1 // SPDX-License-Identifier: GPL-2.0+
3 * Driver for AMBA serial ports
5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
7 * Copyright 1999 ARM Limited
8 * Copyright (C) 2000 Deep Blue Solutions Ltd.
9 * Copyright (C) 2010 ST-Ericsson SA
11 * This is a generic driver for ARM AMBA-type serial ports. They
12 * have a lot of 16550-like features, but are not register compatible.
13 * Note that although they do have CTS, DCD and DSR inputs, they do
14 * not have an RI input, nor do they have DTR or RTS outputs. If
15 * required, these have to be supplied via some other means (eg, GPIO)
16 * and hooked into this driver.
19 #include <linux/module.h>
20 #include <linux/ioport.h>
21 #include <linux/init.h>
22 #include <linux/console.h>
23 #include <linux/platform_device.h>
24 #include <linux/sysrq.h>
25 #include <linux/device.h>
26 #include <linux/tty.h>
27 #include <linux/tty_flip.h>
28 #include <linux/serial_core.h>
29 #include <linux/serial.h>
30 #include <linux/amba/bus.h>
31 #include <linux/amba/serial.h>
32 #include <linux/clk.h>
33 #include <linux/slab.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/scatterlist.h>
37 #include <linux/delay.h>
38 #include <linux/types.h>
40 #include <linux/pinctrl/consumer.h>
41 #include <linux/sizes.h>
43 #include <linux/acpi.h>
47 #define SERIAL_AMBA_MAJOR 204
48 #define SERIAL_AMBA_MINOR 64
49 #define SERIAL_AMBA_NR UART_NR
51 #define AMBA_ISR_PASS_LIMIT 256
53 #define UART_DR_ERROR (UART011_DR_OE | UART011_DR_BE | UART011_DR_PE | UART011_DR_FE)
54 #define UART_DUMMY_DR_RX BIT(16)
82 /* The size of the array - must be last */
86 static u16 pl011_std_offsets
[REG_ARRAY_SIZE
] = {
87 [REG_DR
] = UART01x_DR
,
88 [REG_FR
] = UART01x_FR
,
89 [REG_LCRH_RX
] = UART011_LCRH
,
90 [REG_LCRH_TX
] = UART011_LCRH
,
91 [REG_IBRD
] = UART011_IBRD
,
92 [REG_FBRD
] = UART011_FBRD
,
93 [REG_CR
] = UART011_CR
,
94 [REG_IFLS
] = UART011_IFLS
,
95 [REG_IMSC
] = UART011_IMSC
,
96 [REG_RIS
] = UART011_RIS
,
97 [REG_MIS
] = UART011_MIS
,
98 [REG_ICR
] = UART011_ICR
,
99 [REG_DMACR
] = UART011_DMACR
,
102 /* There is by now at least one vendor with differing details, so handle it */
104 const u16
*reg_offset
;
106 unsigned int fr_busy
;
114 bool cts_event_workaround
;
118 unsigned int (*get_fifosize
)(struct amba_device
*dev
);
121 static unsigned int get_fifosize_arm(struct amba_device
*dev
)
123 return amba_rev(dev
) < 3 ? 16 : 32;
126 static struct vendor_data vendor_arm
= {
127 .reg_offset
= pl011_std_offsets
,
128 .ifls
= UART011_IFLS_RX4_8
| UART011_IFLS_TX4_8
,
129 .fr_busy
= UART01x_FR_BUSY
,
130 .fr_dsr
= UART01x_FR_DSR
,
131 .fr_cts
= UART01x_FR_CTS
,
132 .fr_ri
= UART011_FR_RI
,
133 .oversampling
= false,
134 .dma_threshold
= false,
135 .cts_event_workaround
= false,
136 .always_enabled
= false,
137 .fixed_options
= false,
138 .get_fifosize
= get_fifosize_arm
,
141 static const struct vendor_data vendor_sbsa
= {
142 .reg_offset
= pl011_std_offsets
,
143 .fr_busy
= UART01x_FR_BUSY
,
144 .fr_dsr
= UART01x_FR_DSR
,
145 .fr_cts
= UART01x_FR_CTS
,
146 .fr_ri
= UART011_FR_RI
,
148 .oversampling
= false,
149 .dma_threshold
= false,
150 .cts_event_workaround
= false,
151 .always_enabled
= true,
152 .fixed_options
= true,
155 #ifdef CONFIG_ACPI_SPCR_TABLE
156 static const struct vendor_data vendor_qdt_qdf2400_e44
= {
157 .reg_offset
= pl011_std_offsets
,
158 .fr_busy
= UART011_FR_TXFE
,
159 .fr_dsr
= UART01x_FR_DSR
,
160 .fr_cts
= UART01x_FR_CTS
,
161 .fr_ri
= UART011_FR_RI
,
162 .inv_fr
= UART011_FR_TXFE
,
164 .oversampling
= false,
165 .dma_threshold
= false,
166 .cts_event_workaround
= false,
167 .always_enabled
= true,
168 .fixed_options
= true,
172 static u16 pl011_st_offsets
[REG_ARRAY_SIZE
] = {
173 [REG_DR
] = UART01x_DR
,
174 [REG_ST_DMAWM
] = ST_UART011_DMAWM
,
175 [REG_ST_TIMEOUT
] = ST_UART011_TIMEOUT
,
176 [REG_FR
] = UART01x_FR
,
177 [REG_LCRH_RX
] = ST_UART011_LCRH_RX
,
178 [REG_LCRH_TX
] = ST_UART011_LCRH_TX
,
179 [REG_IBRD
] = UART011_IBRD
,
180 [REG_FBRD
] = UART011_FBRD
,
181 [REG_CR
] = UART011_CR
,
182 [REG_IFLS
] = UART011_IFLS
,
183 [REG_IMSC
] = UART011_IMSC
,
184 [REG_RIS
] = UART011_RIS
,
185 [REG_MIS
] = UART011_MIS
,
186 [REG_ICR
] = UART011_ICR
,
187 [REG_DMACR
] = UART011_DMACR
,
188 [REG_ST_XFCR
] = ST_UART011_XFCR
,
189 [REG_ST_XON1
] = ST_UART011_XON1
,
190 [REG_ST_XON2
] = ST_UART011_XON2
,
191 [REG_ST_XOFF1
] = ST_UART011_XOFF1
,
192 [REG_ST_XOFF2
] = ST_UART011_XOFF2
,
193 [REG_ST_ITCR
] = ST_UART011_ITCR
,
194 [REG_ST_ITIP
] = ST_UART011_ITIP
,
195 [REG_ST_ABCR
] = ST_UART011_ABCR
,
196 [REG_ST_ABIMSC
] = ST_UART011_ABIMSC
,
199 static unsigned int get_fifosize_st(struct amba_device
*dev
)
204 static struct vendor_data vendor_st
= {
205 .reg_offset
= pl011_st_offsets
,
206 .ifls
= UART011_IFLS_RX_HALF
| UART011_IFLS_TX_HALF
,
207 .fr_busy
= UART01x_FR_BUSY
,
208 .fr_dsr
= UART01x_FR_DSR
,
209 .fr_cts
= UART01x_FR_CTS
,
210 .fr_ri
= UART011_FR_RI
,
211 .oversampling
= true,
212 .dma_threshold
= true,
213 .cts_event_workaround
= true,
214 .always_enabled
= false,
215 .fixed_options
= false,
216 .get_fifosize
= get_fifosize_st
,
219 /* Deals with DMA transactions */
221 struct pl011_dmabuf
{
227 struct pl011_dmarx_data
{
228 struct dma_chan
*chan
;
229 struct completion complete
;
231 struct pl011_dmabuf dbuf_a
;
232 struct pl011_dmabuf dbuf_b
;
235 struct timer_list timer
;
236 unsigned int last_residue
;
237 unsigned long last_jiffies
;
239 unsigned int poll_rate
;
240 unsigned int poll_timeout
;
243 struct pl011_dmatx_data
{
244 struct dma_chan
*chan
;
252 * We wrap our port structure around the generic uart_port.
254 struct uart_amba_port
{
255 struct uart_port port
;
256 const u16
*reg_offset
;
258 const struct vendor_data
*vendor
;
259 unsigned int im
; /* interrupt mask */
260 unsigned int old_status
;
261 unsigned int fifosize
; /* vendor-specific */
262 unsigned int fixed_baud
; /* vendor-set fixed baud rate */
264 bool rs485_tx_started
;
265 unsigned int rs485_tx_drain_interval
; /* usecs */
266 #ifdef CONFIG_DMA_ENGINE
268 unsigned int dmacr
; /* dma control reg */
271 struct pl011_dmarx_data dmarx
;
272 struct pl011_dmatx_data dmatx
;
277 static unsigned int pl011_tx_empty(struct uart_port
*port
);
279 static unsigned int pl011_reg_to_offset(const struct uart_amba_port
*uap
,
282 return uap
->reg_offset
[reg
];
285 static unsigned int pl011_read(const struct uart_amba_port
*uap
,
288 void __iomem
*addr
= uap
->port
.membase
+ pl011_reg_to_offset(uap
, reg
);
290 return (uap
->port
.iotype
== UPIO_MEM32
) ?
291 readl_relaxed(addr
) : readw_relaxed(addr
);
294 static void pl011_write(unsigned int val
, const struct uart_amba_port
*uap
,
297 void __iomem
*addr
= uap
->port
.membase
+ pl011_reg_to_offset(uap
, reg
);
299 if (uap
->port
.iotype
== UPIO_MEM32
)
300 writel_relaxed(val
, addr
);
302 writew_relaxed(val
, addr
);
306 * Reads up to 256 characters from the FIFO or until it's empty and
307 * inserts them into the TTY layer. Returns the number of characters
308 * read from the FIFO.
310 static int pl011_fifo_to_tty(struct uart_amba_port
*uap
)
312 unsigned int ch
, fifotaken
;
317 for (fifotaken
= 0; fifotaken
!= 256; fifotaken
++) {
318 status
= pl011_read(uap
, REG_FR
);
319 if (status
& UART01x_FR_RXFE
)
322 /* Take chars from the FIFO and update status */
323 ch
= pl011_read(uap
, REG_DR
) | UART_DUMMY_DR_RX
;
325 uap
->port
.icount
.rx
++;
327 if (unlikely(ch
& UART_DR_ERROR
)) {
328 if (ch
& UART011_DR_BE
) {
329 ch
&= ~(UART011_DR_FE
| UART011_DR_PE
);
330 uap
->port
.icount
.brk
++;
331 if (uart_handle_break(&uap
->port
))
333 } else if (ch
& UART011_DR_PE
) {
334 uap
->port
.icount
.parity
++;
335 } else if (ch
& UART011_DR_FE
) {
336 uap
->port
.icount
.frame
++;
338 if (ch
& UART011_DR_OE
)
339 uap
->port
.icount
.overrun
++;
341 ch
&= uap
->port
.read_status_mask
;
343 if (ch
& UART011_DR_BE
)
345 else if (ch
& UART011_DR_PE
)
347 else if (ch
& UART011_DR_FE
)
351 sysrq
= uart_prepare_sysrq_char(&uap
->port
, ch
& 255);
353 uart_insert_char(&uap
->port
, ch
, UART011_DR_OE
, ch
, flag
);
360 * All the DMA operation mode stuff goes inside this ifdef.
361 * This assumes that you have a generic DMA device interface,
362 * no custom DMA interfaces are supported.
