drm/rockchip: Don't change hdmi reference clock rate
[drm/drm-misc.git] / drivers / vfio / pci / vfio_pci_core.c
blob1ab58da9f38a6eae6077cbb88efb1d667215efee
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
4 * Author: Alex Williamson <alex.williamson@redhat.com>
6 * Derived from original vfio:
7 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
8 * Author: Tom Lyon, pugs@cisco.com
9 */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/aperture.h>
14 #include <linux/device.h>
15 #include <linux/eventfd.h>
16 #include <linux/file.h>
17 #include <linux/interrupt.h>
18 #include <linux/iommu.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/notifier.h>
22 #include <linux/pci.h>
23 #include <linux/pfn_t.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/slab.h>
26 #include <linux/types.h>
27 #include <linux/uaccess.h>
28 #include <linux/vgaarb.h>
29 #include <linux/nospec.h>
30 #include <linux/sched/mm.h>
31 #include <linux/iommufd.h>
32 #if IS_ENABLED(CONFIG_EEH)
33 #include <asm/eeh.h>
34 #endif
36 #include "vfio_pci_priv.h"
38 #define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>"
39 #define DRIVER_DESC "core driver for VFIO based PCI devices"
41 static bool nointxmask;
42 static bool disable_vga;
43 static bool disable_idle_d3;
45 /* List of PF's that vfio_pci_core_sriov_configure() has been called on */
46 static DEFINE_MUTEX(vfio_pci_sriov_pfs_mutex);
47 static LIST_HEAD(vfio_pci_sriov_pfs);
49 struct vfio_pci_dummy_resource {
50 struct resource resource;
51 int index;
52 struct list_head res_next;
55 struct vfio_pci_vf_token {
56 struct mutex lock;
57 uuid_t uuid;
58 int users;
61 static inline bool vfio_vga_disabled(void)
63 #ifdef CONFIG_VFIO_PCI_VGA
64 return disable_vga;
65 #else
66 return true;
67 #endif
71 * Our VGA arbiter participation is limited since we don't know anything
72 * about the device itself. However, if the device is the only VGA device
73 * downstream of a bridge and VFIO VGA support is disabled, then we can
74 * safely return legacy VGA IO and memory as not decoded since the user
75 * has no way to get to it and routing can be disabled externally at the
76 * bridge.
78 static unsigned int vfio_pci_set_decode(struct pci_dev *pdev, bool single_vga)
80 struct pci_dev *tmp = NULL;
81 unsigned char max_busnr;
82 unsigned int decodes;
84 if (single_vga || !vfio_vga_disabled() || pci_is_root_bus(pdev->bus))
85 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM |
86 VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM;
88 max_busnr = pci_bus_max_busnr(pdev->bus);
89 decodes = VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
91 while ((tmp = pci_get_class(PCI_CLASS_DISPLAY_VGA << 8, tmp)) != NULL) {
92 if (tmp == pdev ||
93 pci_domain_nr(tmp->bus) != pci_domain_nr(pdev->bus) ||
94 pci_is_root_bus(tmp->bus))
95 continue;
97 if (tmp->bus->number >= pdev->bus->number &&
98 tmp->bus->number <= max_busnr) {
99 pci_dev_put(tmp);
100 decodes |= VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM;
101 break;
105 return decodes;
108 static void vfio_pci_probe_mmaps(struct vfio_pci_core_device *vdev)
110 struct resource *res;
111 int i;
112 struct vfio_pci_dummy_resource *dummy_res;
114 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
115 int bar = i + PCI_STD_RESOURCES;
117 res = &vdev->pdev->resource[bar];
119 if (!IS_ENABLED(CONFIG_VFIO_PCI_MMAP))
120 goto no_mmap;
122 if (!(res->flags & IORESOURCE_MEM))
123 goto no_mmap;
126 * The PCI core shouldn't set up a resource with a
127 * type but zero size. But there may be bugs that
128 * cause us to do that.
130 if (!resource_size(res))
131 goto no_mmap;
133 if (resource_size(res) >= PAGE_SIZE) {
134 vdev->bar_mmap_supported[bar] = true;
135 continue;
138 if (!(res->start & ~PAGE_MASK)) {
140 * Add a dummy resource to reserve the remainder
141 * of the exclusive page in case that hot-add
142 * device's bar is assigned into it.
144 dummy_res =
145 kzalloc(sizeof(*dummy_res), GFP_KERNEL_ACCOUNT);
146 if (dummy_res == NULL)
147 goto no_mmap;
149 dummy_res->resource.name = "vfio sub-page reserved";
150 dummy_res->resource.start = res->end + 1;
151 dummy_res->resource.end = res->start + PAGE_SIZE - 1;
152 dummy_res->resource.flags = res->flags;
153 if (request_resource(res->parent,
154 &dummy_res->resource)) {
155 kfree(dummy_res);
156 goto no_mmap;
158 dummy_res->index = bar;
159 list_add(&dummy_res->res_next,
160 &vdev->dummy_resources_list);
161 vdev->bar_mmap_supported[bar] = true;
162 continue;
165 * Here we don't handle the case when the BAR is not page
166 * aligned because we can't expect the BAR will be
167 * assigned into the same location in a page in guest
168 * when we passthrough the BAR. And it's hard to access
169 * this BAR in userspace because we have no way to get
170 * the BAR's location in a page.
172 no_mmap:
173 vdev->bar_mmap_supported[bar] = false;
177 struct vfio_pci_group_info;
178 static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set);
179 static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set,
180 struct vfio_pci_group_info *groups,
181 struct iommufd_ctx *iommufd_ctx);
184 * INTx masking requires the ability to disable INTx signaling via PCI_COMMAND
185 * _and_ the ability detect when the device is asserting INTx via PCI_STATUS.
186 * If a device implements the former but not the latter we would typically
187 * expect broken_intx_masking be set and require an exclusive interrupt.
188 * However since we do have control of the device's ability to assert INTx,
189 * we can instead pretend that the device does not implement INTx, virtualizing
190 * the pin register to report zero and maintaining DisINTx set on the host.
192 static bool vfio_pci_nointx(struct pci_dev *pdev)
194 switch (pdev->vendor) {
195 case PCI_VENDOR_ID_INTEL:
196 switch (pdev->device) {
197 /* All i40e (XL710/X710/XXV710) 10/20/25/40GbE NICs */
198 case 0x1572:
199 case 0x1574:
200 case 0x1580 ... 0x1581:
201 case 0x1583 ... 0x158b:
202 case 0x37d0 ... 0x37d2:
203 /* X550 */
204 case 0x1563:
205 return true;
206 default:
207 return false;
211 return false;
214 static void vfio_pci_probe_power_state(struct vfio_pci_core_device *vdev)
216 struct pci_dev *pdev = vdev->pdev;
217 u16 pmcsr;
219 if (!pdev->pm_cap)
220 return;
222 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
224 vdev->needs_pm_restore = !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
228 * pci_set_power_state() wrapper handling devices which perform a soft reset on
229 * D3->D0 transition. Save state prior to D0/1/2->D3, stash it on the vdev,
230 * restore when returned to D0. Saved separately from pci_saved_state for use
231 * by PM capability emulation and separately from pci_dev internal saved state
232 * to avoid it being overwritten and consumed around other resets.
234 int vfio_pci_set_power_state(struct vfio_pci_core_device *vdev, pci_power_t state)
236 struct pci_dev *pdev = vdev->pdev;
237 bool needs_restore = false, needs_save = false;
238 int ret;
240 /* Prevent changing power state for PFs with VFs enabled */
241 if (pci_num_vf(pdev) && state > PCI_D0)
242 return -EBUSY;
244 if (vdev->needs_pm_restore) {
245 if (pdev->current_state < PCI_D3hot && state >= PCI_D3hot) {
246 pci_save_state(pdev);
247 needs_save = true;
250 if (pdev->current_state >= PCI_D3hot && state <= PCI_D0)
251 needs_restore = true;
254 ret = pci_set_power_state(pdev, state);
256 if (!ret) {
257 /* D3 might be unsupported via quirk, skip unless in D3 */
258 if (needs_save && pdev->current_state >= PCI_D3hot) {
260 * The current PCI state will be saved locally in
261 * 'pm_save' during the D3hot transition. When the
262 * device state is changed to D0 again with the current
263 * function, then pci_store_saved_state() will restore
264 * the state and will free the memory pointed by
265 * 'pm_save'. There are few cases where the PCI power
266 * state can be changed to D0 without the involvement
267 * of the driver. For these cases, free the earlier
268 * allocated memory first before overwriting 'pm_save'
269 * to prevent the memory leak.
271 kfree(vdev->pm_save);
272 vdev->pm_save = pci_store_saved_state(pdev);
273 } else if (needs_restore) {
274 pci_load_and_free_saved_state(pdev, &vdev->pm_save);
275 pci_restore_state(pdev);
279 return ret;
282 static int vfio_pci_runtime_pm_entry(struct vfio_pci_core_device *vdev,
283 struct eventfd_ctx *efdctx)
286 * The vdev power related flags are protected with 'memory_lock'
287 * semaphore.
289 vfio_pci_zap_and_down_write_memory_lock(vdev);
290 if (vdev->pm_runtime_engaged) {
291 up_write(&vdev->memory_lock);
292 return -EINVAL;
295 vdev->pm_runtime_engaged = true;
296 vdev->pm_wake_eventfd_ctx = efdctx;
297 pm_runtime_put_noidle(&vdev->pdev->dev);
298 up_write(&vdev->memory_lock);
300 return 0;
303 static int vfio_pci_core_pm_entry(struct vfio_device *device, u32 flags,
304 void __user *arg, size_t argsz)
306 struct vfio_pci_core_device *vdev =
307 container_of(device, struct vfio_pci_core_device, vdev);
308 int ret;
310 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0);
311 if (ret != 1)
312 return ret;
315 * Inside vfio_pci_runtime_pm_entry(), only the runtime PM usage count
316 * will be decremented. The pm_runtime_put() will be invoked again
317 * while returning from the ioctl and then the device can go into
318 * runtime suspended state.
320 return vfio_pci_runtime_pm_entry(vdev, NULL);
323 static int vfio_pci_core_pm_entry_with_wakeup(
324 struct vfio_device *device, u32 flags,
325 struct vfio_device_low_power_entry_with_wakeup __user *arg,
326 size_t argsz)
328 struct vfio_pci_core_device *vdev =
329 container_of(device, struct vfio_pci_core_device, vdev);
330 struct vfio_device_low_power_entry_with_wakeup entry;
331 struct eventfd_ctx *efdctx;
332 int ret;
334 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET,
335 sizeof(entry));
336 if (ret != 1)
337 return ret;
339 if (copy_from_user(&entry, arg, sizeof(entry)))
340 return -EFAULT;
342 if (entry.wakeup_eventfd < 0)
343 return -EINVAL;
345 efdctx = eventfd_ctx_fdget(entry.wakeup_eventfd);
346 if (IS_ERR(efdctx))
347 return PTR_ERR(efdctx);
349 ret = vfio_pci_runtime_pm_entry(vdev, efdctx);
350 if (ret)
351 eventfd_ctx_put(efdctx);
353 return ret;
356 static void __vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev)
358 if (vdev->pm_runtime_engaged) {
359 vdev->pm_runtime_engaged = false;
360 pm_runtime_get_noresume(&vdev->pdev->dev);
362 if (vdev->pm_wake_eventfd_ctx) {
363 eventfd_ctx_put(vdev->pm_wake_eventfd_ctx);
364 vdev->pm_wake_eventfd_ctx = NULL;
369 static void vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev)
372 * The vdev power related flags are protected with 'memory_lock'
373 * semaphore.
