023 */
1795 if (pl022->vendor->loopback) {
1796 if (spi->mode & SPI_LOOP)
1797 tmp = LOOPBACK_ENABLED;
1798 else
1799 tmp = LOOPBACK_DISABLED;
1800 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
1802 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
1803 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
1804 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
1807 /* Save controller_state */
1808 spi_set_ctldata(spi, chip);
1809 return status;
1810 err_config_params:
1811 spi_set_ctldata(spi, NULL);
1812 kfree(chip);
1813 return status;
1817 * pl022_cleanup - cleanup function registered to SPI host framework
1818 * @spi: spi device which is requesting cleanup
1820 * This function is registered to the SPI framework for this SPI host
1821 * controller. It will free the runtime state of chip.
1823 static void pl022_cleanup(struct spi_device *spi)
1825 struct chip_data *chip = spi_get_ctldata(spi);
1827 spi_set_ctldata(spi, NULL);
1828 kfree(chip);
1831 static struct pl022_ssp_controller *
1832 pl022_platform_data_dt_get(struct device *dev)
1834 struct device_node *np = dev->of_node;
1835 struct pl022_ssp_controller *pd;
1837 if (!np) {
1838 dev_err(dev, "no dt node defined\n");
1839 return NULL;
1842 pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
1843 if (!pd)
1844 return NULL;
1846 pd->bus_id = -1;
1847 of_property_read_u32(np, "pl022,autosuspend-delay",
1848 &pd->autosuspend_delay);
1849 pd->rt = of_property_read_bool(np, "pl022,rt");
1851 return pd;
1854 static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
1856 struct device *dev = &adev->dev;
1857 struct pl022_ssp_controller *platform_info =
1858 dev_get_platdata(&adev->dev);
1859 struct spi_controller *host;
1860 struct pl022 *pl022 = NULL; /*Data for this driver */
1861 int status = 0;
1863 dev_info(&adev->dev,
1864 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
1865 if (!platform_info && IS_ENABLED(CONFIG_OF))
1866 platform_info = pl022_platform_data_dt_get(dev);
1868 if (!platform_info) {
1869 dev_err(dev, "probe: no platform data defined\n");
1870 return -ENODEV;
1873 /* Allocate host with space for data */
1874 host = spi_alloc_host(dev, sizeof(struct pl022));
1875 if (host == NULL) {
1876 dev_err(&adev->dev, "probe - cannot alloc SPI host\n");
1877 return -ENOMEM;
1880 pl022 = spi_controller_get_devdata(host);
1881 pl022->host = host;
1882 pl022->host_info = platform_info;
1883 pl022->adev = adev;
1884 pl022->vendor = id->data;
1887 * Bus Number Which has been Assigned to this SSP controller
1888 * on this board
1890 host->bus_num = platform_info->bus_id;
1891 host->cleanup = pl022_cleanup;
1892 host->setup = pl022_setup;
1893 host->auto_runtime_pm = true;
1894 host->transfer_one = pl022_transfer_one;
1895 host->set_cs = pl022_cs_control;
1896 host->handle_err = pl022_handle_err;
1897 host->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
1898 host->rt = platform_info->rt;
1899 host->dev.of_node = dev->of_node;
1900 host->use_gpio_descriptors = true;
1903 * Supports mode 0-3, loopback, and active low CS. Transfers are
1904 * always MS bit first on the original pl022.
