1 // SPDX-License-Identifier: GPL-2.0
2 /* ePAPR hypervisor byte channel device driver
4 * Copyright 2009-2011 Freescale Semiconductor, Inc.
6 * Author: Timur Tabi <timur@freescale.com>
8 * This driver support three distinct interfaces, all of which are related to
9 * ePAPR hypervisor byte channels.
11 * 1) An early-console (udbg) driver. This provides early console output
12 * through a byte channel. The byte channel handle must be specified in a
15 * 2) A normal console driver. Output is sent to the byte channel designated
16 * for stdout in the device tree. The console driver is for handling kernel
19 * 3) A tty driver, which is used to handle user-space input and output. The
20 * byte channel used for the console is designated as the default tty.
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
28 #include <linux/poll.h>
29 #include <asm/epapr_hcalls.h>
31 #include <linux/of_irq.h>
32 #include <linux/platform_device.h>
33 #include <linux/cdev.h>
34 #include <linux/console.h>
35 #include <linux/tty.h>
36 #include <linux/tty_flip.h>
37 #include <linux/circ_buf.h>
40 /* The size of the transmit circular buffer. This must be a power of two. */
43 /* Per-byte channel private data */
51 spinlock_t lock
; /* lock for transmit buffer */
52 u8 buf
[BUF_SIZE
]; /* transmit circular buffer */
53 unsigned int head
; /* circular buffer head */
54 unsigned int tail
; /* circular buffer tail */
56 int tx_irq_enabled
; /* true == TX interrupt is enabled */
59 /* Array of byte channel objects */
60 static struct ehv_bc_data
*bcs
;
62 /* Byte channel handle for stdout (and stdin), taken from device tree */
63 static unsigned int stdout_bc
;
65 /* Virtual IRQ for the byte channel handle for stdin, taken from device tree */
66 static unsigned int stdout_irq
;
68 /**************************** SUPPORT FUNCTIONS ****************************/
71 * Enable the transmit interrupt
73 * Unlike a serial device, byte channels have no mechanism for disabling their
74 * own receive or transmit interrupts. To emulate that feature, we toggle
75 * the IRQ in the kernel.
77 * We cannot just blindly call enable_irq() or disable_irq(), because these
78 * calls are reference counted. This means that we cannot call enable_irq()
79 * if interrupts are already enabled. This can happen in two situations:
81 * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write()
82 * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue()
84 * To work around this, we keep a flag to tell us if the IRQ is enabled or not.
86 static void enable_tx_interrupt(struct ehv_bc_data
*bc
)
88 if (!bc
->tx_irq_enabled
) {
89 enable_irq(bc
->tx_irq
);
90 bc
->tx_irq_enabled
= 1;
94 static void disable_tx_interrupt(struct ehv_bc_data
*bc
)
96 if (bc
->tx_irq_enabled
) {
97 disable_irq_nosync(bc
->tx_irq
);
98 bc
->tx_irq_enabled
= 0;
103 * find the byte channel handle to use for the console
105 * The byte channel to be used for the console is specified via a "stdout"
106 * property in the /chosen node.
108 static int find_console_handle(void)
110 struct device_node
*np
= of_stdout
;
111 const uint32_t *iprop
;
113 /* We don't care what the aliased node is actually called. We only
114 * care if it's compatible with "epapr,hv-byte-channel", because that
115 * indicates that it's a byte channel node.
117 if (!np
|| !of_device_is_compatible(np
, "epapr,hv-byte-channel"))
120 stdout_irq
= irq_of_parse_and_map(np
, 0);
122 pr_err("ehv-bc: no 'interrupts' property in %pOF node\n", np
);
127 * The 'hv-handle' property contains the handle for this byte channel.