375 down_write(&vdev->memory_lock);
376 __vfio_pci_runtime_pm_exit(vdev);
377 up_write(&vdev->memory_lock);
380 static int vfio_pci_core_pm_exit(struct vfio_device *device, u32 flags,
381 void __user *arg, size_t argsz)
383 struct vfio_pci_core_device *vdev =
384 container_of(device, struct vfio_pci_core_device, vdev);
385 int ret;
387 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0);
388 if (ret != 1)
389 return ret;
392 * The device is always in the active state here due to pm wrappers
393 * around ioctls. If the device had entered a low power state and
394 * pm_wake_eventfd_ctx is valid, vfio_pci_core_runtime_resume() has
395 * already signaled the eventfd and exited low power mode itself.
396 * pm_runtime_engaged protects the redundant call here.
398 vfio_pci_runtime_pm_exit(vdev);
399 return 0;
402 #ifdef CONFIG_PM
403 static int vfio_pci_core_runtime_suspend(struct device *dev)
405 struct vfio_pci_core_device *vdev = dev_get_drvdata(dev);
407 down_write(&vdev->memory_lock);
409 * The user can move the device into D3hot state before invoking
410 * power management IOCTL. Move the device into D0 state here and then
411 * the pci-driver core runtime PM suspend function will move the device
412 * into the low power state. Also, for the devices which have
413 * NoSoftRst-, it will help in restoring the original state
414 * (saved locally in 'vdev->pm_save').
416 vfio_pci_set_power_state(vdev, PCI_D0);
417 up_write(&vdev->memory_lock);
420 * If INTx is enabled, then mask INTx before going into the runtime
421 * suspended state and unmask the same in the runtime resume.
422 * If INTx has already been masked by the user, then
423 * vfio_pci_intx_mask() will return false and in that case, INTx
424 * should not be unmasked in the runtime resume.
426 vdev->pm_intx_masked = ((vdev->irq_type == VFIO_PCI_INTX_IRQ_INDEX) &&
427 vfio_pci_intx_mask(vdev));
429 return 0;
432 static int vfio_pci_core_runtime_resume(struct device *dev)
434 struct vfio_pci_core_device *vdev = dev_get_drvdata(dev);
437 * Resume with a pm_wake_eventfd_ctx signals the eventfd and exit
438 * low power mode.
440 down_write(&vdev->memory_lock);
441 if (vdev->pm_wake_eventfd_ctx) {
442 eventfd_signal(vdev->pm_wake_eventfd_ctx);
443 __vfio_pci_runtime_pm_exit(vdev);
445 up_write(&vdev->memory_lock);
447 if (vdev->pm_intx_masked)
448 vfio_pci_intx_unmask(vdev);
450 return 0;
452 #endif /* CONFIG_PM */
455 * The pci-driver core runtime PM routines always save the device state
456 * before going into suspended state. If the device is going into low power
457 * state with only with runtime PM ops, then no explicit handling is needed
458 * for the devices which have NoSoftRst-.
460 static const struct dev_pm_ops vfio_pci_core_pm_ops = {
461 SET_RUNTIME_PM_OPS(vfio_pci_core_runtime_suspend,
462 vfio_pci_core_runtime_resume,
463 NULL)
466 int vfio_pci_core_enable(struct vfio_pci_core_device *vdev)
468 struct pci_dev *pdev = vdev->pdev;
469 int ret;
470 u16 cmd;
471 u8 msix_pos;
473 if (!disable_idle_d3) {
474 ret = pm_runtime_resume_and_get(&pdev->dev);
475 if (ret < 0)
476 return ret;
479 /* Don't allow our initial saved state to include busmaster */
480 pci_clear_master(pdev);
482 ret = pci_enable_device(pdev);
483 if (ret)
484 goto out_power;
486 /* If reset fails because of the device lock, fail this path entirely */
487 ret = pci_try_reset_function(pdev);
488 if (ret == -EAGAIN)
489 goto out_disable_device;
491 vdev->reset_works = !ret;
492 pci_save_state(pdev);
493 vdev->pci_saved_state = pci_store_saved_state(pdev);
494 if (!vdev->pci_saved_state)
495 pci_dbg(pdev, "%s: Couldn't store saved state\n", __func__);
497 if (likely(!nointxmask)) {
498 if (vfio_pci_nointx(pdev)) {
499 pci_info(pdev, "Masking broken INTx support\n");
500 vdev->nointx = true;
501 pci_intx(pdev, 0);
502 } else
503 vdev->pci_2_3 = pci_intx_mask_supported(pdev);
506 pci_read_config_word(pdev, PCI_COMMAND, &cmd);
507 if (vdev->pci_2_3 && (cmd & PCI_COMMAND_INTX_DISABLE)) {
508 cmd &= ~PCI_COMMAND_INTX_DISABLE;
509 pci_write_config_word(pdev, PCI_COMMAND, cmd);
512 ret = vfio_pci_zdev_open_device(vdev);
513 if (ret)
514 goto out_free_state;
516 ret = vfio_config_init(vdev);
517 if (ret)
518 goto out_free_zdev;
520 msix_pos = pdev->msix_cap;
521 if (msix_pos) {
522 u16 flags;
523 u32 table;
525 pci_read_config_word(pdev, msix_pos + PCI_MSIX_FLAGS, &flags);
526 pci_read_config_dword(pdev, msix_pos + PCI_MSIX_TABLE, &table);
528 vdev->msix_bar = table & PCI_MSIX_TABLE_BIR;
529 vdev->msix_offset = table & PCI_MSIX_TABLE_OFFSET;
530 vdev->msix_size = ((flags & PCI_MSIX_FLAGS_QSIZE) + 1) * 16;
531 vdev->has_dyn_msix = pci_msix_can_alloc_dyn(pdev);
532 } else {
533 vdev->msix_bar = 0xFF;
534 vdev->has_dyn_msix = false;
537 if (!vfio_vga_disabled() && vfio_pci_is_vga(pdev))
538 vdev->has_vga = true;
541 return 0;
543 out_free_zdev:
544 vfio_pci_zdev_close_device(vdev);
545 out_free_state:
546 kfree(vdev->pci_saved_state);
547 vdev->pci_saved_state = NULL;
548 out_disable_device:
549 pci_disable_device(pdev);
550 out_power:
551 if (!disable_idle_d3)
552 pm_runtime_put(&pdev->dev);
553 return ret;
555 EXPORT_SYMBOL_GPL(vfio_pci_core_enable);
557 void vfio_pci_core_disable(struct vfio_pci_core_device *vdev)
559 struct pci_dev *pdev = vdev->pdev;
560 struct vfio_pci_dummy_resource *dummy_res, *tmp;
561 struct vfio_pci_ioeventfd *ioeventfd, *ioeventfd_tmp;
562 int i, bar;
564 /* For needs_reset */
565 lockdep_assert_held(&vdev->vdev.dev_set->lock);
568 * This function can be invoked while the power state is non-D0.
569 * This non-D0 power state can be with or without runtime PM.
570 * vfio_pci_runtime_pm_exit() will internally increment the usage
571 * count corresponding to pm_runtime_put() called during low power
572 * feature entry and then pm_runtime_resume() will wake up the device,
573 * if the device has already gone into the suspended state. Otherwise,
574 * the vfio_pci_set_power_state() will change the device power state
575 * to D0.
577 vfio_pci_runtime_pm_exit(vdev);
578 pm_runtime_resume(&pdev->dev);
581 * This function calls __pci_reset_function_locked() which internally
582 * can use pci_pm_reset() for the function reset. pci_pm_reset() will
583 * fail if the power state is non-D0. Also, for the devices which
584 * have NoSoftRst-, the reset function can cause the PCI config space
585 * reset without restoring the original state (saved locally in
586 * 'vdev->pm_save').
588 vfio_pci_set_power_state(vdev, PCI_D0);
590 /* Stop the device from further DMA */
591 pci_clear_master(pdev);
593 vfio_pci_set_irqs_ioctl(vdev, VFIO_IRQ_SET_DATA_NONE |
594 VFIO_IRQ_SET_ACTION_TRIGGER,
595 vdev->irq_type, 0, 0, NULL);
597 /* Device closed, don't need mutex here */
598 list_for_each_entry_safe(ioeventfd, ioeventfd_tmp,
599 &vdev->ioeventfds_list, next) {
600 vfio_virqfd_disable(&ioeventfd->virqfd);
601 list_del(&ioeventfd->next);
602 kfree(ioeventfd);
604 vdev->ioeventfds_nr = 0;
606 vdev->virq_disabled = false;
608 for (i = 0; i < vdev->num_regions; i++)
609 vdev->region[i].ops->release(vdev, &vdev->region[i]);
611 vdev->num_regions = 0;
612 kfree(vdev->region);
613 vdev->region = NULL; /* don't krealloc a freed pointer */
615 vfio_config_free(vdev);
617 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
618 bar = i + PCI_STD_RESOURCES;
619 if (!vdev->barmap[bar])
620 continue;
621 pci_iounmap(pdev, vdev->barmap[bar]);
622 pci_release_selected_regions(pdev, 1 << bar);
623 vdev->barmap[bar] = NULL;
626 list_for_each_entry_safe(dummy_res, tmp,
627 &vdev->dummy_resources_list, res_next) {
628 list_del(&dummy_res->res_next);
629 release_resource(&dummy_res->resource);
630 kfree(dummy_res);
633 vdev->needs_reset = true;
635 vfio_pci_zdev_close_device(vdev);
638 * If we have saved state, restore it. If we can reset the device,
639 * even better. Resetting with current state seems better than
640 * nothing, but saving and restoring current state without reset
641 * is just busy work.
643 if (pci_load_and_free_saved_state(pdev, &vdev->pci_saved_state)) {
644 pci_info(pdev, "%s: Couldn't reload saved state\n", __func__);
646 if (!vdev->reset_works)
647 goto out;
649 pci_save_state(pdev);
653 * Disable INTx and MSI, presumably to avoid spurious interrupts
654 * during reset. Stolen from pci_reset_function()
656 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
659 * Try to get the locks ourselves to prevent a deadlock. The
660 * success of this is dependent on being able to lock the device,
661 * which is not always possible.
662 * We can not use the "try" reset interface here, which will
663 * overwrite the previously restored configuration information.