1906 host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1907 if (pl022->vendor->extended_cr)
1908 host->mode_bits |= SPI_LSB_FIRST;
1910 dev_dbg(&adev->dev, "BUSNO: %d\n", host->bus_num);
1912 status = amba_request_regions(adev, NULL);
1913 if (status)
1914 goto err_no_ioregion;
1916 pl022->phybase = adev->res.start;
1917 pl022->virtbase = devm_ioremap(dev, adev->res.start,
1918 resource_size(&adev->res));
1919 if (pl022->virtbase == NULL) {
1920 status = -ENOMEM;
1921 goto err_no_ioremap;
1923 dev_info(&adev->dev, "mapped registers from %pa to %p\n",
1924 &adev->res.start, pl022->virtbase);
1926 pl022->clk = devm_clk_get_enabled(&adev->dev, NULL);
1927 if (IS_ERR(pl022->clk)) {
1928 status = PTR_ERR(pl022->clk);
1929 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
1930 goto err_no_clk;
1933 /* Disable SSP */
1934 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
1935 SSP_CR1(pl022->virtbase));
1936 load_ssp_default_config(pl022);
1938 status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
1939 0, "pl022", pl022);
1940 if (status < 0) {
1941 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
1942 goto err_no_irq;
1945 /* Get DMA channels, try autoconfiguration first */
1946 status = pl022_dma_autoprobe(pl022);
1947 if (status == -EPROBE_DEFER) {
1948 dev_dbg(dev, "deferring probe to get DMA channel\n");
1949 goto err_no_irq;
1952 /* If that failed, use channels from platform_info */
1953 if (status == 0)
1954 platform_info->enable_dma = 1;
1955 else if (platform_info->enable_dma) {
1956 status = pl022_dma_probe(pl022);
1957 if (status != 0)
1958 platform_info->enable_dma = 0;
1961 /* Register with the SPI framework */
1962 amba_set_drvdata(adev, pl022);
1963 status = devm_spi_register_controller(&adev->dev, host);
1964 if (status != 0) {
1965 dev_err_probe(&adev->dev, status,
1966 "problem registering spi host\n");
1967 goto err_spi_register;
1969 dev_dbg(dev, "probe succeeded\n");
1971 /* let runtime pm put suspend */
1972 if (platform_info->autosuspend_delay > 0) {
1973 dev_info(&adev->dev,
1974 "will use autosuspend for runtime pm, delay %dms\n",
1975 platform_info->autosuspend_delay);
1976 pm_runtime_set_autosuspend_delay(dev,
1977 platform_info->autosuspend_delay);
1978 pm_runtime_use_autosuspend(dev);
1980 pm_runtime_put(dev);
1982 return 0;
1984 err_spi_register:
1985 if (platform_info->enable_dma)
1986 pl022_dma_remove(pl022);
1987 err_no_irq:
1988 err_no_clk:
1989 err_no_ioremap:
1990 amba_release_regions(adev);
1991 err_no_ioregion:
1992 spi_controller_put(host);
1993 return status;
1996 static void
1997 pl022_remove(struct amba_device *adev)
1999 struct pl022 *pl022 = amba_get_drvdata(adev);
2001 if (!pl022)
2002 return;
2005 * undo pm_runtime_put() in probe. I assume that we're not
2006 * accessing the primecell here.
