drm: add modifiers for MediaTek tiled formats
[drm/drm-misc.git] / drivers / spi / spi-rspi.c
blob92faaf614f8ea1b33b689e05dc8f049e3f446bd0
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SH RSPI driver
5 * Copyright (C) 2012, 2013 Renesas Solutions Corp.
6 * Copyright (C) 2014 Glider bvba
8 * Based on spi-sh.c:
9 * Copyright (C) 2011 Renesas Solutions Corp.
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/errno.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/io.h>
19 #include <linux/clk.h>
20 #include <linux/dmaengine.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/of.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/reset.h>
25 #include <linux/sh_dma.h>
26 #include <linux/spi/spi.h>
27 #include <linux/spinlock.h>
29 #define RSPI_SPCR 0x00 /* Control Register */
30 #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
31 #define RSPI_SPPCR 0x02 /* Pin Control Register */
32 #define RSPI_SPSR 0x03 /* Status Register */
33 #define RSPI_SPDR 0x04 /* Data Register */
34 #define RSPI_SPSCR 0x08 /* Sequence Control Register */
35 #define RSPI_SPSSR 0x09 /* Sequence Status Register */
36 #define RSPI_SPBR 0x0a /* Bit Rate Register */
37 #define RSPI_SPDCR 0x0b /* Data Control Register */
38 #define RSPI_SPCKD 0x0c /* Clock Delay Register */
39 #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
40 #define RSPI_SPND 0x0e /* Next-Access Delay Register */
41 #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
42 #define RSPI_SPCMD0 0x10 /* Command Register 0 */
43 #define RSPI_SPCMD1 0x12 /* Command Register 1 */
44 #define RSPI_SPCMD2 0x14 /* Command Register 2 */
45 #define RSPI_SPCMD3 0x16 /* Command Register 3 */
46 #define RSPI_SPCMD4 0x18 /* Command Register 4 */
47 #define RSPI_SPCMD5 0x1a /* Command Register 5 */
48 #define RSPI_SPCMD6 0x1c /* Command Register 6 */
49 #define RSPI_SPCMD7 0x1e /* Command Register 7 */
50 #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
51 #define RSPI_NUM_SPCMD 8
52 #define RSPI_RZ_NUM_SPCMD 4
53 #define QSPI_NUM_SPCMD 4
55 /* RSPI on RZ only */
56 #define RSPI_SPBFCR 0x20 /* Buffer Control Register */
57 #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
59 /* QSPI only */
60 #define QSPI_SPBFCR 0x18 /* Buffer Control Register */
61 #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
62 #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
63 #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
64 #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
65 #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
66 #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
68 /* SPCR - Control Register */
69 #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
70 #define SPCR_SPE 0x40 /* Function Enable */
71 #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
72 #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
73 #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
74 #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
75 /* RSPI on SH only */
76 #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
77 #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
78 /* QSPI on R-Car Gen2 only */
79 #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
80 #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
82 /* SSLP - Slave Select Polarity Register */
83 #define SSLP_SSLP(i) BIT(i) /* SSLi Signal Polarity Setting */
85 /* SPPCR - Pin Control Register */
86 #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
87 #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
88 #define SPPCR_SPOM 0x04
89 #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
90 #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
92 #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
93 #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
95 /* SPSR - Status Register */
96 #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
97 #define SPSR_TEND 0x40 /* Transmit End */
98 #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
99 #define SPSR_PERF 0x08 /* Parity Error Flag */
100 #define SPSR_MODF 0x04 /* Mode Fault Error Flag */
101 #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
102 #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
104 /* SPSCR - Sequence Control Register */
105 #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
107 /* SPSSR - Sequence Status Register */
108 #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
109 #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
111 /* SPDCR - Data Control Register */
112 #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
113 #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
114 #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
115 #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
116 #define SPDCR_SPLWORD SPDCR_SPLW1
117 #define SPDCR_SPLBYTE SPDCR_SPLW0
118 #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
119 #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
120 #define SPDCR_SLSEL1 0x08
121 #define SPDCR_SLSEL0 0x04
122 #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
123 #define SPDCR_SPFC1 0x02
124 #define SPDCR_SPFC0 0x01
125 #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
127 /* SPCKD - Clock Delay Register */
128 #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
130 /* SSLND - Slave Select Negation Delay Register */
131 #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
133 /* SPND - Next-Access Delay Register */
134 #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
136 /* SPCR2 - Control Register 2 */
137 #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
138 #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
139 #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
140 #define SPCR2_SPPE 0x01 /* Parity Enable */
142 /* SPCMDn - Command Registers */
143 #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
144 #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