665 if (vdev->reset_works && pci_dev_trylock(pdev)) {
666 if (!__pci_reset_function_locked(pdev))
667 vdev->needs_reset = false;
668 pci_dev_unlock(pdev);
671 pci_restore_state(pdev);
672 out:
673 pci_disable_device(pdev);
675 vfio_pci_dev_set_try_reset(vdev->vdev.dev_set);
677 /* Put the pm-runtime usage counter acquired during enable */
678 if (!disable_idle_d3)
679 pm_runtime_put(&pdev->dev);
681 EXPORT_SYMBOL_GPL(vfio_pci_core_disable);
683 void vfio_pci_core_close_device(struct vfio_device *core_vdev)
685 struct vfio_pci_core_device *vdev =
686 container_of(core_vdev, struct vfio_pci_core_device, vdev);
688 if (vdev->sriov_pf_core_dev) {
689 mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock);
690 WARN_ON(!vdev->sriov_pf_core_dev->vf_token->users);
691 vdev->sriov_pf_core_dev->vf_token->users--;
692 mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock);
694 #if IS_ENABLED(CONFIG_EEH)
695 eeh_dev_release(vdev->pdev);
696 #endif
697 vfio_pci_core_disable(vdev);
699 mutex_lock(&vdev->igate);
700 if (vdev->err_trigger) {
701 eventfd_ctx_put(vdev->err_trigger);
702 vdev->err_trigger = NULL;
704 if (vdev->req_trigger) {
705 eventfd_ctx_put(vdev->req_trigger);
706 vdev->req_trigger = NULL;
708 mutex_unlock(&vdev->igate);
710 EXPORT_SYMBOL_GPL(vfio_pci_core_close_device);
712 void vfio_pci_core_finish_enable(struct vfio_pci_core_device *vdev)
714 vfio_pci_probe_mmaps(vdev);
715 #if IS_ENABLED(CONFIG_EEH)
716 eeh_dev_open(vdev->pdev);
717 #endif
719 if (vdev->sriov_pf_core_dev) {
720 mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock);
721 vdev->sriov_pf_core_dev->vf_token->users++;
722 mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock);
725 EXPORT_SYMBOL_GPL(vfio_pci_core_finish_enable);
727 static int vfio_pci_get_irq_count(struct vfio_pci_core_device *vdev, int irq_type)
729 if (irq_type == VFIO_PCI_INTX_IRQ_INDEX) {
730 u8 pin;
732 if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) ||
733 vdev->nointx || vdev->pdev->is_virtfn)
734 return 0;
736 pci_read_config_byte(vdev->pdev, PCI_INTERRUPT_PIN, &pin);
738 return pin ? 1 : 0;
739 } else if (irq_type == VFIO_PCI_MSI_IRQ_INDEX) {
740 u8 pos;
741 u16 flags;
743 pos = vdev->pdev->msi_cap;
744 if (pos) {
745 pci_read_config_word(vdev->pdev,
746 pos + PCI_MSI_FLAGS, &flags);
747 return 1 << ((flags & PCI_MSI_FLAGS_QMASK) >> 1);
749 } else if (irq_type == VFIO_PCI_MSIX_IRQ_INDEX) {
750 u8 pos;
751 u16 flags;
753 pos = vdev->pdev->msix_cap;
754 if (pos) {
755 pci_read_config_word(vdev->pdev,
756 pos + PCI_MSIX_FLAGS, &flags);
758 return (flags & PCI_MSIX_FLAGS_QSIZE) + 1;
760 } else if (irq_type == VFIO_PCI_ERR_IRQ_INDEX) {
761 if (pci_is_pcie(vdev->pdev))
762 return 1;
763 } else if (irq_type == VFIO_PCI_REQ_IRQ_INDEX) {
764 return 1;
767 return 0;
770 static int vfio_pci_count_devs(struct pci_dev *pdev, void *data)
772 (*(int *)data)++;
773 return 0;
776 struct vfio_pci_fill_info {
777 struct vfio_device *vdev;
778 struct vfio_pci_dependent_device *devices;
779 int nr_devices;
780 u32 count;
781 u32 flags;
784 static int vfio_pci_fill_devs(struct pci_dev *pdev, void *data)
786 struct vfio_pci_dependent_device *info;
787 struct vfio_pci_fill_info *fill = data;
789 /* The topology changed since we counted devices */
790 if (fill->count >= fill->nr_devices)
791 return -EAGAIN;
793 info = &fill->devices[fill->count++];
794 info->segment = pci_domain_nr(pdev->bus);
795 info->bus = pdev->bus->number;
796 info->devfn = pdev->devfn;
798 if (fill->flags & VFIO_PCI_HOT_RESET_FLAG_DEV_ID) {
799 struct iommufd_ctx *iommufd = vfio_iommufd_device_ictx(fill->vdev);
800 struct vfio_device_set *dev_set = fill->vdev->dev_set;
801 struct vfio_device *vdev;
804 * hot-reset requires all affected devices be represented in
805 * the dev_set.
807 vdev = vfio_find_device_in_devset(dev_set, &pdev->dev);
808 if (!vdev) {
809 info->devid = VFIO_PCI_DEVID_NOT_OWNED;
810 } else {
811 int id = vfio_iommufd_get_dev_id(vdev, iommufd);
813 if (id > 0)
814 info->devid = id;
815 else if (id == -ENOENT)
816 info->devid = VFIO_PCI_DEVID_OWNED;
817 else
818 info->devid = VFIO_PCI_DEVID_NOT_OWNED;
820 /* If devid is VFIO_PCI_DEVID_NOT_OWNED, clear owned flag. */
821 if (info->devid == VFIO_PCI_DEVID_NOT_OWNED)
822 fill->flags &= ~VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED;
823 } else {
824 struct iommu_group *iommu_group;
826 iommu_group = iommu_group_get(&pdev->dev);
827 if (!iommu_group)
828 return -EPERM; /* Cannot reset non-isolated devices */
830 info->group_id = iommu_group_id(iommu_group);
831 iommu_group_put(iommu_group);
834 return 0;
837 struct vfio_pci_group_info {
838 int count;
839 struct file **files;
842 static bool vfio_pci_dev_below_slot(struct pci_dev *pdev, struct pci_slot *slot)
844 for (; pdev; pdev = pdev->bus->self)
845 if (pdev->bus == slot->bus)
846 return (pdev->slot == slot);
847 return false;
850 struct vfio_pci_walk_info {
851 int (*fn)(struct pci_dev *pdev, void *data);
852 void *data;
853 struct pci_dev *pdev;
854 bool slot;
855 int ret;
858 static int vfio_pci_walk_wrapper(struct pci_dev *pdev, void *data)
860 struct vfio_pci_walk_info *walk = data;
862 if (!walk->slot || vfio_pci_dev_below_slot(pdev, walk->pdev->slot))
863 walk->ret = walk->fn(pdev, walk->data);
865 return walk->ret;
868 static int vfio_pci_for_each_slot_or_bus(struct pci_dev *pdev,
869 int (*fn)(struct pci_dev *,
870 void *data), void *data,
871 bool slot)
873 struct vfio_pci_walk_info walk = {
874 .fn = fn, .data = data, .pdev = pdev, .slot = slot, .ret = 0,
877 pci_walk_bus(pdev->bus, vfio_pci_walk_wrapper, &walk);
879 return walk.ret;
882 static int msix_mmappable_cap(struct vfio_pci_core_device *vdev,
883 struct vfio_info_cap *caps)
885 struct vfio_info_cap_header header = {
886 .id = VFIO_REGION_INFO_CAP_MSIX_MAPPABLE,
887 .version = 1
890 return vfio_info_add_capability(caps, &header, sizeof(header));
893 int vfio_pci_core_register_dev_region(struct vfio_pci_core_device *vdev,
894 unsigned int type, unsigned int subtype,
895 const struct vfio_pci_regops *ops,
896 size_t size, u32 flags, void *data)
898 struct vfio_pci_region *region;
900 region = krealloc(vdev->region,
901 (vdev->num_regions + 1) * sizeof(*region),
902 GFP_KERNEL_ACCOUNT);
903 if (!region)
904 return -ENOMEM;
906 vdev->region = region;
907 vdev->region[vdev->num_regions].type = type;
908 vdev->region[vdev->num_regions].subtype = subtype;
909 vdev->region[vdev->num_regions].ops = ops;
910 vdev->region[vdev->num_regions].size = size;
911 vdev->region[vdev->num_regions].flags = flags;
912 vdev->region[vdev->num_regions].data = data;
914 vdev->num_regions++;
916 return 0;
918 EXPORT_SYMBOL_GPL(vfio_pci_core_register_dev_region);
920 static int vfio_pci_info_atomic_cap(struct vfio_pci_core_device *vdev,
921 struct vfio_info_cap *caps)
923 struct vfio_device_info_cap_pci_atomic_comp cap = {
924 .header.id = VFIO_DEVICE_INFO_CAP_PCI_ATOMIC_COMP,
925 .header.version = 1
927 struct pci_dev *pdev = pci_physfn(vdev->pdev);
928 u32 devcap2;
930 pcie_capability_read_dword(pdev, PCI_EXP_DEVCAP2, &devcap2);
932 if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP32) &&
933 !pci_enable_atomic_ops_to_root(pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP32))
934 cap.flags |= VFIO_PCI_ATOMIC_COMP32;
936 if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP64) &&
937 !pci_enable_atomic_ops_to_root(pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP64))
938 cap.flags |= VFIO_PCI_ATOMIC_COMP64;
940 if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP128) &&
941 !pci_enable_atomic_ops_to_root(pdev,
942 PCI_EXP_DEVCAP2_ATOMIC_COMP128))
943 cap.flags |= VFIO_PCI_ATOMIC_COMP128;
945 if (!cap.flags)
946 return -ENODEV;
948 return vfio_info_add_capability(caps, &cap.header, sizeof(cap));
951 static int vfio_pci_ioctl_get_info(struct vfio_pci_core_device *vdev,
952 struct vfio_device_info __user *arg)
954 unsigned long minsz = offsetofend(struct vfio_device_info, num_irqs);
955 struct vfio_device_info info = {};
956 struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
957 int ret;
959 if (copy_from_user(&info, arg, minsz))
960 return -EFAULT;
962 if (info.argsz < minsz)
963 return -EINVAL;
965 minsz = min_t(size_t, info.argsz, sizeof(info));
967 info.flags = VFIO_DEVICE_FLAGS_PCI;
969 if (vdev->reset_works)
970 info.flags |= VFIO_DEVICE_FLAGS_RESET;
972 info.num_regions = VFIO_PCI_NUM_REGIONS + vdev->num_regions;
973 info.num_irqs = VFIO_PCI_NUM_IRQS;
975 ret = vfio_pci_info_zdev_add_caps(vdev, &caps);
976 if (ret && ret != -ENODEV) {
977 pci_warn(vdev->pdev,
978 "Failed to setup zPCI info capabilities\n");
979 return ret;
982 ret = vfio_pci_info_atomic_cap(vdev, &caps);
983 if (ret && ret != -ENODEV) {
984 pci_warn(vdev->pdev,
985 "Failed to setup AtomicOps info capability\n");
986 return ret;
989 if (caps.size) {
990 info.flags |= VFIO_DEVICE_FLAGS_CAPS;
991 if (info.argsz < sizeof(info) + caps.size) {
992 info.argsz = sizeof(info) + caps.size;
993 } else {
994 vfio_info_cap_shift(&caps, sizeof(info));
995 if (copy_to_user(arg + 1, caps.buf, caps.size)) {
996 kfree(caps.buf);
997 return -EFAULT;
999 info.cap_offset = sizeof(*arg);
1002 kfree(caps.buf);
1005 return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
1008 static int vfio_pci_ioctl_get_region_info(struct vfio_pci_core_device *vdev,
1009 struct vfio_region_info __user *arg)
1011 unsigned long minsz = offsetofend(struct vfio_region_info, offset);
1012 struct pci_dev *pdev = vdev->pdev;
1013 struct vfio_region_info info;
1014 struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
1015 int i, ret;
1017 if (copy_from_user(&info, arg, minsz))
1018 return -EFAULT;
1020 if (info.argsz < minsz)
1021 return -EINVAL;
1023 switch (info.index) {
1024 case VFIO_PCI_CONFIG_REGION_INDEX:
1025 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1026 info.size = pdev->cfg_size;
1027 info.flags = VFIO_REGION_INFO_FLAG_READ |
1028 VFIO_REGION_INFO_FLAG_WRITE;
1029 break;
1030 case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
1031 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1032 info.size = pci_resource_len(pdev, info.index);
1033 if (!info.size) {
1034 info.flags = 0;
1035 break;
1038 info.flags = VFIO_REGION_INFO_FLAG_READ |
1039 VFIO_REGION_INFO_FLAG_WRITE;
1040 if (vdev->bar_mmap_supported[info.index]) {
1041 info.flags |= VFIO_REGION_INFO_FLAG_MMAP;
1042 if (info.index == vdev->msix_bar) {
1043 ret = msix_mmappable_cap(vdev, &caps);
1044 if (ret)
1045 return ret;
1049 break;
1050 case VFIO_PCI_ROM_REGION_INDEX: {
1051 void __iomem *io;
1052 size_t size;
1053 u16 cmd;
1055 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1056 info.flags = 0;
1058 /* Report the BAR size, not the ROM size */
1059 info.size = pci_resource_len(pdev, info.index);
1060 if (!info.size) {
1061 /* Shadow ROMs appear as PCI option ROMs */
1062 if (pdev->resource[PCI_ROM_RESOURCE].flags &
1063 IORESOURCE_ROM_SHADOW)
1064 info.size = 0x20000;
1065 else
1066 break;
1070 * Is it really there? Enable memory decode for implicit access
1071 * in pci_map_rom().