364 #ifdef CONFIG_DMA_ENGINE
366 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
368 static int pl011_dmabuf_init(struct dma_chan
*chan
, struct pl011_dmabuf
*db
,
369 enum dma_data_direction dir
)
371 db
->buf
= dma_alloc_coherent(chan
->device
->dev
, PL011_DMA_BUFFER_SIZE
,
372 &db
->dma
, GFP_KERNEL
);
375 db
->len
= PL011_DMA_BUFFER_SIZE
;
380 static void pl011_dmabuf_free(struct dma_chan
*chan
, struct pl011_dmabuf
*db
,
381 enum dma_data_direction dir
)
384 dma_free_coherent(chan
->device
->dev
,
385 PL011_DMA_BUFFER_SIZE
, db
->buf
, db
->dma
);
389 static void pl011_dma_probe(struct uart_amba_port
*uap
)
391 /* DMA is the sole user of the platform data right now */
392 struct amba_pl011_data
*plat
= dev_get_platdata(uap
->port
.dev
);
393 struct device
*dev
= uap
->port
.dev
;
394 struct dma_slave_config tx_conf
= {
395 .dst_addr
= uap
->port
.mapbase
+
396 pl011_reg_to_offset(uap
, REG_DR
),
397 .dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
398 .direction
= DMA_MEM_TO_DEV
,
399 .dst_maxburst
= uap
->fifosize
>> 1,
402 struct dma_chan
*chan
;
405 uap
->dma_probed
= true;
406 chan
= dma_request_chan(dev
, "tx");
408 if (PTR_ERR(chan
) == -EPROBE_DEFER
) {
409 uap
->dma_probed
= false;
413 /* We need platform data */
414 if (!plat
|| !plat
->dma_filter
) {
415 dev_dbg(uap
->port
.dev
, "no DMA platform data\n");
419 /* Try to acquire a generic DMA engine slave TX channel */
421 dma_cap_set(DMA_SLAVE
, mask
);
423 chan
= dma_request_channel(mask
, plat
->dma_filter
,
426 dev_err(uap
->port
.dev
, "no TX DMA channel!\n");
431 dmaengine_slave_config(chan
, &tx_conf
);
432 uap
->dmatx
.chan
= chan
;
434 dev_info(uap
->port
.dev
, "DMA channel TX %s\n",
435 dma_chan_name(uap
->dmatx
.chan
));
437 /* Optionally make use of an RX channel as well */
438 chan
= dma_request_chan(dev
, "rx");
440 if (IS_ERR(chan
) && plat
&& plat
->dma_rx_param
) {
441 chan
= dma_request_channel(mask
, plat
->dma_filter
, plat
->dma_rx_param
);
444 dev_err(uap
->port
.dev
, "no RX DMA channel!\n");
450 struct dma_slave_config rx_conf
= {
451 .src_addr
= uap
->port
.mapbase
+
452 pl011_reg_to_offset(uap
, REG_DR
),
453 .src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
454 .direction
= DMA_DEV_TO_MEM
,
455 .src_maxburst
= uap
->fifosize
>> 2,
458 struct dma_slave_caps caps
;
461 * Some DMA controllers provide information on their capabilities.
462 * If the controller does, check for suitable residue processing
463 * otherwise assime all is well.
465 if (dma_get_slave_caps(chan
, &caps
) == 0) {
466 if (caps
.residue_granularity
==
467 DMA_RESIDUE_GRANULARITY_DESCRIPTOR
) {
468 dma_release_channel(chan
);
469 dev_info(uap
->port
.dev
,
470 "RX DMA disabled - no residue processing\n");
474 dmaengine_slave_config(chan
, &rx_conf
);
475 uap
->dmarx
.chan
= chan
;
477 uap
->dmarx
.auto_poll_rate
= false;
478 if (plat
&& plat
->dma_rx_poll_enable
) {
479 /* Set poll rate if specified. */
480 if (plat
->dma_rx_poll_rate
) {
481 uap
->dmarx
.auto_poll_rate
= false;
482 uap
->dmarx
.poll_rate
= plat
->dma_rx_poll_rate
;
485 * 100 ms defaults to poll rate if not
486 * specified. This will be adjusted with
487 * the baud rate at set_termios.
489 uap
->dmarx
.auto_poll_rate
= true;
490 uap
->dmarx
.poll_rate
= 100;
492 /* 3 secs defaults poll_timeout if not specified. */
493 if (plat
->dma_rx_poll_timeout
)
494 uap
->dmarx
.poll_timeout
=
495 plat
->dma_rx_poll_timeout
;
497 uap
->dmarx
.poll_timeout
= 3000;
498 } else if (!plat
&& dev
->of_node
) {
499 uap
->dmarx
.auto_poll_rate
=
500 of_property_read_bool(dev
->of_node
, "auto-poll");
501 if (uap
->dmarx
.auto_poll_rate
) {
504 if (of_property_read_u32(dev
->of_node
, "poll-rate-ms", &x
) == 0)
505 uap
->dmarx
.poll_rate
= x
;
507 uap
->dmarx
.poll_rate
= 100;
508 if (of_property_read_u32(dev
->of_node
, "poll-timeout-ms", &x
) == 0)
509 uap
->dmarx
.poll_timeout
= x
;
511 uap
->dmarx
.poll_timeout
= 3000;
514 dev_info(uap
->port
.dev
, "DMA channel RX %s\n",
515 dma_chan_name(uap
->dmarx
.chan
));
519 static void pl011_dma_remove(struct uart_amba_port
*uap
)
522 dma_release_channel(uap
->dmatx
.chan
);
524 dma_release_channel(uap
->dmarx
.chan
);
527 /* Forward declare these for the refill routine */
528 static int pl011_dma_tx_refill(struct uart_amba_port
*uap
);
529 static void pl011_start_tx_pio(struct uart_amba_port
*uap
);
532 * The current DMA TX buffer has been sent.
533 * Try to queue up another DMA buffer.
535 static void pl011_dma_tx_callback(void *data
)
537 struct uart_amba_port
*uap
= data
;
538 struct tty_port
*tport
= &uap
->port
.state
->port
;
539 struct pl011_dmatx_data
*dmatx
= &uap
->dmatx
;
543 uart_port_lock_irqsave(&uap
->port
, &flags
);
544 if (uap
->dmatx
.queued
)
545 dma_unmap_single(dmatx
->chan
->device
->dev
, dmatx
->dma
,
546 dmatx
->len
, DMA_TO_DEVICE
);
549 uap
->dmacr
= dmacr
& ~UART011_TXDMAE
;
550 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
553 * If TX DMA was disabled, it means that we've stopped the DMA for
554 * some reason (eg, XOFF received, or we want to send an X-char.)
556 * Note: we need to be careful here of a potential race between DMA
557 * and the rest of the driver - if the driver disables TX DMA while
558 * a TX buffer completing, we must update the tx queued status to
559 * get further refills (hence we check dmacr).
561 if (!(dmacr
& UART011_TXDMAE
) || uart_tx_stopped(&uap
->port
) ||
562 kfifo_is_empty(&tport
->xmit_fifo
)) {
563 uap
->dmatx
.queued
= false;
564 uart_port_unlock_irqrestore(&uap
->port
, flags
);
568 if (pl011_dma_tx_refill(uap
) <= 0)
570 * We didn't queue a DMA buffer for some reason, but we
571 * have data pending to be sent. Re-enable the TX IRQ.
573 pl011_start_tx_pio(uap
);
575 uart_port_unlock_irqrestore(&uap
->port
, flags
);
579 * Try to refill the TX DMA buffer.
580 * Locking: called with port lock held and IRQs disabled.
582 * 1 if we queued up a TX DMA buffer.
583 * 0 if we didn't want to handle this by DMA
586 static int pl011_dma_tx_refill(struct uart_amba_port
*uap
)
588 struct pl011_dmatx_data
*dmatx
= &uap
->dmatx
;
589 struct dma_chan
*chan
= dmatx
->chan
;
590 struct dma_device
*dma_dev
= chan
->device
;
591 struct dma_async_tx_descriptor
*desc
;
592 struct tty_port
*tport
= &uap
->port
.state
->port
;
596 * Try to avoid the overhead involved in using DMA if the
597 * transaction fits in the first half of the FIFO, by using
598 * the standard interrupt handling. This ensures that we
599 * issue a uart_write_wakeup() at the appropriate time.
601 count
= kfifo_len(&tport
->xmit_fifo
);
602 if (count
< (uap
->fifosize
>> 1)) {
603 uap
->dmatx
.queued
= false;
608 * Bodge: don't send the last character by DMA, as this
609 * will prevent XON from notifying us to restart DMA.
613 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
614 if (count
> PL011_DMA_BUFFER_SIZE
)
615 count
= PL011_DMA_BUFFER_SIZE
;
617 count
= kfifo_out_peek(&tport
->xmit_fifo
, dmatx
->buf
, count
);
619 dmatx
->dma
= dma_map_single(dma_dev
->dev
, dmatx
->buf
, count
,
621 if (dmatx
->dma
== DMA_MAPPING_ERROR
) {
622 uap
->dmatx
.queued
= false;
623 dev_dbg(uap
->port
.dev
, "unable to map TX DMA\n");
627 desc
= dmaengine_prep_slave_single(chan
, dmatx
->dma
, dmatx
->len
, DMA_MEM_TO_DEV
,
628 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
630 dma_unmap_single(dma_dev
->dev
, dmatx
->dma
, dmatx
->len
, DMA_TO_DEVICE
);
631 uap
->dmatx
.queued
= false;
633 * If DMA cannot be used right now, we complete this
634 * transaction via IRQ and let the TTY layer retry.
636 dev_dbg(uap
->port
.dev
, "TX DMA busy\n");
640 /* Some data to go along to the callback */
641 desc
->callback
= pl011_dma_tx_callback
;
642 desc
->callback_param
= uap
;
644 /* All errors should happen at prepare time */
645 dmaengine_submit(desc
);
647 /* Fire the DMA transaction */
648 dma_dev
->device_issue_pending(chan
);
650 uap
->dmacr
|= UART011_TXDMAE
;
651 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
652 uap
->dmatx
.queued
= true;
655 * Now we know that DMA will fire, so advance the ring buffer
656 * with the stuff we just dispatched.
658 uart_xmit_advance(&uap
->port
, count
);
660 if (kfifo_len(&tport
->xmit_fifo
) < WAKEUP_CHARS
)
661 uart_write_wakeup(&uap
->port
);
667 * We received a transmit interrupt without a pending X-char but with
668 * pending characters.
669 * Locking: called with port lock held and IRQs disabled.
671 * false if we want to use PIO to transmit
672 * true if we queued a DMA buffer
674 static bool pl011_dma_tx_irq(struct uart_amba_port
*uap
)
676 if (!uap
->using_tx_dma
)
680 * If we already have a TX buffer queued, but received a
681 * TX interrupt, it will be because we've just sent an X-char.
682 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
684 if (uap
->dmatx
.queued
) {
685 uap
->dmacr
|= UART011_TXDMAE
;
686 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
687 uap
->im
&= ~UART011_TXIM
;
688 pl011_write(uap
->im
, uap
, REG_IMSC
);
693 * We don't have a TX buffer queued, so try to queue one.
694 * If we successfully queued a buffer, mask the TX IRQ.
696 if (pl011_dma_tx_refill(uap
) > 0) {
697 uap
->im
&= ~UART011_TXIM
;
698 pl011_write(uap
->im
, uap
, REG_IMSC
);
705 * Stop the DMA transmit (eg, due to received XOFF).
706 * Locking: called with port lock held and IRQs disabled.
708 static inline void pl011_dma_tx_stop(struct uart_amba_port
*uap
)
710 if (uap
->dmatx
.queued
) {
711 uap
->dmacr
&= ~UART011_TXDMAE
;
712 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
717 * Try to start a DMA transmit, or in the case of an XON/OFF
718 * character queued for send, try to get that character out ASAP.
719 * Locking: called with port lock held and IRQs disabled.
721 * false if we want the TX IRQ to be enabled
722 * true if we have a buffer queued
724 static inline bool pl011_dma_tx_start(struct uart_amba_port
*uap
)
728 if (!uap
->using_tx_dma
)
731 if (!uap
->port
.x_char
) {
732 /* no X-char, try to push chars out in DMA mode */
735 if (!uap
->dmatx
.queued
) {
736 if (pl011_dma_tx_refill(uap
) > 0) {
737 uap
->im
&= ~UART011_TXIM
;
738 pl011_write(uap
->im
, uap
, REG_IMSC
);
742 } else if (!(uap
->dmacr
& UART011_TXDMAE
)) {
743 uap
->dmacr
|= UART011_TXDMAE
;
744 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
750 * We have an X-char to send. Disable DMA to prevent it loading
751 * the TX fifo, and then see if we can stuff it into the FIFO.
754 uap
->dmacr
&= ~UART011_TXDMAE
;
755 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
757 if (pl011_read(uap
, REG_FR
) & UART01x_FR_TXFF
) {
759 * No space in the FIFO, so enable the transmit interrupt
760 * so we know when there is space. Note that once we've
761 * loaded the character, we should just re-enable DMA.
766 pl011_write(uap
->port
.x_char
, uap
, REG_DR
);
767 uap
->port
.icount
.tx
++;
768 uap
->port
.x_char
= 0;
770 /* Success - restore the DMA state */
772 pl011_write(dmacr
, uap
, REG_DMACR
);
778 * Flush the transmit buffer.