145 #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
146 #define SPCMD_LSBF 0x1000 /* LSB First */
147 #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
148 #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
149 #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
150 #define SPCMD_SPB_16BIT 0x0100
151 #define SPCMD_SPB_20BIT 0x0000
152 #define SPCMD_SPB_24BIT 0x0100
153 #define SPCMD_SPB_32BIT 0x0200
154 #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
155 #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
156 #define SPCMD_SPIMOD1 0x0040
157 #define SPCMD_SPIMOD0 0x0020
158 #define SPCMD_SPIMOD_SINGLE 0
159 #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
160 #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
161 #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
162 #define SPCMD_SSLA(i) ((i) << 4) /* SSL Assert Signal Setting */
163 #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
164 #define SPCMD_BRDV(brdv) ((brdv) << 2)
165 #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
166 #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
168 /* SPBFCR - Buffer Control Register */
169 #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
170 #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
171 #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
172 #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
173 /* QSPI on R-Car Gen2 */
174 #define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */
175 #define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */
176 #define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */
177 #define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */
179 #define QSPI_BUFFER_SIZE 32u
181 struct rspi_data {
182 void __iomem *addr;
183 u32 speed_hz;
184 struct spi_controller *ctlr;
185 struct platform_device *pdev;
186 wait_queue_head_t wait;
187 spinlock_t lock; /* Protects RMW-access to RSPI_SSLP */
188 struct clk *clk;
189 u16 spcmd;
190 u8 spsr;
191 u8 sppcr;
192 int rx_irq, tx_irq;
193 const struct spi_ops *ops;
195 unsigned dma_callbacked:1;
196 unsigned byte_access:1;
199 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
201 iowrite8(data, rspi->addr + offset);
204 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
206 iowrite16(data, rspi->addr + offset);
209 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
211 iowrite32(data, rspi->addr + offset);
214 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
216 return ioread8(rspi->addr + offset);
219 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
221 return ioread16(rspi->addr + offset);
224 static void rspi_write_data(const struct rspi_data *rspi, u16 data)
226 if (rspi->byte_access)
227 rspi_write8(rspi, data, RSPI_SPDR);
228 else /* 16 bit */
229 rspi_write16(rspi, data, RSPI_SPDR);
232 static u16 rspi_read_data(const struct rspi_data *rspi)
234 if (rspi->byte_access)
235 return rspi_read8(rspi, RSPI_SPDR);
236 else /* 16 bit */
237 return rspi_read16(rspi, RSPI_SPDR);
240 /* optional functions */
241 struct spi_ops {
242 int (*set_config_register)(struct rspi_data *rspi, int access_size);
243 int (*transfer_one)(struct spi_controller *ctlr,
244 struct spi_device *spi, struct spi_transfer *xfer);
245 u16 extra_mode_bits;
246 u16 min_div;
247 u16 max_div;
248 u16 flags;
249 u16 fifo_size;
250 u8 num_hw_ss;
253 static void rspi_set_rate(struct rspi_data *rspi)
255 unsigned long clksrc;
256 int brdv = 0, spbr;
258 clksrc = clk_get_rate(rspi->clk);
259 spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz) - 1;
260 while (spbr > 255 && brdv < 3) {
261 brdv++;
262 spbr = DIV_ROUND_UP(spbr + 1, 2) - 1;
265 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
266 rspi->spcmd |= SPCMD_BRDV(brdv);
267 rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * (spbr + 1));
271 * functions for RSPI on legacy SH
273 static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
275 /* Sets output mode, MOSI signal, and (optionally) loopback */
276 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
278 /* Sets transfer bit rate */
279 rspi_set_rate(rspi);
281 /* Disable dummy transmission, set 16-bit word access, 1 frame */
282 rspi_write8(rspi, 0, RSPI_SPDCR);
283 rspi->byte_access = 0;
285 /* Sets RSPCK, SSL, next-access delay value */
286 rspi_write8(rspi, 0x00, RSPI_SPCKD);
287 rspi_write8(rspi, 0x00, RSPI_SSLND);
288 rspi_write8(rspi, 0x00, RSPI_SPND);
290 /* Sets parity, interrupt mask */
291 rspi_write8(rspi, 0x00, RSPI_SPCR2);
293 /* Resets sequencer */
294 rspi_write8(rspi, 0, RSPI_SPSCR);
295 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
296 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
298 /* Sets RSPI mode */
299 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
301 return 0;
305 * functions for RSPI on RZ
307 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
309 /* Sets output mode, MOSI signal, and (optionally) loopback */
310 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
312 /* Sets transfer bit rate */
313 rspi_set_rate(rspi);
315 /* Disable dummy transmission, set byte access */
316 rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
317 rspi->byte_access = 1;
319 /* Sets RSPCK, SSL, next-access delay value */
320 rspi_write8(rspi, 0x00, RSPI_SPCKD);
321 rspi_write8(rspi, 0x00, RSPI_SSLND);
322 rspi_write8(rspi, 0x00, RSPI_SPND);
324 /* Resets sequencer */
325 rspi_write8(rspi, 0, RSPI_SPSCR);
326 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
327 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
329 /* Sets RSPI mode */
330 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
332 return 0;
336 * functions for QSPI
338 static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
340 unsigned long clksrc;
341 int brdv = 0, spbr;
343 /* Sets output mode, MOSI signal, and (optionally) loopback */