129 iprop
= of_get_property(np
, "hv-handle", NULL
);
131 pr_err("ehv-bc: no 'hv-handle' property in %pOFn node\n",
135 stdout_bc
= be32_to_cpu(*iprop
);
139 static unsigned int local_ev_byte_channel_send(unsigned int handle
,
143 u8 buffer
[EV_BYTE_CHANNEL_MAX_BYTES
];
144 unsigned int c
= *count
;
147 * ev_byte_channel_send() expects at least EV_BYTE_CHANNEL_MAX_BYTES
148 * (16 B) in the buffer. Fake it using a local buffer if needed.
150 if (c
< sizeof(buffer
)) {
151 memcpy_and_pad(buffer
, sizeof(buffer
), p
, c
, 0);
154 return ev_byte_channel_send(handle
, count
, p
);
157 /*************************** EARLY CONSOLE DRIVER ***************************/
159 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
162 * send a byte to a byte channel, wait if necessary
164 * This function sends a byte to a byte channel, and it waits and
165 * retries if the byte channel is full. It returns if the character
166 * has been sent, or if some error has occurred.
169 static void byte_channel_spin_send(const u8 data
)
175 ret
= local_ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE
,
177 } while (ret
== EV_EAGAIN
);
181 * The udbg subsystem calls this function to display a single character.
182 * We convert CR to a CR/LF.
184 static void ehv_bc_udbg_putc(char c
)
187 byte_channel_spin_send('\r');
189 byte_channel_spin_send(c
);
193 * early console initialization
195 * PowerPC kernels support an early printk console, also known as udbg.
196 * This function must be called via the ppc_md.init_early function pointer.
197 * At this point, the device tree has been unflattened, so we can obtain the
198 * byte channel handle for stdout.
200 * We only support displaying of characters (putc). We do not support
203 void __init
udbg_init_ehv_bc(void)
205 unsigned int rx_count
, tx_count
;
208 /* Verify the byte channel handle */
209 ret
= ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE
,
210 &rx_count
, &tx_count
);
214 udbg_putc
= ehv_bc_udbg_putc
;
215 register_early_udbg_console();
217 udbg_printf("ehv-bc: early console using byte channel handle %u\n",
218 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE
);
223 /****************************** CONSOLE DRIVER ******************************/
225 static struct tty_driver
*ehv_bc_driver
;
228 * Byte channel console sending worker function.
230 * For consoles, if the output buffer is full, we should just spin until it
233 static int ehv_bc_console_byte_channel_send(unsigned int handle
, const char *s
,
240 len
= min_t(unsigned int, count
, EV_BYTE_CHANNEL_MAX_BYTES
);
242 ret
= local_ev_byte_channel_send(handle
, &len
, s
);
243 } while (ret
== EV_EAGAIN
);
252 * write a string to the console
254 * This function gets called to write a string from the kernel, typically from
255 * a printk(). This function spins until all data is written.
257 * We copy the data to a temporary buffer because we need to insert a \r in
258 * front of every \n. It's more efficient to copy the data to the buffer than
259 * it is to make multiple hcalls for each character or each newline.
261 static void ehv_bc_console_write(struct console
*co
, const char *s
,
264 char s2
[EV_BYTE_CHANNEL_MAX_BYTES
];
265 unsigned int i
, j
= 0;
268 for (i
= 0; i
< count
; i
++) {
275 if (j
>= (EV_BYTE_CHANNEL_MAX_BYTES
- 1)) {
276 if (ehv_bc_console_byte_channel_send(stdout_bc
, s2
, j
))
283 ehv_bc_console_byte_channel_send(stdout_bc
, s2
, j
);
287 * When /dev/console is opened, the kernel iterates the console list looking
288 * for one with ->device and then calls that method. On success, it expects
289 * the passed-in int* to contain the minor number to use.