1073 cmd = vfio_pci_memory_lock_and_enable(vdev);
1074 io = pci_map_rom(pdev, &size);
1075 if (io) {
1076 info.flags = VFIO_REGION_INFO_FLAG_READ;
1077 pci_unmap_rom(pdev, io);
1078 } else {
1079 info.size = 0;
1081 vfio_pci_memory_unlock_and_restore(vdev, cmd);
1083 break;
1085 case VFIO_PCI_VGA_REGION_INDEX:
1086 if (!vdev->has_vga)
1087 return -EINVAL;
1089 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1090 info.size = 0xc0000;
1091 info.flags = VFIO_REGION_INFO_FLAG_READ |
1092 VFIO_REGION_INFO_FLAG_WRITE;
1094 break;
1095 default: {
1096 struct vfio_region_info_cap_type cap_type = {
1097 .header.id = VFIO_REGION_INFO_CAP_TYPE,
1098 .header.version = 1
1101 if (info.index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
1102 return -EINVAL;
1103 info.index = array_index_nospec(
1104 info.index, VFIO_PCI_NUM_REGIONS + vdev->num_regions);
1106 i = info.index - VFIO_PCI_NUM_REGIONS;
1108 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1109 info.size = vdev->region[i].size;
1110 info.flags = vdev->region[i].flags;
1112 cap_type.type = vdev->region[i].type;
1113 cap_type.subtype = vdev->region[i].subtype;
1115 ret = vfio_info_add_capability(&caps, &cap_type.header,
1116 sizeof(cap_type));
1117 if (ret)
1118 return ret;
1120 if (vdev->region[i].ops->add_capability) {
1121 ret = vdev->region[i].ops->add_capability(
1122 vdev, &vdev->region[i], &caps);
1123 if (ret)
1124 return ret;
1129 if (caps.size) {
1130 info.flags |= VFIO_REGION_INFO_FLAG_CAPS;
1131 if (info.argsz < sizeof(info) + caps.size) {
1132 info.argsz = sizeof(info) + caps.size;
1133 info.cap_offset = 0;
1134 } else {
1135 vfio_info_cap_shift(&caps, sizeof(info));
1136 if (copy_to_user(arg + 1, caps.buf, caps.size)) {
1137 kfree(caps.buf);
1138 return -EFAULT;
1140 info.cap_offset = sizeof(*arg);
1143 kfree(caps.buf);
1146 return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
1149 static int vfio_pci_ioctl_get_irq_info(struct vfio_pci_core_device *vdev,
1150 struct vfio_irq_info __user *arg)
1152 unsigned long minsz = offsetofend(struct vfio_irq_info, count);
1153 struct vfio_irq_info info;
1155 if (copy_from_user(&info, arg, minsz))
1156 return -EFAULT;
1158 if (info.argsz < minsz || info.index >= VFIO_PCI_NUM_IRQS)
1159 return -EINVAL;
1161 switch (info.index) {
1162 case VFIO_PCI_INTX_IRQ_INDEX ... VFIO_PCI_MSIX_IRQ_INDEX:
1163 case VFIO_PCI_REQ_IRQ_INDEX:
1164 break;
1165 case VFIO_PCI_ERR_IRQ_INDEX:
1166 if (pci_is_pcie(vdev->pdev))
1167 break;
1168 fallthrough;
1169 default:
1170 return -EINVAL;
1173 info.flags = VFIO_IRQ_INFO_EVENTFD;
1175 info.count = vfio_pci_get_irq_count(vdev, info.index);
1177 if (info.index == VFIO_PCI_INTX_IRQ_INDEX)
1178 info.flags |=
1179 (VFIO_IRQ_INFO_MASKABLE | VFIO_IRQ_INFO_AUTOMASKED);
1180 else if (info.index != VFIO_PCI_MSIX_IRQ_INDEX || !vdev->has_dyn_msix)
1181 info.flags |= VFIO_IRQ_INFO_NORESIZE;
1183 return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
1186 static int vfio_pci_ioctl_set_irqs(struct vfio_pci_core_device *vdev,
1187 struct vfio_irq_set __user *arg)
1189 unsigned long minsz = offsetofend(struct vfio_irq_set, count);
1190 struct vfio_irq_set hdr;
1191 u8 *data = NULL;
1192 int max, ret = 0;
1193 size_t data_size = 0;
1195 if (copy_from_user(&hdr, arg, minsz))
1196 return -EFAULT;
1198 max = vfio_pci_get_irq_count(vdev, hdr.index);
1200 ret = vfio_set_irqs_validate_and_prepare(&hdr, max, VFIO_PCI_NUM_IRQS,
1201 &data_size);
1202 if (ret)
1203 return ret;
1205 if (data_size) {
1206 data = memdup_user(&arg->data, data_size);
1207 if (IS_ERR(data))
1208 return PTR_ERR(data);
1211 mutex_lock(&vdev->igate);
1213 ret = vfio_pci_set_irqs_ioctl(vdev, hdr.flags, hdr.index, hdr.start,
1214 hdr.count, data);
1216 mutex_unlock(&vdev->igate);
1217 kfree(data);
1219 return ret;
1222 static int vfio_pci_ioctl_reset(struct vfio_pci_core_device *vdev,
1223 void __user *arg)
1225 int ret;
1227 if (!vdev->reset_works)
1228 return -EINVAL;
1230 vfio_pci_zap_and_down_write_memory_lock(vdev);
1233 * This function can be invoked while the power state is non-D0. If
1234 * pci_try_reset_function() has been called while the power state is
1235 * non-D0, then pci_try_reset_function() will internally set the power
1236 * state to D0 without vfio driver involvement. For the devices which
1237 * have NoSoftRst-, the reset function can cause the PCI config space
1238 * reset without restoring the original state (saved locally in
1239 * 'vdev->pm_save').
1241 vfio_pci_set_power_state(vdev, PCI_D0);
1243 ret = pci_try_reset_function(vdev->pdev);
1244 up_write(&vdev->memory_lock);
1246 return ret;
1249 static int vfio_pci_ioctl_get_pci_hot_reset_info(
1250 struct vfio_pci_core_device *vdev,
1251 struct vfio_pci_hot_reset_info __user *arg)
1253 unsigned long minsz =
1254 offsetofend(struct vfio_pci_hot_reset_info, count);
1255 struct vfio_pci_dependent_device *devices = NULL;
1256 struct vfio_pci_hot_reset_info hdr;
1257 struct vfio_pci_fill_info fill = {};
1258 bool slot = false;
1259 int ret, count = 0;
1261 if (copy_from_user(&hdr, arg, minsz))
1262 return -EFAULT;
1264 if (hdr.argsz < minsz)
1265 return -EINVAL;
1267 hdr.flags = 0;
1269 /* Can we do a slot or bus reset or neither? */
1270 if (!pci_probe_reset_slot(vdev->pdev->slot))
1271 slot = true;
1272 else if (pci_probe_reset_bus(vdev->pdev->bus))
1273 return -ENODEV;
1275 ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs,
1276 &count, slot);
1277 if (ret)
1278 return ret;
1280 if (WARN_ON(!count)) /* Should always be at least one */
1281 return -ERANGE;
1283 if (count > (hdr.argsz - sizeof(hdr)) / sizeof(*devices)) {
1284 hdr.count = count;
1285 ret = -ENOSPC;
1286 goto header;
1289 devices = kcalloc(count, sizeof(*devices), GFP_KERNEL);
1290 if (!devices)
1291 return -ENOMEM;
1293 fill.devices = devices;
1294 fill.nr_devices = count;
1295 fill.vdev = &vdev->vdev;
1297 if (vfio_device_cdev_opened(&vdev->vdev))
1298 fill.flags |= VFIO_PCI_HOT_RESET_FLAG_DEV_ID |
1299 VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED;
1301 mutex_lock(&vdev->vdev.dev_set->lock);
1302 ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_fill_devs,
1303 &fill, slot);
1304 mutex_unlock(&vdev->vdev.dev_set->lock);
1305 if (ret)
1306 goto out;
1308 if (copy_to_user(arg->devices, devices,
1309 sizeof(*devices) * fill.count)) {
1310 ret = -EFAULT;
1311 goto out;
1314 hdr.count = fill.count;
1315 hdr.flags = fill.flags;
1317 header:
1318 if (copy_to_user(arg, &hdr, minsz))
1319 ret = -EFAULT;
1320 out:
1321 kfree(devices);
1322 return ret;
1325 static int
1326 vfio_pci_ioctl_pci_hot_reset_groups(struct vfio_pci_core_device *vdev,
1327 u32 array_count, bool slot,
1328 struct vfio_pci_hot_reset __user *arg)
1330 int32_t *group_fds;
1331 struct file **files;
1332 struct vfio_pci_group_info info;
1333 int file_idx, count = 0, ret = 0;
1336 * We can't let userspace give us an arbitrarily large buffer to copy,
1337 * so verify how many we think there could be. Note groups can have
1338 * multiple devices so one group per device is the max.