344 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
346 /* Sets transfer bit rate */
347 clksrc = clk_get_rate(rspi->clk);
348 if (rspi->speed_hz >= clksrc) {
349 spbr = 0;
350 rspi->speed_hz = clksrc;
351 } else {
352 spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz);
353 while (spbr > 255 && brdv < 3) {
354 brdv++;
355 spbr = DIV_ROUND_UP(spbr, 2);
357 spbr = clamp(spbr, 0, 255);
358 rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * spbr);
360 rspi_write8(rspi, spbr, RSPI_SPBR);
361 rspi->spcmd |= SPCMD_BRDV(brdv);
363 /* Disable dummy transmission, set byte access */
364 rspi_write8(rspi, 0, RSPI_SPDCR);
365 rspi->byte_access = 1;
367 /* Sets RSPCK, SSL, next-access delay value */
368 rspi_write8(rspi, 0x00, RSPI_SPCKD);
369 rspi_write8(rspi, 0x00, RSPI_SSLND);
370 rspi_write8(rspi, 0x00, RSPI_SPND);
372 /* Data Length Setting */
373 if (access_size == 8)
374 rspi->spcmd |= SPCMD_SPB_8BIT;
375 else if (access_size == 16)
376 rspi->spcmd |= SPCMD_SPB_16BIT;
377 else
378 rspi->spcmd |= SPCMD_SPB_32BIT;
380 rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
382 /* Resets transfer data length */
383 rspi_write32(rspi, 0, QSPI_SPBMUL0);
385 /* Resets transmit and receive buffer */
386 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
387 /* Sets buffer to allow normal operation */
388 rspi_write8(rspi, 0x00, QSPI_SPBFCR);
390 /* Resets sequencer */
391 rspi_write8(rspi, 0, RSPI_SPSCR);
392 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
394 /* Sets RSPI mode */
395 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
397 return 0;
400 static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
402 u8 data;
404 data = rspi_read8(rspi, reg);
405 data &= ~mask;
406 data |= (val & mask);
407 rspi_write8(rspi, data, reg);
410 static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
411 unsigned int len)
413 unsigned int n;
415 n = min(len, QSPI_BUFFER_SIZE);
417 if (len >= QSPI_BUFFER_SIZE) {
418 /* sets triggering number to 32 bytes */
419 qspi_update(rspi, SPBFCR_TXTRG_MASK,
420 SPBFCR_TXTRG_32B, QSPI_SPBFCR);
421 } else {
422 /* sets triggering number to 1 byte */
423 qspi_update(rspi, SPBFCR_TXTRG_MASK,
424 SPBFCR_TXTRG_1B, QSPI_SPBFCR);
427 return n;
430 static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
432 unsigned int n;
434 n = min(len, QSPI_BUFFER_SIZE);
436 if (len >= QSPI_BUFFER_SIZE) {
437 /* sets triggering number to 32 bytes */
438 qspi_update(rspi, SPBFCR_RXTRG_MASK,
439 SPBFCR_RXTRG_32B, QSPI_SPBFCR);
440 } else {
441 /* sets triggering number to 1 byte */
442 qspi_update(rspi, SPBFCR_RXTRG_MASK,
443 SPBFCR_RXTRG_1B, QSPI_SPBFCR);
445 return n;
448 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
450 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
453 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
455 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
458 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
459 u8 enable_bit)
461 int ret;
463 rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
464 if (rspi->spsr & wait_mask)
465 return 0;
467 rspi_enable_irq(rspi, enable_bit);
468 ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
469 if (ret == 0 && !(rspi->spsr & wait_mask))
470 return -ETIMEDOUT;
472 return 0;
475 static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
477 return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
480 static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
482 return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
485 static int rspi_data_out(struct rspi_data *rspi, u8 data)
487 int error = rspi_wait_for_tx_empty(rspi);
488 if (error < 0) {
489 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
490 return error;
492 rspi_write_data(rspi, data);
493 return 0;
496 static int rspi_data_in(struct rspi_data *rspi)
498 int error;
499 u8 data;
501 error = rspi_wait_for_rx_full(rspi);
502 if (error < 0) {
503 dev_err(&rspi->ctlr->dev, "receive timeout\n");
504 return error;
506 data = rspi_read_data(rspi);
507 return data;
510 static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
511 unsigned int n)
513 while (n-- > 0) {
514 if (tx) {
515 int ret = rspi_data_out(rspi, *tx++);
516 if (ret < 0)
517 return ret;
519 if (rx) {
520 int ret = rspi_data_in(rspi);
521 if (ret < 0)
522 return ret;
523 *rx++ = ret;
527 return 0;
530 static void rspi_dma_complete(void *arg)
532 struct rspi_data *rspi = arg;
534 rspi->dma_callbacked = 1;
535 wake_up_interruptible(&rspi->wait);
538 static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
539 struct sg_table *rx)
541 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
542 u8 irq_mask = 0;
543 unsigned int other_irq = 0;
544 dma_cookie_t cookie;
545 int ret;
547 /* First prepare and submit the DMA request(s), as this may fail */
548 if (rx) {
549 desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl,
550 rx->nents, DMA_DEV_TO_MEM,
551 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
552 if (!desc_rx) {
553 ret = -EAGAIN;
554 goto no_dma_rx;
557 desc_rx->callback = rspi_dma_complete;
558 desc_rx->callback_param = rspi;
559 cookie = dmaengine_submit(desc_rx);
560 if (dma_submit_error(cookie)) {
561 ret = cookie;
562 goto no_dma_rx;
565 irq_mask |= SPCR_SPRIE;
568 if (tx) {
569 desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl,
570 tx->nents, DMA_MEM_TO_DEV,
571 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
572 if (!desc_tx) {
573 ret = -EAGAIN;
574 goto no_dma_tx;
577 if (rx) {
578 /* No callback */
579 desc_tx->callback = NULL;
580 } else {
581 desc_tx->callback = rspi_dma_complete;
582 desc_tx->callback_param = rspi;
584 cookie = dmaengine_submit(desc_tx);
585 if (dma_submit_error(cookie)) {
586 ret = cookie;
587 goto no_dma_tx;
590 irq_mask |= SPCR_SPTIE;
594 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
595 * called. So, this driver disables the IRQ while DMA transfer.
