2 * linux/drivers/video/pxafb.c
4 * Copyright (C) 1999 Eric A. Thomas.
5 * Copyright (C) 2004 Jean-Frederic Clere.
6 * Copyright (C) 2004 Ian Campbell.
7 * Copyright (C) 2004 Jeff Lackey.
8 * Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
10 * Based on acornfb.c Copyright (C) Russell King.
12 * This file is subject to the terms and conditions of the GNU General Public
13 * License. See the file COPYING in the main directory of this archive for
16 * Intel PXA250/210 LCD Controller Frame Buffer Driver
18 * Please direct your questions and comments on this driver to the following
21 * linux-arm-kernel@lists.arm.linux.org.uk
23 * Add support for overlay1 and overlay2 based on pxafb_overlay.c:
25 * Copyright (C) 2004, Intel Corporation
27 * 2003/08/27: <yu.tang@intel.com>
28 * 2004/03/10: <stanley.cai@intel.com>
29 * 2004/10/28: <yan.yin@intel.com>
31 * Copyright (C) 2006-2008 Marvell International Ltd.
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/kernel.h>
38 #include <linux/sched.h>
39 #include <linux/errno.h>
40 #include <linux/string.h>
41 #include <linux/interrupt.h>
42 #include <linux/slab.h>
45 #include <linux/delay.h>
46 #include <linux/init.h>
47 #include <linux/ioport.h>
48 #include <linux/cpufreq.h>
49 #include <linux/platform_device.h>
50 #include <linux/dma-mapping.h>
51 #include <linux/clk.h>
52 #include <linux/err.h>
53 #include <linux/completion.h>
54 #include <linux/mutex.h>
55 #include <linux/kthread.h>
56 #include <linux/freezer.h>
57 #include <linux/console.h>
58 #include <linux/of_graph.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/soc/pxa/cpu.h>
61 #include <video/of_display_timing.h>
62 #include <video/videomode.h>
66 #include <asm/div64.h>
67 #include <linux/platform_data/video-pxafb.h>
70 * Complain if VAR is out of range.
75 #include "pxa3xx-regs.h"
77 /* Bits which should not be set in machine configuration structures */
78 #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\
79 LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\
80 LCCR0_SFM | LCCR0_LDM | LCCR0_ENB)
82 #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP | LCCR3_VSP |\
83 LCCR3_PCD | LCCR3_BPP(0xf))
85 static int pxafb_activate_var(struct fb_var_screeninfo
*var
,
87 static void set_ctrlr_state(struct pxafb_info
*fbi
, u_int state
);
88 static void setup_base_frame(struct pxafb_info
*fbi
,
89 struct fb_var_screeninfo
*var
, int branch
);
90 static int setup_frame_dma(struct pxafb_info
*fbi
, int dma
, int pal
,
91 unsigned long offset
, size_t size
);
93 static unsigned long video_mem_size
= 0;
95 static inline unsigned long
96 lcd_readl(struct pxafb_info
*fbi
, unsigned int off
)
98 return __raw_readl(fbi
->mmio_base
+ off
);
102 lcd_writel(struct pxafb_info
*fbi
, unsigned int off
, unsigned long val
)
104 __raw_writel(val
, fbi
->mmio_base
+ off
);
107 static inline void pxafb_schedule_work(struct pxafb_info
*fbi
, u_int state
)
111 local_irq_save(flags
);
113 * We need to handle two requests being made at the same time.
114 * There are two important cases:
115 * 1. When we are changing VT (C_REENABLE) while unblanking
116 * (C_ENABLE) We must perform the unblanking, which will
117 * do our REENABLE for us.
118 * 2. When we are blanking, but immediately unblank before
119 * we have blanked. We do the "REENABLE" thing here as
120 * well, just to be sure.
122 if (fbi
->task_state
== C_ENABLE
&& state
== C_REENABLE
)
124 if (fbi
->task_state
== C_DISABLE
&& state
== C_ENABLE
)
127 if (state
!= (u_int
)-1) {
128 fbi
->task_state
= state
;
129 schedule_work(&fbi
->task
);
131 local_irq_restore(flags
);
134 static inline u_int
chan_to_field(u_int chan
, struct fb_bitfield
*bf
)
137 chan
>>= 16 - bf
->length
;
138 return chan
<< bf
->offset
;
142 pxafb_setpalettereg(u_int regno
, u_int red
, u_int green
, u_int blue
,
143 u_int trans
, struct fb_info
*info
)
145 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
148 if (regno
>= fbi
->palette_size
)
151 if (fbi
->fb
.var
.grayscale
) {
152 fbi
->palette_cpu
[regno
] = ((blue
>> 8) & 0x00ff);
156 switch (fbi
->lccr4
& LCCR4_PAL_FOR_MASK
) {
157 case LCCR4_PAL_FOR_0
:
158 val
= ((red
>> 0) & 0xf800);
159 val
|= ((green
>> 5) & 0x07e0);
160 val
|= ((blue
>> 11) & 0x001f);
161 fbi
->palette_cpu
[regno
] = val
;
163 case LCCR4_PAL_FOR_1
:
164 val
= ((red
<< 8) & 0x00f80000);
165 val
|= ((green
>> 0) & 0x0000fc00);
166 val
|= ((blue
>> 8) & 0x000000f8);
167 ((u32
*)(fbi
->palette_cpu
))[regno
] = val
;
169 case LCCR4_PAL_FOR_2
:
170 val
= ((red
<< 8) & 0x00fc0000);
171 val
|= ((green
>> 0) & 0x0000fc00);
172 val
|= ((blue
>> 8) & 0x000000fc);
173 ((u32
*)(fbi
->palette_cpu
))[regno
] = val
;
175 case LCCR4_PAL_FOR_3
:
176 val
= ((red
<< 8) & 0x00ff0000);
177 val
|= ((green
>> 0) & 0x0000ff00);
178 val
|= ((blue
>> 8) & 0x000000ff);
179 ((u32
*)(fbi
->palette_cpu
))[regno
] = val
;
187 pxafb_setcolreg(u_int regno
, u_int red
, u_int green
, u_int blue
,
188 u_int trans
, struct fb_info
*info
)
190 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
195 * If inverse mode was selected, invert all the colours
196 * rather than the register number. The register number
197 * is what you poke into the framebuffer to produce the
198 * colour you requested.
200 if (fbi
->cmap_inverse
) {
202 green
= 0xffff - green
;
203 blue
= 0xffff - blue
;
207 * If greyscale is true, then we convert the RGB value
208 * to greyscale no matter what visual we are using.
210 if (fbi
->fb
.var
.grayscale
)
211 red
= green
= blue
= (19595 * red
+ 38470 * green
+
214 switch (fbi
->fb
.fix
.visual
) {
215 case FB_VISUAL_TRUECOLOR
:
217 * 16-bit True Colour. We encode the RGB value
218 * according to the RGB bitfield information.
221 u32
*pal
= fbi
->fb
.pseudo_palette
;
223 val
= chan_to_field(red
, &fbi
->fb
.var
.red
);
224 val
|= chan_to_field(green
, &fbi
->fb
.var
.green
);
225 val
|= chan_to_field(blue
, &fbi
->fb
.var
.blue
);
232 case FB_VISUAL_STATIC_PSEUDOCOLOR
:
233 case FB_VISUAL_PSEUDOCOLOR
:
234 ret
= pxafb_setpalettereg(regno
, red
, green
, blue
, trans
, info
);
241 /* calculate pixel depth, transparency bit included, >=16bpp formats _only_ */
242 static inline int var_to_depth(struct fb_var_screeninfo
*var
)
244 return var
->red
.length
+ var
->green
.length
+
245 var
->blue
.length
+ var
->transp
.length
;
248 /* calculate 4-bit BPP value for LCCR3 and OVLxC1 */
249 static int pxafb_var_to_bpp(struct fb_var_screeninfo
*var
)
253 switch (var
->bits_per_pixel
) {
254 case 1: bpp
= 0; break;
255 case 2: bpp
= 1; break;
256 case 4: bpp
= 2; break;
257 case 8: bpp
= 3; break;
258 case 16: bpp
= 4; break;
260 switch (var_to_depth(var
)) {
261 case 18: bpp
= 6; break; /* 18-bits/pixel packed */
262 case 19: bpp
= 8; break; /* 19-bits/pixel packed */
263 case 24: bpp
= 9; break;
267 switch (var_to_depth(var
)) {
268 case 18: bpp
= 5; break; /* 18-bits/pixel unpacked */
269 case 19: bpp
= 7; break; /* 19-bits/pixel unpacked */
270 case 25: bpp
= 10; break;
278 * pxafb_var_to_lccr3():
279 * Convert a bits per pixel value to the correct bit pattern for LCCR3
281 * NOTE: for PXA27x with overlays support, the LCCR3_PDFOR_x bits have an
282 * implication of the acutal use of transparency bit, which we handle it
283 * here separatedly. See PXA27x Developer's Manual, Section <<7.4.6 Pixel
284 * Formats>> for the valid combination of PDFOR, PAL_FOR for various BPP.
286 * Transparency for palette pixel formats is not supported at the moment.
288 static uint32_t pxafb_var_to_lccr3(struct fb_var_screeninfo
*var
)
290 int bpp
= pxafb_var_to_bpp(var
);
296 lccr3
= LCCR3_BPP(bpp
);
298 switch (var_to_depth(var
)) {
299 case 16: lccr3
|= var
->transp
.length
? LCCR3_PDFOR_3
: 0; break;
300 case 18: lccr3
|= LCCR3_PDFOR_3
; break;
301 case 24: lccr3
|= var
->transp
.length
? LCCR3_PDFOR_2
: LCCR3_PDFOR_3
;
304 case 25: lccr3
|= LCCR3_PDFOR_0
; break;
309 #define SET_PIXFMT(v, r, g, b, t) \
311 (v)->transp.offset = (t) ? (r) + (g) + (b) : 0; \
312 (v)->transp.length = (t) ? (t) : 0; \
313 (v)->blue.length = (b); (v)->blue.offset = 0; \
314 (v)->green.length = (g); (v)->green.offset = (b); \
315 (v)->red.length = (r); (v)->red.offset = (b) + (g); \
318 /* set the RGBT bitfields of fb_var_screeninf according to
319 * var->bits_per_pixel and given depth
321 static void pxafb_set_pixfmt(struct fb_var_screeninfo
*var
, int depth
)
324 depth
= var
->bits_per_pixel
;
326 if (var
->bits_per_pixel
< 16) {
327 /* indexed pixel formats */
328 var
->red
.offset
= 0; var
->red
.length
= 8;
329 var
->green
.offset
= 0; var
->green
.length
= 8;
330 var
->blue
.offset
= 0; var
->blue
.length
= 8;
331 var
->transp
.offset
= 0; var
->transp
.length
= 8;
335 case 16: var
->transp
.length
?
336 SET_PIXFMT(var
, 5, 5, 5, 1) : /* RGBT555 */
337 SET_PIXFMT(var
, 5, 6, 5, 0); break; /* RGB565 */
338 case 18: SET_PIXFMT(var
, 6, 6, 6, 0); break; /* RGB666 */
339 case 19: SET_PIXFMT(var
, 6, 6, 6, 1); break; /* RGBT666 */
340 case 24: var
->transp
.length
?