291 static struct tty_driver
*ehv_bc_console_device(struct console
*co
, int *index
)
295 return ehv_bc_driver
;
298 static struct console ehv_bc_console
= {
300 .write
= ehv_bc_console_write
,
301 .device
= ehv_bc_console_device
,
302 .flags
= CON_PRINTBUFFER
| CON_ENABLED
,
306 * Console initialization
308 * This is the first function that is called after the device tree is
309 * available, so here is where we determine the byte channel handle and IRQ for
310 * stdout/stdin, even though that information is used by the tty and character
313 static int __init
ehv_bc_console_init(void)
315 if (!find_console_handle()) {
316 pr_debug("ehv-bc: stdout is not a byte channel\n");
320 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
321 /* Print a friendly warning if the user chose the wrong byte channel
324 if (stdout_bc
!= CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE
)
325 pr_warn("ehv-bc: udbg handle %u is not the stdout handle\n",
326 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE
);
329 /* add_preferred_console() must be called before register_console(),
330 otherwise it won't work. However, we don't want to enumerate all the
331 byte channels here, either, since we only care about one. */
333 add_preferred_console(ehv_bc_console
.name
, ehv_bc_console
.index
, NULL
);
334 register_console(&ehv_bc_console
);
336 pr_info("ehv-bc: registered console driver for byte channel %u\n",
341 console_initcall(ehv_bc_console_init
);
343 /******************************** TTY DRIVER ********************************/
346 * byte channel receive interrupt handler
348 * This ISR is called whenever data is available on a byte channel.
350 static irqreturn_t
ehv_bc_tty_rx_isr(int irq
, void *data
)
352 struct ehv_bc_data
*bc
= data
;
353 unsigned int rx_count
, tx_count
, len
;
355 char buffer
[EV_BYTE_CHANNEL_MAX_BYTES
];
358 /* Find out how much data needs to be read, and then ask the TTY layer
359 * if it can handle that much. We want to ensure that every byte we
360 * read from the byte channel will be accepted by the TTY layer.
362 ev_byte_channel_poll(bc
->handle
, &rx_count
, &tx_count
);
363 count
= tty_buffer_request_room(&bc
->port
, rx_count
);
365 /* 'count' is the maximum amount of data the TTY layer can accept at
366 * this time. However, during testing, I was never able to get 'count'
367 * to be less than 'rx_count'. I'm not sure whether I'm calling it
372 len
= min_t(unsigned int, count
, sizeof(buffer
));
374 /* Read some data from the byte channel. This function will
375 * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes.
377 ev_byte_channel_receive(bc
->handle
, &len
, buffer
);
379 /* 'len' is now the amount of data that's been received. 'len'
380 * can't be zero, and most likely it's equal to one.
383 /* Pass the received data to the tty layer. */
384 ret
= tty_insert_flip_string(&bc
->port
, buffer
, len
);
386 /* 'ret' is the number of bytes that the TTY layer accepted.
387 * If it's not equal to 'len', then it means the buffer is
388 * full, which should never happen. If it does happen, we can
389 * exit gracefully, but we drop the last 'len - ret' characters
390 * that we read from the byte channel.
398 /* Tell the tty layer that we're done. */
399 tty_flip_buffer_push(&bc
->port
);
405 * dequeue the transmit buffer to the hypervisor
407 * This function, which can be called in interrupt context, dequeues as much
408 * data as possible from the transmit buffer to the byte channel.
410 static void ehv_bc_tx_dequeue(struct ehv_bc_data
*bc
)
413 unsigned int len
, ret
;
417 spin_lock_irqsave(&bc
->lock
, flags
);
418 len
= min_t(unsigned int,
419 CIRC_CNT_TO_END(bc
->head
, bc
->tail
, BUF_SIZE
),
420 EV_BYTE_CHANNEL_MAX_BYTES
);
422 ret
= local_ev_byte_channel_send(bc
->handle
, &len
, bc
->buf
+ bc
->tail
);
424 /* 'len' is valid only if the return code is 0 or EV_EAGAIN */
425 if (!ret
|| (ret
== EV_EAGAIN
))
426 bc
->tail
= (bc
->tail
+ len
) & (BUF_SIZE
- 1);
428 count
= CIRC_CNT(bc
->head
, bc
->tail
, BUF_SIZE
);
429 spin_unlock_irqrestore(&bc
->lock
, flags
);
430 } while (count
&& !ret
);
432 spin_lock_irqsave(&bc
->lock
, flags
);
433 if (CIRC_CNT(bc
->head
, bc
->tail
, BUF_SIZE
))
435 * If we haven't emptied the buffer, then enable the TX IRQ.