597 if (tx)
598 disable_irq(other_irq = rspi->tx_irq);
599 if (rx && rspi->rx_irq != other_irq)
600 disable_irq(rspi->rx_irq);
602 rspi_enable_irq(rspi, irq_mask);
603 rspi->dma_callbacked = 0;
605 /* Now start DMA */
606 if (rx)
607 dma_async_issue_pending(rspi->ctlr->dma_rx);
608 if (tx)
609 dma_async_issue_pending(rspi->ctlr->dma_tx);
611 ret = wait_event_interruptible_timeout(rspi->wait,
612 rspi->dma_callbacked, HZ);
613 if (ret > 0 && rspi->dma_callbacked) {
614 ret = 0;
615 if (tx)
616 dmaengine_synchronize(rspi->ctlr->dma_tx);
617 if (rx)
618 dmaengine_synchronize(rspi->ctlr->dma_rx);
619 } else {
620 if (!ret) {
621 dev_err(&rspi->ctlr->dev, "DMA timeout\n");
622 ret = -ETIMEDOUT;
624 if (tx)
625 dmaengine_terminate_sync(rspi->ctlr->dma_tx);
626 if (rx)
627 dmaengine_terminate_sync(rspi->ctlr->dma_rx);
630 rspi_disable_irq(rspi, irq_mask);
632 if (tx)
633 enable_irq(rspi->tx_irq);
634 if (rx && rspi->rx_irq != other_irq)
635 enable_irq(rspi->rx_irq);
637 return ret;
639 no_dma_tx:
640 if (rx)
641 dmaengine_terminate_sync(rspi->ctlr->dma_rx);
642 no_dma_rx:
643 if (ret == -EAGAIN) {
644 dev_warn_once(&rspi->ctlr->dev,
645 "DMA not available, falling back to PIO\n");
647 return ret;
650 static void rspi_receive_init(const struct rspi_data *rspi)
652 u8 spsr;
654 spsr = rspi_read8(rspi, RSPI_SPSR);
655 if (spsr & SPSR_SPRF)
656 rspi_read_data(rspi); /* dummy read */
657 if (spsr & SPSR_OVRF)
658 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
659 RSPI_SPSR);
662 static void rspi_rz_receive_init(const struct rspi_data *rspi)
664 rspi_receive_init(rspi);
665 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
666 rspi_write8(rspi, 0, RSPI_SPBFCR);
669 static void qspi_receive_init(const struct rspi_data *rspi)
671 u8 spsr;
673 spsr = rspi_read8(rspi, RSPI_SPSR);
674 if (spsr & SPSR_SPRF)
675 rspi_read_data(rspi); /* dummy read */
676 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
677 rspi_write8(rspi, 0, QSPI_SPBFCR);
680 static bool __rspi_can_dma(const struct rspi_data *rspi,
681 const struct spi_transfer *xfer)
683 return xfer->len > rspi->ops->fifo_size;
686 static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi,
687 struct spi_transfer *xfer)
689 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
691 return __rspi_can_dma(rspi, xfer);
694 static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
695 struct spi_transfer *xfer)
697 if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer))
698 return -EAGAIN;
700 /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
701 return rspi_dma_transfer(rspi, &xfer->tx_sg,
702 xfer->rx_buf ? &xfer->rx_sg : NULL);
705 static int rspi_common_transfer(struct rspi_data *rspi,
706 struct spi_transfer *xfer)
708 int ret;
710 xfer->effective_speed_hz = rspi->speed_hz;
712 ret = rspi_dma_check_then_transfer(rspi, xfer);
713 if (ret != -EAGAIN)
714 return ret;
716 ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
717 if (ret < 0)
718 return ret;
720 /* Wait for the last transmission */
721 rspi_wait_for_tx_empty(rspi);
723 return 0;
726 static int rspi_transfer_one(struct spi_controller *ctlr,
727 struct spi_device *spi, struct spi_transfer *xfer)
729 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
730 u8 spcr;
732 spcr = rspi_read8(rspi, RSPI_SPCR);
733 if (xfer->rx_buf) {
734 rspi_receive_init(rspi);
735 spcr &= ~SPCR_TXMD;
736 } else {
737 spcr |= SPCR_TXMD;
739 rspi_write8(rspi, spcr, RSPI_SPCR);
741 return rspi_common_transfer(rspi, xfer);
744 static int rspi_rz_transfer_one(struct spi_controller *ctlr,
745 struct spi_device *spi,
746 struct spi_transfer *xfer)
748 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
750 rspi_rz_receive_init(rspi);
752 return rspi_common_transfer(rspi, xfer);
755 static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
756 u8 *rx, unsigned int len)
758 unsigned int i, n;
759 int ret;
761 while (len > 0) {
762 n = qspi_set_send_trigger(rspi, len);
763 qspi_set_receive_trigger(rspi, len);
764 ret = rspi_wait_for_tx_empty(rspi);
765 if (ret < 0) {
766 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
767 return ret;
769 for (i = 0; i < n; i++)
770 rspi_write_data(rspi, *tx++);
772 ret = rspi_wait_for_rx_full(rspi);
773 if (ret < 0) {
774 dev_err(&rspi->ctlr->dev, "receive timeout\n");
775 return ret;
777 for (i = 0; i < n; i++)
778 *rx++ = rspi_read_data(rspi);
780 len -= n;
783 return 0;
786 static int qspi_transfer_out_in(struct rspi_data *rspi,
787 struct spi_transfer *xfer)
789 int ret;
791 qspi_receive_init(rspi);
793 ret = rspi_dma_check_then_transfer(rspi, xfer);