1340 ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs,
1341 &count, slot);
1342 if (ret)
1343 return ret;
1345 if (array_count > count)
1346 return -EINVAL;
1348 group_fds = kcalloc(array_count, sizeof(*group_fds), GFP_KERNEL);
1349 files = kcalloc(array_count, sizeof(*files), GFP_KERNEL);
1350 if (!group_fds || !files) {
1351 kfree(group_fds);
1352 kfree(files);
1353 return -ENOMEM;
1356 if (copy_from_user(group_fds, arg->group_fds,
1357 array_count * sizeof(*group_fds))) {
1358 kfree(group_fds);
1359 kfree(files);
1360 return -EFAULT;
1364 * Get the group file for each fd to ensure the group is held across
1365 * the reset
1367 for (file_idx = 0; file_idx < array_count; file_idx++) {
1368 struct file *file = fget(group_fds[file_idx]);
1370 if (!file) {
1371 ret = -EBADF;
1372 break;
1375 /* Ensure the FD is a vfio group FD.*/
1376 if (!vfio_file_is_group(file)) {
1377 fput(file);
1378 ret = -EINVAL;
1379 break;
1382 files[file_idx] = file;
1385 kfree(group_fds);
1387 /* release reference to groups on error */
1388 if (ret)
1389 goto hot_reset_release;
1391 info.count = array_count;
1392 info.files = files;
1394 ret = vfio_pci_dev_set_hot_reset(vdev->vdev.dev_set, &info, NULL);
1396 hot_reset_release:
1397 for (file_idx--; file_idx >= 0; file_idx--)
1398 fput(files[file_idx]);
1400 kfree(files);
1401 return ret;
1404 static int vfio_pci_ioctl_pci_hot_reset(struct vfio_pci_core_device *vdev,
1405 struct vfio_pci_hot_reset __user *arg)
1407 unsigned long minsz = offsetofend(struct vfio_pci_hot_reset, count);
1408 struct vfio_pci_hot_reset hdr;
1409 bool slot = false;
1411 if (copy_from_user(&hdr, arg, minsz))
1412 return -EFAULT;
1414 if (hdr.argsz < minsz || hdr.flags)
1415 return -EINVAL;
1417 /* zero-length array is only for cdev opened devices */
1418 if (!!hdr.count == vfio_device_cdev_opened(&vdev->vdev))
1419 return -EINVAL;
1421 /* Can we do a slot or bus reset or neither? */
1422 if (!pci_probe_reset_slot(vdev->pdev->slot))
1423 slot = true;
1424 else if (pci_probe_reset_bus(vdev->pdev->bus))
1425 return -ENODEV;
1427 if (hdr.count)
1428 return vfio_pci_ioctl_pci_hot_reset_groups(vdev, hdr.count, slot, arg);
1430 return vfio_pci_dev_set_hot_reset(vdev->vdev.dev_set, NULL,
1431 vfio_iommufd_device_ictx(&vdev->vdev));
1434 static int vfio_pci_ioctl_ioeventfd(struct vfio_pci_core_device *vdev,
1435 struct vfio_device_ioeventfd __user *arg)
1437 unsigned long minsz = offsetofend(struct vfio_device_ioeventfd, fd);
1438 struct vfio_device_ioeventfd ioeventfd;
1439 int count;
1441 if (copy_from_user(&ioeventfd, arg, minsz))
1442 return -EFAULT;
1444 if (ioeventfd.argsz < minsz)
1445 return -EINVAL;
1447 if (ioeventfd.flags & ~VFIO_DEVICE_IOEVENTFD_SIZE_MASK)
1448 return -EINVAL;
1450 count = ioeventfd.flags & VFIO_DEVICE_IOEVENTFD_SIZE_MASK;
1452 if (hweight8(count) != 1 || ioeventfd.fd < -1)
1453 return -EINVAL;
1455 return vfio_pci_ioeventfd(vdev, ioeventfd.offset, ioeventfd.data, count,
1456 ioeventfd.fd);
1459 long vfio_pci_core_ioctl(struct vfio_device *core_vdev, unsigned int cmd,
1460 unsigned long arg)
1462 struct vfio_pci_core_device *vdev =
1463 container_of(core_vdev, struct vfio_pci_core_device, vdev);
1464 void __user *uarg = (void __user *)arg;
1466 switch (cmd) {
1467 case VFIO_DEVICE_GET_INFO:
1468 return vfio_pci_ioctl_get_info(vdev, uarg);
1469 case VFIO_DEVICE_GET_IRQ_INFO:
1470 return vfio_pci_ioctl_get_irq_info(vdev, uarg);
1471 case VFIO_DEVICE_GET_PCI_HOT_RESET_INFO:
1472 return vfio_pci_ioctl_get_pci_hot_reset_info(vdev, uarg);
1473 case VFIO_DEVICE_GET_REGION_INFO:
1474 return vfio_pci_ioctl_get_region_info(vdev, uarg);
1475 case VFIO_DEVICE_IOEVENTFD:
1476 return vfio_pci_ioctl_ioeventfd(vdev, uarg);
1477 case VFIO_DEVICE_PCI_HOT_RESET:
1478 return vfio_pci_ioctl_pci_hot_reset(vdev, uarg);
1479 case VFIO_DEVICE_RESET:
1480 return vfio_pci_ioctl_reset(vdev, uarg);
1481 case VFIO_DEVICE_SET_IRQS:
1482 return vfio_pci_ioctl_set_irqs(vdev, uarg);
1483 default:
1484 return -ENOTTY;
1487 EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl);
1489 static int vfio_pci_core_feature_token(struct vfio_device *device, u32 flags,
1490 uuid_t __user *arg, size_t argsz)
1492 struct vfio_pci_core_device *vdev =
1493 container_of(device, struct vfio_pci_core_device, vdev);
1494 uuid_t uuid;
1495 int ret;
1497 if (!vdev->vf_token)
1498 return -ENOTTY;
1500 * We do not support GET of the VF Token UUID as this could
1501 * expose the token of the previous device user.
1503 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET,
1504 sizeof(uuid));
1505 if (ret != 1)
1506 return ret;
1508 if (copy_from_user(&uuid, arg, sizeof(uuid)))
1509 return -EFAULT;
1511 mutex_lock(&vdev->vf_token->lock);
1512 uuid_copy(&vdev->vf_token->uuid, &uuid);
1513 mutex_unlock(&vdev->vf_token->lock);
1514 return 0;
1517 int vfio_pci_core_ioctl_feature(struct vfio_device *device, u32 flags,
1518 void __user *arg, size_t argsz)
1520 switch (flags & VFIO_DEVICE_FEATURE_MASK) {
1521 case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY:
1522 return vfio_pci_core_pm_entry(device, flags, arg, argsz);
1523 case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP:
1524 return vfio_pci_core_pm_entry_with_wakeup(device, flags,
1525 arg, argsz);
1526 case VFIO_DEVICE_FEATURE_LOW_POWER_EXIT:
1527 return vfio_pci_core_pm_exit(device, flags, arg, argsz);
1528 case VFIO_DEVICE_FEATURE_PCI_VF_TOKEN:
1529 return vfio_pci_core_feature_token(device, flags, arg, argsz);
1530 default:
1531 return -ENOTTY;
1534 EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl_feature);
1536 static ssize_t vfio_pci_rw(struct vfio_pci_core_device *vdev, char __user *buf,
1537 size_t count, loff_t *ppos, bool iswrite)
1539 unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
1540 int ret;
1542 if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
1543 return -EINVAL;
1545 ret = pm_runtime_resume_and_get(&vdev->pdev->dev);
1546 if (ret) {
1547 pci_info_ratelimited(vdev->pdev, "runtime resume failed %d\n",
1548 ret);
1549 return -EIO;
1552 switch (index) {
1553 case VFIO_PCI_CONFIG_REGION_INDEX:
1554 ret = vfio_pci_config_rw(vdev, buf, count, ppos, iswrite);
1555 break;
1557 case VFIO_PCI_ROM_REGION_INDEX:
1558 if (iswrite)
1559 ret = -EINVAL;
1560 else
1561 ret = vfio_pci_bar_rw(vdev, buf, count, ppos, false);
1562 break;
1564 case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
1565 ret = vfio_pci_bar_rw(vdev, buf, count, ppos, iswrite);
1566 break;
1568 case VFIO_PCI_VGA_REGION_INDEX:
1569 ret = vfio_pci_vga_rw(vdev, buf, count, ppos, iswrite);
1570 break;
1572 default:
1573 index -= VFIO_PCI_NUM_REGIONS;
1574 ret = vdev->region[index].ops->rw(vdev, buf,
1575 count, ppos, iswrite);
1576 break;
1579 pm_runtime_put(&vdev->pdev->dev);
1580 return ret;
1583 ssize_t vfio_pci_core_read(struct vfio_device *core_vdev, char __user *buf,
1584 size_t count, loff_t *ppos)
1586 struct vfio_pci_core_device *vdev =
1587 container_of(core_vdev, struct vfio_pci_core_device, vdev);
1589 if (!count)
1590 return 0;
1592 return vfio_pci_rw(vdev, buf, count, ppos, false);
1594 EXPORT_SYMBOL_GPL(vfio_pci_core_read);
1596 ssize_t vfio_pci_core_write(struct vfio_device *core_vdev, const char __user *buf,
1597 size_t count, loff_t *ppos)
1599 struct vfio_pci_core_device *vdev =
1600 container_of(core_vdev, struct vfio_pci_core_device, vdev);
1602 if (!count)
1603 return 0;
1605 return vfio_pci_rw(vdev, (char __user *)buf, count, ppos, true);
1607 EXPORT_SYMBOL_GPL(vfio_pci_core_write);
1609 static void vfio_pci_zap_bars(struct vfio_pci_core_device *vdev)
1611 struct vfio_device *core_vdev = &vdev->vdev;
1612 loff_t start = VFIO_PCI_INDEX_TO_OFFSET(VFIO_PCI_BAR0_REGION_INDEX);
1613 loff_t end = VFIO_PCI_INDEX_TO_OFFSET(VFIO_PCI_ROM_REGION_INDEX);
1614 loff_t len = end - start;
1616 unmap_mapping_range(core_vdev->inode->i_mapping, start, len, true);
1619 void vfio_pci_zap_and_down_write_memory_lock(struct vfio_pci_core_device *vdev)
1621 down_write(&vdev->memory_lock);
1622 vfio_pci_zap_bars(vdev);
1625 u16 vfio_pci_memory_lock_and_enable(struct vfio_pci_core_device *vdev)
1627 u16 cmd;
1629 down_write(&vdev->memory_lock);
1630 pci_read_config_word(vdev->pdev, PCI_COMMAND, &cmd);
1631 if (!(cmd & PCI_COMMAND_MEMORY))
1632 pci_write_config_word(vdev->pdev, PCI_COMMAND,
1633 cmd | PCI_COMMAND_MEMORY);
1635 return cmd;
1638 void vfio_pci_memory_unlock_and_restore(struct vfio_pci_core_device *vdev, u16 cmd)
1640 pci_write_config_word(vdev->pdev, PCI_COMMAND, cmd);
1641 up_write(&vdev->memory_lock);
1644 static unsigned long vma_to_pfn(struct vm_area_struct *vma)
1646 struct vfio_pci_core_device *vdev = vma->vm_private_data;
1647 int index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
1648 u64 pgoff;
1650 pgoff = vma->vm_pgoff &
1651 ((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
1653 return (pci_resource_start(vdev->pdev, index) >> PAGE_SHIFT) + pgoff;
1656 static vm_fault_t vfio_pci_mmap_huge_fault(struct vm_fault *vmf,
1657 unsigned int order)
1659 struct vm_area_struct *vma = vmf->vma;
1660 struct vfio_pci_core_device *vdev = vma->vm_private_data;
1661 unsigned long pfn, pgoff = vmf->pgoff - vma->vm_pgoff;
1662 vm_fault_t ret = VM_FAULT_SIGBUS;
1664 if (order && (vmf->address & ((PAGE_SIZE << order) - 1) ||
1665 vmf->address + (PAGE_SIZE << order) > vma->vm_end)) {
1666 ret = VM_FAULT_FALLBACK;
1667 goto out;
1670 pfn = vma_to_pfn(vma);
1672 down_read(&vdev->memory_lock);
1674 if (vdev->pm_runtime_engaged || !__vfio_pci_memory_enabled(vdev))
1675 goto out_unlock;
1677 switch (order) {
1678 case 0:
1679 ret = vmf_insert_pfn(vma, vmf->address, pfn + pgoff);
1680 break;
1681 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
1682 case PMD_ORDER:
1683 ret = vmf_insert_pfn_pmd(vmf, __pfn_to_pfn_t(pfn + pgoff,
1684 PFN_DEV), false);
1685 break;
1686 #endif
1687 #ifdef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
1688 case PUD_ORDER:
1689 ret = vmf_insert_pfn_pud(vmf, __pfn_to_pfn_t(pfn + pgoff,
1690 PFN_DEV), false);
1691 break;
1692 #endif