341 SET_PIXFMT(var
, 8, 8, 7, 1) : /* RGBT887 */
342 SET_PIXFMT(var
, 8, 8, 8, 0); break; /* RGB888 */
343 case 25: SET_PIXFMT(var
, 8, 8, 8, 1); break; /* RGBT888 */
347 #ifdef CONFIG_CPU_FREQ
349 * pxafb_display_dma_period()
350 * Calculate the minimum period (in picoseconds) between two DMA
351 * requests for the LCD controller. If we hit this, it means we're
352 * doing nothing but LCD DMA.
354 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo
*var
)
357 * Period = pixclock * bits_per_byte * bytes_per_transfer
358 * / memory_bits_per_pixel;
360 return var
->pixclock
* 8 * 16 / var
->bits_per_pixel
;
365 * Select the smallest mode that allows the desired resolution to be
366 * displayed. If desired parameters can be rounded up.
368 static struct pxafb_mode_info
*pxafb_getmode(struct pxafb_mach_info
*mach
,
369 struct fb_var_screeninfo
*var
)
371 struct pxafb_mode_info
*mode
= NULL
;
372 struct pxafb_mode_info
*modelist
= mach
->modes
;
373 unsigned int best_x
= 0xffffffff, best_y
= 0xffffffff;
376 for (i
= 0; i
< mach
->num_modes
; i
++) {
377 if (modelist
[i
].xres
>= var
->xres
&&
378 modelist
[i
].yres
>= var
->yres
&&
379 modelist
[i
].xres
< best_x
&&
380 modelist
[i
].yres
< best_y
&&
381 modelist
[i
].bpp
>= var
->bits_per_pixel
) {
382 best_x
= modelist
[i
].xres
;
383 best_y
= modelist
[i
].yres
;
391 static void pxafb_setmode(struct fb_var_screeninfo
*var
,
392 struct pxafb_mode_info
*mode
)
394 var
->xres
= mode
->xres
;
395 var
->yres
= mode
->yres
;
396 var
->bits_per_pixel
= mode
->bpp
;
397 var
->pixclock
= mode
->pixclock
;
398 var
->hsync_len
= mode
->hsync_len
;
399 var
->left_margin
= mode
->left_margin
;
400 var
->right_margin
= mode
->right_margin
;
401 var
->vsync_len
= mode
->vsync_len
;
402 var
->upper_margin
= mode
->upper_margin
;
403 var
->lower_margin
= mode
->lower_margin
;
404 var
->sync
= mode
->sync
;
405 var
->grayscale
= mode
->cmap_greyscale
;
406 var
->transp
.length
= mode
->transparency
;
408 /* set the initial RGBA bitfields */
409 pxafb_set_pixfmt(var
, mode
->depth
);
412 static int pxafb_adjust_timing(struct pxafb_info
*fbi
,
413 struct fb_var_screeninfo
*var
)
417 var
->xres
= max_t(int, var
->xres
, MIN_XRES
);
418 var
->yres
= max_t(int, var
->yres
, MIN_YRES
);
420 if (!(fbi
->lccr0
& LCCR0_LCDT
)) {
421 clamp_val(var
->hsync_len
, 1, 64);
422 clamp_val(var
->vsync_len
, 1, 64);
423 clamp_val(var
->left_margin
, 1, 255);
424 clamp_val(var
->right_margin
, 1, 255);
425 clamp_val(var
->upper_margin
, 1, 255);
426 clamp_val(var
->lower_margin
, 1, 255);
429 /* make sure each line is aligned on word boundary */
430 line_length
= var
->xres
* var
->bits_per_pixel
/ 8;
431 line_length
= ALIGN(line_length
, 4);
432 var
->xres
= line_length
* 8 / var
->bits_per_pixel
;
434 /* we don't support xpan, force xres_virtual to be equal to xres */
435 var
->xres_virtual
= var
->xres
;
437 if (var
->accel_flags
& FB_ACCELF_TEXT
)
438 var
->yres_virtual
= fbi
->fb
.fix
.smem_len
/ line_length
;
440 var
->yres_virtual
= max(var
->yres_virtual
, var
->yres
);
442 /* check for limits */
443 if (var
->xres
> MAX_XRES
|| var
->yres
> MAX_YRES
)
446 if (var
->yres
> var
->yres_virtual
)
454 * Get the video params out of 'var'. If a value doesn't fit, round it up,
455 * if it's too big, return -EINVAL.
457 * Round up in the following order: bits_per_pixel, xres,
458 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
459 * bitfields, horizontal timing, vertical timing.
461 static int pxafb_check_var(struct fb_var_screeninfo
*var
, struct fb_info
*info
)
463 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
464 struct pxafb_mach_info
*inf
= fbi
->inf
;
467 if (inf
->fixed_modes
) {
468 struct pxafb_mode_info
*mode
;
470 mode
= pxafb_getmode(inf
, var
);
473 pxafb_setmode(var
, mode
);
476 /* do a test conversion to BPP fields to check the color formats */
477 err
= pxafb_var_to_bpp(var
);
481 pxafb_set_pixfmt(var
, var_to_depth(var
));
483 err
= pxafb_adjust_timing(fbi
, var
);
487 #ifdef CONFIG_CPU_FREQ
488 pr_debug("pxafb: dma period = %d ps\n",
489 pxafb_display_dma_period(var
));
497 * Set the user defined part of the display for the specified console
499 static int pxafb_set_par(struct fb_info
*info
)
501 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
502 struct fb_var_screeninfo
*var
= &info
->var
;
504 if (var
->bits_per_pixel
>= 16)
505 fbi
->fb
.fix
.visual
= FB_VISUAL_TRUECOLOR
;
506 else if (!fbi
->cmap_static
)
507 fbi
->fb
.fix
.visual
= FB_VISUAL_PSEUDOCOLOR
;
510 * Some people have weird ideas about wanting static
511 * pseudocolor maps. I suspect their user space
512 * applications are broken.
514 fbi
->fb
.fix
.visual
= FB_VISUAL_STATIC_PSEUDOCOLOR
;
517 fbi
->fb
.fix
.line_length
= var
->xres_virtual
*
518 var
->bits_per_pixel
/ 8;
519 if (var
->bits_per_pixel
>= 16)
520 fbi
->palette_size
= 0;
522 fbi
->palette_size
= var
->bits_per_pixel
== 1 ?
523 4 : 1 << var
->bits_per_pixel
;
525 fbi
->palette_cpu
= (u16
*)&fbi
->dma_buff
->palette
[0];
527 if (fbi
->fb
.var
.bits_per_pixel
>= 16)
528 fb_dealloc_cmap(&fbi
->fb
.cmap
);
530 fb_alloc_cmap(&fbi
->fb
.cmap
, 1<<fbi
->fb
.var
.bits_per_pixel
, 0);
532 pxafb_activate_var(var
, fbi
);
537 static int pxafb_pan_display(struct fb_var_screeninfo
*var
,
538 struct fb_info
*info
)
540 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
541 struct fb_var_screeninfo newvar
;
542 int dma
= DMA_MAX
+ DMA_BASE
;
544 if (fbi
->state
!= C_ENABLE
)
547 /* Only take .xoffset, .yoffset and .vmode & FB_VMODE_YWRAP from what
548 * was passed in and copy the rest from the old screeninfo.
550 memcpy(&newvar
, &fbi
->fb
.var
, sizeof(newvar
));
551 newvar
.xoffset
= var
->xoffset
;
552 newvar
.yoffset
= var
->yoffset
;
553 newvar
.vmode
&= ~FB_VMODE_YWRAP
;
554 newvar
.vmode
|= var
->vmode
& FB_VMODE_YWRAP
;
556 setup_base_frame(fbi
, &newvar
, 1);
558 if (fbi
->lccr0
& LCCR0_SDS
)
559 lcd_writel(fbi
, FBR1
, fbi
->fdadr
[dma
+ 1] | 0x1);
561 lcd_writel(fbi
, FBR0
, fbi
->fdadr
[dma
] | 0x1);
567 * Blank the display by setting all palette values to zero. Note, the
568 * 16 bpp mode does not really use the palette, so this will not
569 * blank the display in all modes.
571 static int pxafb_blank(int blank
, struct fb_info
*info
)
573 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
577 case FB_BLANK_POWERDOWN
:
578 case FB_BLANK_VSYNC_SUSPEND
:
579 case FB_BLANK_HSYNC_SUSPEND
:
580 case FB_BLANK_NORMAL
:
581 if (fbi
->fb
.fix
.visual
== FB_VISUAL_PSEUDOCOLOR
||
582 fbi
->fb
.fix
.visual
== FB_VISUAL_STATIC_PSEUDOCOLOR
)
583 for (i
= 0; i
< fbi
->palette_size
; i
++)
584 pxafb_setpalettereg(i
, 0, 0, 0, 0, info
);
586 pxafb_schedule_work(fbi
, C_DISABLE
);
587 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
590 case FB_BLANK_UNBLANK
:
591 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
592 if (fbi
->fb
.fix
.visual
== FB_VISUAL_PSEUDOCOLOR
||
593 fbi
->fb
.fix
.visual
== FB_VISUAL_STATIC_PSEUDOCOLOR
)
594 fb_set_cmap(&fbi
->fb
.cmap
, info
);
595 pxafb_schedule_work(fbi
, C_ENABLE
);
600 static const struct fb_ops pxafb_ops
= {
601 .owner
= THIS_MODULE
,
602 FB_DEFAULT_IOMEM_OPS
,
603 .fb_check_var
= pxafb_check_var
,
604 .fb_set_par
= pxafb_set_par
,
605 .fb_pan_display
= pxafb_pan_display
,
606 .fb_setcolreg
= pxafb_setcolreg
,
607 .fb_blank
= pxafb_blank
,
610 #ifdef CONFIG_FB_PXA_OVERLAY
611 static void overlay1fb_setup(struct pxafb_layer
*ofb
)
613 int size
= ofb
->fb
.fix
.line_length
* ofb
->fb
.var
.yres_virtual
;
614 unsigned long start
= ofb
->video_mem_phys
;
615 setup_frame_dma(ofb
->fbi
, DMA_OV1
, PAL_NONE
, start
, size
);
618 /* Depending on the enable status of overlay1/2, the DMA should be
619 * updated from FDADRx (when disabled) or FBRx (when enabled).