794 if (ret != -EAGAIN)
795 return ret;
797 return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
798 xfer->rx_buf, xfer->len);
801 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
803 const u8 *tx = xfer->tx_buf;
804 unsigned int n = xfer->len;
805 unsigned int i, len;
806 int ret;
808 if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
809 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
810 if (ret != -EAGAIN)
811 return ret;
814 while (n > 0) {
815 len = qspi_set_send_trigger(rspi, n);
816 ret = rspi_wait_for_tx_empty(rspi);
817 if (ret < 0) {
818 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
819 return ret;
821 for (i = 0; i < len; i++)
822 rspi_write_data(rspi, *tx++);
824 n -= len;
827 /* Wait for the last transmission */
828 rspi_wait_for_tx_empty(rspi);
830 return 0;
833 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
835 u8 *rx = xfer->rx_buf;
836 unsigned int n = xfer->len;
837 unsigned int i, len;
838 int ret;
840 if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
841 ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
842 if (ret != -EAGAIN)
843 return ret;
846 while (n > 0) {
847 len = qspi_set_receive_trigger(rspi, n);
848 ret = rspi_wait_for_rx_full(rspi);
849 if (ret < 0) {
850 dev_err(&rspi->ctlr->dev, "receive timeout\n");
851 return ret;
853 for (i = 0; i < len; i++)
854 *rx++ = rspi_read_data(rspi);
856 n -= len;
859 return 0;
862 static int qspi_transfer_one(struct spi_controller *ctlr,
863 struct spi_device *spi, struct spi_transfer *xfer)
865 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
867 xfer->effective_speed_hz = rspi->speed_hz;
868 if (spi->mode & SPI_LOOP) {
869 return qspi_transfer_out_in(rspi, xfer);
870 } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
871 /* Quad or Dual SPI Write */
872 return qspi_transfer_out(rspi, xfer);
873 } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
874 /* Quad or Dual SPI Read */
875 return qspi_transfer_in(rspi, xfer);
876 } else {
877 /* Single SPI Transfer */
878 return qspi_transfer_out_in(rspi, xfer);
882 static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
884 if (xfer->tx_buf)
885 switch (xfer->tx_nbits) {
886 case SPI_NBITS_QUAD:
887 return SPCMD_SPIMOD_QUAD;
888 case SPI_NBITS_DUAL:
889 return SPCMD_SPIMOD_DUAL;
890 default:
891 return 0;
893 if (xfer->rx_buf)
894 switch (xfer->rx_nbits) {
895 case SPI_NBITS_QUAD:
896 return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
897 case SPI_NBITS_DUAL:
898 return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
899 default:
900 return 0;
903 return 0;
906 static int qspi_setup_sequencer(struct rspi_data *rspi,
907 const struct spi_message *msg)
909 const struct spi_transfer *xfer;
910 unsigned int i = 0, len = 0;
911 u16 current_mode = 0xffff, mode;
913 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
914 mode = qspi_transfer_mode(xfer);
915 if (mode == current_mode) {
916 len += xfer->len;
917 continue;
920 /* Transfer mode change */
921 if (i) {
922 /* Set transfer data length of previous transfer */
923 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
926 if (i >= QSPI_NUM_SPCMD) {
927 dev_err(&msg->spi->dev,
928 "Too many different transfer modes");
929 return -EINVAL;
932 /* Program transfer mode for this transfer */
933 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
934 current_mode = mode;
935 len = xfer->len;
936 i++;
938 if (i) {
939 /* Set final transfer data length and sequence length */
940 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
941 rspi_write8(rspi, i - 1, RSPI_SPSCR);
944 return 0;
947 static int rspi_setup(struct spi_device *spi)
949 struct rspi_data *rspi = spi_controller_get_devdata(spi->controller);
950 u8 sslp;
952 if (spi_get_csgpiod(spi, 0))
953 return 0;
955 pm_runtime_get_sync(&rspi->pdev->dev);
956 spin_lock_irq(&rspi->lock);
958 sslp = rspi_read8(rspi, RSPI_SSLP);
959 if (spi->mode & SPI_CS_HIGH)
960 sslp |= SSLP_SSLP(spi_get_chipselect(spi, 0));
961 else
962 sslp &= ~SSLP_SSLP(spi_get_chipselect(spi, 0));
963 rspi_write8(rspi, sslp, RSPI_SSLP);
965 spin_unlock_irq(&rspi->lock);
966 pm_runtime_put(&rspi->pdev->dev);
967 return 0;
970 static int rspi_prepare_message(struct spi_controller *ctlr,
971 struct spi_message *msg)
973 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
974 struct spi_device *spi = msg->spi;
975 const struct spi_transfer *xfer;
976 int ret;
979 * As the Bit Rate Register must not be changed while the device is
980 * active, all transfers in a message must use the same bit rate.