779 * Locking: called with port lock held and IRQs disabled.
781 static void pl011_dma_flush_buffer(struct uart_port
*port
)
782 __releases(&uap
->port
.lock
)
783 __acquires(&uap
->port
.lock
)
785 struct uart_amba_port
*uap
=
786 container_of(port
, struct uart_amba_port
, port
);
788 if (!uap
->using_tx_dma
)
791 dmaengine_terminate_async(uap
->dmatx
.chan
);
793 if (uap
->dmatx
.queued
) {
794 dma_unmap_single(uap
->dmatx
.chan
->device
->dev
, uap
->dmatx
.dma
,
795 uap
->dmatx
.len
, DMA_TO_DEVICE
);
796 uap
->dmatx
.queued
= false;
797 uap
->dmacr
&= ~UART011_TXDMAE
;
798 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
802 static void pl011_dma_rx_callback(void *data
);
804 static int pl011_dma_rx_trigger_dma(struct uart_amba_port
*uap
)
806 struct dma_chan
*rxchan
= uap
->dmarx
.chan
;
807 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
808 struct dma_async_tx_descriptor
*desc
;
809 struct pl011_dmabuf
*dbuf
;
814 /* Start the RX DMA job */
815 dbuf
= uap
->dmarx
.use_buf_b
?
816 &uap
->dmarx
.dbuf_b
: &uap
->dmarx
.dbuf_a
;
817 desc
= dmaengine_prep_slave_single(rxchan
, dbuf
->dma
, dbuf
->len
,
819 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
821 * If the DMA engine is busy and cannot prepare a
822 * channel, no big deal, the driver will fall back
823 * to interrupt mode as a result of this error code.
826 uap
->dmarx
.running
= false;
827 dmaengine_terminate_all(rxchan
);
831 /* Some data to go along to the callback */
832 desc
->callback
= pl011_dma_rx_callback
;
833 desc
->callback_param
= uap
;
834 dmarx
->cookie
= dmaengine_submit(desc
);
835 dma_async_issue_pending(rxchan
);
837 uap
->dmacr
|= UART011_RXDMAE
;
838 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
839 uap
->dmarx
.running
= true;
841 uap
->im
&= ~UART011_RXIM
;
842 pl011_write(uap
->im
, uap
, REG_IMSC
);
848 * This is called when either the DMA job is complete, or
849 * the FIFO timeout interrupt occurred. This must be called
850 * with the port spinlock uap->port.lock held.
852 static void pl011_dma_rx_chars(struct uart_amba_port
*uap
,
853 u32 pending
, bool use_buf_b
,
856 struct tty_port
*port
= &uap
->port
.state
->port
;
857 struct pl011_dmabuf
*dbuf
= use_buf_b
?
858 &uap
->dmarx
.dbuf_b
: &uap
->dmarx
.dbuf_a
;
860 u32 fifotaken
= 0; /* only used for vdbg() */
862 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
865 if (uap
->dmarx
.poll_rate
) {
866 /* The data can be taken by polling */
867 dmataken
= dbuf
->len
- dmarx
->last_residue
;
868 /* Recalculate the pending size */
869 if (pending
>= dmataken
)
873 /* Pick the remain data from the DMA */
876 * First take all chars in the DMA pipe, then look in the FIFO.
877 * Note that tty_insert_flip_buf() tries to take as many chars
880 dma_count
= tty_insert_flip_string(port
, dbuf
->buf
+ dmataken
, pending
);
882 uap
->port
.icount
.rx
+= dma_count
;
883 if (dma_count
< pending
)
884 dev_warn(uap
->port
.dev
,
885 "couldn't insert all characters (TTY is full?)\n");
888 /* Reset the last_residue for Rx DMA poll */
889 if (uap
->dmarx
.poll_rate
)
890 dmarx
->last_residue
= dbuf
->len
;
893 * Only continue with trying to read the FIFO if all DMA chars have
896 if (dma_count
== pending
&& readfifo
) {
897 /* Clear any error flags */
898 pl011_write(UART011_OEIS
| UART011_BEIS
| UART011_PEIS
|
899 UART011_FEIS
, uap
, REG_ICR
);
902 * If we read all the DMA'd characters, and we had an
903 * incomplete buffer, that could be due to an rx error, or
904 * maybe we just timed out. Read any pending chars and check
907 * Error conditions will only occur in the FIFO, these will
908 * trigger an immediate interrupt and stop the DMA job, so we
909 * will always find the error in the FIFO, never in the DMA
912 fifotaken
= pl011_fifo_to_tty(uap
);
915 dev_vdbg(uap
->port
.dev
,
916 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
917 dma_count
, fifotaken
);
918 tty_flip_buffer_push(port
);
921 static void pl011_dma_rx_irq(struct uart_amba_port
*uap
)
923 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
924 struct dma_chan
*rxchan
= dmarx
->chan
;
925 struct pl011_dmabuf
*dbuf
= dmarx
->use_buf_b
?
926 &dmarx
->dbuf_b
: &dmarx
->dbuf_a
;
928 struct dma_tx_state state
;
929 enum dma_status dmastat
;
932 * Pause the transfer so we can trust the current counter,
933 * do this before we pause the PL011 block, else we may
936 if (dmaengine_pause(rxchan
))
937 dev_err(uap
->port
.dev
, "unable to pause DMA transfer\n");
938 dmastat
= rxchan
->device
->device_tx_status(rxchan
,
939 dmarx
->cookie
, &state
);
940 if (dmastat
!= DMA_PAUSED
)
941 dev_err(uap
->port
.dev
, "unable to pause DMA transfer\n");
943 /* Disable RX DMA - incoming data will wait in the FIFO */
944 uap
->dmacr
&= ~UART011_RXDMAE
;
945 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
946 uap
->dmarx
.running
= false;
948 pending
= dbuf
->len
- state
.residue
;
949 BUG_ON(pending
> PL011_DMA_BUFFER_SIZE
);
950 /* Then we terminate the transfer - we now know our residue */
951 dmaengine_terminate_all(rxchan
);
954 * This will take the chars we have so far and insert
955 * into the framework.
957 pl011_dma_rx_chars(uap
, pending
, dmarx
->use_buf_b
, true);
959 /* Switch buffer & re-trigger DMA job */
960 dmarx
->use_buf_b
= !dmarx
->use_buf_b
;
961 if (pl011_dma_rx_trigger_dma(uap
)) {
962 dev_dbg(uap
->port
.dev
,
963 "could not retrigger RX DMA job fall back to interrupt mode\n");
964 uap
->im
|= UART011_RXIM
;
965 pl011_write(uap
->im
, uap
, REG_IMSC
);
969 static void pl011_dma_rx_callback(void *data
)
971 struct uart_amba_port
*uap
= data
;
972 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
973 struct dma_chan
*rxchan
= dmarx
->chan
;
974 bool lastbuf
= dmarx
->use_buf_b
;
975 struct pl011_dmabuf
*dbuf
= dmarx
->use_buf_b
?
976 &dmarx
->dbuf_b
: &dmarx
->dbuf_a
;
978 struct dma_tx_state state
;
982 * This completion interrupt occurs typically when the
983 * RX buffer is totally stuffed but no timeout has yet
984 * occurred. When that happens, we just want the RX
985 * routine to flush out the secondary DMA buffer while
986 * we immediately trigger the next DMA job.
988 uart_port_lock_irq(&uap
->port
);
990 * Rx data can be taken by the UART interrupts during
991 * the DMA irq handler. So we check the residue here.
993 rxchan
->device
->device_tx_status(rxchan
, dmarx
->cookie
, &state
);
994 pending
= dbuf
->len
- state
.residue
;
995 BUG_ON(pending
> PL011_DMA_BUFFER_SIZE
);
996 /* Then we terminate the transfer - we now know our residue */
997 dmaengine_terminate_all(rxchan
);
999 uap
->dmarx
.running
= false;
1000 dmarx
->use_buf_b
= !lastbuf
;
1001 ret
= pl011_dma_rx_trigger_dma(uap
);
1003 pl011_dma_rx_chars(uap
, pending
, lastbuf
, false);
1004 uart_unlock_and_check_sysrq(&uap
->port
);
1006 * Do this check after we picked the DMA chars so we don't
1007 * get some IRQ immediately from RX.
1010 dev_dbg(uap
->port
.dev
,
1011 "could not retrigger RX DMA job fall back to interrupt mode\n");
1012 uap
->im
|= UART011_RXIM
;
1013 pl011_write(uap
->im
, uap
, REG_IMSC
);
1018 * Stop accepting received characters, when we're shutting down or
1019 * suspending this port.
1020 * Locking: called with port lock held and IRQs disabled.
1022 static inline void pl011_dma_rx_stop(struct uart_amba_port
*uap
)
1024 if (!uap
->using_rx_dma
)
1027 /* FIXME. Just disable the DMA enable */
1028 uap
->dmacr
&= ~UART011_RXDMAE
;
1029 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
1033 * Timer handler for Rx DMA polling.
1034 * Every polling, It checks the residue in the dma buffer and transfer
1035 * data to the tty. Also, last_residue is updated for the next polling.
1037 static void pl011_dma_rx_poll(struct timer_list
*t
)
1039 struct uart_amba_port
*uap
= from_timer(uap
, t
, dmarx
.timer
);
1040 struct tty_port
*port
= &uap
->port
.state
->port
;
1041 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
1042 struct dma_chan
*rxchan
= uap
->dmarx
.chan
;
1043 unsigned long flags
;
1044 unsigned int dmataken
= 0;
1045 unsigned int size
= 0;
1046 struct pl011_dmabuf
*dbuf
;
1048 struct dma_tx_state state
;
1050 dbuf
= dmarx
->use_buf_b
? &uap
->dmarx
.dbuf_b
: &uap
->dmarx
.dbuf_a
;
1051 rxchan
->device
->device_tx_status(rxchan
, dmarx
->cookie
, &state
);
1052 if (likely(state
.residue
< dmarx
->last_residue
)) {
1053 dmataken
= dbuf
->len
- dmarx
->last_residue
;
1054 size
= dmarx
->last_residue
- state
.residue
;
1055 dma_count
= tty_insert_flip_string(port
, dbuf
->buf
+ dmataken
,
1057 if (dma_count
== size
)
1058 dmarx
->last_residue
= state
.residue
;
1059 dmarx
->last_jiffies
= jiffies
;
1061 tty_flip_buffer_push(port
);
1064 * If no data is received in poll_timeout, the driver will fall back
1065 * to interrupt mode. We will retrigger DMA at the first interrupt.
1067 if (jiffies_to_msecs(jiffies
- dmarx
->last_jiffies
)
1068 > uap
->dmarx
.poll_timeout
) {
1069 uart_port_lock_irqsave(&uap
->port
, &flags
);
1070 pl011_dma_rx_stop(uap
);
1071 uap
->im
|= UART011_RXIM
;
1072 pl011_write(uap
->im
, uap
, REG_IMSC
);
1073 uart_port_unlock_irqrestore(&uap
->port
, flags
);
1075 uap
->dmarx
.running
= false;
1076 dmaengine_terminate_all(rxchan
);
1077 del_timer(&uap
->dmarx
.timer
);
1079 mod_timer(&uap
->dmarx
.timer
,
1080 jiffies
+ msecs_to_jiffies(uap
->dmarx
.poll_rate
));
1084 static void pl011_dma_startup(struct uart_amba_port
*uap
)
1088 if (!uap
->dma_probed
)
1089 pl011_dma_probe(uap
);
1091 if (!uap
->dmatx
.chan
)
1094 uap
->dmatx
.buf
= kmalloc(PL011_DMA_BUFFER_SIZE
, GFP_KERNEL
| __GFP_DMA
);
1095 if (!uap
->dmatx
.buf
) {
1096 uap
->port
.fifosize
= uap
->fifosize
;
1100 uap
->dmatx
.len
= PL011_DMA_BUFFER_SIZE
;
1102 /* The DMA buffer is now the FIFO the TTY subsystem can use */
1103 uap
->port
.fifosize
= PL011_DMA_BUFFER_SIZE
;
1104 uap
->using_tx_dma
= true;
1106 if (!uap
->dmarx
.chan
)
1109 /* Allocate and map DMA RX buffers */
1110 ret
= pl011_dmabuf_init(uap
->dmarx
.chan
, &uap
->dmarx
.dbuf_a
,
1113 dev_err(uap
->port
.dev
, "failed to init DMA %s: %d\n",
1114 "RX buffer A", ret
);
1118 ret
= pl011_dmabuf_init(uap
->dmarx
.chan
, &uap
->dmarx
.dbuf_b
,
1121 dev_err(uap
->port
.dev
, "failed to init DMA %s: %d\n",
1122 "RX buffer B", ret
);
1123 pl011_dmabuf_free(uap
->dmarx
.chan
, &uap
->dmarx
.dbuf_a
,
1128 uap
->using_rx_dma
= true;
1131 /* Turn on DMA error (RX/TX will be enabled on demand) */
1132 uap
->dmacr
|= UART011_DMAONERR
;
1133 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
1136 * ST Micro variants has some specific dma burst threshold
1137 * compensation. Set this to 16 bytes, so burst will only
1138 * be issued above/below 16 bytes.
