drm/rockchip: Don't change hdmi reference clock rate
[drm/drm-misc.git] / drivers / video / fbdev / asiliantfb.c
blobbf3c116684dc5b66cce0dfefea257d1e1495d9de
1 /*
2 * drivers/video/asiliantfb.c
3 * frame buffer driver for Asiliant 69000 chip
4 * Copyright (C) 2001-2003 Saito.K & Jeanne
6 * from driver/video/chipsfb.c and,
8 * drivers/video/asiliantfb.c -- frame buffer device for
9 * Asiliant 69030 chip (formerly Intel, formerly Chips & Technologies)
10 * Author: apc@agelectronics.co.uk
11 * Copyright (C) 2000 AG Electronics
12 * Note: the data sheets don't seem to be available from Asiliant.
13 * They are available by searching developer.intel.com, but are not otherwise
14 * linked to.
16 * This driver should be portable with minimal effort to the 69000 display
17 * chip, and to the twin-display mode of the 69030.
18 * Contains code from Thomas Hhenleitner <th@visuelle-maschinen.de> (thanks)
20 * Derived from the CT65550 driver chipsfb.c:
21 * Copyright (C) 1998 Paul Mackerras
22 * ...which was derived from the Powermac "chips" driver:
23 * Copyright (C) 1997 Fabio Riccardi.
24 * And from the frame buffer device for Open Firmware-initialized devices:
25 * Copyright (C) 1997 Geert Uytterhoeven.
27 * This file is subject to the terms and conditions of the GNU General Public
28 * License. See the file COPYING in the main directory of this archive for
29 * more details.
32 #include <linux/aperture.h>
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/errno.h>
36 #include <linux/string.h>
37 #include <linux/mm.h>
38 #include <linux/vmalloc.h>
39 #include <linux/delay.h>
40 #include <linux/interrupt.h>
41 #include <linux/fb.h>
42 #include <linux/init.h>
43 #include <linux/pci.h>
44 #include <asm/io.h>
46 /* Built in clock of the 69030 */
47 static const unsigned Fref = 14318180;
49 #define mmio_base (p->screen_base + 0x400000)
51 #define mm_write_ind(num, val, ap, dp) do { \
52 writeb((num), mmio_base + (ap)); writeb((val), mmio_base + (dp)); \
53 } while (0)
55 static void mm_write_xr(struct fb_info *p, u8 reg, u8 data)
57 mm_write_ind(reg, data, 0x7ac, 0x7ad);
59 #define write_xr(num, val) mm_write_xr(p, num, val)
61 static void mm_write_fr(struct fb_info *p, u8 reg, u8 data)
63 mm_write_ind(reg, data, 0x7a0, 0x7a1);
65 #define write_fr(num, val) mm_write_fr(p, num, val)
67 static void mm_write_cr(struct fb_info *p, u8 reg, u8 data)
69 mm_write_ind(reg, data, 0x7a8, 0x7a9);
71 #define write_cr(num, val) mm_write_cr(p, num, val)
73 static void mm_write_gr(struct fb_info *p, u8 reg, u8 data)
75 mm_write_ind(reg, data, 0x79c, 0x79d);
77 #define write_gr(num, val) mm_write_gr(p, num, val)
79 static void mm_write_sr(struct fb_info *p, u8 reg, u8 data)
81 mm_write_ind(reg, data, 0x788, 0x789);
83 #define write_sr(num, val) mm_write_sr(p, num, val)
85 static void mm_write_ar(struct fb_info *p, u8 reg, u8 data)
87 readb(mmio_base + 0x7b4);
88 mm_write_ind(reg, data, 0x780, 0x780);
90 #define write_ar(num, val) mm_write_ar(p, num, val)