436 * We'll get an interrupt when there's more room in the
437 * hypervisor's output buffer.
439 enable_tx_interrupt(bc
);
441 disable_tx_interrupt(bc
);
442 spin_unlock_irqrestore(&bc
->lock
, flags
);
446 * byte channel transmit interrupt handler
448 * This ISR is called whenever space becomes available for transmitting
449 * characters on a byte channel.
451 static irqreturn_t
ehv_bc_tty_tx_isr(int irq
, void *data
)
453 struct ehv_bc_data
*bc
= data
;
455 ehv_bc_tx_dequeue(bc
);
456 tty_port_tty_wakeup(&bc
->port
);
462 * This function is called when the tty layer has data for us send. We store
463 * the data first in a circular buffer, and then dequeue as much of that data
466 * We don't need to worry about whether there is enough room in the buffer for
467 * all the data. The purpose of ehv_bc_tty_write_room() is to tell the tty
468 * layer how much data it can safely send to us. We guarantee that
469 * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us
472 static ssize_t
ehv_bc_tty_write(struct tty_struct
*ttys
, const u8
*s
,
475 struct ehv_bc_data
*bc
= ttys
->driver_data
;
477 size_t len
, written
= 0;
480 spin_lock_irqsave(&bc
->lock
, flags
);
481 len
= CIRC_SPACE_TO_END(bc
->head
, bc
->tail
, BUF_SIZE
);
485 memcpy(bc
->buf
+ bc
->head
, s
, len
);
486 bc
->head
= (bc
->head
+ len
) & (BUF_SIZE
- 1);
488 spin_unlock_irqrestore(&bc
->lock
, flags
);
497 ehv_bc_tx_dequeue(bc
);
503 * This function can be called multiple times for a given tty_struct, which is
504 * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead.
506 * The tty layer will still call this function even if the device was not
507 * registered (i.e. tty_register_device() was not called). This happens
508 * because tty_register_device() is optional and some legacy drivers don't
509 * use it. So we need to check for that.
511 static int ehv_bc_tty_open(struct tty_struct
*ttys
, struct file
*filp
)
513 struct ehv_bc_data
*bc
= &bcs
[ttys
->index
];
518 return tty_port_open(&bc
->port
, ttys
, filp
);
522 * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will
523 * still call this function to close the tty device. So we can't assume that
524 * the tty port has been initialized.
526 static void ehv_bc_tty_close(struct tty_struct
*ttys
, struct file
*filp
)
528 struct ehv_bc_data
*bc
= &bcs
[ttys
->index
];
531 tty_port_close(&bc
->port
, ttys
, filp
);
535 * Return the amount of space in the output buffer
537 * This is actually a contract between the driver and the tty layer outlining
538 * how much write room the driver can guarantee will be sent OR BUFFERED. This
539 * driver MUST honor the return value.
541 static unsigned int ehv_bc_tty_write_room(struct tty_struct
*ttys
)
543 struct ehv_bc_data
*bc
= ttys
->driver_data
;
547 spin_lock_irqsave(&bc
->lock
, flags
);
548 count
= CIRC_SPACE(bc
->head
, bc
->tail
, BUF_SIZE
);
549 spin_unlock_irqrestore(&bc
->lock
, flags
);
555 * Stop sending data to the tty layer
557 * This function is called when the tty layer's input buffers are getting full,
558 * so the driver should stop sending it data. The easiest way to do this is to
559 * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being
562 * The hypervisor will continue to queue up any incoming data. If there is any
563 * data in the queue when the RX interrupt is enabled, we'll immediately get an
566 static void ehv_bc_tty_throttle(struct tty_struct
*ttys
)
568 struct ehv_bc_data
*bc
= ttys
->driver_data
;
570 disable_irq(bc
->rx_irq
);
574 * Resume sending data to the tty layer
576 * This function is called after previously calling ehv_bc_tty_throttle(). The
577 * tty layer's input buffers now have more room, so the driver can resume
580 static void ehv_bc_tty_unthrottle(struct tty_struct
*ttys
)
582 struct ehv_bc_data
*bc
= ttys
->driver_data
;
584 /* If there is any data in the queue when the RX interrupt is enabled,
585 * we'll immediately get an RX interrupt.