1693 default:
1694 ret = VM_FAULT_FALLBACK;
1697 out_unlock:
1698 up_read(&vdev->memory_lock);
1699 out:
1700 dev_dbg_ratelimited(&vdev->pdev->dev,
1701 "%s(,order = %d) BAR %ld page offset 0x%lx: 0x%x\n",
1702 __func__, order,
1703 vma->vm_pgoff >>
1704 (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT),
1705 pgoff, (unsigned int)ret);
1707 return ret;
1710 static vm_fault_t vfio_pci_mmap_page_fault(struct vm_fault *vmf)
1712 return vfio_pci_mmap_huge_fault(vmf, 0);
1715 static const struct vm_operations_struct vfio_pci_mmap_ops = {
1716 .fault = vfio_pci_mmap_page_fault,
1717 #ifdef CONFIG_ARCH_SUPPORTS_HUGE_PFNMAP
1718 .huge_fault = vfio_pci_mmap_huge_fault,
1719 #endif
1722 int vfio_pci_core_mmap(struct vfio_device *core_vdev, struct vm_area_struct *vma)
1724 struct vfio_pci_core_device *vdev =
1725 container_of(core_vdev, struct vfio_pci_core_device, vdev);
1726 struct pci_dev *pdev = vdev->pdev;
1727 unsigned int index;
1728 u64 phys_len, req_len, pgoff, req_start;
1729 int ret;
1731 index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
1733 if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
1734 return -EINVAL;
1735 if (vma->vm_end < vma->vm_start)
1736 return -EINVAL;
1737 if ((vma->vm_flags & VM_SHARED) == 0)
1738 return -EINVAL;
1739 if (index >= VFIO_PCI_NUM_REGIONS) {
1740 int regnum = index - VFIO_PCI_NUM_REGIONS;
1741 struct vfio_pci_region *region = vdev->region + regnum;
1743 if (region->ops && region->ops->mmap &&
1744 (region->flags & VFIO_REGION_INFO_FLAG_MMAP))
1745 return region->ops->mmap(vdev, region, vma);
1746 return -EINVAL;
1748 if (index >= VFIO_PCI_ROM_REGION_INDEX)
1749 return -EINVAL;
1750 if (!vdev->bar_mmap_supported[index])
1751 return -EINVAL;
1753 phys_len = PAGE_ALIGN(pci_resource_len(pdev, index));
1754 req_len = vma->vm_end - vma->vm_start;
1755 pgoff = vma->vm_pgoff &
1756 ((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
1757 req_start = pgoff << PAGE_SHIFT;
1759 if (req_start + req_len > phys_len)
1760 return -EINVAL;
1763 * Even though we don't make use of the barmap for the mmap,
1764 * we need to request the region and the barmap tracks that.
1766 if (!vdev->barmap[index]) {
1767 ret = pci_request_selected_regions(pdev,
1768 1 << index, "vfio-pci");
1769 if (ret)
1770 return ret;
1772 vdev->barmap[index] = pci_iomap(pdev, index, 0);
1773 if (!vdev->barmap[index]) {
1774 pci_release_selected_regions(pdev, 1 << index);
1775 return -ENOMEM;
1779 vma->vm_private_data = vdev;
1780 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1781 vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
1784 * Set vm_flags now, they should not be changed in the fault handler.
1785 * We want the same flags and page protection (decrypted above) as
1786 * io_remap_pfn_range() would set.
1788 * VM_ALLOW_ANY_UNCACHED: The VMA flag is implemented for ARM64,
1789 * allowing KVM stage 2 device mapping attributes to use Normal-NC
1790 * rather than DEVICE_nGnRE, which allows guest mappings
1791 * supporting write-combining attributes (WC). ARM does not
1792 * architecturally guarantee this is safe, and indeed some MMIO
1793 * regions like the GICv2 VCPU interface can trigger uncontained
1794 * faults if Normal-NC is used.
1796 * To safely use VFIO in KVM the platform must guarantee full
1797 * safety in the guest where no action taken against a MMIO
1798 * mapping can trigger an uncontained failure. The assumption is
1799 * that most VFIO PCI platforms support this for both mapping types,
1800 * at least in common flows, based on some expectations of how
1801 * PCI IP is integrated. Hence VM_ALLOW_ANY_UNCACHED is set in
1802 * the VMA flags.
1804 vm_flags_set(vma, VM_ALLOW_ANY_UNCACHED | VM_IO | VM_PFNMAP |
1805 VM_DONTEXPAND | VM_DONTDUMP);
1806 vma->vm_ops = &vfio_pci_mmap_ops;
1808 return 0;
1810 EXPORT_SYMBOL_GPL(vfio_pci_core_mmap);
1812 void vfio_pci_core_request(struct vfio_device *core_vdev, unsigned int count)
1814 struct vfio_pci_core_device *vdev =
1815 container_of(core_vdev, struct vfio_pci_core_device, vdev);
1816 struct pci_dev *pdev = vdev->pdev;
1818 mutex_lock(&vdev->igate);
1820 if (vdev->req_trigger) {
1821 if (!(count % 10))
1822 pci_notice_ratelimited(pdev,
1823 "Relaying device request to user (#%u)\n",
1824 count);
1825 eventfd_signal(vdev->req_trigger);
1826 } else if (count == 0) {
1827 pci_warn(pdev,
1828 "No device request channel registered, blocked until released by user\n");
1831 mutex_unlock(&vdev->igate);
1833 EXPORT_SYMBOL_GPL(vfio_pci_core_request);
1835 static int vfio_pci_validate_vf_token(struct vfio_pci_core_device *vdev,
1836 bool vf_token, uuid_t *uuid)
1839 * There's always some degree of trust or collaboration between SR-IOV
1840 * PF and VFs, even if just that the PF hosts the SR-IOV capability and
1841 * can disrupt VFs with a reset, but often the PF has more explicit
1842 * access to deny service to the VF or access data passed through the
1843 * VF. We therefore require an opt-in via a shared VF token (UUID) to
1844 * represent this trust. This both prevents that a VF driver might
1845 * assume the PF driver is a trusted, in-kernel driver, and also that
1846 * a PF driver might be replaced with a rogue driver, unknown to in-use
1847 * VF drivers.
1849 * Therefore when presented with a VF, if the PF is a vfio device and
1850 * it is bound to the vfio-pci driver, the user needs to provide a VF
1851 * token to access the device, in the form of appending a vf_token to
1852 * the device name, for example:
1854 * "0000:04:10.0 vf_token=bd8d9d2b-5a5f-4f5a-a211-f591514ba1f3"
1856 * When presented with a PF which has VFs in use, the user must also
1857 * provide the current VF token to prove collaboration with existing
1858 * VF users. If VFs are not in use, the VF token provided for the PF
1859 * device will act to set the VF token.
1861 * If the VF token is provided but unused, an error is generated.
1863 if (vdev->pdev->is_virtfn) {
1864 struct vfio_pci_core_device *pf_vdev = vdev->sriov_pf_core_dev;
1865 bool match;
1867 if (!pf_vdev) {
1868 if (!vf_token)
1869 return 0; /* PF is not vfio-pci, no VF token */
1871 pci_info_ratelimited(vdev->pdev,
1872 "VF token incorrectly provided, PF not bound to vfio-pci\n");
1873 return -EINVAL;
1876 if (!vf_token) {
1877 pci_info_ratelimited(vdev->pdev,
1878 "VF token required to access device\n");
1879 return -EACCES;
1882 mutex_lock(&pf_vdev->vf_token->lock);
1883 match = uuid_equal(uuid, &pf_vdev->vf_token->uuid);
1884 mutex_unlock(&pf_vdev->vf_token->lock);
1886 if (!match) {
1887 pci_info_ratelimited(vdev->pdev,
1888 "Incorrect VF token provided for device\n");
1889 return -EACCES;
1891 } else if (vdev->vf_token) {
1892 mutex_lock(&vdev->vf_token->lock);
1893 if (vdev->vf_token->users) {
1894 if (!vf_token) {
1895 mutex_unlock(&vdev->vf_token->lock);
1896 pci_info_ratelimited(vdev->pdev,
1897 "VF token required to access device\n");
1898 return -EACCES;
1901 if (!uuid_equal(uuid, &vdev->vf_token->uuid)) {
1902 mutex_unlock(&vdev->vf_token->lock);
1903 pci_info_ratelimited(vdev->pdev,
1904 "Incorrect VF token provided for device\n");
1905 return -EACCES;
1907 } else if (vf_token) {
1908 uuid_copy(&vdev->vf_token->uuid, uuid);
1911 mutex_unlock(&vdev->vf_token->lock);
1912 } else if (vf_token) {
1913 pci_info_ratelimited(vdev->pdev,
1914 "VF token incorrectly provided, not a PF or VF\n");
1915 return -EINVAL;
1918 return 0;
1921 #define VF_TOKEN_ARG "vf_token="
1923 int vfio_pci_core_match(struct vfio_device *core_vdev, char *buf)
1925 struct vfio_pci_core_device *vdev =
1926 container_of(core_vdev, struct vfio_pci_core_device, vdev);
1927 bool vf_token = false;
1928 uuid_t uuid;
1929 int ret;
1931 if (strncmp(pci_name(vdev->pdev), buf, strlen(pci_name(vdev->pdev))))
1932 return 0; /* No match */
1934 if (strlen(buf) > strlen(pci_name(vdev->pdev))) {
1935 buf += strlen(pci_name(vdev->pdev));
1937 if (*buf != ' ')
1938 return 0; /* No match: non-whitespace after name */
1940 while (*buf) {
1941 if (*buf == ' ') {
1942 buf++;
1943 continue;
1946 if (!vf_token && !strncmp(buf, VF_TOKEN_ARG,
1947 strlen(VF_TOKEN_ARG))) {
1948 buf += strlen(VF_TOKEN_ARG);
1950 if (strlen(buf) < UUID_STRING_LEN)
1951 return -EINVAL;
1953 ret = uuid_parse(buf, &uuid);
1954 if (ret)
1955 return ret;
1957 vf_token = true;
1958 buf += UUID_STRING_LEN;
1959 } else {
1960 /* Unknown/duplicate option */
1961 return -EINVAL;
1966 ret = vfio_pci_validate_vf_token(vdev, vf_token, &uuid);
1967 if (ret)
1968 return ret;
1970 return 1; /* Match */
1972 EXPORT_SYMBOL_GPL(vfio_pci_core_match);
1974 static int vfio_pci_bus_notifier(struct notifier_block *nb,
1975 unsigned long action, void *data)
1977 struct vfio_pci_core_device *vdev = container_of(nb,
1978 struct vfio_pci_core_device, nb);
1979 struct device *dev = data;
1980 struct pci_dev *pdev = to_pci_dev(dev);
1981 struct pci_dev *physfn = pci_physfn(pdev);
1983 if (action == BUS_NOTIFY_ADD_DEVICE &&
1984 pdev->is_virtfn && physfn == vdev->pdev) {
1985 pci_info(vdev->pdev, "Captured SR-IOV VF %s driver_override\n",
1986 pci_name(pdev));
1987 pdev->driver_override = kasprintf(GFP_KERNEL, "%s",
1988 vdev->vdev.ops->name);
1989 WARN_ON(!pdev->driver_override);
1990 } else if (action == BUS_NOTIFY_BOUND_DRIVER &&
1991 pdev->is_virtfn && physfn == vdev->pdev) {
1992 struct pci_driver *drv = pci_dev_driver(pdev);
1994 if (drv && drv != pci_dev_driver(vdev->pdev))
1995 pci_warn(vdev->pdev,
1996 "VF %s bound to driver %s while PF bound to driver %s\n",
1997 pci_name(pdev), drv->name,
1998 pci_dev_driver(vdev->pdev)->name);
2001 return 0;
2004 static int vfio_pci_vf_init(struct vfio_pci_core_device *vdev)
2006 struct pci_dev *pdev = vdev->pdev;
2007 struct vfio_pci_core_device *cur;
2008 struct pci_dev *physfn;
2009 int ret;
2011 if (pdev->is_virtfn) {
2013 * If this VF was created by our vfio_pci_core_sriov_configure()
2014 * then we can find the PF vfio_pci_core_device now, and due to
2015 * the locking in pci_disable_sriov() it cannot change until
2016 * this VF device driver is removed.