621 static void overlay1fb_enable(struct pxafb_layer
*ofb
)
623 int enabled
= lcd_readl(ofb
->fbi
, OVL1C1
) & OVLxC1_OEN
;
624 uint32_t fdadr1
= ofb
->fbi
->fdadr
[DMA_OV1
] | (enabled
? 0x1 : 0);
626 lcd_writel(ofb
->fbi
, enabled
? FBR1
: FDADR1
, fdadr1
);
627 lcd_writel(ofb
->fbi
, OVL1C2
, ofb
->control
[1]);
628 lcd_writel(ofb
->fbi
, OVL1C1
, ofb
->control
[0] | OVLxC1_OEN
);
631 static void overlay1fb_disable(struct pxafb_layer
*ofb
)
635 if (!(lcd_readl(ofb
->fbi
, OVL1C1
) & OVLxC1_OEN
))
638 lccr5
= lcd_readl(ofb
->fbi
, LCCR5
);
640 lcd_writel(ofb
->fbi
, OVL1C1
, ofb
->control
[0] & ~OVLxC1_OEN
);
642 lcd_writel(ofb
->fbi
, LCSR1
, LCSR1_BS(1));
643 lcd_writel(ofb
->fbi
, LCCR5
, lccr5
& ~LCSR1_BS(1));
644 lcd_writel(ofb
->fbi
, FBR1
, ofb
->fbi
->fdadr
[DMA_OV1
] | 0x3);
646 if (wait_for_completion_timeout(&ofb
->branch_done
, 1 * HZ
) == 0)
647 pr_warn("%s: timeout disabling overlay1\n", __func__
);
649 lcd_writel(ofb
->fbi
, LCCR5
, lccr5
);
652 static void overlay2fb_setup(struct pxafb_layer
*ofb
)
654 int size
, div
= 1, pfor
= NONSTD_TO_PFOR(ofb
->fb
.var
.nonstd
);
655 unsigned long start
[3] = { ofb
->video_mem_phys
, 0, 0 };
657 if (pfor
== OVERLAY_FORMAT_RGB
|| pfor
== OVERLAY_FORMAT_YUV444_PACKED
) {
658 size
= ofb
->fb
.fix
.line_length
* ofb
->fb
.var
.yres_virtual
;
659 setup_frame_dma(ofb
->fbi
, DMA_OV2_Y
, -1, start
[0], size
);
661 size
= ofb
->fb
.var
.xres_virtual
* ofb
->fb
.var
.yres_virtual
;
663 case OVERLAY_FORMAT_YUV444_PLANAR
: div
= 1; break;
664 case OVERLAY_FORMAT_YUV422_PLANAR
: div
= 2; break;
665 case OVERLAY_FORMAT_YUV420_PLANAR
: div
= 4; break;
667 start
[1] = start
[0] + size
;
668 start
[2] = start
[1] + size
/ div
;
669 setup_frame_dma(ofb
->fbi
, DMA_OV2_Y
, -1, start
[0], size
);
670 setup_frame_dma(ofb
->fbi
, DMA_OV2_Cb
, -1, start
[1], size
/ div
);
671 setup_frame_dma(ofb
->fbi
, DMA_OV2_Cr
, -1, start
[2], size
/ div
);
675 static void overlay2fb_enable(struct pxafb_layer
*ofb
)
677 int pfor
= NONSTD_TO_PFOR(ofb
->fb
.var
.nonstd
);
678 int enabled
= lcd_readl(ofb
->fbi
, OVL2C1
) & OVLxC1_OEN
;
679 uint32_t fdadr2
= ofb
->fbi
->fdadr
[DMA_OV2_Y
] | (enabled
? 0x1 : 0);
680 uint32_t fdadr3
= ofb
->fbi
->fdadr
[DMA_OV2_Cb
] | (enabled
? 0x1 : 0);
681 uint32_t fdadr4
= ofb
->fbi
->fdadr
[DMA_OV2_Cr
] | (enabled
? 0x1 : 0);
683 if (pfor
== OVERLAY_FORMAT_RGB
|| pfor
== OVERLAY_FORMAT_YUV444_PACKED
)
684 lcd_writel(ofb
->fbi
, enabled
? FBR2
: FDADR2
, fdadr2
);
686 lcd_writel(ofb
->fbi
, enabled
? FBR2
: FDADR2
, fdadr2
);
687 lcd_writel(ofb
->fbi
, enabled
? FBR3
: FDADR3
, fdadr3
);
688 lcd_writel(ofb
->fbi
, enabled
? FBR4
: FDADR4
, fdadr4
);
690 lcd_writel(ofb
->fbi
, OVL2C2
, ofb
->control
[1]);
691 lcd_writel(ofb
->fbi
, OVL2C1
, ofb
->control
[0] | OVLxC1_OEN
);
694 static void overlay2fb_disable(struct pxafb_layer
*ofb
)
698 if (!(lcd_readl(ofb
->fbi
, OVL2C1
) & OVLxC1_OEN
))
701 lccr5
= lcd_readl(ofb
->fbi
, LCCR5
);
703 lcd_writel(ofb
->fbi
, OVL2C1
, ofb
->control
[0] & ~OVLxC1_OEN
);
705 lcd_writel(ofb
->fbi
, LCSR1
, LCSR1_BS(2));
706 lcd_writel(ofb
->fbi
, LCCR5
, lccr5
& ~LCSR1_BS(2));
707 lcd_writel(ofb
->fbi
, FBR2
, ofb
->fbi
->fdadr
[DMA_OV2_Y
] | 0x3);
708 lcd_writel(ofb
->fbi
, FBR3
, ofb
->fbi
->fdadr
[DMA_OV2_Cb
] | 0x3);
709 lcd_writel(ofb
->fbi
, FBR4
, ofb
->fbi
->fdadr
[DMA_OV2_Cr
] | 0x3);
711 if (wait_for_completion_timeout(&ofb
->branch_done
, 1 * HZ
) == 0)
712 pr_warn("%s: timeout disabling overlay2\n", __func__
);
715 static struct pxafb_layer_ops ofb_ops
[] = {
717 .enable
= overlay1fb_enable
,
718 .disable
= overlay1fb_disable
,
719 .setup
= overlay1fb_setup
,
722 .enable
= overlay2fb_enable
,
723 .disable
= overlay2fb_disable
,
724 .setup
= overlay2fb_setup
,
728 static int overlayfb_open(struct fb_info
*info
, int user
)
730 struct pxafb_layer
*ofb
= container_of(info
, struct pxafb_layer
, fb
);
732 /* no support for framebuffer console on overlay */
736 if (ofb
->usage
++ == 0) {
737 /* unblank the base framebuffer */
739 fb_blank(&ofb
->fbi
->fb
, FB_BLANK_UNBLANK
);
746 static int overlayfb_release(struct fb_info
*info
, int user
)
748 struct pxafb_layer
*ofb
= container_of(info
, struct pxafb_layer
, fb
);
750 if (ofb
->usage
== 1) {
751 ofb
->ops
->disable(ofb
);
752 ofb
->fb
.var
.height
= -1;
753 ofb
->fb
.var
.width
= -1;
754 ofb
->fb
.var
.xres
= ofb
->fb
.var
.xres_virtual
= 0;
755 ofb
->fb
.var
.yres
= ofb
->fb
.var
.yres_virtual
= 0;
762 static int overlayfb_check_var(struct fb_var_screeninfo
*var
,
763 struct fb_info
*info
)
765 struct pxafb_layer
*ofb
= container_of(info
, struct pxafb_layer
, fb
);
766 struct fb_var_screeninfo
*base_var
= &ofb
->fbi
->fb
.var
;
767 int xpos
, ypos
, pfor
, bpp
;
769 xpos
= NONSTD_TO_XPOS(var
->nonstd
);
770 ypos
= NONSTD_TO_YPOS(var
->nonstd
);
771 pfor
= NONSTD_TO_PFOR(var
->nonstd
);
773 bpp
= pxafb_var_to_bpp(var
);
777 /* no support for YUV format on overlay1 */
778 if (ofb
->id
== OVERLAY1
&& pfor
!= 0)
781 /* for YUV packed formats, bpp = 'minimum bpp of YUV components' */
783 case OVERLAY_FORMAT_RGB
:
784 bpp
= pxafb_var_to_bpp(var
);
788 pxafb_set_pixfmt(var
, var_to_depth(var
));
790 case OVERLAY_FORMAT_YUV444_PACKED
: bpp
= 24; break;
791 case OVERLAY_FORMAT_YUV444_PLANAR
: bpp
= 8; break;
792 case OVERLAY_FORMAT_YUV422_PLANAR
: bpp
= 4; break;
793 case OVERLAY_FORMAT_YUV420_PLANAR
: bpp
= 2; break;
798 /* each line must start at a 32-bit word boundary */
799 if ((xpos
* bpp
) % 32)
802 /* xres must align on 32-bit word boundary */
803 var
->xres
= roundup(var
->xres
* bpp
, 32) / bpp
;
805 if ((xpos
+ var
->xres
> base_var
->xres
) ||
806 (ypos
+ var
->yres
> base_var
->yres
))
809 var
->xres_virtual
= var
->xres
;
810 var
->yres_virtual
= max(var
->yres
, var
->yres_virtual
);
814 static int overlayfb_check_video_memory(struct pxafb_layer
*ofb
)
816 struct fb_var_screeninfo
*var
= &ofb
->fb
.var
;
817 int pfor
= NONSTD_TO_PFOR(var
->nonstd
);
821 case OVERLAY_FORMAT_RGB
: bpp
= var
->bits_per_pixel
; break;
822 case OVERLAY_FORMAT_YUV444_PACKED
: bpp
= 24; break;
823 case OVERLAY_FORMAT_YUV444_PLANAR
: bpp
= 24; break;
824 case OVERLAY_FORMAT_YUV422_PLANAR
: bpp
= 16; break;
825 case OVERLAY_FORMAT_YUV420_PLANAR
: bpp
= 12; break;
828 ofb
->fb
.fix
.line_length
= var
->xres_virtual
* bpp
/ 8;
830 size
= PAGE_ALIGN(ofb
->fb
.fix
.line_length
* var
->yres_virtual
);
832 if (ofb
->video_mem
) {
833 if (ofb
->video_mem_size
>= size
)
839 static int overlayfb_set_par(struct fb_info
*info
)
841 struct pxafb_layer
*ofb
= container_of(info
, struct pxafb_layer
, fb
);
842 struct fb_var_screeninfo
*var
= &info
->var
;
843 int xpos
, ypos
, pfor
, bpp
, ret
;
845 ret
= overlayfb_check_video_memory(ofb
);
849 bpp
= pxafb_var_to_bpp(var
);
850 xpos
= NONSTD_TO_XPOS(var
->nonstd
);
851 ypos
= NONSTD_TO_YPOS(var
->nonstd
);
852 pfor
= NONSTD_TO_PFOR(var
->nonstd
);
854 ofb
->control
[0] = OVLxC1_PPL(var
->xres
) | OVLxC1_LPO(var
->yres
) |
856 ofb
->control
[1] = OVLxC2_XPOS(xpos
) | OVLxC2_YPOS(ypos
);
858 if (ofb
->id
== OVERLAY2
)
859 ofb
->control
[1] |= OVL2C2_PFOR(pfor
);
861 ofb
->ops
->setup(ofb
);
862 ofb
->ops
->enable(ofb
);
866 static const struct fb_ops overlay_fb_ops
= {
867 .owner
= THIS_MODULE
,
868 .fb_open
= overlayfb_open
,
869 .fb_release
= overlayfb_release
,
870 .fb_check_var
= overlayfb_check_var