981 * In theory, the sequencer could be enabled, and each Command Register
982 * could divide the base bit rate by a different value.
983 * However, most RSPI variants do not have Transfer Data Length
984 * Multiplier Setting Registers, so each sequence step would be limited
985 * to a single word, making this feature unsuitable for large
986 * transfers, which would gain most from it.
988 rspi->speed_hz = spi->max_speed_hz;
989 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
990 if (xfer->speed_hz < rspi->speed_hz)
991 rspi->speed_hz = xfer->speed_hz;
994 rspi->spcmd = SPCMD_SSLKP;
995 if (spi->mode & SPI_CPOL)
996 rspi->spcmd |= SPCMD_CPOL;
997 if (spi->mode & SPI_CPHA)
998 rspi->spcmd |= SPCMD_CPHA;
999 if (spi->mode & SPI_LSB_FIRST)
1000 rspi->spcmd |= SPCMD_LSBF;
1002 /* Configure slave signal to assert */
1003 rspi->spcmd |= SPCMD_SSLA(spi_get_csgpiod(spi, 0) ? rspi->ctlr->unused_native_cs
1004 : spi_get_chipselect(spi, 0));
1006 /* CMOS output mode and MOSI signal from previous transfer */
1007 rspi->sppcr = 0;
1008 if (spi->mode & SPI_LOOP)
1009 rspi->sppcr |= SPPCR_SPLP;
1011 rspi->ops->set_config_register(rspi, 8);
1013 if (msg->spi->mode &
1014 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
1015 /* Setup sequencer for messages with multiple transfer modes */
1016 ret = qspi_setup_sequencer(rspi, msg);
1017 if (ret < 0)
1018 return ret;
1021 /* Enable SPI function in master mode */
1022 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
1023 return 0;
1026 static int rspi_unprepare_message(struct spi_controller *ctlr,
1027 struct spi_message *msg)
1029 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
1031 /* Disable SPI function */
1032 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
1034 /* Reset sequencer for Single SPI Transfers */
1035 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
1036 rspi_write8(rspi, 0, RSPI_SPSCR);
1037 return 0;
1040 static irqreturn_t rspi_irq_mux(int irq, void *_sr)
1042 struct rspi_data *rspi = _sr;
1043 u8 spsr;
1044 irqreturn_t ret = IRQ_NONE;
1045 u8 disable_irq = 0;
1047 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1048 if (spsr & SPSR_SPRF)
1049 disable_irq |= SPCR_SPRIE;
1050 if (spsr & SPSR_SPTEF)
1051 disable_irq |= SPCR_SPTIE;
1053 if (disable_irq) {
1054 ret = IRQ_HANDLED;
1055 rspi_disable_irq(rspi, disable_irq);
1056 wake_up(&rspi->wait);
1059 return ret;
1062 static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1064 struct rspi_data *rspi = _sr;
1065 u8 spsr;
1067 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1068 if (spsr & SPSR_SPRF) {
1069 rspi_disable_irq(rspi, SPCR_SPRIE);
1070 wake_up(&rspi->wait);
1071 return IRQ_HANDLED;
1074 return 0;
1077 static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1079 struct rspi_data *rspi = _sr;
1080 u8 spsr;
1082 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1083 if (spsr & SPSR_SPTEF) {
1084 rspi_disable_irq(rspi, SPCR_SPTIE);
1085 wake_up(&rspi->wait);
1086 return IRQ_HANDLED;
1089 return 0;
1092 static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1093 enum dma_transfer_direction dir,
1094 unsigned int id,
1095 dma_addr_t port_addr)
1097 dma_cap_mask_t mask;
1098 struct dma_chan *chan;
1099 struct dma_slave_config cfg;
1100 int ret;
1102 dma_cap_zero(mask);
1103 dma_cap_set(DMA_SLAVE, mask);
1105 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1106 (void *)(unsigned long)id, dev,
1107 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1108 if (!chan) {
1109 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1110 return NULL;
1113 memset(&cfg, 0, sizeof(cfg));
1114 cfg.dst_addr = port_addr + RSPI_SPDR;
1115 cfg.src_addr = port_addr + RSPI_SPDR;
1116 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1117 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1118 cfg.direction = dir;
1120 ret = dmaengine_slave_config(chan, &cfg);
1121 if (ret) {
1122 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1123 dma_release_channel(chan);
1124 return NULL;
1127 return chan;
1130 static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr,
1131 const struct resource *res)