2018 physfn = pci_physfn(vdev->pdev);
2019 mutex_lock(&vfio_pci_sriov_pfs_mutex);
2020 list_for_each_entry(cur, &vfio_pci_sriov_pfs, sriov_pfs_item) {
2021 if (cur->pdev == physfn) {
2022 vdev->sriov_pf_core_dev = cur;
2023 break;
2026 mutex_unlock(&vfio_pci_sriov_pfs_mutex);
2027 return 0;
2030 /* Not a SRIOV PF */
2031 if (!pdev->is_physfn)
2032 return 0;
2034 vdev->vf_token = kzalloc(sizeof(*vdev->vf_token), GFP_KERNEL);
2035 if (!vdev->vf_token)
2036 return -ENOMEM;
2038 mutex_init(&vdev->vf_token->lock);
2039 uuid_gen(&vdev->vf_token->uuid);
2041 vdev->nb.notifier_call = vfio_pci_bus_notifier;
2042 ret = bus_register_notifier(&pci_bus_type, &vdev->nb);
2043 if (ret) {
2044 kfree(vdev->vf_token);
2045 return ret;
2047 return 0;
2050 static void vfio_pci_vf_uninit(struct vfio_pci_core_device *vdev)
2052 if (!vdev->vf_token)
2053 return;
2055 bus_unregister_notifier(&pci_bus_type, &vdev->nb);
2056 WARN_ON(vdev->vf_token->users);
2057 mutex_destroy(&vdev->vf_token->lock);
2058 kfree(vdev->vf_token);
2061 static int vfio_pci_vga_init(struct vfio_pci_core_device *vdev)
2063 struct pci_dev *pdev = vdev->pdev;
2064 int ret;
2066 if (!vfio_pci_is_vga(pdev))
2067 return 0;
2069 ret = aperture_remove_conflicting_pci_devices(pdev, vdev->vdev.ops->name);
2070 if (ret)
2071 return ret;
2073 ret = vga_client_register(pdev, vfio_pci_set_decode);
2074 if (ret)
2075 return ret;
2076 vga_set_legacy_decoding(pdev, vfio_pci_set_decode(pdev, false));
2077 return 0;
2080 static void vfio_pci_vga_uninit(struct vfio_pci_core_device *vdev)
2082 struct pci_dev *pdev = vdev->pdev;
2084 if (!vfio_pci_is_vga(pdev))
2085 return;
2086 vga_client_unregister(pdev);
2087 vga_set_legacy_decoding(pdev, VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM |
2088 VGA_RSRC_LEGACY_IO |
2089 VGA_RSRC_LEGACY_MEM);
2092 int vfio_pci_core_init_dev(struct vfio_device *core_vdev)
2094 struct vfio_pci_core_device *vdev =
2095 container_of(core_vdev, struct vfio_pci_core_device, vdev);
2097 vdev->pdev = to_pci_dev(core_vdev->dev);
2098 vdev->irq_type = VFIO_PCI_NUM_IRQS;
2099 mutex_init(&vdev->igate);
2100 spin_lock_init(&vdev->irqlock);
2101 mutex_init(&vdev->ioeventfds_lock);
2102 INIT_LIST_HEAD(&vdev->dummy_resources_list);
2103 INIT_LIST_HEAD(&vdev->ioeventfds_list);
2104 INIT_LIST_HEAD(&vdev->sriov_pfs_item);
2105 init_rwsem(&vdev->memory_lock);
2106 xa_init(&vdev->ctx);
2108 return 0;
2110 EXPORT_SYMBOL_GPL(vfio_pci_core_init_dev);
2112 void vfio_pci_core_release_dev(struct vfio_device *core_vdev)
2114 struct vfio_pci_core_device *vdev =
2115 container_of(core_vdev, struct vfio_pci_core_device, vdev);
2117 mutex_destroy(&vdev->igate);
2118 mutex_destroy(&vdev->ioeventfds_lock);
2119 kfree(vdev->region);
2120 kfree(vdev->pm_save);
2122 EXPORT_SYMBOL_GPL(vfio_pci_core_release_dev);
2124 int vfio_pci_core_register_device(struct vfio_pci_core_device *vdev)
2126 struct pci_dev *pdev = vdev->pdev;
2127 struct device *dev = &pdev->dev;
2128 int ret;
2130 /* Drivers must set the vfio_pci_core_device to their drvdata */
2131 if (WARN_ON(vdev != dev_get_drvdata(dev)))
2132 return -EINVAL;
2134 if (pdev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2135 return -EINVAL;
2137 if (vdev->vdev.mig_ops) {
2138 if (!(vdev->vdev.mig_ops->migration_get_state &&
2139 vdev->vdev.mig_ops->migration_set_state &&
2140 vdev->vdev.mig_ops->migration_get_data_size) ||
2141 !(vdev->vdev.migration_flags & VFIO_MIGRATION_STOP_COPY))
2142 return -EINVAL;
2145 if (vdev->vdev.log_ops && !(vdev->vdev.log_ops->log_start &&
2146 vdev->vdev.log_ops->log_stop &&
2147 vdev->vdev.log_ops->log_read_and_clear))
2148 return -EINVAL;
2151 * Prevent binding to PFs with VFs enabled, the VFs might be in use
2152 * by the host or other users. We cannot capture the VFs if they
2153 * already exist, nor can we track VF users. Disabling SR-IOV here
2154 * would initiate removing the VFs, which would unbind the driver,
2155 * which is prone to blocking if that VF is also in use by vfio-pci.
2156 * Just reject these PFs and let the user sort it out.
2158 if (pci_num_vf(pdev)) {
2159 pci_warn(pdev, "Cannot bind to PF with SR-IOV enabled\n");
2160 return -EBUSY;
2163 if (pci_is_root_bus(pdev->bus)) {
2164 ret = vfio_assign_device_set(&vdev->vdev, vdev);
2165 } else if (!pci_probe_reset_slot(pdev->slot)) {
2166 ret = vfio_assign_device_set(&vdev->vdev, pdev->slot);
2167 } else {
2169 * If there is no slot reset support for this device, the whole
2170 * bus needs to be grouped together to support bus-wide resets.
2172 ret = vfio_assign_device_set(&vdev->vdev, pdev->bus);
2175 if (ret)
2176 return ret;
2177 ret = vfio_pci_vf_init(vdev);
2178 if (ret)
2179 return ret;
2180 ret = vfio_pci_vga_init(vdev);
2181 if (ret)
2182 goto out_vf;
2184 vfio_pci_probe_power_state(vdev);
2187 * pci-core sets the device power state to an unknown value at
2188 * bootup and after being removed from a driver. The only
2189 * transition it allows from this unknown state is to D0, which
2190 * typically happens when a driver calls pci_enable_device().
2191 * We're not ready to enable the device yet, but we do want to
2192 * be able to get to D3. Therefore first do a D0 transition
2193 * before enabling runtime PM.
2195 vfio_pci_set_power_state(vdev, PCI_D0);
2197 dev->driver->pm = &vfio_pci_core_pm_ops;
2198 pm_runtime_allow(dev);
2199 if (!disable_idle_d3)
2200 pm_runtime_put(dev);
2202 ret = vfio_register_group_dev(&vdev->vdev);
2203 if (ret)
2204 goto out_power;
2205 return 0;
2207 out_power:
2208 if (!disable_idle_d3)
2209 pm_runtime_get_noresume(dev);
2211 pm_runtime_forbid(dev);
2212 out_vf:
2213 vfio_pci_vf_uninit(vdev);
2214 return ret;
2216 EXPORT_SYMBOL_GPL(vfio_pci_core_register_device);
2218 void vfio_pci_core_unregister_device(struct vfio_pci_core_device *vdev)
2220 vfio_pci_core_sriov_configure(vdev, 0);
2222 vfio_unregister_group_dev(&vdev->vdev);
2224 vfio_pci_vf_uninit(vdev);
2225 vfio_pci_vga_uninit(vdev);
2227 if (!disable_idle_d3)
2228 pm_runtime_get_noresume(&vdev->pdev->dev);
2230 pm_runtime_forbid(&vdev->pdev->dev);
2232 EXPORT_SYMBOL_GPL(vfio_pci_core_unregister_device);
2234 pci_ers_result_t vfio_pci_core_aer_err_detected(struct pci_dev *pdev,
2235 pci_channel_state_t state)
2237 struct vfio_pci_core_device *vdev = dev_get_drvdata(&pdev->dev);
2239 mutex_lock(&vdev->igate);
2241 if (vdev->err_trigger)
2242 eventfd_signal(vdev->err_trigger);
2244 mutex_unlock(&vdev->igate);
2246 return PCI_ERS_RESULT_CAN_RECOVER;
2248 EXPORT_SYMBOL_GPL(vfio_pci_core_aer_err_detected);
2250 int vfio_pci_core_sriov_configure(struct vfio_pci_core_device *vdev,
2251 int nr_virtfn)
2253 struct pci_dev *pdev = vdev->pdev;
2254 int ret = 0;
2256 device_lock_assert(&pdev->dev);
2258 if (nr_virtfn) {
2259 mutex_lock(&vfio_pci_sriov_pfs_mutex);
2261 * The thread that adds the vdev to the list is the only thread
2262 * that gets to call pci_enable_sriov() and we will only allow
2263 * it to be called once without going through
2264 * pci_disable_sriov()
2266 if (!list_empty(&vdev->sriov_pfs_item)) {
2267 ret = -EINVAL;
2268 goto out_unlock;
2270 list_add_tail(&vdev->sriov_pfs_item, &vfio_pci_sriov_pfs);
2271 mutex_unlock(&vfio_pci_sriov_pfs_mutex);
2274 * The PF power state should always be higher than the VF power
2275 * state. The PF can be in low power state either with runtime
2276 * power management (when there is no user) or PCI_PM_CTRL
2277 * register write by the user. If PF is in the low power state,
2278 * then change the power state to D0 first before enabling
2279 * SR-IOV. Also, this function can be called at any time, and
2280 * userspace PCI_PM_CTRL write can race against this code path,
2281 * so protect the same with 'memory_lock'.