587 enable_irq(bc
->rx_irq
);
590 static void ehv_bc_tty_hangup(struct tty_struct
*ttys
)
592 struct ehv_bc_data
*bc
= ttys
->driver_data
;
594 ehv_bc_tx_dequeue(bc
);
595 tty_port_hangup(&bc
->port
);
599 * TTY driver operations
601 * If we could ask the hypervisor how much data is still in the TX buffer, or
602 * at least how big the TX buffers are, then we could implement the
603 * .wait_until_sent and .chars_in_buffer functions.
605 static const struct tty_operations ehv_bc_ops
= {
606 .open
= ehv_bc_tty_open
,
607 .close
= ehv_bc_tty_close
,
608 .write
= ehv_bc_tty_write
,
609 .write_room
= ehv_bc_tty_write_room
,
610 .throttle
= ehv_bc_tty_throttle
,
611 .unthrottle
= ehv_bc_tty_unthrottle
,
612 .hangup
= ehv_bc_tty_hangup
,
616 * initialize the TTY port
618 * This function will only be called once, no matter how many times
619 * ehv_bc_tty_open() is called. That's why we register the ISR here, and also
620 * why we initialize tty_struct-related variables here.
622 static int ehv_bc_tty_port_activate(struct tty_port
*port
,
623 struct tty_struct
*ttys
)
625 struct ehv_bc_data
*bc
= container_of(port
, struct ehv_bc_data
, port
);
628 ttys
->driver_data
= bc
;
630 ret
= request_irq(bc
->rx_irq
, ehv_bc_tty_rx_isr
, 0, "ehv-bc", bc
);
632 dev_err(bc
->dev
, "could not request rx irq %u (ret=%i)\n",
637 /* request_irq also enables the IRQ */
638 bc
->tx_irq_enabled
= 1;
640 ret
= request_irq(bc
->tx_irq
, ehv_bc_tty_tx_isr
, 0, "ehv-bc", bc
);
642 dev_err(bc
->dev
, "could not request tx irq %u (ret=%i)\n",
644 free_irq(bc
->rx_irq
, bc
);
648 /* The TX IRQ is enabled only when we can't write all the data to the
649 * byte channel at once, so by default it's disabled.
651 disable_tx_interrupt(bc
);
656 static void ehv_bc_tty_port_shutdown(struct tty_port
*port
)
658 struct ehv_bc_data
*bc
= container_of(port
, struct ehv_bc_data
, port
);
660 free_irq(bc
->tx_irq
, bc
);
661 free_irq(bc
->rx_irq
, bc
);
664 static const struct tty_port_operations ehv_bc_tty_port_ops
= {
665 .activate
= ehv_bc_tty_port_activate
,
666 .shutdown
= ehv_bc_tty_port_shutdown
,
669 static int ehv_bc_tty_probe(struct platform_device
*pdev
)
671 struct device_node
*np
= pdev
->dev
.of_node
;
672 struct ehv_bc_data
*bc
;
673 const uint32_t *iprop
;
676 static unsigned int index
= 1;
679 iprop
= of_get_property(np
, "hv-handle", NULL
);
681 dev_err(&pdev
->dev
, "no 'hv-handle' property in %pOFn node\n",
686 /* We already told the console layer that the index for the console
687 * device is zero, so we need to make sure that we use that index when
688 * we probe the console byte channel node.