1140 if (uap
->vendor
->dma_threshold
)
1141 pl011_write(ST_UART011_DMAWM_RX_16
| ST_UART011_DMAWM_TX_16
,
1144 if (uap
->using_rx_dma
) {
1145 if (pl011_dma_rx_trigger_dma(uap
))
1146 dev_dbg(uap
->port
.dev
,
1147 "could not trigger initial RX DMA job, fall back to interrupt mode\n");
1148 if (uap
->dmarx
.poll_rate
) {
1149 timer_setup(&uap
->dmarx
.timer
, pl011_dma_rx_poll
, 0);
1150 mod_timer(&uap
->dmarx
.timer
,
1151 jiffies
+ msecs_to_jiffies(uap
->dmarx
.poll_rate
));
1152 uap
->dmarx
.last_residue
= PL011_DMA_BUFFER_SIZE
;
1153 uap
->dmarx
.last_jiffies
= jiffies
;
1158 static void pl011_dma_shutdown(struct uart_amba_port
*uap
)
1160 if (!(uap
->using_tx_dma
|| uap
->using_rx_dma
))
1163 /* Disable RX and TX DMA */
1164 while (pl011_read(uap
, REG_FR
) & uap
->vendor
->fr_busy
)
1167 uart_port_lock_irq(&uap
->port
);
1168 uap
->dmacr
&= ~(UART011_DMAONERR
| UART011_RXDMAE
| UART011_TXDMAE
);
1169 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
1170 uart_port_unlock_irq(&uap
->port
);
1172 if (uap
->using_tx_dma
) {
1173 /* In theory, this should already be done by pl011_dma_flush_buffer */
1174 dmaengine_terminate_all(uap
->dmatx
.chan
);
1175 if (uap
->dmatx
.queued
) {
1176 dma_unmap_single(uap
->dmatx
.chan
->device
->dev
,
1177 uap
->dmatx
.dma
, uap
->dmatx
.len
,
1179 uap
->dmatx
.queued
= false;
1182 kfree(uap
->dmatx
.buf
);
1183 uap
->using_tx_dma
= false;
1186 if (uap
->using_rx_dma
) {
1187 dmaengine_terminate_all(uap
->dmarx
.chan
);
1188 /* Clean up the RX DMA */
1189 pl011_dmabuf_free(uap
->dmarx
.chan
, &uap
->dmarx
.dbuf_a
, DMA_FROM_DEVICE
);
1190 pl011_dmabuf_free(uap
->dmarx
.chan
, &uap
->dmarx
.dbuf_b
, DMA_FROM_DEVICE
);
1191 if (uap
->dmarx
.poll_rate
)
1192 del_timer_sync(&uap
->dmarx
.timer
);
1193 uap
->using_rx_dma
= false;
1197 static inline bool pl011_dma_rx_available(struct uart_amba_port
*uap
)
1199 return uap
->using_rx_dma
;
1202 static inline bool pl011_dma_rx_running(struct uart_amba_port
*uap
)
1204 return uap
->using_rx_dma
&& uap
->dmarx
.running
;
1208 /* Blank functions if the DMA engine is not available */
1209 static inline void pl011_dma_remove(struct uart_amba_port
*uap
)
1213 static inline void pl011_dma_startup(struct uart_amba_port
*uap
)
1217 static inline void pl011_dma_shutdown(struct uart_amba_port
*uap
)
1221 static inline bool pl011_dma_tx_irq(struct uart_amba_port
*uap
)
1226 static inline void pl011_dma_tx_stop(struct uart_amba_port
*uap
)
1230 static inline bool pl011_dma_tx_start(struct uart_amba_port
*uap
)
1235 static inline void pl011_dma_rx_irq(struct uart_amba_port
*uap
)
1239 static inline void pl011_dma_rx_stop(struct uart_amba_port
*uap
)
1243 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port
*uap
)
1248 static inline bool pl011_dma_rx_available(struct uart_amba_port
*uap
)
1253 static inline bool pl011_dma_rx_running(struct uart_amba_port
*uap
)
1258 #define pl011_dma_flush_buffer NULL
1261 static void pl011_rs485_tx_stop(struct uart_amba_port
*uap
)
1264 * To be on the safe side only time out after twice as many iterations
1267 const int MAX_TX_DRAIN_ITERS
= uap
->port
.fifosize
* 2;
1268 struct uart_port
*port
= &uap
->port
;
1272 /* Wait until hardware tx queue is empty */
1273 while (!pl011_tx_empty(port
)) {
1274 if (i
> MAX_TX_DRAIN_ITERS
) {
1276 "timeout while draining hardware tx queue\n");
1280 udelay(uap
->rs485_tx_drain_interval
);
1284 if (port
->rs485
.delay_rts_after_send
)
1285 mdelay(port
->rs485
.delay_rts_after_send
);
1287 cr
= pl011_read(uap
, REG_CR
);
1289 if (port
->rs485
.flags
& SER_RS485_RTS_AFTER_SEND
)
1290 cr
&= ~UART011_CR_RTS
;
1292 cr
|= UART011_CR_RTS
;
1294 /* Disable the transmitter and reenable the transceiver */
1295 cr
&= ~UART011_CR_TXE
;
1296 cr
|= UART011_CR_RXE
;
1297 pl011_write(cr
, uap
, REG_CR
);
1299 uap
->rs485_tx_started
= false;
1302 static void pl011_stop_tx(struct uart_port
*port
)
1304 struct uart_amba_port
*uap
=
1305 container_of(port
, struct uart_amba_port
, port
);
1307 uap
->im
&= ~UART011_TXIM
;
1308 pl011_write(uap
->im
, uap
, REG_IMSC
);
1309 pl011_dma_tx_stop(uap
);
1311 if ((port
->rs485
.flags
& SER_RS485_ENABLED
) && uap
->rs485_tx_started
)
1312 pl011_rs485_tx_stop(uap
);
1315 static bool pl011_tx_chars(struct uart_amba_port
*uap
, bool from_irq
);
1317 /* Start TX with programmed I/O only (no DMA) */
1318 static void pl011_start_tx_pio(struct uart_amba_port
*uap
)
1320 if (pl011_tx_chars(uap
, false)) {
1321 uap
->im
|= UART011_TXIM
;
1322 pl011_write(uap
->im
, uap
, REG_IMSC
);
1326 static void pl011_rs485_tx_start(struct uart_amba_port
*uap
)
1328 struct uart_port
*port
= &uap
->port
;
1331 /* Enable transmitter */
1332 cr
= pl011_read(uap
, REG_CR
);
1333 cr
|= UART011_CR_TXE
;
1335 /* Disable receiver if half-duplex */
1336 if (!(port
->rs485
.flags
& SER_RS485_RX_DURING_TX
))
1337 cr
&= ~UART011_CR_RXE
;
1339 if (port
->rs485
.flags
& SER_RS485_RTS_ON_SEND
)
1340 cr
&= ~UART011_CR_RTS
;
1342 cr
|= UART011_CR_RTS
;
1344 pl011_write(cr
, uap
, REG_CR
);
1346 if (port
->rs485
.delay_rts_before_send
)
1347 mdelay(port
->rs485
.delay_rts_before_send
);
1349 uap
->rs485_tx_started
= true;
1352 static void pl011_start_tx(struct uart_port
*port
)
1354 struct uart_amba_port
*uap
=
1355 container_of(port
, struct uart_amba_port
, port
);
1357 if ((uap
->port
.rs485
.flags
& SER_RS485_ENABLED
) &&
1358 !uap
->rs485_tx_started
)
1359 pl011_rs485_tx_start(uap
);
1361 if (!pl011_dma_tx_start(uap
))
1362 pl011_start_tx_pio(uap
);
1365 static void pl011_stop_rx(struct uart_port
*port
)
1367 struct uart_amba_port
*uap
=
1368 container_of(port
, struct uart_amba_port
, port
);
1370 uap
->im
&= ~(UART011_RXIM
| UART011_RTIM
| UART011_FEIM
|
1371 UART011_PEIM
| UART011_BEIM
| UART011_OEIM
);
1372 pl011_write(uap
->im
, uap
, REG_IMSC
);
1374 pl011_dma_rx_stop(uap
);
1377 static void pl011_throttle_rx(struct uart_port
*port
)
1379 unsigned long flags
;
1381 uart_port_lock_irqsave(port
, &flags
);
1382 pl011_stop_rx(port
);
1383 uart_port_unlock_irqrestore(port
, flags
);
1386 static void pl011_enable_ms(struct uart_port
*port
)
1388 struct uart_amba_port
*uap
=
1389 container_of(port
, struct uart_amba_port
, port
);
1391 uap
->im
|= UART011_RIMIM
| UART011_CTSMIM
| UART011_DCDMIM
| UART011_DSRMIM
;
1392 pl011_write(uap
->im
, uap
, REG_IMSC
);
1395 static void pl011_rx_chars(struct uart_amba_port
*uap
)
1396 __releases(&uap
->port
.lock
)
1397 __acquires(&uap
->port
.lock
)
1399 pl011_fifo_to_tty(uap
);
1401 uart_port_unlock(&uap
->port
);
1402 tty_flip_buffer_push(&uap
->port
.state
->port
);
1404 * If we were temporarily out of DMA mode for a while,
1405 * attempt to switch back to DMA mode again.