2008 pm_runtime_get_noresume(&adev->dev);
2010 load_ssp_default_config(pl022);
2011 if (pl022->host_info->enable_dma)
2012 pl022_dma_remove(pl022);
2014 amba_release_regions(adev);
2017 #ifdef CONFIG_PM_SLEEP
2018 static int pl022_suspend(struct device *dev)
2020 struct pl022 *pl022 = dev_get_drvdata(dev);
2021 int ret;
2023 ret = spi_controller_suspend(pl022->host);
2024 if (ret)
2025 return ret;
2027 ret = pm_runtime_force_suspend(dev);
2028 if (ret) {
2029 spi_controller_resume(pl022->host);
2030 return ret;
2033 pinctrl_pm_select_sleep_state(dev);
2035 dev_dbg(dev, "suspended\n");
2036 return 0;
2039 static int pl022_resume(struct device *dev)
2041 struct pl022 *pl022 = dev_get_drvdata(dev);
2042 int ret;
2044 ret = pm_runtime_force_resume(dev);
2045 if (ret)
2046 dev_err(dev, "problem resuming\n");
2048 /* Start the queue running */
2049 ret = spi_controller_resume(pl022->host);
2050 if (!ret)
2051 dev_dbg(dev, "resumed\n");
2053 return ret;
2055 #endif
2057 #ifdef CONFIG_PM
2058 static int pl022_runtime_suspend(struct device *dev)
2060 struct pl022 *pl022 = dev_get_drvdata(dev);
2062 clk_disable_unprepare(pl022->clk);
2063 pinctrl_pm_select_idle_state(dev);
2065 return 0;
2068 static int pl022_runtime_resume(struct device *dev)
2070 struct pl022 *pl022 = dev_get_drvdata(dev);
2072 pinctrl_pm_select_default_state(dev);
2073 clk_prepare_enable(pl022->clk);
2075 return 0;
2077 #endif
2079 static const struct dev_pm_ops pl022_dev_pm_ops = {
2080 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2081 SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2084 static struct vendor_data vendor_arm = {
2085 .fifodepth = 8,
2086 .max_bpw = 16,
2087 .unidir = false,
2088 .extended_cr = false,
2089 .pl023 = false,
2090 .loopback = true,
2091 .internal_cs_ctrl = false,
2094 static struct vendor_data vendor_st = {
2095 .fifodepth = 32,
2096 .max_bpw = 32,
2097 .unidir = false,
2098 .extended_cr = true,
2099 .pl023 = false,
2100 .loopback = true,
2101 .internal_cs_ctrl = false,
2104 static struct vendor_data vendor_st_pl023 = {
2105 .fifodepth = 32,
2106 .max_bpw = 32,
2107 .unidir = false,
2108 .extended_cr = true,
2109 .pl023 = true,
2110 .loopback = false,
2111 .internal_cs_ctrl = false,
2114 static struct vendor_data vendor_lsi = {
2115 .fifodepth = 8,
2116 .max_bpw = 16,
2117 .unidir = false,
2118 .extended_cr = false,
2119 .pl023 = false,
2120 .loopback = true,
2121 .internal_cs_ctrl = true,
2124 static const struct amba_id pl022_ids[] = {
2127 * ARM PL022 variant, this has a 16bit wide
2128 * and 8 locations deep TX/RX FIFO
2130 .id = 0x00041022,
2131 .mask = 0x000fffff,
2132 .data = &vendor_arm,
2136 * ST Micro derivative, this has 32bit wide
2137 * and 32 locations deep TX/RX FIFO
2139 .id = 0x01080022,
2140 .mask = 0xffffffff,
2141 .data = &vendor_st,
2145 * ST-Ericsson derivative "PL023" (this is not
2146 * an official ARM number), this is a PL022 SSP block
2147 * stripped to SPI mode only, it has 32bit wide
2148 * and 32 locations deep TX/RX FIFO but no extended
2149 * CR0/CR1 register
2151 .id = 0x00080023,
2152 .mask = 0xffffffff,
2153 .data = &vendor_st_pl023,
2157 * PL022 variant that has a chip select control register whih
2158 * allows control of 5 output signals nCS[0:4].
2160 .id = 0x000b6022,
2161 .mask = 0x000fffff,
2162 .data = &vendor_lsi,
2164 { 0, 0 },
2167 MODULE_DEVICE_TABLE(amba, pl022_ids);
2169 static struct amba_driver pl022_driver = {
2170 .drv = {
2171 .name = "ssp-pl022",
2172 .pm = &pl022_dev_pm_ops,
2174 .id_table = pl022_ids,
2175 .probe = pl022_probe,
2176 .remove = pl022_remove,
2179 static int __init pl022_init(void)
2181 return amba_driver_register(&pl022_driver);
2183 subsys_initcall(pl022_init);
2185 static void __exit pl022_exit(void)
2187 amba_driver_unregister(&pl022_driver);
2189 module_exit(pl022_exit);
2191 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2192 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2193 MODULE_LICENSE("GPL");