690 handle
= be32_to_cpu(*iprop
);
691 i
= (handle
== stdout_bc
) ? 0 : index
++;
697 spin_lock_init(&bc
->lock
);
699 bc
->rx_irq
= irq_of_parse_and_map(np
, 0);
700 bc
->tx_irq
= irq_of_parse_and_map(np
, 1);
701 if (!bc
->rx_irq
|| !bc
->tx_irq
) {
702 dev_err(&pdev
->dev
, "no 'interrupts' property in %pOFn node\n",
708 tty_port_init(&bc
->port
);
709 bc
->port
.ops
= &ehv_bc_tty_port_ops
;
711 bc
->dev
= tty_port_register_device(&bc
->port
, ehv_bc_driver
, i
,
713 if (IS_ERR(bc
->dev
)) {
714 ret
= PTR_ERR(bc
->dev
);
715 dev_err(&pdev
->dev
, "could not register tty (ret=%i)\n", ret
);
719 dev_set_drvdata(&pdev
->dev
, bc
);
721 dev_info(&pdev
->dev
, "registered /dev/%s%u for byte channel %u\n",
722 ehv_bc_driver
->name
, i
, bc
->handle
);
727 tty_port_destroy(&bc
->port
);
728 irq_dispose_mapping(bc
->tx_irq
);
729 irq_dispose_mapping(bc
->rx_irq
);
731 memset(bc
, 0, sizeof(struct ehv_bc_data
));
735 static const struct of_device_id ehv_bc_tty_of_ids
[] = {
736 { .compatible
= "epapr,hv-byte-channel" },
740 static struct platform_driver ehv_bc_tty_driver
= {
743 .of_match_table
= ehv_bc_tty_of_ids
,
744 .suppress_bind_attrs
= true,
746 .probe
= ehv_bc_tty_probe
,
750 * ehv_bc_init - ePAPR hypervisor byte channel driver initialization
752 * This function is called when this driver is loaded.
754 static int __init
ehv_bc_init(void)
756 struct tty_driver
*driver
;
757 struct device_node
*np
;
758 unsigned int count
= 0; /* Number of elements in bcs[] */
761 pr_info("ePAPR hypervisor byte channel driver\n");
763 /* Count the number of byte channels */
764 for_each_compatible_node(np
, NULL
, "epapr,hv-byte-channel")
770 /* The array index of an element in bcs[] is the same as the tty index
771 * for that element. If you know the address of an element in the
772 * array, then you can use pointer math (e.g. "bc - bcs") to get its
775 bcs
= kcalloc(count
, sizeof(struct ehv_bc_data
), GFP_KERNEL
);
779 driver
= tty_alloc_driver(count
, TTY_DRIVER_REAL_RAW
|
780 TTY_DRIVER_DYNAMIC_DEV
);
781 if (IS_ERR(driver
)) {
782 ret
= PTR_ERR(driver
);
786 driver
->driver_name
= "ehv-bc";
787 driver
->name
= ehv_bc_console
.name
;
788 driver
->type
= TTY_DRIVER_TYPE_CONSOLE
;
789 driver
->subtype
= SYSTEM_TYPE_CONSOLE
;
790 driver
->init_termios
= tty_std_termios
;
791 tty_set_operations(driver
, &ehv_bc_ops
);
793 ret
= tty_register_driver(driver
);
795 pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret
);
796 goto err_tty_driver_kref_put
;
799 ehv_bc_driver
= driver
;
801 ret
= platform_driver_register(&ehv_bc_tty_driver
);
803 pr_err("ehv-bc: could not register platform driver (ret=%i)\n",
805 goto err_deregister_tty_driver
;
810 err_deregister_tty_driver
:
811 ehv_bc_driver
= NULL
;
812 tty_unregister_driver(driver
);
813 err_tty_driver_kref_put
:
814 tty_driver_kref_put(driver
);
820 device_initcall(ehv_bc_init
);