92 static int asiliantfb_pci_init(struct pci_dev *dp, const struct pci_device_id *);
93 static int asiliantfb_check_var(struct fb_var_screeninfo *var,
94 struct fb_info *info);
95 static int asiliantfb_set_par(struct fb_info *info);
96 static int asiliantfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
97 u_int transp, struct fb_info *info);
99 static const struct fb_ops asiliantfb_ops = {
100 .owner = THIS_MODULE,
101 FB_DEFAULT_IOMEM_OPS,
102 .fb_check_var = asiliantfb_check_var,
103 .fb_set_par = asiliantfb_set_par,
104 .fb_setcolreg = asiliantfb_setcolreg,
107 /* Calculate the ratios for the dot clocks without using a single long long
108 * value */
109 static void asiliant_calc_dclk2(u32 *ppixclock, u8 *dclk2_m, u8 *dclk2_n, u8 *dclk2_div)
111 unsigned pixclock = *ppixclock;
112 unsigned Ftarget;
113 unsigned n;
114 unsigned best_error = 0xffffffff;
115 unsigned best_m = 0xffffffff,
116 best_n = 0xffffffff;
117 unsigned ratio;
118 unsigned remainder;
119 unsigned char divisor = 0;
121 /* Calculate the frequency required. This is hard enough. */
122 ratio = 1000000 / pixclock;
123 remainder = 1000000 % pixclock;
124 Ftarget = 1000000 * ratio + (1000000 * remainder) / pixclock;
126 while (Ftarget < 100000000) {
127 divisor += 0x10;
128 Ftarget <<= 1;
131 ratio = Ftarget / Fref;
132 remainder = Ftarget % Fref;
134 /* This expresses the constraint that 150kHz <= Fref/n <= 5Mhz,
135 * together with 3 <= n <= 257. */
136 for (n = 3; n <= 257; n++) {
137 unsigned m = n * ratio + (n * remainder) / Fref;
139 /* 3 <= m <= 257 */
140 if (m >= 3 && m <= 257) {
141 unsigned new_error = Ftarget * n >= Fref * m ?
142 ((Ftarget * n) - (Fref * m)) : ((Fref * m) - (Ftarget * n));
143 if (new_error < best_error) {
144 best_n = n;
145 best_m = m;
146 best_error = new_error;
149 /* But if VLD = 4, then 4m <= 1028 */
150 else if (m <= 1028) {
151 /* remember there are still only 8-bits of precision in m, so
152 * avoid over-optimistic error calculations */
153 unsigned new_error = Ftarget * n >= Fref * (m & ~3) ?
154 ((Ftarget * n) - (Fref * (m & ~3))) : ((Fref * (m & ~3)) - (Ftarget * n));
155 if (new_error < best_error) {
156 best_n = n;
157 best_m = m;
158 best_error = new_error;
162 if (best_m > 257)
163 best_m >>= 2; /* divide m by 4, and leave VCO loop divide at 4 */
164 else
165 divisor |= 4; /* or set VCO loop divide to 1 */
166 *dclk2_m = best_m - 2;
167 *dclk2_n = best_n - 2;
168 *dclk2_div = divisor;
169 *ppixclock = pixclock;
170 return;
173 static void asiliant_set_timing(struct fb_info *p)
175 unsigned hd = p->var.xres / 8;
176 unsigned hs = (p->var.xres + p->var.right_margin) / 8;
177 unsigned he = (p->var.xres + p->var.right_margin + p->var.hsync_len) / 8;
178 unsigned ht = (p->var.left_margin + p->var.xres + p->var.right_margin + p->var.hsync_len) / 8;
179 unsigned vd = p->var.yres;
180 unsigned vs = p->var.yres + p->var.lower_margin;
181 unsigned ve = p->var.yres + p->var.lower_margin + p->var.vsync_len;