1407 if (pl011_dma_rx_available(uap
)) {
1408 if (pl011_dma_rx_trigger_dma(uap
)) {
1409 dev_dbg(uap
->port
.dev
,
1410 "could not trigger RX DMA job fall back to interrupt mode again\n");
1411 uap
->im
|= UART011_RXIM
;
1412 pl011_write(uap
->im
, uap
, REG_IMSC
);
1414 #ifdef CONFIG_DMA_ENGINE
1415 /* Start Rx DMA poll */
1416 if (uap
->dmarx
.poll_rate
) {
1417 uap
->dmarx
.last_jiffies
= jiffies
;
1418 uap
->dmarx
.last_residue
= PL011_DMA_BUFFER_SIZE
;
1419 mod_timer(&uap
->dmarx
.timer
,
1420 jiffies
+ msecs_to_jiffies(uap
->dmarx
.poll_rate
));
1425 uart_port_lock(&uap
->port
);
1428 static bool pl011_tx_char(struct uart_amba_port
*uap
, unsigned char c
,
1431 if (unlikely(!from_irq
) &&
1432 pl011_read(uap
, REG_FR
) & UART01x_FR_TXFF
)
1433 return false; /* unable to transmit character */
1435 pl011_write(c
, uap
, REG_DR
);
1436 uap
->port
.icount
.tx
++;
1441 /* Returns true if tx interrupts have to be (kept) enabled */
1442 static bool pl011_tx_chars(struct uart_amba_port
*uap
, bool from_irq
)
1444 struct tty_port
*tport
= &uap
->port
.state
->port
;
1445 int count
= uap
->fifosize
>> 1;
1447 if (uap
->port
.x_char
) {
1448 if (!pl011_tx_char(uap
, uap
->port
.x_char
, from_irq
))
1450 uap
->port
.x_char
= 0;
1453 if (kfifo_is_empty(&tport
->xmit_fifo
) || uart_tx_stopped(&uap
->port
)) {
1454 pl011_stop_tx(&uap
->port
);
1458 /* If we are using DMA mode, try to send some characters. */
1459 if (pl011_dma_tx_irq(uap
))
1465 if (likely(from_irq
) && count
-- == 0)
1468 if (!kfifo_peek(&tport
->xmit_fifo
, &c
))
1471 if (!pl011_tx_char(uap
, c
, from_irq
))
1474 kfifo_skip(&tport
->xmit_fifo
);
1477 if (kfifo_len(&tport
->xmit_fifo
) < WAKEUP_CHARS
)
1478 uart_write_wakeup(&uap
->port
);
1480 if (kfifo_is_empty(&tport
->xmit_fifo
)) {
1481 pl011_stop_tx(&uap
->port
);
1487 static void pl011_modem_status(struct uart_amba_port
*uap
)
1489 unsigned int status
, delta
;
1491 status
= pl011_read(uap
, REG_FR
) & UART01x_FR_MODEM_ANY
;
1493 delta
= status
^ uap
->old_status
;
1494 uap
->old_status
= status
;
1499 if (delta
& UART01x_FR_DCD
)
1500 uart_handle_dcd_change(&uap
->port
, status
& UART01x_FR_DCD
);
1502 if (delta
& uap
->vendor
->fr_dsr
)
1503 uap
->port
.icount
.dsr
++;
1505 if (delta
& uap
->vendor
->fr_cts
)
1506 uart_handle_cts_change(&uap
->port
,
1507 status
& uap
->vendor
->fr_cts
);
1509 wake_up_interruptible(&uap
->port
.state
->port
.delta_msr_wait
);
1512 static void check_apply_cts_event_workaround(struct uart_amba_port
*uap
)
1514 if (!uap
->vendor
->cts_event_workaround
)
1517 /* workaround to make sure that all bits are unlocked.. */
1518 pl011_write(0x00, uap
, REG_ICR
);
1521 * WA: introduce 26ns(1 uart clk) delay before W1C;
1522 * single apb access will incur 2 pclk(133.12Mhz) delay,
1523 * so add 2 dummy reads
1525 pl011_read(uap
, REG_ICR
);
1526 pl011_read(uap
, REG_ICR
);
1529 static irqreturn_t
pl011_int(int irq
, void *dev_id
)
1531 struct uart_amba_port
*uap
= dev_id
;
1532 unsigned int status
, pass_counter
= AMBA_ISR_PASS_LIMIT
;
1535 uart_port_lock(&uap
->port
);
1536 status
= pl011_read(uap
, REG_RIS
) & uap
->im
;
1539 check_apply_cts_event_workaround(uap
);
1541 pl011_write(status
& ~(UART011_TXIS
| UART011_RTIS
| UART011_RXIS
),
1544 if (status
& (UART011_RTIS
| UART011_RXIS
)) {
1545 if (pl011_dma_rx_running(uap
))
1546 pl011_dma_rx_irq(uap
);
1548 pl011_rx_chars(uap
);
1550 if (status
& (UART011_DSRMIS
| UART011_DCDMIS
|
1551 UART011_CTSMIS
| UART011_RIMIS
))
1552 pl011_modem_status(uap
);
1553 if (status
& UART011_TXIS
)
1554 pl011_tx_chars(uap
, true);
1556 if (pass_counter
-- == 0)
1559 status
= pl011_read(uap
, REG_RIS
) & uap
->im
;
1560 } while (status
!= 0);
1564 uart_unlock_and_check_sysrq(&uap
->port
);
1566 return IRQ_RETVAL(handled
);
1569 static unsigned int pl011_tx_empty(struct uart_port
*port
)
1571 struct uart_amba_port
*uap
=
1572 container_of(port
, struct uart_amba_port
, port
);
1574 /* Allow feature register bits to be inverted to work around errata */
1575 unsigned int status
= pl011_read(uap
, REG_FR
) ^ uap
->vendor
->inv_fr
;
1577 return status
& (uap
->vendor
->fr_busy
| UART01x_FR_TXFF
) ?
1581 static void pl011_maybe_set_bit(bool cond
, unsigned int *ptr
, unsigned int mask
)
1587 static unsigned int pl011_get_mctrl(struct uart_port
*port
)
1589 struct uart_amba_port
*uap
=
1590 container_of(port
, struct uart_amba_port
, port
);
1591 unsigned int result
= 0;
1592 unsigned int status
= pl011_read(uap
, REG_FR
);
1594 pl011_maybe_set_bit(status
& UART01x_FR_DCD
, &result
, TIOCM_CAR
);
1595 pl011_maybe_set_bit(status
& uap
->vendor
->fr_dsr
, &result
, TIOCM_DSR
);
1596 pl011_maybe_set_bit(status
& uap
->vendor
->fr_cts
, &result
, TIOCM_CTS
);
1597 pl011_maybe_set_bit(status
& uap
->vendor
->fr_ri
, &result
, TIOCM_RNG
);
1602 static void pl011_assign_bit(bool cond
, unsigned int *ptr
, unsigned int mask
)
1610 static void pl011_set_mctrl(struct uart_port
*port
, unsigned int mctrl
)
1612 struct uart_amba_port
*uap
=
1613 container_of(port
, struct uart_amba_port
, port
);
1616 cr
= pl011_read(uap
, REG_CR
);
1618 pl011_assign_bit(mctrl
& TIOCM_RTS
, &cr
, UART011_CR_RTS
);
1619 pl011_assign_bit(mctrl
& TIOCM_DTR
, &cr
, UART011_CR_DTR
);
1620 pl011_assign_bit(mctrl
& TIOCM_OUT1
, &cr
, UART011_CR_OUT1
);
1621 pl011_assign_bit(mctrl
& TIOCM_OUT2
, &cr
, UART011_CR_OUT2
);
1622 pl011_assign_bit(mctrl
& TIOCM_LOOP
, &cr
, UART011_CR_LBE
);
1624 if (port
->status
& UPSTAT_AUTORTS
) {
1625 /* We need to disable auto-RTS if we want to turn RTS off */
1626 pl011_assign_bit(mctrl
& TIOCM_RTS
, &cr
, UART011_CR_RTSEN
);
1629 pl011_write(cr
, uap
, REG_CR
);
1632 static void pl011_break_ctl(struct uart_port
*port
, int break_state
)
1634 struct uart_amba_port
*uap
=
1635 container_of(port
, struct uart_amba_port
, port
);
1636 unsigned long flags
;
1639 uart_port_lock_irqsave(&uap
->port
, &flags
);
1640 lcr_h
= pl011_read(uap
, REG_LCRH_TX
);
1641 if (break_state
== -1)
1642 lcr_h
|= UART01x_LCRH_BRK
;
1644 lcr_h
&= ~UART01x_LCRH_BRK
;
1645 pl011_write(lcr_h
, uap
, REG_LCRH_TX
);
1646 uart_port_unlock_irqrestore(&uap
->port
, flags
);
1649 #ifdef CONFIG_CONSOLE_POLL
1651 static void pl011_quiesce_irqs(struct uart_port
*port
)
1653 struct uart_amba_port
*uap
=
1654 container_of(port
, struct uart_amba_port
, port
);
1656 pl011_write(pl011_read(uap
, REG_MIS
), uap
, REG_ICR
);
1658 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1659 * we simply mask it. start_tx() will unmask it.
1661 * Note we can race with start_tx(), and if the race happens, the
1662 * polling user might get another interrupt just after we clear it.
1663 * But it should be OK and can happen even w/o the race, e.g.
1664 * controller immediately got some new data and raised the IRQ.
1666 * And whoever uses polling routines assumes that it manages the device
1667 * (including tx queue), so we're also fine with start_tx()'s caller
1670 pl011_write(pl011_read(uap
, REG_IMSC
) & ~UART011_TXIM
, uap
,
1674 static int pl011_get_poll_char(struct uart_port
*port
)
1676 struct uart_amba_port
*uap
=
1677 container_of(port
, struct uart_amba_port
, port
);
1678 unsigned int status
;
1681 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1684 pl011_quiesce_irqs(port
);
1686 status
= pl011_read(uap
, REG_FR
);
1687 if (status
& UART01x_FR_RXFE
)
1688 return NO_POLL_CHAR
;
1690 return pl011_read(uap
, REG_DR
);
1693 static void pl011_put_poll_char(struct uart_port
*port
, unsigned char ch
)
1695 struct uart_amba_port
*uap
=
1696 container_of(port
, struct uart_amba_port
, port
);
1698 while (pl011_read(uap
, REG_FR
) & UART01x_FR_TXFF
)
1701 pl011_write(ch
, uap
, REG_DR
);
1704 #endif /* CONFIG_CONSOLE_POLL */
1706 static int pl011_hwinit(struct uart_port
*port
)
1708 struct uart_amba_port
*uap
=
1709 container_of(port
, struct uart_amba_port
, port
);
1712 /* Optionaly enable pins to be muxed in and configured */
1713 pinctrl_pm_select_default_state(port
->dev
);
1716 * Try to enable the clock producer.
1718 retval
= clk_prepare_enable(uap
->clk
);
1722 uap
->port
.uartclk
= clk_get_rate(uap
->clk
);
1724 /* Clear pending error and receive interrupts */
1725 pl011_write(UART011_OEIS
| UART011_BEIS
| UART011_PEIS
|
1726 UART011_FEIS
| UART011_RTIS
| UART011_RXIS
,
1730 * Save interrupts enable mask, and enable RX interrupts in case if
1731 * the interrupt is used for NMI entry.
1733 uap
->im
= pl011_read(uap
, REG_IMSC
);
1734 pl011_write(UART011_RTIM
| UART011_RXIM
, uap
, REG_IMSC
);
1736 if (dev_get_platdata(uap
->port
.dev
)) {
1737 struct amba_pl011_data
*plat
;
1739 plat
= dev_get_platdata(uap
->port
.dev
);
1746 static bool pl011_split_lcrh(const struct uart_amba_port
*uap
)
1748 return pl011_reg_to_offset(uap
, REG_LCRH_RX
) !=
1749 pl011_reg_to_offset(uap
, REG_LCRH_TX
);
1752 static void pl011_write_lcr_h(struct uart_amba_port
*uap
, unsigned int lcr_h
)
1754 pl011_write(lcr_h
, uap
, REG_LCRH_RX
);
1755 if (pl011_split_lcrh(uap
)) {
1758 * Wait 10 PCLKs before writing LCRH_TX register,
1759 * to get this delay write read only register 10 times
1761 for (i
= 0; i
< 10; ++i
)
1762 pl011_write(0xff, uap
, REG_MIS
);
1763 pl011_write(lcr_h
, uap
, REG_LCRH_TX
);
1767 static int pl011_allocate_irq(struct uart_amba_port
*uap
)
1769 pl011_write(uap
->im
, uap
, REG_IMSC
);
1771 return request_irq(uap
->port
.irq
, pl011_int
, IRQF_SHARED
, "uart-pl011", uap
);
1775 * Enable interrupts, only timeouts when using DMA
1776 * if initial RX DMA job failed, start in interrupt mode
1779 static void pl011_enable_interrupts(struct uart_amba_port
*uap
)
1781 unsigned long flags
;
1784 uart_port_lock_irqsave(&uap
->port
, &flags
);
1786 /* Clear out any spuriously appearing RX interrupts */
1787 pl011_write(UART011_RTIS
| UART011_RXIS
, uap
, REG_ICR
);
1790 * RXIS is asserted only when the RX FIFO transitions from below
1791 * to above the trigger threshold. If the RX FIFO is already
1792 * full to the threshold this can't happen and RXIS will now be
1793 * stuck off. Drain the RX FIFO explicitly to fix this:
1795 for (i
= 0; i
< uap
->fifosize
* 2; ++i
) {
1796 if (pl011_read(uap
, REG_FR
) & UART01x_FR_RXFE
)
1799 pl011_read(uap
, REG_DR
);
1802 uap
->im
= UART011_RTIM
;
1803 if (!pl011_dma_rx_running(uap
))
1804 uap
->im
|= UART011_RXIM
;
1805 pl011_write(uap
->im
, uap
, REG_IMSC
);
1806 uart_port_unlock_irqrestore(&uap
->port
, flags
);
1809 static void pl011_unthrottle_rx(struct uart_port
*port
)
1811 struct uart_amba_port
*uap
= container_of(port
, struct uart_amba_port
, port
);
1812 unsigned long flags
;
1814 uart_port_lock_irqsave(&uap
->port
, &flags
);
1816 uap
->im
= UART011_RTIM
;
1817 if (!pl011_dma_rx_running(uap
))
1818 uap
->im
|= UART011_RXIM
;
1820 pl011_write(uap
->im
, uap
, REG_IMSC
);
1822 #ifdef CONFIG_DMA_ENGINE
1823 if (uap
->using_rx_dma
) {
1824 uap
->dmacr
|= UART011_RXDMAE
;
1825 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
1829 uart_port_unlock_irqrestore(&uap
->port
, flags
);
1832 static int pl011_startup(struct uart_port
*port
)
1834 struct uart_amba_port
*uap
=
1835 container_of(port
, struct uart_amba_port
, port
);
1839 retval
= pl011_hwinit(port
);
1843 retval
= pl011_allocate_irq(uap
);
1847 pl011_write(uap
->vendor
->ifls
, uap
, REG_IFLS
);
1849 uart_port_lock_irq(&uap
->port
);
1851 cr
= pl011_read(uap
, REG_CR
);
1852 cr
&= UART011_CR_RTS
| UART011_CR_DTR
;
1853 cr
|= UART01x_CR_UARTEN
| UART011_CR_RXE
;
1855 if (!(port
->rs485
.flags
& SER_RS485_ENABLED
))
1856 cr
|= UART011_CR_TXE
;
1858 pl011_write(cr
, uap
, REG_CR
);
1860 uart_port_unlock_irq(&uap
->port
);
1863 * initialise the old status of the modem signals
1865 uap
->old_status
= pl011_read(uap
, REG_FR
) & UART01x_FR_MODEM_ANY
;
1868 pl011_dma_startup(uap
);
1870 pl011_enable_interrupts(uap
);
1875 clk_disable_unprepare(uap
->clk
);
1879 static int sbsa_uart_startup(struct uart_port
*port
)
1881 struct uart_amba_port
*uap
=
1882 container_of(port
, struct uart_amba_port
, port
);
1885 retval
= pl011_hwinit(port
);
1889 retval
= pl011_allocate_irq(uap
);
1893 /* The SBSA UART does not support any modem status lines. */
1894 uap
->old_status
= 0;
1896 pl011_enable_interrupts(uap
);
1901 static void pl011_shutdown_channel(struct uart_amba_port
*uap
, unsigned int lcrh
)
1905 val
= pl011_read(uap
, lcrh
);
1906 val
&= ~(UART01x_LCRH_BRK
| UART01x_LCRH_FEN
);
1907 pl011_write(val
, uap
, lcrh
);
1911 * disable the port. It should not disable RTS and DTR.