1133 unsigned int dma_tx_id, dma_rx_id;
1135 if (dev->of_node) {
1136 /* In the OF case we will get the slave IDs from the DT */
1137 dma_tx_id = 0;
1138 dma_rx_id = 0;
1139 } else {
1140 /* The driver assumes no error. */
1141 return 0;
1144 ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1145 res->start);
1146 if (!ctlr->dma_tx)
1147 return -ENODEV;
1149 ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1150 res->start);
1151 if (!ctlr->dma_rx) {
1152 dma_release_channel(ctlr->dma_tx);
1153 ctlr->dma_tx = NULL;
1154 return -ENODEV;
1157 ctlr->can_dma = rspi_can_dma;
1158 dev_info(dev, "DMA available");
1159 return 0;
1162 static void rspi_release_dma(struct spi_controller *ctlr)
1164 if (ctlr->dma_tx)
1165 dma_release_channel(ctlr->dma_tx);
1166 if (ctlr->dma_rx)
1167 dma_release_channel(ctlr->dma_rx);
1170 static void rspi_remove(struct platform_device *pdev)
1172 struct rspi_data *rspi = platform_get_drvdata(pdev);
1174 rspi_release_dma(rspi->ctlr);
1175 pm_runtime_disable(&pdev->dev);
1178 static const struct spi_ops rspi_ops = {
1179 .set_config_register = rspi_set_config_register,
1180 .transfer_one = rspi_transfer_one,
1181 .min_div = 2,
1182 .max_div = 4096,
1183 .flags = SPI_CONTROLLER_MUST_TX,
1184 .fifo_size = 8,
1185 .num_hw_ss = 2,
1188 static const struct spi_ops rspi_rz_ops __maybe_unused = {
1189 .set_config_register = rspi_rz_set_config_register,
1190 .transfer_one = rspi_rz_transfer_one,
1191 .min_div = 2,
1192 .max_div = 4096,
1193 .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1194 .fifo_size = 8, /* 8 for TX, 32 for RX */
1195 .num_hw_ss = 1,
1198 static const struct spi_ops qspi_ops __maybe_unused = {
1199 .set_config_register = qspi_set_config_register,
1200 .transfer_one = qspi_transfer_one,
1201 .extra_mode_bits = SPI_TX_DUAL | SPI_TX_QUAD |
1202 SPI_RX_DUAL | SPI_RX_QUAD,
1203 .min_div = 1,
1204 .max_div = 4080,
1205 .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1206 .fifo_size = 32,
1207 .num_hw_ss = 1,
1210 static const struct of_device_id rspi_of_match[] __maybe_unused = {
1211 /* RSPI on legacy SH */
1212 { .compatible = "renesas,rspi", .data = &rspi_ops },
1213 /* RSPI on RZ/A1H */
1214 { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1215 /* QSPI on R-Car Gen2 */
1216 { .compatible = "renesas,qspi", .data = &qspi_ops },
1217 { /* sentinel */ }
1220 MODULE_DEVICE_TABLE(of, rspi_of_match);
1222 #ifdef CONFIG_OF
1223 static void rspi_reset_control_assert(void *data)
1225 reset_control_assert(data);
1228 static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1230 struct reset_control *rstc;
1231 u32 num_cs;
1232 int error;
1234 /* Parse DT properties */
1235 error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1236 if (error) {
1237 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1238 return error;
1241 ctlr->num_chipselect = num_cs;
1243 rstc = devm_reset_control_get_optional_exclusive(dev, NULL);
1244 if (IS_ERR(rstc))
1245 return dev_err_probe(dev, PTR_ERR(rstc),
1246 "failed to get reset ctrl\n");
1248 error = reset_control_deassert(rstc);
1249 if (error) {
1250 dev_err(dev, "failed to deassert reset %d\n", error);
1251 return error;
1254 error = devm_add_action_or_reset(dev, rspi_reset_control_assert, rstc);
1255 if (error) {
1256 dev_err(dev, "failed to register assert devm action, %d\n", error);
1257 return error;
1260 return 0;
1262 #else
1263 #define rspi_of_match NULL
1264 static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1266 return -EINVAL;
1268 #endif /* CONFIG_OF */
1270 static int rspi_request_irq(struct device *dev, unsigned int irq,
1271 irq_handler_t handler, const char *suffix,
1272 void *dev_id)
1274 const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1275 dev_name(dev), suffix);
1276 if (!name)
1277 return -ENOMEM;
1279 return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1282 static int rspi_probe(struct platform_device *pdev)
1284 struct resource *res;
1285 struct spi_controller *ctlr;
1286 struct rspi_data *rspi;
1287 int ret;
1288 const struct spi_ops *ops;
1289 unsigned long clksrc;