182 unsigned vt = p->var.upper_margin + p->var.yres + p->var.lower_margin + p->var.vsync_len;
183 unsigned wd = (p->var.xres_virtual * ((p->var.bits_per_pixel+7)/8)) / 8;
185 if ((p->var.xres == 640) && (p->var.yres == 480) && (p->var.pixclock == 39722)) {
186 write_fr(0x01, 0x02); /* LCD */
187 } else {
188 write_fr(0x01, 0x01); /* CRT */
191 write_cr(0x11, (ve - 1) & 0x0f);
192 write_cr(0x00, (ht - 5) & 0xff);
193 write_cr(0x01, hd - 1);
194 write_cr(0x02, hd);
195 write_cr(0x03, ((ht - 1) & 0x1f) | 0x80);
196 write_cr(0x04, hs);
197 write_cr(0x05, (((ht - 1) & 0x20) <<2) | (he & 0x1f));
198 write_cr(0x3c, (ht - 1) & 0xc0);
199 write_cr(0x06, (vt - 2) & 0xff);
200 write_cr(0x30, (vt - 2) >> 8);
201 write_cr(0x07, 0x00);
202 write_cr(0x08, 0x00);
203 write_cr(0x09, 0x00);
204 write_cr(0x10, (vs - 1) & 0xff);
205 write_cr(0x32, ((vs - 1) >> 8) & 0xf);
206 write_cr(0x11, ((ve - 1) & 0x0f) | 0x80);
207 write_cr(0x12, (vd - 1) & 0xff);
208 write_cr(0x31, ((vd - 1) & 0xf00) >> 8);
209 write_cr(0x13, wd & 0xff);
210 write_cr(0x41, (wd & 0xf00) >> 8);
211 write_cr(0x15, (vs - 1) & 0xff);
212 write_cr(0x33, ((vs - 1) >> 8) & 0xf);
213 write_cr(0x38, ((ht - 5) & 0x100) >> 8);
214 write_cr(0x16, (vt - 1) & 0xff);
215 write_cr(0x18, 0x00);
217 if (p->var.xres == 640) {
218 writeb(0xc7, mmio_base + 0x784); /* set misc output reg */
219 } else {
220 writeb(0x07, mmio_base + 0x784); /* set misc output reg */
224 static int asiliantfb_check_var(struct fb_var_screeninfo *var,
225 struct fb_info *p)
227 unsigned long Ftarget, ratio, remainder;
229 if (!var->pixclock)
230 return -EINVAL;
232 ratio = 1000000 / var->pixclock;
233 remainder = 1000000 % var->pixclock;
234 Ftarget = 1000000 * ratio + (1000000 * remainder) / var->pixclock;
236 /* First check the constraint that the maximum post-VCO divisor is 32,
237 * and the maximum Fvco is 220MHz */
238 if (Ftarget > 220000000 || Ftarget < 3125000) {
239 printk(KERN_ERR "asiliantfb dotclock must be between 3.125 and 220MHz\n");
240 return -ENXIO;
242 var->xres_virtual = var->xres;
243 var->yres_virtual = var->yres;
245 if (var->bits_per_pixel == 24) {
246 var->red.offset = 16;
247 var->green.offset = 8;
248 var->blue.offset = 0;
249 var->red.length = var->blue.length = var->green.length = 8;
250 } else if (var->bits_per_pixel == 16) {
251 switch (var->red.offset) {
252 case 11:
253 var->green.length = 6;
254 break;
255 case 10:
256 var->green.length = 5;
257 break;
258 default:
259 return -EINVAL;
261 var->green.offset = 5;
262 var->blue.offset = 0;
263 var->red.length = var->blue.length = 5;
264 } else if (var->bits_per_pixel == 8) {
265 var->red.offset = var->green.offset = var->blue.offset = 0;
266 var->red.length = var->green.length = var->blue.length = 8;
268 return 0;
271 static int asiliantfb_set_par(struct fb_info *p)
273 u8 dclk2_m; /* Holds m-2 value for register */
274 u8 dclk2_n; /* Holds n-2 value for register */
275 u8 dclk2_div; /* Holds divisor bitmask */
277 /* Set pixclock */