,
871 .fb_set_par
= overlayfb_set_par
,
874 static void init_pxafb_overlay(struct pxafb_info
*fbi
, struct pxafb_layer
*ofb
,
877 sprintf(ofb
->fb
.fix
.id
, "overlay%d", id
+ 1);
879 ofb
->fb
.fix
.type
= FB_TYPE_PACKED_PIXELS
;
880 ofb
->fb
.fix
.xpanstep
= 0;
881 ofb
->fb
.fix
.ypanstep
= 1;
883 ofb
->fb
.var
.activate
= FB_ACTIVATE_NOW
;
884 ofb
->fb
.var
.height
= -1;
885 ofb
->fb
.var
.width
= -1;
886 ofb
->fb
.var
.vmode
= FB_VMODE_NONINTERLACED
;
888 ofb
->fb
.fbops
= &overlay_fb_ops
;
890 ofb
->fb
.pseudo_palette
= NULL
;
893 ofb
->ops
= &ofb_ops
[id
];
896 init_completion(&ofb
->branch_done
);
899 static inline int pxafb_overlay_supported(void)
901 if (cpu_is_pxa27x() || cpu_is_pxa3xx())
907 static int pxafb_overlay_map_video_memory(struct pxafb_info
*pxafb
,
908 struct pxafb_layer
*ofb
)
910 /* We assume that user will use at most video_mem_size for overlay fb,
911 * anyway, it's useless to use 16bpp main plane and 24bpp overlay
913 ofb
->video_mem
= alloc_pages_exact(PAGE_ALIGN(pxafb
->video_mem_size
),
914 GFP_KERNEL
| __GFP_ZERO
);
915 if (ofb
->video_mem
== NULL
)
918 ofb
->video_mem_phys
= virt_to_phys(ofb
->video_mem
);
919 ofb
->video_mem_size
= PAGE_ALIGN(pxafb
->video_mem_size
);
921 mutex_lock(&ofb
->fb
.mm_lock
);
922 ofb
->fb
.fix
.smem_start
= ofb
->video_mem_phys
;
923 ofb
->fb
.fix
.smem_len
= pxafb
->video_mem_size
;
924 mutex_unlock(&ofb
->fb
.mm_lock
);
926 ofb
->fb
.screen_base
= ofb
->video_mem
;
931 static void pxafb_overlay_init(struct pxafb_info
*fbi
)
935 if (!pxafb_overlay_supported())
938 for (i
= 0; i
< 2; i
++) {
939 struct pxafb_layer
*ofb
= &fbi
->overlay
[i
];
940 init_pxafb_overlay(fbi
, ofb
, i
);
941 ret
= register_framebuffer(&ofb
->fb
);
943 dev_err(fbi
->dev
, "failed to register overlay %d\n", i
);
946 ret
= pxafb_overlay_map_video_memory(fbi
, ofb
);
949 "failed to map video memory for overlay %d\n",
951 unregister_framebuffer(&ofb
->fb
);
957 /* mask all IU/BS/EOF/SOF interrupts */
958 lcd_writel(fbi
, LCCR5
, ~0);
960 pr_info("PXA Overlay driver loaded successfully!\n");
963 static void pxafb_overlay_exit(struct pxafb_info
*fbi
)
967 if (!pxafb_overlay_supported())
970 for (i
= 0; i
< 2; i
++) {
971 struct pxafb_layer
*ofb
= &fbi
->overlay
[i
];
972 if (ofb
->registered
) {
974 free_pages_exact(ofb
->video_mem
,
975 ofb
->video_mem_size
);
976 unregister_framebuffer(&ofb
->fb
);
981 static inline void pxafb_overlay_init(struct pxafb_info
*fbi
) {}
982 static inline void pxafb_overlay_exit(struct pxafb_info
*fbi
) {}
983 #endif /* CONFIG_FB_PXA_OVERLAY */
986 * Calculate the PCD value from the clock rate (in picoseconds).
987 * We take account of the PPCR clock setting.
988 * From PXA Developer's Manual:
999 * LCLK = LCD/Memory Clock
1002 * PixelClock here is in Hz while the pixclock argument given is the
1003 * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
1005 * The function get_lclk_frequency_10khz returns LCLK in units of
1006 * 10khz. Calling the result of this function lclk gives us the
1009 * PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
1010 * -------------------------------------- - 1
1013 * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
1015 static inline unsigned int get_pcd(struct pxafb_info
*fbi
,
1016 unsigned int pixclock
)
1018 unsigned long long pcd
;
1020 /* FIXME: Need to take into account Double Pixel Clock mode
1021 * (DPC) bit? or perhaps set it based on the various clock
1023 pcd
= (unsigned long long)(clk_get_rate(fbi
->clk
) / 10000);
1025 do_div(pcd
, 100000000 * 2);
1026 /* no need for this, since we should subtract 1 anyway. they cancel */
1027 /* pcd += 1; */ /* make up for integer math truncations */
1028 return (unsigned int)pcd
;
1032 * Some touchscreens need hsync information from the video driver to
1033 * function correctly. We export it here. Note that 'hsync_time' and
1034 * the value returned from pxafb_get_hsync_time() is the *reciprocal*
1035 * of the hsync period in seconds.
1037 static inline void set_hsync_time(struct pxafb_info
*fbi
, unsigned int pcd
)
1039 unsigned long htime
;
1041 if ((pcd
== 0) || (fbi
->fb
.var
.hsync_len
== 0)) {
1042 fbi
->hsync_time
= 0;
1046 htime
= clk_get_rate(fbi
->clk
) / (pcd
* fbi
->fb
.var
.hsync_len
);
1048 fbi
->hsync_time
= htime
;
1051 unsigned long pxafb_get_hsync_time(struct device
*dev
)
1053 struct pxafb_info
*fbi
= dev_get_drvdata(dev
);
1055 /* If display is blanked/suspended, hsync isn't active */
1056 if (!fbi
|| (fbi
->state
!= C_ENABLE
))
1059 return fbi
->hsync_time
;
1061 EXPORT_SYMBOL(pxafb_get_hsync_time
);
1063 static int setup_frame_dma(struct pxafb_info
*fbi
, int dma
, int pal
,
1064 unsigned long start
, size_t size
)
1066 struct pxafb_dma_descriptor
*dma_desc
, *pal_desc
;
1067 unsigned int dma_desc_off
, pal_desc_off
;
1069 if (dma
< 0 || dma
>= DMA_MAX
* 2)
1072 dma_desc
= &fbi
->dma_buff
->dma_desc
[dma
];
1073 dma_desc_off
= offsetof(struct pxafb_dma_buff
, dma_desc
[dma
]);
1075 dma_desc
->fsadr
= start
;
1077 dma_desc
->ldcmd
= size
;
1079 if (pal
< 0 || pal
>= PAL_MAX
* 2) {
1080 dma_desc
->fdadr
= fbi
->dma_buff_phys
+ dma_desc_off
;
1081 fbi
->fdadr
[dma
] = fbi
->dma_buff_phys
+ dma_desc_off
;
1083 pal_desc
= &fbi
->dma_buff
->pal_desc
[pal
];
1084 pal_desc_off
= offsetof(struct pxafb_dma_buff
, pal_desc
[pal
]);
1086 pal_desc
->fsadr
= fbi
->dma_buff_phys
+ pal
* PALETTE_SIZE
;
1089 if ((fbi
->lccr4
& LCCR4_PAL_FOR_MASK
) == LCCR4_PAL_FOR_0
)
1090 pal_desc
->ldcmd
= fbi
->palette_size
* sizeof(u16
);
1092 pal_desc
->ldcmd
= fbi
->palette_size
* sizeof(u32
);
1094 pal_desc
->ldcmd
|= LDCMD_PAL
;
1096 /* flip back and forth between palette and frame buffer */
1097 pal_desc
->fdadr
= fbi
->dma_buff_phys
+ dma_desc_off
;
1098 dma_desc
->fdadr
= fbi
->dma_buff_phys
+ pal_desc_off
;
1099 fbi
->fdadr
[dma
] = fbi
->dma_buff_phys
+ dma_desc_off
;
1105 static void setup_base_frame(struct pxafb_info
*fbi
,
1106 struct fb_var_screeninfo
*var
,
1109 struct fb_fix_screeninfo
*fix
= &fbi
->fb
.fix
;
1110 int nbytes
, dma
, pal
, bpp
= var
->bits_per_pixel
;
1111 unsigned long offset
;
1113 dma
= DMA_BASE
+ (branch
? DMA_MAX
: 0);
1114 pal
= (bpp
>= 16) ? PAL_NONE
: PAL_BASE
+ (branch
? PAL_MAX
: 0);
1116 nbytes
= fix
->line_length
* var
->yres
;
1117 offset
= fix
->line_length
* var
->yoffset
+ fbi
->video_mem_phys
;
1119 if (fbi
->lccr0
& LCCR0_SDS
) {
1120 nbytes
= nbytes
/ 2;
1121 setup_frame_dma(fbi
, dma
+ 1, PAL_NONE
, offset
+ nbytes
, nbytes
);
1124 setup_frame_dma(fbi
, dma
, pal
, offset
, nbytes
);
1127 #ifdef CONFIG_FB_PXA_SMARTPANEL
1128 static int setup_smart_dma(struct pxafb_info
*fbi
)
1130 struct pxafb_dma_descriptor
*dma_desc
;
1131 unsigned long dma_desc_off
, cmd_buff_off
;
1133 dma_desc
= &fbi
->dma_buff
->dma_desc
[DMA_CMD
];
1134 dma_desc_off
= offsetof(struct pxafb_dma_buff
, dma_desc
[DMA_CMD
]);
1135 cmd_buff_off
= offsetof(struct pxafb_dma_buff
, cmd_buff
);
1137 dma_desc
->fdadr
= fbi
->dma_buff_phys
+ dma_desc_off
;
1138 dma_desc
->fsadr
= fbi
->dma_buff_phys
+ cmd_buff_off
;
1140 dma_desc
->ldcmd
= fbi
->n_smart_cmds
* sizeof(uint16_t);
1142 fbi
->fdadr
[DMA_CMD
] = dma_desc
->fdadr
;
1146 int pxafb_smart_flush(struct fb_info
*info
)
1148 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
1152 /* disable controller until all registers are set up */