1291 ctlr = spi_alloc_host(&pdev->dev, sizeof(struct rspi_data));
1292 if (ctlr == NULL)
1293 return -ENOMEM;
1295 ops = of_device_get_match_data(&pdev->dev);
1296 if (ops) {
1297 ret = rspi_parse_dt(&pdev->dev, ctlr);
1298 if (ret)
1299 goto error1;
1300 } else {
1301 ops = (struct spi_ops *)pdev->id_entry->driver_data;
1302 ctlr->num_chipselect = 2; /* default */
1305 rspi = spi_controller_get_devdata(ctlr);
1306 platform_set_drvdata(pdev, rspi);
1307 rspi->ops = ops;
1308 rspi->ctlr = ctlr;
1310 rspi->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1311 if (IS_ERR(rspi->addr)) {
1312 ret = PTR_ERR(rspi->addr);
1313 goto error1;
1316 rspi->clk = devm_clk_get(&pdev->dev, NULL);
1317 if (IS_ERR(rspi->clk)) {
1318 dev_err(&pdev->dev, "cannot get clock\n");
1319 ret = PTR_ERR(rspi->clk);
1320 goto error1;
1323 rspi->pdev = pdev;
1324 pm_runtime_enable(&pdev->dev);
1326 init_waitqueue_head(&rspi->wait);
1327 spin_lock_init(&rspi->lock);
1329 ctlr->bus_num = pdev->id;
1330 ctlr->setup = rspi_setup;
1331 ctlr->auto_runtime_pm = true;
1332 ctlr->transfer_one = ops->transfer_one;
1333 ctlr->prepare_message = rspi_prepare_message;
1334 ctlr->unprepare_message = rspi_unprepare_message;
1335 ctlr->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1336 SPI_LOOP | ops->extra_mode_bits;
1337 clksrc = clk_get_rate(rspi->clk);
1338 ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, ops->max_div);
1339 ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, ops->min_div);
1340 ctlr->flags = ops->flags;
1341 ctlr->dev.of_node = pdev->dev.of_node;
1342 ctlr->use_gpio_descriptors = true;
1343 ctlr->max_native_cs = rspi->ops->num_hw_ss;
1345 ret = platform_get_irq_byname_optional(pdev, "rx");
1346 if (ret < 0) {
1347 ret = platform_get_irq_byname_optional(pdev, "mux");
1348 if (ret < 0)
1349 ret = platform_get_irq(pdev, 0);
1350 if (ret >= 0)
1351 rspi->rx_irq = rspi->tx_irq = ret;
1352 } else {
1353 rspi->rx_irq = ret;
1354 ret = platform_get_irq_byname(pdev, "tx");
1355 if (ret >= 0)
1356 rspi->tx_irq = ret;
1359 if (rspi->rx_irq == rspi->tx_irq) {
1360 /* Single multiplexed interrupt */
1361 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1362 "mux", rspi);
1363 } else {
1364 /* Multi-interrupt mode, only SPRI and SPTI are used */
1365 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1366 "rx", rspi);
1367 if (!ret)
1368 ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1369 rspi_irq_tx, "tx", rspi);
1371 if (ret < 0) {
1372 dev_err(&pdev->dev, "request_irq error\n");
1373 goto error2;
1376 ret = rspi_request_dma(&pdev->dev, ctlr, res);
1377 if (ret < 0)
1378 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1380 ret = devm_spi_register_controller(&pdev->dev, ctlr);
1381 if (ret < 0) {
1382 dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1383 goto error3;
1386 dev_info(&pdev->dev, "probed\n");
1388 return 0;
1390 error3:
1391 rspi_release_dma(ctlr);
1392 error2:
1393 pm_runtime_disable(&pdev->dev);
1394 error1:
1395 spi_controller_put(ctlr);
1397 return ret;
1400 static const struct platform_device_id spi_driver_ids[] = {
1401 { "rspi", (kernel_ulong_t)&rspi_ops },
1405 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1407 #ifdef CONFIG_PM_SLEEP
1408 static int rspi_suspend(struct device *dev)
1410 struct rspi_data *rspi = dev_get_drvdata(dev);
1412 return spi_controller_suspend(rspi->ctlr);
1415 static int rspi_resume(struct device *dev)
1417 struct rspi_data *rspi = dev_get_drvdata(dev);
1419 return spi_controller_resume(rspi->ctlr);
1422 static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
1423 #define DEV_PM_OPS &rspi_pm_ops
1424 #else
1425 #define DEV_PM_OPS NULL
1426 #endif /* CONFIG_PM_SLEEP */
1428 static struct platform_driver rspi_driver = {
1429 .probe = rspi_probe,
1430 .remove = rspi_remove,
1431 .id_table = spi_driver_ids,
1432 .driver = {
1433 .name = "renesas_spi",
1434 .pm = DEV_PM_OPS,
1435 .of_match_table = of_match_ptr(rspi_of_match),
1438 module_platform_driver(rspi_driver);
1440 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1441 MODULE_LICENSE("GPL v2");
1442 MODULE_AUTHOR("Yoshihiro Shimoda");