278 asiliant_calc_dclk2(&p->var.pixclock, &dclk2_m, &dclk2_n, &dclk2_div);
280 /* Set color depth */
281 if (p->var.bits_per_pixel == 24) {
282 write_xr(0x81, 0x16); /* 24 bit packed color mode */
283 write_xr(0x82, 0x00); /* Disable palettes */
284 write_xr(0x20, 0x20); /* 24 bit blitter mode */
285 } else if (p->var.bits_per_pixel == 16) {
286 if (p->var.red.offset == 11)
287 write_xr(0x81, 0x15); /* 16 bit color mode */
288 else
289 write_xr(0x81, 0x14); /* 15 bit color mode */
290 write_xr(0x82, 0x00); /* Disable palettes */
291 write_xr(0x20, 0x10); /* 16 bit blitter mode */
292 } else if (p->var.bits_per_pixel == 8) {
293 write_xr(0x0a, 0x02); /* Linear */
294 write_xr(0x81, 0x12); /* 8 bit color mode */
295 write_xr(0x82, 0x00); /* Graphics gamma enable */
296 write_xr(0x20, 0x00); /* 8 bit blitter mode */
298 p->fix.line_length = p->var.xres * (p->var.bits_per_pixel >> 3);
299 p->fix.visual = (p->var.bits_per_pixel == 8) ? FB_VISUAL_PSEUDOCOLOR : FB_VISUAL_TRUECOLOR;
300 write_xr(0xc4, dclk2_m);
301 write_xr(0xc5, dclk2_n);
302 write_xr(0xc7, dclk2_div);
303 /* Set up the CR registers */
304 asiliant_set_timing(p);
305 return 0;
308 static int asiliantfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
309 u_int transp, struct fb_info *p)
311 if (regno > 255)
312 return 1;
313 red >>= 8;
314 green >>= 8;
315 blue >>= 8;
317 /* Set hardware palete */
318 writeb(regno, mmio_base + 0x790);
319 udelay(1);
320 writeb(red, mmio_base + 0x791);
321 writeb(green, mmio_base + 0x791);
322 writeb(blue, mmio_base + 0x791);
324 if (regno < 16) {
325 switch(p->var.red.offset) {
326 case 10: /* RGB 555 */
327 ((u32 *)(p->pseudo_palette))[regno] =
328 ((red & 0xf8) << 7) |
329 ((green & 0xf8) << 2) |
330 ((blue & 0xf8) >> 3);
331 break;
332 case 11: /* RGB 565 */
333 ((u32 *)(p->pseudo_palette))[regno] =
334 ((red & 0xf8) << 8) |
335 ((green & 0xfc) << 3) |
336 ((blue & 0xf8) >> 3);
337 break;
338 case 16: /* RGB 888 */
339 ((u32 *)(p->pseudo_palette))[regno] =
340 (red << 16) |
341 (green << 8) |
342 (blue);
343 break;
347 return 0;
350 struct chips_init_reg {
351 unsigned char addr;
352 unsigned char data;
355 static struct chips_init_reg chips_init_sr[] =
357 {0x00, 0x03}, /* Reset register */
358 {0x01, 0x01}, /* Clocking mode */
359 {0x02, 0x0f}, /* Plane mask */
360 {0x04, 0x0e} /* Memory mode */
363 static struct chips_init_reg chips_init_gr[] =
365 {0x03, 0x00}, /* Data rotate */
366 {0x05, 0x00}, /* Graphics mode */
367 {0x06, 0x01}, /* Miscellaneous */
368 {0x08, 0x00} /* Bit mask */
371 static struct chips_init_reg chips_init_ar[] =
373 {0x10, 0x01}, /* Mode control */
374 {0x11, 0x00}, /* Overscan */
375 {0x12, 0x0f}, /* Memory plane enable */
376 {0x13, 0x00} /* Horizontal pixel panning */
379 static struct chips_init_reg chips_init_cr[] =
381 {0x0c, 0x00}, /* Start address high */
382 {0x0d, 0x00}, /* Start address low */
383 {0x40, 0x00}, /* Extended Start Address */
384 {0x41, 0x00}, /* Extended Start Address */
385 {0x14, 0x00}, /* Underline location */