1153 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
& ~LCCR0_ENB
);
1155 /* 1. make it an even number of commands to align on 32-bit boundary
1156 * 2. add the interrupt command to the end of the chain so we can
1157 * keep track of the end of the transfer
1160 while (fbi
->n_smart_cmds
& 1)
1161 fbi
->smart_cmds
[fbi
->n_smart_cmds
++] = SMART_CMD_NOOP
;
1163 fbi
->smart_cmds
[fbi
->n_smart_cmds
++] = SMART_CMD_INTERRUPT
;
1164 fbi
->smart_cmds
[fbi
->n_smart_cmds
++] = SMART_CMD_WAIT_FOR_VSYNC
;
1165 setup_smart_dma(fbi
);
1167 /* continue to execute next command */
1168 prsr
= lcd_readl(fbi
, PRSR
) | PRSR_ST_OK
| PRSR_CON_NT
;
1169 lcd_writel(fbi
, PRSR
, prsr
);
1171 /* stop the processor in case it executed "wait for sync" cmd */
1172 lcd_writel(fbi
, CMDCR
, 0x0001);
1174 /* don't send interrupts for fifo underruns on channel 6 */
1175 lcd_writel(fbi
, LCCR5
, LCCR5_IUM(6));
1177 lcd_writel(fbi
, LCCR1
, fbi
->reg_lccr1
);
1178 lcd_writel(fbi
, LCCR2
, fbi
->reg_lccr2
);
1179 lcd_writel(fbi
, LCCR3
, fbi
->reg_lccr3
);
1180 lcd_writel(fbi
, LCCR4
, fbi
->reg_lccr4
);
1181 lcd_writel(fbi
, FDADR0
, fbi
->fdadr
[0]);
1182 lcd_writel(fbi
, FDADR6
, fbi
->fdadr
[6]);
1185 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
| LCCR0_ENB
);
1187 if (wait_for_completion_timeout(&fbi
->command_done
, HZ
/2) == 0) {
1188 pr_warn("%s: timeout waiting for command done\n", __func__
);
1193 prsr
= lcd_readl(fbi
, PRSR
) & ~(PRSR_ST_OK
| PRSR_CON_NT
);
1194 lcd_writel(fbi
, PRSR
, prsr
);
1195 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
& ~LCCR0_ENB
);
1196 lcd_writel(fbi
, FDADR6
, 0);
1197 fbi
->n_smart_cmds
= 0;
1201 int pxafb_smart_queue(struct fb_info
*info
, uint16_t *cmds
, int n_cmds
)
1204 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
1206 for (i
= 0; i
< n_cmds
; i
++, cmds
++) {
1207 /* if it is a software delay, flush and delay */
1208 if ((*cmds
& 0xff00) == SMART_CMD_DELAY
) {
1209 pxafb_smart_flush(info
);
1210 mdelay(*cmds
& 0xff);
1214 /* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */
1215 if (fbi
->n_smart_cmds
== CMD_BUFF_SIZE
- 8)
1216 pxafb_smart_flush(info
);
1218 fbi
->smart_cmds
[fbi
->n_smart_cmds
++] = *cmds
;
1224 static unsigned int __smart_timing(unsigned time_ns
, unsigned long lcd_clk
)
1226 unsigned int t
= (time_ns
* (lcd_clk
/ 1000000) / 1000);
1227 return (t
== 0) ? 1 : t
;
1230 static void setup_smart_timing(struct pxafb_info
*fbi
,
1231 struct fb_var_screeninfo
*var
)
1233 struct pxafb_mach_info
*inf
= fbi
->inf
;
1234 struct pxafb_mode_info
*mode
= &inf
->modes
[0];
1235 unsigned long lclk
= clk_get_rate(fbi
->clk
);
1236 unsigned t1
, t2
, t3
, t4
;
1238 t1
= max(mode
->a0csrd_set_hld
, mode
->a0cswr_set_hld
);
1239 t2
= max(mode
->rd_pulse_width
, mode
->wr_pulse_width
);
1240 t3
= mode
->op_hold_time
;
1241 t4
= mode
->cmd_inh_time
;
1244 LCCR1_DisWdth(var
->xres
) |
1245 LCCR1_BegLnDel(__smart_timing(t1
, lclk
)) |
1246 LCCR1_EndLnDel(__smart_timing(t2
, lclk
)) |
1247 LCCR1_HorSnchWdth(__smart_timing(t3
, lclk
));
1249 fbi
->reg_lccr2
= LCCR2_DisHght(var
->yres
);
1250 fbi
->reg_lccr3
= fbi
->lccr3
| LCCR3_PixClkDiv(__smart_timing(t4
, lclk
));
1251 fbi
->reg_lccr3
|= (var
->sync
& FB_SYNC_HOR_HIGH_ACT
) ? LCCR3_HSP
: 0;
1252 fbi
->reg_lccr3
|= (var
->sync
& FB_SYNC_VERT_HIGH_ACT
) ? LCCR3_VSP
: 0;
1254 /* FIXME: make this configurable */
1258 static int pxafb_smart_thread(void *arg
)
1260 struct pxafb_info
*fbi
= arg
;
1261 struct pxafb_mach_info
*inf
= fbi
->inf
;
1263 if (!inf
->smart_update
) {
1264 pr_err("%s: not properly initialized, thread terminated\n",
1269 pr_debug("%s(): task starting\n", __func__
);
1272 while (!kthread_should_stop()) {
1274 if (try_to_freeze())
1277 mutex_lock(&fbi
->ctrlr_lock
);
1279 if (fbi
->state
== C_ENABLE
) {
1280 inf
->smart_update(&fbi
->fb
);
1281 complete(&fbi
->refresh_done
);
1284 mutex_unlock(&fbi
->ctrlr_lock
);
1286 set_current_state(TASK_INTERRUPTIBLE
);
1287 schedule_timeout(msecs_to_jiffies(30));
1290 pr_debug("%s(): task ending\n", __func__
);
1294 static int pxafb_smart_init(struct pxafb_info
*fbi
)
1296 if (!(fbi
->lccr0
& LCCR0_LCDT
))
1299 fbi
->smart_cmds
= (uint16_t *) fbi
->dma_buff
->cmd_buff
;
1300 fbi
->n_smart_cmds
= 0;
1302 init_completion(&fbi
->command_done
);
1303 init_completion(&fbi
->refresh_done
);
1305 fbi
->smart_thread
= kthread_run(pxafb_smart_thread
, fbi
,
1307 if (IS_ERR(fbi
->smart_thread
)) {
1308 pr_err("%s: unable to create kernel thread\n", __func__
);
1309 return PTR_ERR(fbi
->smart_thread
);
1315 static inline int pxafb_smart_init(struct pxafb_info
*fbi
) { return 0; }
1316 #endif /* CONFIG_FB_PXA_SMARTPANEL */
1318 static void setup_parallel_timing(struct pxafb_info
*fbi
,
1319 struct fb_var_screeninfo
*var
)
1321 unsigned int lines_per_panel
, pcd
= get_pcd(fbi
, var
->pixclock
);
1324 LCCR1_DisWdth(var
->xres
) +
1325 LCCR1_HorSnchWdth(var
->hsync_len
) +
1326 LCCR1_BegLnDel(var
->left_margin
) +
1327 LCCR1_EndLnDel(var
->right_margin
);
1330 * If we have a dual scan LCD, we need to halve
1331 * the YRES parameter.
1333 lines_per_panel
= var
->yres
;
1334 if ((fbi
->lccr0
& LCCR0_SDS
) == LCCR0_Dual
)
1335 lines_per_panel
/= 2;
1338 LCCR2_DisHght(lines_per_panel
) +
1339 LCCR2_VrtSnchWdth(var
->vsync_len
) +
1340 LCCR2_BegFrmDel(var
->upper_margin
) +
1341 LCCR2_EndFrmDel(var
->lower_margin
);
1343 fbi
->reg_lccr3
= fbi
->lccr3
|
1344 (var
->sync
& FB_SYNC_HOR_HIGH_ACT
?
1345 LCCR3_HorSnchH
: LCCR3_HorSnchL
) |
1346 (var
->sync
& FB_SYNC_VERT_HIGH_ACT
?
1347 LCCR3_VrtSnchH
: LCCR3_VrtSnchL
);
1350 fbi
->reg_lccr3
|= LCCR3_PixClkDiv(pcd
);
1351 set_hsync_time(fbi
, pcd
);
1356 * pxafb_activate_var():
1357 * Configures LCD Controller based on entries in var parameter.
1358 * Settings are only written to the controller if changes were made.
1360 static int pxafb_activate_var(struct fb_var_screeninfo
*var
,
1361 struct pxafb_info
*fbi
)
1365 /* Update shadow copy atomically */
1366 local_irq_save(flags
);
1368 #ifdef CONFIG_FB_PXA_SMARTPANEL
1369 if (fbi
->lccr0
& LCCR0_LCDT
)
1370 setup_smart_timing(fbi
, var
);
1373 setup_parallel_timing(fbi
, var
);
1375 setup_base_frame(fbi
, var
, 0);
1377 fbi
->reg_lccr0
= fbi
->lccr0
|
1378 (LCCR0_LDM
| LCCR0_SFM
| LCCR0_IUM
| LCCR0_EFM
|
1379 LCCR0_QDM
| LCCR0_BM
| LCCR0_OUM
);
1381 fbi
->reg_lccr3
|= pxafb_var_to_lccr3(var
);
1383 fbi
->reg_lccr4
= lcd_readl(fbi
, LCCR4
) & ~LCCR4_PAL_FOR_MASK
;
1384 fbi
->reg_lccr4
|= (fbi
->lccr4
& LCCR4_PAL_FOR_MASK
);
1385 local_irq_restore(flags
);
1388 * Only update the registers if the controller is enabled
1389 * and something has changed.
1391 if ((lcd_readl(fbi
, LCCR0
) != fbi
->reg_lccr0
) ||
1392 (lcd_readl(fbi
, LCCR1
) != fbi
->reg_lccr1
) ||
1393 (lcd_readl(fbi
, LCCR2
) != fbi
->reg_lccr2
) ||
1394 (lcd_readl(fbi
, LCCR3
) != fbi
->reg_lccr3
) ||
1395 (lcd_readl(fbi
, LCCR4
) != fbi
->reg_lccr4
) ||
1396 (lcd_readl(fbi
, FDADR0
) != fbi
->fdadr
[0]) ||
1397 ((fbi
->lccr0
& LCCR0_SDS
) &&
1398 (lcd_readl(fbi
, FDADR1
) != fbi
->fdadr
[1])))
1399 pxafb_schedule_work(fbi
, C_REENABLE
);
1405 * NOTE! The following functions are purely helpers for set_ctrlr_state.
1406 * Do not call them directly; set_ctrlr_state does the correct serialisation
1407 * to ensure that things happen in the right way 100% of time time.