2283 ret = pm_runtime_resume_and_get(&pdev->dev);
2284 if (ret)
2285 goto out_del;
2287 down_write(&vdev->memory_lock);
2288 vfio_pci_set_power_state(vdev, PCI_D0);
2289 ret = pci_enable_sriov(pdev, nr_virtfn);
2290 up_write(&vdev->memory_lock);
2291 if (ret) {
2292 pm_runtime_put(&pdev->dev);
2293 goto out_del;
2295 return nr_virtfn;
2298 if (pci_num_vf(pdev)) {
2299 pci_disable_sriov(pdev);
2300 pm_runtime_put(&pdev->dev);
2303 out_del:
2304 mutex_lock(&vfio_pci_sriov_pfs_mutex);
2305 list_del_init(&vdev->sriov_pfs_item);
2306 out_unlock:
2307 mutex_unlock(&vfio_pci_sriov_pfs_mutex);
2308 return ret;
2310 EXPORT_SYMBOL_GPL(vfio_pci_core_sriov_configure);
2312 const struct pci_error_handlers vfio_pci_core_err_handlers = {
2313 .error_detected = vfio_pci_core_aer_err_detected,
2315 EXPORT_SYMBOL_GPL(vfio_pci_core_err_handlers);
2317 static bool vfio_dev_in_groups(struct vfio_device *vdev,
2318 struct vfio_pci_group_info *groups)
2320 unsigned int i;
2322 if (!groups)
2323 return false;
2325 for (i = 0; i < groups->count; i++)
2326 if (vfio_file_has_dev(groups->files[i], vdev))
2327 return true;
2328 return false;
2331 static int vfio_pci_is_device_in_set(struct pci_dev *pdev, void *data)
2333 struct vfio_device_set *dev_set = data;
2335 return vfio_find_device_in_devset(dev_set, &pdev->dev) ? 0 : -ENODEV;
2339 * vfio-core considers a group to be viable and will create a vfio_device even
2340 * if some devices are bound to drivers like pci-stub or pcieport. Here we
2341 * require all PCI devices to be inside our dev_set since that ensures they stay
2342 * put and that every driver controlling the device can co-ordinate with the
2343 * device reset.
2345 * Returns the pci_dev to pass to pci_reset_bus() if every PCI device to be
2346 * reset is inside the dev_set, and pci_reset_bus() can succeed. NULL otherwise.
2348 static struct pci_dev *
2349 vfio_pci_dev_set_resettable(struct vfio_device_set *dev_set)
2351 struct pci_dev *pdev;
2353 lockdep_assert_held(&dev_set->lock);
2356 * By definition all PCI devices in the dev_set share the same PCI
2357 * reset, so any pci_dev will have the same outcomes for
2358 * pci_probe_reset_*() and pci_reset_bus().
2360 pdev = list_first_entry(&dev_set->device_list,
2361 struct vfio_pci_core_device,
2362 vdev.dev_set_list)->pdev;
2364 /* pci_reset_bus() is supported */
2365 if (pci_probe_reset_slot(pdev->slot) && pci_probe_reset_bus(pdev->bus))
2366 return NULL;
2368 if (vfio_pci_for_each_slot_or_bus(pdev, vfio_pci_is_device_in_set,
2369 dev_set,
2370 !pci_probe_reset_slot(pdev->slot)))
2371 return NULL;
2372 return pdev;
2375 static int vfio_pci_dev_set_pm_runtime_get(struct vfio_device_set *dev_set)
2377 struct vfio_pci_core_device *cur;
2378 int ret;
2380 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
2381 ret = pm_runtime_resume_and_get(&cur->pdev->dev);
2382 if (ret)
2383 goto unwind;
2386 return 0;
2388 unwind:
2389 list_for_each_entry_continue_reverse(cur, &dev_set->device_list,
2390 vdev.dev_set_list)
2391 pm_runtime_put(&cur->pdev->dev);
2393 return ret;
2396 static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set,
2397 struct vfio_pci_group_info *groups,
2398 struct iommufd_ctx *iommufd_ctx)
2400 struct vfio_pci_core_device *vdev;
2401 struct pci_dev *pdev;
2402 int ret;
2404 mutex_lock(&dev_set->lock);
2406 pdev = vfio_pci_dev_set_resettable(dev_set);
2407 if (!pdev) {
2408 ret = -EINVAL;
2409 goto err_unlock;
2413 * Some of the devices in the dev_set can be in the runtime suspended
2414 * state. Increment the usage count for all the devices in the dev_set
2415 * before reset and decrement the same after reset.
2417 ret = vfio_pci_dev_set_pm_runtime_get(dev_set);
2418 if (ret)
2419 goto err_unlock;
2421 list_for_each_entry(vdev, &dev_set->device_list, vdev.dev_set_list) {
2422 bool owned;
2425 * Test whether all the affected devices can be reset by the
2426 * user.
2428 * If called from a group opened device and the user provides
2429 * a set of groups, all the devices in the dev_set should be
2430 * contained by the set of groups provided by the user.
2432 * If called from a cdev opened device and the user provides
2433 * a zero-length array, all the devices in the dev_set must
2434 * be bound to the same iommufd_ctx as the input iommufd_ctx.
2435 * If there is any device that has not been bound to any
2436 * iommufd_ctx yet, check if its iommu_group has any device
2437 * bound to the input iommufd_ctx. Such devices can be
2438 * considered owned by the input iommufd_ctx as the device
2439 * cannot be owned by another iommufd_ctx when its iommu_group
2440 * is owned.
2442 * Otherwise, reset is not allowed.
2444 if (iommufd_ctx) {
2445 int devid = vfio_iommufd_get_dev_id(&vdev->vdev,
2446 iommufd_ctx);
2448 owned = (devid > 0 || devid == -ENOENT);
2449 } else {
2450 owned = vfio_dev_in_groups(&vdev->vdev, groups);
2453 if (!owned) {
2454 ret = -EINVAL;
2455 break;
2459 * Take the memory write lock for each device and zap BAR
2460 * mappings to prevent the user accessing the device while in
2461 * reset. Locking multiple devices is prone to deadlock,
2462 * runaway and unwind if we hit contention.
2464 if (!down_write_trylock(&vdev->memory_lock)) {
2465 ret = -EBUSY;
2466 break;
2469 vfio_pci_zap_bars(vdev);
2472 if (!list_entry_is_head(vdev,
2473 &dev_set->device_list, vdev.dev_set_list)) {
2474 vdev = list_prev_entry(vdev, vdev.dev_set_list);
2475 goto err_undo;
2479 * The pci_reset_bus() will reset all the devices in the bus.
2480 * The power state can be non-D0 for some of the devices in the bus.
2481 * For these devices, the pci_reset_bus() will internally set
2482 * the power state to D0 without vfio driver involvement.
2483 * For the devices which have NoSoftRst-, the reset function can
2484 * cause the PCI config space reset without restoring the original
2485 * state (saved locally in 'vdev->pm_save').
2487 list_for_each_entry(vdev, &dev_set->device_list, vdev.dev_set_list)
2488 vfio_pci_set_power_state(vdev, PCI_D0);
2490 ret = pci_reset_bus(pdev);
2492 vdev = list_last_entry(&dev_set->device_list,
2493 struct vfio_pci_core_device, vdev.dev_set_list);
2495 err_undo:
2496 list_for_each_entry_from_reverse(vdev, &dev_set->device_list,
2497 vdev.dev_set_list)
2498 up_write(&vdev->memory_lock);
2500 list_for_each_entry(vdev, &dev_set->device_list, vdev.dev_set_list)
2501 pm_runtime_put(&vdev->pdev->dev);
2503 err_unlock:
2504 mutex_unlock(&dev_set->lock);
2505 return ret;
2508 static bool vfio_pci_dev_set_needs_reset(struct vfio_device_set *dev_set)
2510 struct vfio_pci_core_device *cur;
2511 bool needs_reset = false;
2513 /* No other VFIO device in the set can be open. */
2514 if (vfio_device_set_open_count(dev_set) > 1)
2515 return false;
2517 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
2518 needs_reset |= cur->needs_reset;
2519 return needs_reset;
2523 * If a bus or slot reset is available for the provided dev_set and:
2524 * - All of the devices affected by that bus or slot reset are unused
2525 * - At least one of the affected devices is marked dirty via
2526 * needs_reset (such as by lack of FLR support)
2527 * Then attempt to perform that bus or slot reset.
2529 static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set)
2531 struct vfio_pci_core_device *cur;
2532 struct pci_dev *pdev;
2533 bool reset_done = false;
2535 if (!vfio_pci_dev_set_needs_reset(dev_set))
2536 return;
2538 pdev = vfio_pci_dev_set_resettable(dev_set);
2539 if (!pdev)
2540 return;
2543 * Some of the devices in the bus can be in the runtime suspended
2544 * state. Increment the usage count for all the devices in the dev_set
2545 * before reset and decrement the same after reset.
2547 if (!disable_idle_d3 && vfio_pci_dev_set_pm_runtime_get(dev_set))
2548 return;
2550 if (!pci_reset_bus(pdev))
2551 reset_done = true;
2553 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
2554 if (reset_done)
2555 cur->needs_reset = false;
2557 if (!disable_idle_d3)
2558 pm_runtime_put(&cur->pdev->dev);
2562 void vfio_pci_core_set_params(bool is_nointxmask, bool is_disable_vga,
2563 bool is_disable_idle_d3)
2565 nointxmask = is_nointxmask;
2566 disable_vga = is_disable_vga;
2567 disable_idle_d3 = is_disable_idle_d3;
2569 EXPORT_SYMBOL_GPL(vfio_pci_core_set_params);
2571 static void vfio_pci_core_cleanup(void)
2573 vfio_pci_uninit_perm_bits();
2576 static int __init vfio_pci_core_init(void)
2578 /* Allocate shared config space permission data used by all devices */
2579 return vfio_pci_init_perm_bits();
2582 module_init(vfio_pci_core_init);
2583 module_exit(vfio_pci_core_cleanup);
2585 MODULE_LICENSE("GPL v2");
2586 MODULE_AUTHOR(DRIVER_AUTHOR);
2587 MODULE_DESCRIPTION(DRIVER_DESC);