1912 * Also RTS and DTR state should be preserved to restore
1913 * it during startup().
1915 static void pl011_disable_uart(struct uart_amba_port
*uap
)
1919 uap
->port
.status
&= ~(UPSTAT_AUTOCTS
| UPSTAT_AUTORTS
);
1920 uart_port_lock_irq(&uap
->port
);
1921 cr
= pl011_read(uap
, REG_CR
);
1922 cr
&= UART011_CR_RTS
| UART011_CR_DTR
;
1923 cr
|= UART01x_CR_UARTEN
| UART011_CR_TXE
;
1924 pl011_write(cr
, uap
, REG_CR
);
1925 uart_port_unlock_irq(&uap
->port
);
1928 * disable break condition and fifos
1930 pl011_shutdown_channel(uap
, REG_LCRH_RX
);
1931 if (pl011_split_lcrh(uap
))
1932 pl011_shutdown_channel(uap
, REG_LCRH_TX
);
1935 static void pl011_disable_interrupts(struct uart_amba_port
*uap
)
1937 uart_port_lock_irq(&uap
->port
);
1939 /* mask all interrupts and clear all pending ones */
1941 pl011_write(uap
->im
, uap
, REG_IMSC
);
1942 pl011_write(0xffff, uap
, REG_ICR
);
1944 uart_port_unlock_irq(&uap
->port
);
1947 static void pl011_shutdown(struct uart_port
*port
)
1949 struct uart_amba_port
*uap
=
1950 container_of(port
, struct uart_amba_port
, port
);
1952 pl011_disable_interrupts(uap
);
1954 pl011_dma_shutdown(uap
);
1956 if ((port
->rs485
.flags
& SER_RS485_ENABLED
) && uap
->rs485_tx_started
)
1957 pl011_rs485_tx_stop(uap
);
1959 free_irq(uap
->port
.irq
, uap
);
1961 pl011_disable_uart(uap
);
1964 * Shut down the clock producer
1966 clk_disable_unprepare(uap
->clk
);
1967 /* Optionally let pins go into sleep states */
1968 pinctrl_pm_select_sleep_state(port
->dev
);
1970 if (dev_get_platdata(uap
->port
.dev
)) {
1971 struct amba_pl011_data
*plat
;
1973 plat
= dev_get_platdata(uap
->port
.dev
);
1978 if (uap
->port
.ops
->flush_buffer
)
1979 uap
->port
.ops
->flush_buffer(port
);
1982 static void sbsa_uart_shutdown(struct uart_port
*port
)
1984 struct uart_amba_port
*uap
=
1985 container_of(port
, struct uart_amba_port
, port
);
1987 pl011_disable_interrupts(uap
);
1989 free_irq(uap
->port
.irq
, uap
);
1991 if (uap
->port
.ops
->flush_buffer
)
1992 uap
->port
.ops
->flush_buffer(port
);
1996 pl011_setup_status_masks(struct uart_port
*port
, struct ktermios
*termios
)
1998 port
->read_status_mask
= UART011_DR_OE
| 255;
1999 if (termios
->c_iflag
& INPCK
)
2000 port
->read_status_mask
|= UART011_DR_FE
| UART011_DR_PE
;
2001 if (termios
->c_iflag
& (IGNBRK
| BRKINT
| PARMRK
))
2002 port
->read_status_mask
|= UART011_DR_BE
;
2005 * Characters to ignore
2007 port
->ignore_status_mask
= 0;
2008 if (termios
->c_iflag
& IGNPAR
)
2009 port
->ignore_status_mask
|= UART011_DR_FE
| UART011_DR_PE
;
2010 if (termios
->c_iflag
& IGNBRK
) {
2011 port
->ignore_status_mask
|= UART011_DR_BE
;
2013 * If we're ignoring parity and break indicators,
2014 * ignore overruns too (for real raw support).
2016 if (termios
->c_iflag
& IGNPAR
)
2017 port
->ignore_status_mask
|= UART011_DR_OE
;
2021 * Ignore all characters if CREAD is not set.
2023 if ((termios
->c_cflag
& CREAD
) == 0)
2024 port
->ignore_status_mask
|= UART_DUMMY_DR_RX
;
2028 pl011_set_termios(struct uart_port
*port
, struct ktermios
*termios
,
2029 const struct ktermios
*old
)
2031 struct uart_amba_port
*uap
=
2032 container_of(port
, struct uart_amba_port
, port
);
2033 unsigned int lcr_h
, old_cr
;
2034 unsigned long flags
;
2035 unsigned int baud
, quot
, clkdiv
;
2038 if (uap
->vendor
->oversampling
)
2044 * Ask the core to calculate the divisor for us.
2046 baud
= uart_get_baud_rate(port
, termios
, old
, 0,
2047 port
->uartclk
/ clkdiv
);
2048 #ifdef CONFIG_DMA_ENGINE
2050 * Adjust RX DMA polling rate with baud rate if not specified.
2052 if (uap
->dmarx
.auto_poll_rate
)
2053 uap
->dmarx
.poll_rate
= DIV_ROUND_UP(10000000, baud
);
2056 if (baud
> port
->uartclk
/ 16)
2057 quot
= DIV_ROUND_CLOSEST(port
->uartclk
* 8, baud
);
2059 quot
= DIV_ROUND_CLOSEST(port
->uartclk
* 4, baud
);
2061 switch (termios
->c_cflag
& CSIZE
) {
2063 lcr_h
= UART01x_LCRH_WLEN_5
;
2066 lcr_h
= UART01x_LCRH_WLEN_6
;
2069 lcr_h
= UART01x_LCRH_WLEN_7
;
2072 lcr_h
= UART01x_LCRH_WLEN_8
;
2075 if (termios
->c_cflag
& CSTOPB
)
2076 lcr_h
|= UART01x_LCRH_STP2
;
2077 if (termios
->c_cflag
& PARENB
) {
2078 lcr_h
|= UART01x_LCRH_PEN
;
2079 if (!(termios
->c_cflag
& PARODD
))
2080 lcr_h
|= UART01x_LCRH_EPS
;
2081 if (termios
->c_cflag
& CMSPAR
)
2082 lcr_h
|= UART011_LCRH_SPS
;
2084 if (uap
->fifosize
> 1)
2085 lcr_h
|= UART01x_LCRH_FEN
;
2087 bits
= tty_get_frame_size(termios
->c_cflag
);
2089 uart_port_lock_irqsave(port
, &flags
);
2092 * Update the per-port timeout.
2094 uart_update_timeout(port
, termios
->c_cflag
, baud
);
2097 * Calculate the approximated time it takes to transmit one character
2098 * with the given baud rate. We use this as the poll interval when we
2099 * wait for the tx queue to empty.
2101 uap
->rs485_tx_drain_interval
= DIV_ROUND_UP(bits
* 1000 * 1000, baud
);
2103 pl011_setup_status_masks(port
, termios
);
2105 if (UART_ENABLE_MS(port
, termios
->c_cflag
))
2106 pl011_enable_ms(port
);
2108 if (port
->rs485
.flags
& SER_RS485_ENABLED
)
2109 termios
->c_cflag
&= ~CRTSCTS
;
2111 old_cr
= pl011_read(uap
, REG_CR
);
2113 if (termios
->c_cflag
& CRTSCTS
) {
2114 if (old_cr
& UART011_CR_RTS
)
2115 old_cr
|= UART011_CR_RTSEN
;
2117 old_cr
|= UART011_CR_CTSEN
;
2118 port
->status
|= UPSTAT_AUTOCTS
| UPSTAT_AUTORTS
;
2120 old_cr
&= ~(UART011_CR_CTSEN
| UART011_CR_RTSEN
);
2121 port
->status
&= ~(UPSTAT_AUTOCTS
| UPSTAT_AUTORTS
);
2124 if (uap
->vendor
->oversampling
) {
2125 if (baud
> port
->uartclk
/ 16)
2126 old_cr
|= ST_UART011_CR_OVSFACT
;
2128 old_cr
&= ~ST_UART011_CR_OVSFACT
;
2132 * Workaround for the ST Micro oversampling variants to
2133 * increase the bitrate slightly, by lowering the divisor,
2134 * to avoid delayed sampling of start bit at high speeds,
2135 * else we see data corruption.
2137 if (uap
->vendor
->oversampling
) {
2138 if (baud
>= 3000000 && baud
< 3250000 && quot
> 1)
2140 else if (baud
> 3250000 && quot
> 2)
2144 pl011_write(quot
& 0x3f, uap
, REG_FBRD
);
2145 pl011_write(quot
>> 6, uap
, REG_IBRD
);
2148 * ----------v----------v----------v----------v-----
2149 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2150 * REG_FBRD & REG_IBRD.
2151 * ----------^----------^----------^----------^-----
2153 pl011_write_lcr_h(uap
, lcr_h
);
2156 * Receive was disabled by pl011_disable_uart during shutdown.
2157 * Need to reenable receive if you need to use a tty_driver
2158 * returns from tty_find_polling_driver() after a port shutdown.
2160 old_cr
|= UART011_CR_RXE
;
2161 pl011_write(old_cr
, uap
, REG_CR
);
2163 uart_port_unlock_irqrestore(port
, flags
);
2167 sbsa_uart_set_termios(struct uart_port
*port
, struct ktermios
*termios
,
2168 const struct ktermios
*old
)
2170 struct uart_amba_port
*uap
=
2171 container_of(port
, struct uart_amba_port
, port
);
2172 unsigned long flags
;
2174 tty_termios_encode_baud_rate(termios
, uap
->fixed_baud
, uap
->fixed_baud
);
2176 /* The SBSA UART only supports 8n1 without hardware flow control. */
2177 termios
->c_cflag
&= ~(CSIZE
| CSTOPB
| PARENB
| PARODD
);
2178 termios
->c_cflag
&= ~(CMSPAR
| CRTSCTS
);
2179 termios
->c_cflag
|= CS8
| CLOCAL
;
2181 uart_port_lock_irqsave(port
, &flags
);
2182 uart_update_timeout(port
, CS8
, uap
->fixed_baud
);
2183 pl011_setup_status_masks(port
, termios
);
2184 uart_port_unlock_irqrestore(port
, flags
);
2187 static const char *pl011_type(struct uart_port
*port
)
2189 struct uart_amba_port
*uap
=
2190 container_of(port
, struct uart_amba_port
, port
);
2191 return uap
->port
.type
== PORT_AMBA
? uap
->type
: NULL
;
2195 * Configure/autoconfigure the port.