386 {0x17, 0xe3}, /* CRT mode control */
387 {0x70, 0x00} /* Interlace control */
391 static struct chips_init_reg chips_init_fr[] =
393 {0x01, 0x02},
394 {0x03, 0x08},
395 {0x08, 0xcc},
396 {0x0a, 0x08},
397 {0x18, 0x00},
398 {0x1e, 0x80},
399 {0x40, 0x83},
400 {0x41, 0x00},
401 {0x48, 0x13},
402 {0x4d, 0x60},
403 {0x4e, 0x0f},
405 {0x0b, 0x01},
407 {0x21, 0x51},
408 {0x22, 0x1d},
409 {0x23, 0x5f},
410 {0x20, 0x4f},
411 {0x34, 0x00},
412 {0x24, 0x51},
413 {0x25, 0x00},
414 {0x27, 0x0b},
415 {0x26, 0x00},
416 {0x37, 0x80},
417 {0x33, 0x0b},
418 {0x35, 0x11},
419 {0x36, 0x02},
420 {0x31, 0xea},
421 {0x32, 0x0c},
422 {0x30, 0xdf},
423 {0x10, 0x0c},
424 {0x11, 0xe0},
425 {0x12, 0x50},
426 {0x13, 0x00},
427 {0x16, 0x03},
428 {0x17, 0xbd},
429 {0x1a, 0x00},
433 static struct chips_init_reg chips_init_xr[] =
435 {0xce, 0x00}, /* set default memory clock */
436 {0xcc, 200 }, /* MCLK ratio M */
437 {0xcd, 18 }, /* MCLK ratio N */
438 {0xce, 0x90}, /* MCLK divisor = 2 */
440 {0xc4, 209 },
441 {0xc5, 118 },
442 {0xc7, 32 },
443 {0xcf, 0x06},
444 {0x09, 0x01}, /* IO Control - CRT controller extensions */
445 {0x0a, 0x02}, /* Frame buffer mapping */
446 {0x0b, 0x01}, /* PCI burst write */
447 {0x40, 0x03}, /* Memory access control */
448 {0x80, 0x82}, /* Pixel pipeline configuration 0 */
449 {0x81, 0x12}, /* Pixel pipeline configuration 1 */
450 {0x82, 0x08}, /* Pixel pipeline configuration 2 */
452 {0xd0, 0x0f},
453 {0xd1, 0x01},
456 static void chips_hw_init(struct fb_info *p)
458 int i;
460 for (i = 0; i < ARRAY_SIZE(chips_init_xr); ++i)
461 write_xr(chips_init_xr[i].addr, chips_init_xr[i].data);
462 write_xr(0x81, 0x12);
463 write_xr(0x82, 0x08);
464 write_xr(0x20, 0x00);
465 for (i = 0; i < ARRAY_SIZE(chips_init_sr); ++i)
466 write_sr(chips_init_sr[i].addr, chips_init_sr[i].data);
467 for (i = 0; i < ARRAY_SIZE(chips_init_gr); ++i)
468 write_gr(chips_init_gr[i].addr, chips_init_gr[i].data);
469 for (i = 0; i < ARRAY_SIZE(chips_init_ar); ++i)
470 write_ar(chips_init_ar[i].addr, chips_init_ar[i].data);
471 /* Enable video output in attribute index register */
472 writeb(0x20, mmio_base + 0x780);
473 for (i = 0; i < ARRAY_SIZE(chips_init_cr); ++i)
474 write_cr(chips_init_cr[i].addr, chips_init_cr[i].data);
475 for (i = 0; i < ARRAY_SIZE(chips_init_fr); ++i)
476 write_fr(chips_init_fr[i].addr, chips_init_fr[i].data);
479 static const struct fb_fix_screeninfo asiliantfb_fix = {
480 .id = "Asiliant 69000",
481 .type = FB_TYPE_PACKED_PIXELS,
482 .visual = FB_VISUAL_PSEUDOCOLOR,
483 .accel = FB_ACCEL_NONE,
484 .line_length = 640,
485 .smem_len = 0x200000, /* 2MB */
488 static const struct fb_var_screeninfo asiliantfb_var = {
489 .xres = 640,
490 .yres = 480,
491 .xres_virtual = 640,
492 .yres_virtual = 480,
493 .bits_per_pixel = 8,
494 .red = { .length = 8 },
495 .green = { .length = 8 },
496 .blue = { .length = 8 },
497 .height = -1,
498 .width = -1,
499 .vmode = FB_VMODE_NONINTERLACED,
500 .pixclock = 39722,
501 .left_margin = 48,