1410 static inline void __pxafb_backlight_power(struct pxafb_info
*fbi
, int on
)
1412 pr_debug("pxafb: backlight o%s\n", on
? "n" : "ff");
1414 if (fbi
->backlight_power
)
1415 fbi
->backlight_power(on
);
1418 static inline void __pxafb_lcd_power(struct pxafb_info
*fbi
, int on
)
1420 pr_debug("pxafb: LCD power o%s\n", on
? "n" : "ff");
1423 fbi
->lcd_power(on
, &fbi
->fb
.var
);
1425 if (fbi
->lcd_supply
&& fbi
->lcd_supply_enabled
!= on
) {
1429 ret
= regulator_enable(fbi
->lcd_supply
);
1431 ret
= regulator_disable(fbi
->lcd_supply
);
1434 pr_warn("Unable to %s LCD supply regulator: %d\n",
1435 on
? "enable" : "disable", ret
);
1437 fbi
->lcd_supply_enabled
= on
;
1441 static void pxafb_enable_controller(struct pxafb_info
*fbi
)
1443 pr_debug("pxafb: Enabling LCD controller\n");
1444 pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi
->fdadr
[0]);
1445 pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi
->fdadr
[1]);
1446 pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi
->reg_lccr0
);
1447 pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi
->reg_lccr1
);
1448 pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi
->reg_lccr2
);
1449 pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi
->reg_lccr3
);
1451 /* enable LCD controller clock */
1452 if (clk_prepare_enable(fbi
->clk
)) {
1453 pr_err("%s: Failed to prepare clock\n", __func__
);
1457 if (fbi
->lccr0
& LCCR0_LCDT
)
1460 /* Sequence from 11.7.10 */
1461 lcd_writel(fbi
, LCCR4
, fbi
->reg_lccr4
);
1462 lcd_writel(fbi
, LCCR3
, fbi
->reg_lccr3
);
1463 lcd_writel(fbi
, LCCR2
, fbi
->reg_lccr2
);
1464 lcd_writel(fbi
, LCCR1
, fbi
->reg_lccr1
);
1465 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
& ~LCCR0_ENB
);
1467 lcd_writel(fbi
, FDADR0
, fbi
->fdadr
[0]);
1468 if (fbi
->lccr0
& LCCR0_SDS
)
1469 lcd_writel(fbi
, FDADR1
, fbi
->fdadr
[1]);
1470 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
| LCCR0_ENB
);
1473 static void pxafb_disable_controller(struct pxafb_info
*fbi
)
1477 #ifdef CONFIG_FB_PXA_SMARTPANEL
1478 if (fbi
->lccr0
& LCCR0_LCDT
) {
1479 wait_for_completion_timeout(&fbi
->refresh_done
,
1480 msecs_to_jiffies(200));
1485 /* Clear LCD Status Register */
1486 lcd_writel(fbi
, LCSR
, 0xffffffff);
1488 lccr0
= lcd_readl(fbi
, LCCR0
) & ~LCCR0_LDM
;
1489 lcd_writel(fbi
, LCCR0
, lccr0
);
1490 lcd_writel(fbi
, LCCR0
, lccr0
| LCCR0_DIS
);
1492 wait_for_completion_timeout(&fbi
->disable_done
, msecs_to_jiffies(200));
1494 /* disable LCD controller clock */
1495 clk_disable_unprepare(fbi
->clk
);
1499 * pxafb_handle_irq: Handle 'LCD DONE' interrupts.
1501 static irqreturn_t
pxafb_handle_irq(int irq
, void *dev_id
)
1503 struct pxafb_info
*fbi
= dev_id
;
1504 unsigned int lccr0
, lcsr
;
1506 lcsr
= lcd_readl(fbi
, LCSR
);
1507 if (lcsr
& LCSR_LDD
) {
1508 lccr0
= lcd_readl(fbi
, LCCR0
);
1509 lcd_writel(fbi
, LCCR0
, lccr0
| LCCR0_LDM
);
1510 complete(&fbi
->disable_done
);
1513 #ifdef CONFIG_FB_PXA_SMARTPANEL
1514 if (lcsr
& LCSR_CMD_INT
)
1515 complete(&fbi
->command_done
);
1517 lcd_writel(fbi
, LCSR
, lcsr
);
1519 #ifdef CONFIG_FB_PXA_OVERLAY
1521 unsigned int lcsr1
= lcd_readl(fbi
, LCSR1
);
1522 if (lcsr1
& LCSR1_BS(1))
1523 complete(&fbi
->overlay
[0].branch_done
);
1525 if (lcsr1
& LCSR1_BS(2))
1526 complete(&fbi
->overlay
[1].branch_done
);
1528 lcd_writel(fbi
, LCSR1
, lcsr1
);
1535 * This function must be called from task context only, since it will
1536 * sleep when disabling the LCD controller, or if we get two contending
1537 * processes trying to alter state.
1539 static void set_ctrlr_state(struct pxafb_info
*fbi
, u_int state
)
1543 mutex_lock(&fbi
->ctrlr_lock
);
1545 old_state
= fbi
->state
;
1548 * Hack around fbcon initialisation.
1550 if (old_state
== C_STARTUP
&& state
== C_REENABLE
)
1554 case C_DISABLE_CLKCHANGE
:
1556 * Disable controller for clock change. If the
1557 * controller is already disabled, then do nothing.
1559 if (old_state
!= C_DISABLE
&& old_state
!= C_DISABLE_PM
) {
1561 /* TODO __pxafb_lcd_power(fbi, 0); */
1562 pxafb_disable_controller(fbi
);
1569 * Disable controller
1571 if (old_state
!= C_DISABLE
) {
1573 __pxafb_backlight_power(fbi
, 0);
1574 __pxafb_lcd_power(fbi
, 0);
1575 if (old_state
!= C_DISABLE_CLKCHANGE
)
1576 pxafb_disable_controller(fbi
);
1580 case C_ENABLE_CLKCHANGE
:
1582 * Enable the controller after clock change. Only
1583 * do this if we were disabled for the clock change.
1585 if (old_state
== C_DISABLE_CLKCHANGE
) {
1586 fbi
->state
= C_ENABLE
;
1587 pxafb_enable_controller(fbi
);
1588 /* TODO __pxafb_lcd_power(fbi, 1); */
1594 * Re-enable the controller only if it was already
1595 * enabled. This is so we reprogram the control
1598 if (old_state
== C_ENABLE
) {
1599 __pxafb_lcd_power(fbi
, 0);
1600 pxafb_disable_controller(fbi
);
1601 pxafb_enable_controller(fbi
);
1602 __pxafb_lcd_power(fbi
, 1);
1608 * Re-enable the controller after PM. This is not
1609 * perfect - think about the case where we were doing
1610 * a clock change, and we suspended half-way through.
1612 if (old_state
!= C_DISABLE_PM
)
1618 * Power up the LCD screen, enable controller, and
1619 * turn on the backlight.
1621 if (old_state
!= C_ENABLE
) {
1622 fbi
->state
= C_ENABLE
;
1623 pxafb_enable_controller(fbi
);
1624 __pxafb_lcd_power(fbi
, 1);
1625 __pxafb_backlight_power(fbi
, 1);
1629 mutex_unlock(&fbi
->ctrlr_lock
);
1633 * Our LCD controller task (which is called when we blank or unblank)
1636 static void pxafb_task(struct work_struct
*work
)
1638 struct pxafb_info
*fbi
=
1639 container_of(work
, struct pxafb_info
, task
);
1640 u_int state
= xchg(&fbi
->task_state
, -1);
1642 set_ctrlr_state(fbi
, state
);
1645 #ifdef CONFIG_CPU_FREQ
1647 * CPU clock speed change handler. We need to adjust the LCD timing
1648 * parameters when the CPU clock is adjusted by the power management
1651 * TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
1654 pxafb_freq_transition(struct notifier_block
*nb
, unsigned long val
, void *data
)
1656 struct pxafb_info
*fbi
= TO_INF(nb
, freq_transition
);
1657 /* TODO struct cpufreq_freqs *f = data; */
1661 case CPUFREQ_PRECHANGE
:
1662 #ifdef CONFIG_FB_PXA_OVERLAY
1663 if (!(fbi
->overlay
[0].usage
|| fbi
->overlay
[1].usage
))
1665 set_ctrlr_state(fbi
, C_DISABLE_CLKCHANGE
);
1668 case CPUFREQ_POSTCHANGE
:
1669 pcd
= get_pcd(fbi
, fbi
->fb
.var
.pixclock
);
1670 set_hsync_time(fbi
, pcd
);
1671 fbi
->reg_lccr3
= (fbi
->reg_lccr3
& ~0xff) |
1672 LCCR3_PixClkDiv(pcd
);
1673 set_ctrlr_state(fbi
, C_ENABLE_CLKCHANGE
);
1682 * Power management hooks. Note that we won't be called from IRQ context,
1683 * unlike the blank functions above, so we may sleep.
1685 static int pxafb_suspend(struct device
*dev
)
1687 struct pxafb_info
*fbi
= dev_get_drvdata(dev
);
1689 set_ctrlr_state(fbi
, C_DISABLE_PM
);
1693 static int pxafb_resume(struct device
*dev
)
1695 struct pxafb_info
*fbi
= dev_get_drvdata(dev
);
1697 set_ctrlr_state(fbi
, C_ENABLE_PM
);
1701 static const struct dev_pm_ops pxafb_pm_ops
= {
1702 .suspend
= pxafb_suspend
,
1703 .resume
= pxafb_resume
,
1707 static int pxafb_init_video_memory(struct pxafb_info
*fbi
)
1709 int size
= PAGE_ALIGN(fbi
->video_mem_size
);
1711 fbi
->video_mem
= alloc_pages_exact(size
, GFP_KERNEL
| __GFP_ZERO
);
1712 if (fbi
->video_mem
== NULL
)
1715 fbi
->video_mem_phys
= virt_to_phys(fbi
->video_mem
);
1716 fbi
->video_mem_size
= size
;
1718 fbi
->fb
.fix
.smem_start
= fbi
->video_mem_phys
;
1719 fbi
->fb
.fix
.smem_len
= fbi
->video_mem_size
;
1720 fbi
->fb
.screen_base
= fbi
->video_mem
;
1722 return fbi
->video_mem
? 0 : -ENOMEM
;
1725 static void pxafb_decode_mach_info(struct pxafb_info
*fbi
,
1726 struct pxafb_mach_info
*inf
)
1728 unsigned int lcd_conn
= inf
->lcd_conn
;
1729 struct pxafb_mode_info
*m
;
1732 fbi
->cmap_inverse
= inf
->cmap_inverse
;
1733 fbi
->cmap_static
= inf
->cmap_static
;
1734 fbi
->lccr4
= inf
->lccr4
;
1736 switch (lcd_conn
& LCD_TYPE_MASK
) {
1737 case LCD_TYPE_MONO_STN
:
1738 fbi
->lccr0
= LCCR0_CMS
;
1740 case LCD_TYPE_MONO_DSTN
:
1741 fbi
->lccr0
= LCCR0_CMS
| LCCR0_SDS
;
1743 case LCD_TYPE_COLOR_STN
:
1746 case LCD_TYPE_COLOR_DSTN
:
1747 fbi
->lccr0
= LCCR0_SDS
;
1749 case LCD_TYPE_COLOR_TFT