2197 static void pl011_config_port(struct uart_port
*port
, int flags
)
2199 if (flags
& UART_CONFIG_TYPE
)
2200 port
->type
= PORT_AMBA
;
2204 * verify the new serial_struct (for TIOCSSERIAL).
2206 static int pl011_verify_port(struct uart_port
*port
, struct serial_struct
*ser
)
2210 if (ser
->type
!= PORT_UNKNOWN
&& ser
->type
!= PORT_AMBA
)
2212 if (ser
->irq
< 0 || ser
->irq
>= irq_get_nr_irqs())
2214 if (ser
->baud_base
< 9600)
2216 if (port
->mapbase
!= (unsigned long)ser
->iomem_base
)
2221 static int pl011_rs485_config(struct uart_port
*port
, struct ktermios
*termios
,
2222 struct serial_rs485
*rs485
)
2224 struct uart_amba_port
*uap
=
2225 container_of(port
, struct uart_amba_port
, port
);
2227 if (port
->rs485
.flags
& SER_RS485_ENABLED
)
2228 pl011_rs485_tx_stop(uap
);
2230 /* Make sure auto RTS is disabled */
2231 if (rs485
->flags
& SER_RS485_ENABLED
) {
2232 u32 cr
= pl011_read(uap
, REG_CR
);
2234 cr
&= ~UART011_CR_RTSEN
;
2235 pl011_write(cr
, uap
, REG_CR
);
2236 port
->status
&= ~UPSTAT_AUTORTS
;
2242 static const struct uart_ops amba_pl011_pops
= {
2243 .tx_empty
= pl011_tx_empty
,
2244 .set_mctrl
= pl011_set_mctrl
,
2245 .get_mctrl
= pl011_get_mctrl
,
2246 .stop_tx
= pl011_stop_tx
,
2247 .start_tx
= pl011_start_tx
,
2248 .stop_rx
= pl011_stop_rx
,
2249 .throttle
= pl011_throttle_rx
,
2250 .unthrottle
= pl011_unthrottle_rx
,
2251 .enable_ms
= pl011_enable_ms
,
2252 .break_ctl
= pl011_break_ctl
,
2253 .startup
= pl011_startup
,
2254 .shutdown
= pl011_shutdown
,
2255 .flush_buffer
= pl011_dma_flush_buffer
,
2256 .set_termios
= pl011_set_termios
,
2258 .config_port
= pl011_config_port
,
2259 .verify_port
= pl011_verify_port
,
2260 #ifdef CONFIG_CONSOLE_POLL
2261 .poll_init
= pl011_hwinit
,
2262 .poll_get_char
= pl011_get_poll_char
,
2263 .poll_put_char
= pl011_put_poll_char
,
2267 static void sbsa_uart_set_mctrl(struct uart_port
*port
, unsigned int mctrl
)
2271 static unsigned int sbsa_uart_get_mctrl(struct uart_port
*port
)
2276 static const struct uart_ops sbsa_uart_pops
= {
2277 .tx_empty
= pl011_tx_empty
,
2278 .set_mctrl
= sbsa_uart_set_mctrl
,
2279 .get_mctrl
= sbsa_uart_get_mctrl
,
2280 .stop_tx
= pl011_stop_tx
,
2281 .start_tx
= pl011_start_tx
,
2282 .stop_rx
= pl011_stop_rx
,
2283 .startup
= sbsa_uart_startup
,
2284 .shutdown
= sbsa_uart_shutdown
,
2285 .set_termios
= sbsa_uart_set_termios
,
2287 .config_port
= pl011_config_port
,
2288 .verify_port
= pl011_verify_port
,
2289 #ifdef CONFIG_CONSOLE_POLL
2290 .poll_init
= pl011_hwinit
,
2291 .poll_get_char
= pl011_get_poll_char
,
2292 .poll_put_char
= pl011_put_poll_char
,
2296 static struct uart_amba_port
*amba_ports
[UART_NR
];
2298 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2300 static void pl011_console_putchar(struct uart_port
*port
, unsigned char ch
)
2302 struct uart_amba_port
*uap
=
2303 container_of(port
, struct uart_amba_port
, port
);
2305 while (pl011_read(uap
, REG_FR
) & UART01x_FR_TXFF
)
2307 pl011_write(ch
, uap
, REG_DR
);
2311 pl011_console_write(struct console
*co
, const char *s
, unsigned int count
)
2313 struct uart_amba_port
*uap
= amba_ports
[co
->index
];
2314 unsigned int old_cr
= 0, new_cr
;
2315 unsigned long flags
;
2318 clk_enable(uap
->clk
);
2320 if (oops_in_progress
)
2321 locked
= uart_port_trylock_irqsave(&uap
->port
, &flags
);
2323 uart_port_lock_irqsave(&uap
->port
, &flags
);
2326 * First save the CR then disable the interrupts
2328 if (!uap
->vendor
->always_enabled
) {
2329 old_cr
= pl011_read(uap
, REG_CR
);
2330 new_cr
= old_cr
& ~UART011_CR_CTSEN
;
2331 new_cr
|= UART01x_CR_UARTEN
| UART011_CR_TXE
;
2332 pl011_write(new_cr
, uap
, REG_CR
);
2335 uart_console_write(&uap
->port
, s
, count
, pl011_console_putchar
);
2338 * Finally, wait for transmitter to become empty and restore the
2339 * TCR. Allow feature register bits to be inverted to work around
2342 while ((pl011_read(uap
, REG_FR
) ^ uap
->vendor
->inv_fr
)
2343 & uap
->vendor
->fr_busy
)
2345 if (!uap
->vendor
->always_enabled
)
2346 pl011_write(old_cr
, uap
, REG_CR
);
2349 uart_port_unlock_irqrestore(&uap
->port
, flags
);
2351 clk_disable(uap
->clk
);
2354 static void pl011_console_get_options(struct uart_amba_port
*uap
, int *baud
,
2355 int *parity
, int *bits
)
2357 unsigned int lcr_h
, ibrd
, fbrd
;
2359 if (!(pl011_read(uap
, REG_CR
) & UART01x_CR_UARTEN
))
2362 lcr_h
= pl011_read(uap
, REG_LCRH_TX
);
2365 if (lcr_h
& UART01x_LCRH_PEN
) {
2366 if (lcr_h
& UART01x_LCRH_EPS
)
2372 if ((lcr_h
& 0x60) == UART01x_LCRH_WLEN_7
)
2377 ibrd
= pl011_read(uap
, REG_IBRD
);
2378 fbrd
= pl011_read(uap
, REG_FBRD
);
2380 *baud
= uap
->port
.uartclk
* 4 / (64 * ibrd
+ fbrd
);
2382 if (uap
->vendor
->oversampling
&&
2383 (pl011_read(uap
, REG_CR
) & ST_UART011_CR_OVSFACT
))
2387 static int pl011_console_setup(struct console
*co
, char *options
)
2389 struct uart_amba_port
*uap
;
2397 * Check whether an invalid uart number has been specified, and
2398 * if so, search for the first available port that does have
2401 if (co
->index
>= UART_NR
)
2403 uap
= amba_ports
[co
->index
];
2407 /* Allow pins to be muxed in and configured */
2408 pinctrl_pm_select_default_state(uap
->port
.dev
);
2410 ret
= clk_prepare(uap
->clk
);
2414 if (dev_get_platdata(uap
->port
.dev
)) {
2415 struct amba_pl011_data
*plat
;
2417 plat
= dev_get_platdata(uap
->port
.dev
);
2422 uap
->port
.uartclk
= clk_get_rate(uap
->clk
);
2424 if (uap
->vendor
->fixed_options
) {
2425 baud
= uap
->fixed_baud
;
2428 uart_parse_options(options
,
2429 &baud
, &parity
, &bits
, &flow
);
2431 pl011_console_get_options(uap
, &baud
, &parity
, &bits
);
2434 return uart_set_options(&uap
->port
, co
, baud
, parity
, bits
, flow
);
2438 * pl011_console_match - non-standard console matching
2439 * @co: registering console
2440 * @name: name from console command line
2441 * @idx: index from console command line
2442 * @options: ptr to option string from console command line
2444 * Only attempts to match console command lines of the form:
2445 * console=pl011,mmio|mmio32,<addr>[,<options>]
2446 * console=pl011,0x<addr>[,<options>]
2447 * This form is used to register an initial earlycon boot console and
2448 * replace it with the amba_console at pl011 driver init.
2450 * Performs console setup for a match (as required by interface)
2451 * If no <options> are specified, then assume the h/w is already setup.
2453 * Returns 0 if console matches; otherwise non-zero to use default matching
2455 static int pl011_console_match(struct console
*co
, char *name
, int idx
,
2458 unsigned char iotype
;
2459 resource_size_t addr
;
2463 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2464 * have a distinct console name, so make sure we check for that.
2465 * The actual implementation of the erratum occurs in the probe
2468 if ((strcmp(name
, "qdf2400_e44") != 0) && (strcmp(name
, "pl011") != 0))
2471 if (uart_parse_earlycon(options
, &iotype
, &addr
, &options
))
2474 if (iotype
!= UPIO_MEM
&& iotype
!= UPIO_MEM32
)
2477 /* try to match the port specified on the command line */
2478 for (i
= 0; i
< ARRAY_SIZE(amba_ports
); i
++) {
2479 struct uart_port
*port
;
2484 port
= &amba_ports
[i
]->port
;
2486 if (port
->mapbase
!= addr
)
2490 uart_port_set_cons(port
, co
);
2491 return pl011_console_setup(co
, options
);
2497 static struct uart_driver amba_reg
;
2498 static struct console amba_console
= {
2500 .write
= pl011_console_write
,
2501 .device
= uart_console_device
,
2502 .setup
= pl011_console_setup
,
2503 .match
= pl011_console_match
,
2504 .flags
= CON_PRINTBUFFER
| CON_ANYTIME
,
2509 #define AMBA_CONSOLE (&amba_console)
2511 static void qdf2400_e44_putc(struct uart_port
*port
, unsigned char c
)
2513 while (readl(port
->membase
+ UART01x_FR
) & UART01x_FR_TXFF
)
2515 writel(c
, port
->membase
+ UART01x_DR
);
2516 while (!(readl(port
->membase
+ UART01x_FR
) & UART011_FR_TXFE
))
2520 static void qdf2400_e44_early_write(struct console
*con
, const char *s
, unsigned int n
)
2522 struct earlycon_device
*dev
= con
->data
;
2524 uart_console_write(&dev
->port
, s
, n
, qdf2400_e44_putc
);
2527 static void pl011_putc(struct uart_port
*port
, unsigned char c
)
2529 while (readl(port
->membase
+ UART01x_FR
) & UART01x_FR_TXFF
)
2531 if (port
->iotype
== UPIO_MEM32
)
2532 writel(c
, port
->membase
+ UART01x_DR
);
2534 writeb(c
, port
->membase
+ UART01x_DR
);
2535 while (readl(port
->membase
+ UART01x_FR
) & UART01x_FR_BUSY
)
2539 static void pl011_early_write(struct console
*con
, const char *s
, unsigned int n
)
2541 struct earlycon_device
*dev
= con
->data
;
2543 uart_console_write(&dev
->port
, s
, n
, pl011_putc
);
2546 #ifdef CONFIG_CONSOLE_POLL
2547 static int pl011_getc(struct uart_port
*port
)
2549 if (readl(port
->membase
+ UART01x_FR
) & UART01x_FR_RXFE
)
2550 return NO_POLL_CHAR
;
2552 if (port
->iotype
== UPIO_MEM32
)
2553 return readl(port
->membase
+ UART01x_DR
);
2555 return readb(port
->membase
+ UART01x_DR
);
2558 static int pl011_early_read(struct console
*con
, char *s
, unsigned int n
)
2560 struct earlycon_device
*dev
= con
->data
;
2561 int ch
, num_read
= 0;
2563 while (num_read
< n
) {
2564 ch
= pl011_getc(&dev
->port
);
2565 if (ch
== NO_POLL_CHAR
)
2574 #define pl011_early_read NULL
2578 * On non-ACPI systems, earlycon is enabled by specifying
2579 * "earlycon=pl011,<address>" on the kernel command line.