502 .right_margin = 16,
503 .upper_margin = 33,
504 .lower_margin = 10,
505 .hsync_len = 96,
506 .vsync_len = 2,
509 static int init_asiliant(struct fb_info *p, unsigned long addr)
511 int err;
513 p->fix = asiliantfb_fix;
514 p->fix.smem_start = addr;
515 p->var = asiliantfb_var;
516 p->fbops = &asiliantfb_ops;
518 err = fb_alloc_cmap(&p->cmap, 256, 0);
519 if (err) {
520 printk(KERN_ERR "C&T 69000 fb failed to alloc cmap memory\n");
521 return err;
524 err = register_framebuffer(p);
525 if (err < 0) {
526 printk(KERN_ERR "C&T 69000 framebuffer failed to register\n");
527 fb_dealloc_cmap(&p->cmap);
528 return err;
531 fb_info(p, "Asiliant 69000 frame buffer (%dK RAM detected)\n",
532 p->fix.smem_len / 1024);
534 writeb(0xff, mmio_base + 0x78c);
535 chips_hw_init(p);
536 return 0;
539 static int asiliantfb_pci_init(struct pci_dev *dp,
540 const struct pci_device_id *ent)
542 unsigned long addr, size;
543 struct fb_info *p;
544 int err;
546 err = aperture_remove_conflicting_pci_devices(dp, "asiliantfb");
547 if (err)
548 return err;
550 if ((dp->resource[0].flags & IORESOURCE_MEM) == 0)
551 return -ENODEV;
552 addr = pci_resource_start(dp, 0);
553 size = pci_resource_len(dp, 0);
554 if (addr == 0)
555 return -ENODEV;
556 if (!request_mem_region(addr, size, "asiliantfb"))
557 return -EBUSY;
559 p = framebuffer_alloc(sizeof(u32) * 16, &dp->dev);
560 if (!p) {
561 release_mem_region(addr, size);
562 return -ENOMEM;
564 p->pseudo_palette = p->par;
565 p->par = NULL;
567 p->screen_base = ioremap(addr, 0x800000);
568 if (p->screen_base == NULL) {
569 release_mem_region(addr, size);
570 framebuffer_release(p);
571 return -ENOMEM;
574 pci_write_config_dword(dp, 4, 0x02800083);
575 writeb(3, p->screen_base + 0x400784);
577 err = init_asiliant(p, addr);
578 if (err) {
579 iounmap(p->screen_base);
580 release_mem_region(addr, size);
581 framebuffer_release(p);
582 return err;
585 pci_set_drvdata(dp, p);
586 return 0;
589 static void asiliantfb_remove(struct pci_dev *dp)
591 struct fb_info *p = pci_get_drvdata(dp);
593 unregister_framebuffer(p);
594 fb_dealloc_cmap(&p->cmap);
595 iounmap(p->screen_base);
596 release_mem_region(pci_resource_start(dp, 0), pci_resource_len(dp, 0));
597 framebuffer_release(p);
600 static const struct pci_device_id asiliantfb_pci_tbl[] = {
601 { PCI_VENDOR_ID_CT, PCI_DEVICE_ID_CT_69000, PCI_ANY_ID, PCI_ANY_ID },
602 { 0 }
605 MODULE_DEVICE_TABLE(pci, asiliantfb_pci_tbl);
607 static struct pci_driver asiliantfb_driver = {
608 .name = "asiliantfb",
609 .id_table = asiliantfb_pci_tbl,
610 .probe = asiliantfb_pci_init,
611 .remove = asiliantfb_remove,
614 static int __init asiliantfb_init(void)
616 if (fb_modesetting_disabled("asiliantfb"))
617 return -ENODEV;
619 if (fb_get_options("asiliantfb", NULL))
620 return -ENODEV;
622 return pci_register_driver(&asiliantfb_driver);
625 module_init(asiliantfb_init);
627 static void __exit asiliantfb_exit(void)
629 pci_unregister_driver(&asiliantfb_driver);
632 MODULE_LICENSE("GPL");