:
1750 fbi
->lccr0
= LCCR0_PAS
;
1752 case LCD_TYPE_SMART_PANEL
:
1753 fbi
->lccr0
= LCCR0_LCDT
| LCCR0_PAS
;
1756 /* fall back to backward compatibility way */
1757 fbi
->lccr0
= inf
->lccr0
;
1758 fbi
->lccr3
= inf
->lccr3
;
1762 if (lcd_conn
== LCD_MONO_STN_8BPP
)
1763 fbi
->lccr0
|= LCCR0_DPD
;
1765 fbi
->lccr0
|= (lcd_conn
& LCD_ALTERNATE_MAPPING
) ? LCCR0_LDDALT
: 0;
1767 fbi
->lccr3
= LCCR3_Acb((inf
->lcd_conn
>> 10) & 0xff);
1768 fbi
->lccr3
|= (lcd_conn
& LCD_BIAS_ACTIVE_LOW
) ? LCCR3_OEP
: 0;
1769 fbi
->lccr3
|= (lcd_conn
& LCD_PCLK_EDGE_FALL
) ? LCCR3_PCP
: 0;
1772 pxafb_setmode(&fbi
->fb
.var
, &inf
->modes
[0]);
1774 /* decide video memory size as follows:
1775 * 1. default to mode of maximum resolution
1776 * 2. allow platform to override
1777 * 3. allow module parameter to override
1779 for (i
= 0, m
= &inf
->modes
[0]; i
< inf
->num_modes
; i
++, m
++)
1780 fbi
->video_mem_size
= max_t(size_t, fbi
->video_mem_size
,
1781 m
->xres
* m
->yres
* m
->bpp
/ 8);
1783 if (inf
->video_mem_size
> fbi
->video_mem_size
)
1784 fbi
->video_mem_size
= inf
->video_mem_size
;
1786 if (video_mem_size
> fbi
->video_mem_size
)
1787 fbi
->video_mem_size
= video_mem_size
;
1790 static struct pxafb_info
*pxafb_init_fbinfo(struct device
*dev
,
1791 struct pxafb_mach_info
*inf
)
1793 struct pxafb_info
*fbi
;
1796 /* Alloc the pxafb_info and pseudo_palette in one step */
1797 fbi
= devm_kzalloc(dev
, sizeof(struct pxafb_info
) + sizeof(u32
) * 16,
1800 return ERR_PTR(-ENOMEM
);
1805 fbi
->clk
= devm_clk_get(dev
, NULL
);
1806 if (IS_ERR(fbi
->clk
))
1807 return ERR_CAST(fbi
->clk
);
1809 strcpy(fbi
->fb
.fix
.id
, PXA_NAME
);
1811 fbi
->fb
.fix
.type
= FB_TYPE_PACKED_PIXELS
;
1812 fbi
->fb
.fix
.type_aux
= 0;
1813 fbi
->fb
.fix
.xpanstep
= 0;
1814 fbi
->fb
.fix
.ypanstep
= 1;
1815 fbi
->fb
.fix
.ywrapstep
= 0;
1816 fbi
->fb
.fix
.accel
= FB_ACCEL_NONE
;
1818 fbi
->fb
.var
.nonstd
= 0;
1819 fbi
->fb
.var
.activate
= FB_ACTIVATE_NOW
;
1820 fbi
->fb
.var
.height
= -1;
1821 fbi
->fb
.var
.width
= -1;
1822 fbi
->fb
.var
.accel_flags
= FB_ACCELF_TEXT
;
1823 fbi
->fb
.var
.vmode
= FB_VMODE_NONINTERLACED
;
1825 fbi
->fb
.fbops
= &pxafb_ops
;
1829 addr
= addr
+ sizeof(struct pxafb_info
);
1830 fbi
->fb
.pseudo_palette
= addr
;
1832 fbi
->state
= C_STARTUP
;
1833 fbi
->task_state
= (u_char
)-1;
1835 pxafb_decode_mach_info(fbi
, inf
);
1837 #ifdef CONFIG_FB_PXA_OVERLAY
1838 /* place overlay(s) on top of base */
1839 if (pxafb_overlay_supported())
1840 fbi
->lccr0
|= LCCR0_OUC
;
1843 init_waitqueue_head(&fbi
->ctrlr_wait
);
1844 INIT_WORK(&fbi
->task
, pxafb_task
);
1845 mutex_init(&fbi
->ctrlr_lock
);
1846 init_completion(&fbi
->disable_done
);
1851 #ifdef CONFIG_FB_PXA_PARAMETERS
1852 static int parse_opt_mode(struct device
*dev
, const char *this_opt
,
1853 struct pxafb_mach_info
*inf
)
1855 const char *name
= this_opt
+5;
1856 unsigned int namelen
= strlen(name
);
1857 int res_specified
= 0, bpp_specified
= 0;
1858 unsigned int xres
= 0, yres
= 0, bpp
= 0;
1859 int yres_specified
= 0;
1861 for (i
= namelen
-1; i
>= 0; i
--) {
1865 if (!bpp_specified
&& !yres_specified
) {
1866 bpp
= simple_strtoul(&name
[i
+1], NULL
, 0);
1872 if (!yres_specified
) {
1873 yres
= simple_strtoul(&name
[i
+1], NULL
, 0);
1884 if (i
< 0 && yres_specified
) {
1885 xres
= simple_strtoul(name
, NULL
, 0);
1889 if (res_specified
) {
1890 dev_info(dev
, "overriding resolution: %dx%d\n", xres
, yres
);
1891 inf
->modes
[0].xres
= xres
; inf
->modes
[0].yres
= yres
;
1900 inf
->modes
[0].bpp
= bpp
;
1901 dev_info(dev
, "overriding bit depth: %d\n", bpp
);
1904 dev_err(dev
, "Depth %d is not valid\n", bpp
);
1910 static int parse_opt(struct device
*dev
, char *this_opt
,
1911 struct pxafb_mach_info
*inf
)
1913 struct pxafb_mode_info
*mode
= &inf
->modes
[0];
1918 if (!strncmp(this_opt
, "vmem:", 5)) {
1919 video_mem_size
= memparse(this_opt
+ 5, NULL
);
1920 } else if (!strncmp(this_opt
, "mode:", 5)) {
1921 return parse_opt_mode(dev
, this_opt
, inf
);
1922 } else if (!strncmp(this_opt
, "pixclock:", 9)) {
1923 mode
->pixclock
= simple_strtoul(this_opt
+9, NULL
, 0);
1924 sprintf(s
, "pixclock: %ld\n", mode
->pixclock
);
1925 } else if (!strncmp(this_opt
, "left:", 5)) {
1926 mode
->left_margin
= simple_strtoul(this_opt
+5, NULL
, 0);
1927 sprintf(s
, "left: %u\n", mode
->left_margin
);
1928 } else if (!strncmp(this_opt
, "right:", 6)) {
1929 mode
->right_margin
= simple_strtoul(this_opt
+6, NULL
, 0);
1930 sprintf(s
, "right: %u\n", mode
->right_margin
);
1931 } else if (!strncmp(this_opt
, "upper:", 6)) {
1932 mode
->upper_margin
= simple_strtoul(this_opt
+6, NULL
, 0);
1933 sprintf(s
, "upper: %u\n", mode
->upper_margin
);
1934 } else if (!strncmp(this_opt
, "lower:", 6)) {
1935 mode
->lower_margin
= simple_strtoul(this_opt
+6, NULL
, 0);
1936 sprintf(s
, "lower: %u\n", mode
->lower_margin
);
1937 } else if (!strncmp(this_opt
, "hsynclen:", 9)) {
1938 mode
->hsync_len
= simple_strtoul(this_opt
+9, NULL
, 0);
1939 sprintf(s
, "hsynclen: %u\n", mode
->hsync_len
);
1940 } else if (!strncmp(this_opt
, "vsynclen:", 9)) {
1941 mode
->vsync_len
= simple_strtoul(this_opt
+9, NULL
, 0);
1942 sprintf(s
, "vsynclen: %u\n", mode
->vsync_len
);
1943 } else if (!strncmp(this_opt
, "hsync:", 6)) {
1944 if (simple_strtoul(this_opt
+6, NULL
, 0) == 0) {
1945 sprintf(s
, "hsync: Active Low\n");
1946 mode
->sync
&= ~FB_SYNC_HOR_HIGH_ACT
;
1948 sprintf(s
, "hsync: Active High\n");
1949 mode
->sync
|= FB_SYNC_HOR_HIGH_ACT
;
1951 } else if (!strncmp(this_opt
, "vsync:", 6)) {
1952 if (simple_strtoul(this_opt
+6, NULL
, 0) == 0) {
1953 sprintf(s
, "vsync: Active Low\n");
1954 mode
->sync
&= ~FB_SYNC_VERT_HIGH_ACT
;
1956 sprintf(s
, "vsync: Active High\n");
1957 mode
->sync
|= FB_SYNC_VERT_HIGH_ACT
;
1959 } else if (!strncmp(this_opt
, "dpc:", 4)) {
1960 if (simple_strtoul(this_opt
+4, NULL
, 0) == 0) {
1961 sprintf(s
, "double pixel clock: false\n");
1962 inf
->lccr3
&= ~LCCR3_DPC
;
1964 sprintf(s
, "double pixel clock: true\n");
1965 inf
->lccr3
|= LCCR3_DPC
;
1967 } else if (!strncmp(this_opt
, "outputen:", 9)) {
1968 if (simple_strtoul(this_opt
+9, NULL
, 0) == 0) {
1969 sprintf(s
, "output enable: active low\n");
1970 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_OEP
) | LCCR3_OutEnL
;
1972 sprintf(s
, "output enable: active high\n");
1973 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_OEP
) | LCCR3_OutEnH
;
1975 } else if (!strncmp(this_opt
, "pixclockpol:", 12)) {
1976 if (simple_strtoul(this_opt
+12, NULL
, 0) == 0) {
1977 sprintf(s
, "pixel clock polarity: falling edge\n");
1978 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_PCP
) | LCCR3_PixFlEdg
;
1980 sprintf(s
, "pixel clock polarity: rising edge\n");
1981 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_PCP
) | LCCR3_PixRsEdg
;
1983 } else if (!strncmp(this_opt
, "color", 5)) {
1984 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_CMS
) | LCCR0_Color
;
1985 } else if (!strncmp(this_opt
, "mono", 4)) {
1986 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_CMS
) | LCCR0_Mono
;
1987 } else if (!strncmp(this_opt
, "active", 6)) {
1988 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_PAS
) | LCCR0_Act
;
1989 } else if (!strncmp(this_opt
, "passive", 7)) {
1990 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_PAS
) | LCCR0_Pas
;
1991 } else if (!strncmp(this_opt
, "single", 6)) {
1992 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_SDS
) | LCCR0_Sngl
;
1993 } else if (!strncmp(this_opt
, "dual", 4)) {
1994 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_SDS
) | LCCR0_Dual
;
1995 } else if (!strncmp(this_opt
, "4pix", 4)) {
1996 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_DPD
) | LCCR0_4PixMono
;
1997 } else if (!strncmp(this_opt
, "8pix", 4)) {
1998 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_DPD
) | LCCR0_8PixMono
;
2000 dev_err(dev
, "unknown option: %s\n", this_opt
);
2005 dev_info(dev
, "override %s", s
);
2010 static int pxafb_parse_options(struct device
*dev
, char *options
,
2011 struct pxafb_mach_info
*inf
)
2016 if (!options
|| !*options
)
2019 dev_dbg(dev
, "options are \"%s\"\n", options
? options
: "null");