2581 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2582 * by specifying only "earlycon" on the command line. Because it requires
2583 * SPCR, the console starts after ACPI is parsed, which is later than a
2584 * traditional early console.
2586 * To get the traditional early console that starts before ACPI is parsed,
2587 * specify the full "earlycon=pl011,<address>" option.
2589 static int __init
pl011_early_console_setup(struct earlycon_device
*device
,
2592 if (!device
->port
.membase
)
2595 device
->con
->write
= pl011_early_write
;
2596 device
->con
->read
= pl011_early_read
;
2601 OF_EARLYCON_DECLARE(pl011
, "arm,pl011", pl011_early_console_setup
);
2603 OF_EARLYCON_DECLARE(pl011
, "arm,sbsa-uart", pl011_early_console_setup
);
2606 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2607 * Erratum 44, traditional earlycon can be enabled by specifying
2608 * "earlycon=qdf2400_e44,<address>". Any options are ignored.
2610 * Alternatively, you can just specify "earlycon", and the early console
2611 * will be enabled with the information from the SPCR table. In this
2612 * case, the SPCR code will detect the need for the E44 work-around,
2613 * and set the console name to "qdf2400_e44".
2616 qdf2400_e44_early_console_setup(struct earlycon_device
*device
,
2619 if (!device
->port
.membase
)
2622 device
->con
->write
= qdf2400_e44_early_write
;
2626 EARLYCON_DECLARE(qdf2400_e44
, qdf2400_e44_early_console_setup
);
2629 #define AMBA_CONSOLE NULL
2632 static struct uart_driver amba_reg
= {
2633 .owner
= THIS_MODULE
,
2634 .driver_name
= "ttyAMA",
2635 .dev_name
= "ttyAMA",
2636 .major
= SERIAL_AMBA_MAJOR
,
2637 .minor
= SERIAL_AMBA_MINOR
,
2639 .cons
= AMBA_CONSOLE
,
2642 static int pl011_probe_dt_alias(int index
, struct device
*dev
)
2644 struct device_node
*np
;
2645 static bool seen_dev_with_alias
;
2646 static bool seen_dev_without_alias
;
2649 if (!IS_ENABLED(CONFIG_OF
))
2656 ret
= of_alias_get_id(np
, "serial");
2658 seen_dev_without_alias
= true;
2661 seen_dev_with_alias
= true;
2662 if (ret
>= ARRAY_SIZE(amba_ports
) || amba_ports
[ret
]) {
2663 dev_warn(dev
, "requested serial port %d not available.\n", ret
);
2668 if (seen_dev_with_alias
&& seen_dev_without_alias
)
2669 dev_warn(dev
, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2674 /* unregisters the driver also if no more ports are left */
2675 static void pl011_unregister_port(struct uart_amba_port
*uap
)
2680 for (i
= 0; i
< ARRAY_SIZE(amba_ports
); i
++) {
2681 if (amba_ports
[i
] == uap
)
2682 amba_ports
[i
] = NULL
;
2683 else if (amba_ports
[i
])
2686 pl011_dma_remove(uap
);
2688 uart_unregister_driver(&amba_reg
);
2691 static int pl011_find_free_port(void)
2695 for (i
= 0; i
< ARRAY_SIZE(amba_ports
); i
++)
2702 static int pl011_setup_port(struct device
*dev
, struct uart_amba_port
*uap
,
2703 struct resource
*mmiobase
, int index
)
2708 base
= devm_ioremap_resource(dev
, mmiobase
);
2710 return PTR_ERR(base
);
2712 index
= pl011_probe_dt_alias(index
, dev
);
2714 uap
->port
.dev
= dev
;
2715 uap
->port
.mapbase
= mmiobase
->start
;
2716 uap
->port
.membase
= base
;
2717 uap
->port
.fifosize
= uap
->fifosize
;
2718 uap
->port
.has_sysrq
= IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE
);
2719 uap
->port
.flags
= UPF_BOOT_AUTOCONF
;
2720 uap
->port
.line
= index
;
2722 ret
= uart_get_rs485_mode(&uap
->port
);
2726 amba_ports
[index
] = uap
;
2731 static int pl011_register_port(struct uart_amba_port
*uap
)
2735 /* Ensure interrupts from this UART are masked and cleared */
2736 pl011_write(0, uap
, REG_IMSC
);
2737 pl011_write(0xffff, uap
, REG_ICR
);
2739 if (!amba_reg
.state
) {
2740 ret
= uart_register_driver(&amba_reg
);
2742 dev_err(uap
->port
.dev
,
2743 "Failed to register AMBA-PL011 driver\n");
2744 for (i
= 0; i
< ARRAY_SIZE(amba_ports
); i
++)
2745 if (amba_ports
[i
] == uap
)
2746 amba_ports
[i
] = NULL
;
2751 ret
= uart_add_one_port(&amba_reg
, &uap
->port
);
2753 pl011_unregister_port(uap
);
2758 static const struct serial_rs485 pl011_rs485_supported
= {
2759 .flags
= SER_RS485_ENABLED
| SER_RS485_RTS_ON_SEND
| SER_RS485_RTS_AFTER_SEND
|
2760 SER_RS485_RX_DURING_TX
,
2761 .delay_rts_before_send
= 1,
2762 .delay_rts_after_send
= 1,
2765 static int pl011_probe(struct amba_device
*dev
, const struct amba_id
*id
)
2767 struct uart_amba_port
*uap
;
2768 struct vendor_data
*vendor
= id
->data
;
2772 portnr
= pl011_find_free_port();
2776 uap
= devm_kzalloc(&dev
->dev
, sizeof(struct uart_amba_port
),
2781 uap
->clk
= devm_clk_get(&dev
->dev
, NULL
);
2782 if (IS_ERR(uap
->clk
))
2783 return PTR_ERR(uap
->clk
);
2785 uap
->reg_offset
= vendor
->reg_offset
;
2786 uap
->vendor
= vendor
;
2787 uap
->fifosize
= vendor
->get_fifosize(dev
);
2788 uap
->port
.iotype
= vendor
->access_32b
? UPIO_MEM32
: UPIO_MEM
;
2789 uap
->port
.irq
= dev
->irq
[0];
2790 uap
->port
.ops
= &amba_pl011_pops
;
2791 uap
->port
.rs485_config
= pl011_rs485_config
;
2792 uap
->port
.rs485_supported
= pl011_rs485_supported
;
2793 snprintf(uap
->type
, sizeof(uap
->type
), "PL011 rev%u", amba_rev(dev
));
2795 if (device_property_read_u32(&dev
->dev
, "reg-io-width", &val
) == 0) {
2798 uap
->port
.iotype
= UPIO_MEM
;
2801 uap
->port
.iotype
= UPIO_MEM32
;
2804 dev_warn(&dev
->dev
, "unsupported reg-io-width (%d)\n",
2810 ret
= pl011_setup_port(&dev
->dev
, uap
, &dev
->res
, portnr
);
2814 amba_set_drvdata(dev
, uap
);
2816 return pl011_register_port(uap
);
2819 static void pl011_remove(struct amba_device
*dev
)
2821 struct uart_amba_port
*uap
= amba_get_drvdata(dev
);
2823 uart_remove_one_port(&amba_reg
, &uap
->port
);
2824 pl011_unregister_port(uap
);
2827 #ifdef CONFIG_PM_SLEEP
2828 static int pl011_suspend(struct device
*dev
)
2830 struct uart_amba_port
*uap
= dev_get_drvdata(dev
);
2835 return uart_suspend_port(&amba_reg
, &uap
->port
);
2838 static int pl011_resume(struct device
*dev
)
2840 struct uart_amba_port
*uap
= dev_get_drvdata(dev
);
2845 return uart_resume_port(&amba_reg
, &uap
->port
);
2849 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops
, pl011_suspend
, pl011_resume
);
2851 #ifdef CONFIG_ACPI_SPCR_TABLE
2852 static void qpdf2400_erratum44_workaround(struct device
*dev
,
2853 struct uart_amba_port
*uap
)
2855 if (!qdf2400_e44_present
)
2858 dev_info(dev
, "working around QDF2400 SoC erratum 44\n");
2859 uap
->vendor
= &vendor_qdt_qdf2400_e44
;
2862 static void qpdf2400_erratum44_workaround(struct device
*dev
,
2863 struct uart_amba_port
*uap
)
2867 static int sbsa_uart_probe(struct platform_device
*pdev
)
2869 struct uart_amba_port
*uap
;
2875 * Check the mandatory baud rate parameter in the DT node early
2876 * so that we can easily exit with the error.
2878 if (pdev
->dev
.of_node
) {
2879 struct device_node
*np
= pdev
->dev
.of_node
;
2881 ret
= of_property_read_u32(np
, "current-speed", &baudrate
);
2888 portnr
= pl011_find_free_port();
2892 uap
= devm_kzalloc(&pdev
->dev
, sizeof(struct uart_amba_port
),
2897 ret
= platform_get_irq(pdev
, 0);
2900 uap
->port
.irq
= ret
;
2902 uap
->vendor
= &vendor_sbsa
;
2903 qpdf2400_erratum44_workaround(&pdev
->dev
, uap
);
2905 uap
->reg_offset
= uap
->vendor
->reg_offset
;
2907 uap
->port
.iotype
= uap
->vendor
->access_32b
? UPIO_MEM32
: UPIO_MEM
;
2908 uap
->port
.ops
= &sbsa_uart_pops
;
2909 uap
->fixed_baud
= baudrate
;
2911 snprintf(uap
->type
, sizeof(uap
->type
), "SBSA");
2913 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2915 ret
= pl011_setup_port(&pdev
->dev
, uap
, r
, portnr
);
2919 platform_set_drvdata(pdev
, uap
);
2921 return pl011_register_port(uap
);
2924 static void sbsa_uart_remove(struct platform_device
*pdev
)
2926 struct uart_amba_port
*uap
= platform_get_drvdata(pdev
);
2928 uart_remove_one_port(&amba_reg
, &uap
->port
);
2929 pl011_unregister_port(uap
);
2932 static const struct of_device_id sbsa_uart_of_match
[] = {
2933 { .compatible
= "arm,sbsa-uart", },
2936 MODULE_DEVICE_TABLE(of
, sbsa_uart_of_match
);
2938 static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match
[] = {
2943 MODULE_DEVICE_TABLE(acpi
, sbsa_uart_acpi_match
);
2945 static struct platform_driver arm_sbsa_uart_platform_driver
= {
2946 .probe
= sbsa_uart_probe
,
2947 .remove
= sbsa_uart_remove
,
2949 .name
= "sbsa-uart",
2950 .pm
= &pl011_dev_pm_ops
,
2951 .of_match_table
= of_match_ptr(sbsa_uart_of_match
),
2952 .acpi_match_table
= ACPI_PTR(sbsa_uart_acpi_match
),
2953 .suppress_bind_attrs
= IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011
),
2957 static const struct amba_id pl011_ids
[] = {
2961 .data
= &vendor_arm
,
2971 MODULE_DEVICE_TABLE(amba
, pl011_ids
);
2973 static struct amba_driver pl011_driver
= {
2975 .name
= "uart-pl011",
2976 .pm
= &pl011_dev_pm_ops
,
2977 .suppress_bind_attrs
= IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011
),
2979 .id_table
= pl011_ids
,
2980 .probe
= pl011_probe
,
2981 .remove
= pl011_remove
,
2984 static int __init
pl011_init(void)
2986 pr_info("Serial: AMBA PL011 UART driver\n");
2988 if (platform_driver_register(&arm_sbsa_uart_platform_driver
))
2989 pr_warn("could not register SBSA UART platform driver\n");
2990 return amba_driver_register(&pl011_driver
);
2993 static void __exit
pl011_exit(void)
2995 platform_driver_unregister(&arm_sbsa_uart_platform_driver
);
2996 amba_driver_unregister(&pl011_driver
);
3000 * While this can be a module, if builtin it's most likely the console
3001 * So let's leave module_exit but move module_init to an earlier place
3003 arch_initcall(pl011_init
);
3004 module_exit(pl011_exit
);
3006 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
3007 MODULE_DESCRIPTION("ARM AMBA serial port driver");
3008 MODULE_LICENSE("GPL");