2021 /* could be made table driven or similar?... */
2022 while ((this_opt
= strsep(&options
, ",")) != NULL
) {
2023 ret
= parse_opt(dev
, this_opt
, inf
);
2030 static char g_options
[256] = "";
2033 static int __init
pxafb_setup_options(void)
2035 char *options
= NULL
;
2037 if (fb_get_options("pxafb", &options
))
2041 strscpy(g_options
, options
, sizeof(g_options
));
2046 #define pxafb_setup_options() (0)
2048 module_param_string(options
, g_options
, sizeof(g_options
), 0);
2049 MODULE_PARM_DESC(options
, "LCD parameters (see Documentation/fb/pxafb.rst)");
2053 #define pxafb_parse_options(...) (0)
2054 #define pxafb_setup_options() (0)
2058 /* Check for various illegal bit-combinations. Currently only
2059 * a warning is given. */
2060 static void pxafb_check_options(struct device
*dev
, struct pxafb_mach_info
*inf
)
2065 if (inf
->lccr0
& LCCR0_INVALID_CONFIG_MASK
)
2066 dev_warn(dev
, "machine LCCR0 setting contains "
2067 "illegal bits: %08x\n",
2068 inf
->lccr0
& LCCR0_INVALID_CONFIG_MASK
);
2069 if (inf
->lccr3
& LCCR3_INVALID_CONFIG_MASK
)
2070 dev_warn(dev
, "machine LCCR3 setting contains "
2071 "illegal bits: %08x\n",
2072 inf
->lccr3
& LCCR3_INVALID_CONFIG_MASK
);
2073 if (inf
->lccr0
& LCCR0_DPD
&&
2074 ((inf
->lccr0
& LCCR0_PAS
) != LCCR0_Pas
||
2075 (inf
->lccr0
& LCCR0_SDS
) != LCCR0_Sngl
||
2076 (inf
->lccr0
& LCCR0_CMS
) != LCCR0_Mono
))
2077 dev_warn(dev
, "Double Pixel Data (DPD) mode is "
2078 "only valid in passive mono"
2079 " single panel mode\n");
2080 if ((inf
->lccr0
& LCCR0_PAS
) == LCCR0_Act
&&
2081 (inf
->lccr0
& LCCR0_SDS
) == LCCR0_Dual
)
2082 dev_warn(dev
, "Dual panel only valid in passive mode\n");
2083 if ((inf
->lccr0
& LCCR0_PAS
) == LCCR0_Pas
&&
2084 (inf
->modes
->upper_margin
|| inf
->modes
->lower_margin
))
2085 dev_warn(dev
, "Upper and lower margins must be 0 in "
2089 #define pxafb_check_options(...) do {} while (0)
2092 #if defined(CONFIG_OF)
2093 static const char * const lcd_types
[] = {
2094 "unknown", "mono-stn", "mono-dstn", "color-stn", "color-dstn",
2095 "color-tft", "smart-panel", NULL
2098 static int of_get_pxafb_display(struct device
*dev
, struct device_node
*disp
,
2099 struct pxafb_mach_info
*info
, u32 bus_width
)
2101 struct display_timings
*timings
;
2102 struct videomode vm
;
2103 int i
, ret
= -EINVAL
;
2106 ret
= of_property_read_string(disp
, "lcd-type", &s
);
2110 i
= match_string(lcd_types
, -1, s
);
2112 dev_err(dev
, "lcd-type %s is unknown\n", s
);
2115 info
->lcd_conn
|= LCD_CONN_TYPE(i
);
2116 info
->lcd_conn
|= LCD_CONN_WIDTH(bus_width
);
2118 timings
= of_get_display_timings(disp
);
2123 info
->modes
= devm_kcalloc(dev
, timings
->num_timings
,
2124 sizeof(info
->modes
[0]),
2128 info
->num_modes
= timings
->num_timings
;
2130 for (i
= 0; i
< timings
->num_timings
; i
++) {
2131 ret
= videomode_from_timings(timings
, &vm
, i
);
2133 dev_err(dev
, "videomode_from_timings %d failed: %d\n",
2137 if (vm
.flags
& DISPLAY_FLAGS_PIXDATA_POSEDGE
)
2138 info
->lcd_conn
|= LCD_PCLK_EDGE_RISE
;
2139 if (vm
.flags
& DISPLAY_FLAGS_PIXDATA_NEGEDGE
)
2140 info
->lcd_conn
|= LCD_PCLK_EDGE_FALL
;
2141 if (vm
.flags
& DISPLAY_FLAGS_DE_HIGH
)
2142 info
->lcd_conn
|= LCD_BIAS_ACTIVE_HIGH
;
2143 if (vm
.flags
& DISPLAY_FLAGS_DE_LOW
)
2144 info
->lcd_conn
|= LCD_BIAS_ACTIVE_LOW
;
2145 if (vm
.flags
& DISPLAY_FLAGS_HSYNC_HIGH
)
2146 info
->modes
[i
].sync
|= FB_SYNC_HOR_HIGH_ACT
;
2147 if (vm
.flags
& DISPLAY_FLAGS_VSYNC_HIGH
)
2148 info
->modes
[i
].sync
|= FB_SYNC_VERT_HIGH_ACT
;
2150 info
->modes
[i
].pixclock
= 1000000000UL / (vm
.pixelclock
/ 1000);
2151 info
->modes
[i
].xres
= vm
.hactive
;
2152 info
->modes
[i
].yres
= vm
.vactive
;
2153 info
->modes
[i
].hsync_len
= vm
.hsync_len
;
2154 info
->modes
[i
].left_margin
= vm
.hback_porch
;
2155 info
->modes
[i
].right_margin
= vm
.hfront_porch
;
2156 info
->modes
[i
].vsync_len
= vm
.vsync_len
;
2157 info
->modes
[i
].upper_margin
= vm
.vback_porch
;
2158 info
->modes
[i
].lower_margin
= vm
.vfront_porch
;
2163 display_timings_release(timings
);
2167 static int of_get_pxafb_mode_info(struct device
*dev
,
2168 struct pxafb_mach_info
*info
)
2170 struct device_node
*display
, *np
;
2174 np
= of_graph_get_endpoint_by_regs(dev
->of_node
, 0, -1);
2176 dev_err(dev
, "could not find endpoint\n");
2179 ret
= of_property_read_u32(np
, "bus-width", &bus_width
);
2181 dev_err(dev
, "no bus-width specified: %d\n", ret
);
2186 display
= of_graph_get_remote_port_parent(np
);
2189 dev_err(dev
, "no display defined\n");
2193 ret
= of_get_pxafb_display(dev
, display
, info
, bus_width
);
2194 of_node_put(display
);
2198 for (i
= 0; i
< info
->num_modes
; i
++)
2199 info
->modes
[i
].bpp
= bus_width
;
2204 static struct pxafb_mach_info
*of_pxafb_of_mach_info(struct device
*dev
)
2207 struct pxafb_mach_info
*info
;
2211 info
= devm_kzalloc(dev
, sizeof(*info
), GFP_KERNEL
);
2213 return ERR_PTR(-ENOMEM
);
2214 ret
= of_get_pxafb_mode_info(dev
, info
);
2216 return ERR_PTR(ret
);
2219 * On purpose, neither lccrX registers nor video memory size can be
2220 * specified through device-tree, they are considered more a debug hack
2221 * available through command line.
2226 static struct pxafb_mach_info
*of_pxafb_of_mach_info(struct device
*dev
)
2232 static int pxafb_probe(struct platform_device
*dev
)
2234 struct pxafb_info
*fbi
;
2235 struct pxafb_mach_info
*inf
, *pdata
;
2238 dev_dbg(&dev
->dev
, "pxafb_probe\n");
2241 pdata
= dev_get_platdata(&dev
->dev
);
2242 inf
= devm_kmalloc(&dev
->dev
, sizeof(*inf
), GFP_KERNEL
);
2249 devm_kmalloc_array(&dev
->dev
, pdata
->num_modes
,
2250 sizeof(inf
->modes
[0]), GFP_KERNEL
);
2253 for (i
= 0; i
< inf
->num_modes
; i
++)
2254 inf
->modes
[i
] = pdata
->modes
[i
];
2256 inf
= of_pxafb_of_mach_info(&dev
->dev
);
2259 if (IS_ERR_OR_NULL(inf
))
2262 ret
= pxafb_parse_options(&dev
->dev
, g_options
, inf
);
2266 pxafb_check_options(&dev
->dev
, inf
);
2268 dev_dbg(&dev
->dev
, "got a %dx%dx%d LCD\n",
2272 if (inf
->modes
->xres
== 0 ||
2273 inf
->modes
->yres
== 0 ||
2274 inf
->modes
->bpp
== 0) {
2275 dev_err(&dev
->dev
, "Invalid resolution or bit depth\n");
2280 fbi
= pxafb_init_fbinfo(&dev
->dev
, inf
);
2282 dev_err(&dev
->dev
, "Failed to initialize framebuffer device\n");
2287 if (cpu_is_pxa3xx() && inf
->acceleration_enabled
)
2288 fbi
->fb
.fix
.accel
= FB_ACCEL_PXA3XX
;
2290 fbi
->backlight_power
= inf
->pxafb_backlight_power
;
2291 fbi
->lcd_power
= inf
->pxafb_lcd_power
;
2293 fbi
->lcd_supply
= devm_regulator_get_optional(&dev
->dev
, "lcd");
2294 if (IS_ERR(fbi
->lcd_supply
)) {
2295 if (PTR_ERR(fbi
->lcd_supply
) == -EPROBE_DEFER
)
2296 return -EPROBE_DEFER
;
2298 fbi
->lcd_supply
= NULL
;
2301 fbi
->mmio_base
= devm_platform_ioremap_resource(dev
, 0);
2302 if (IS_ERR(fbi
->mmio_base
)) {
2303 dev_err(&dev
->dev
, "failed to get I/O memory\n");
2304 ret
= PTR_ERR(fbi
->mmio_base
);
2308 fbi
->dma_buff_size
= PAGE_ALIGN(sizeof(struct pxafb_dma_buff
));
2309 fbi
->dma_buff
= dma_alloc_coherent(fbi
->dev
, fbi
->dma_buff_size
,
2310 &fbi
->dma_buff_phys
, GFP_KERNEL
);
2311 if (fbi
->dma_buff
== NULL
) {
2312 dev_err(&dev
->dev
, "failed to allocate memory for DMA\n");
2317 ret
= pxafb_init_video_memory(fbi
);
2319 dev_err(&dev
->dev
, "Failed to allocate video RAM: %d\n", ret
);
2321 goto failed_free_dma
;
2324 irq
= platform_get_irq(dev
, 0);
2327 goto failed_free_mem
;
2330 ret
= devm_request_irq(&dev
->dev
, irq
, pxafb_handle_irq
, 0, "LCD", fbi
);
2332 dev_err(&dev
->dev
, "request_irq failed: %d\n", ret
);
2334 goto failed_free_mem
;
2337 ret
= pxafb_smart_init(fbi
);
2339 dev_err(&dev
->dev
, "failed to initialize smartpanel\n");
2340 goto failed_free_mem
;
2344 * This makes sure that our colour bitfield
2345 * descriptors are correctly initialised.
2347 ret
= pxafb_check_var(&fbi
->fb
.var
, &fbi
->fb
);
2349 dev_err(&dev
->dev
, "failed to get suitable mode\n");
2350 goto failed_free_mem
;
2353 ret
= pxafb_set_par(&fbi
->fb
);
2355 dev_err(&dev
->dev
, "Failed to set parameters\n");
2356 goto failed_free_mem
;
2359 platform_set_drvdata(dev
, fbi
);
2361 ret
= register_framebuffer(&fbi
->fb
);
2364 "Failed to register framebuffer device: %d\n", ret
);
2365 goto failed_free_cmap
;
2368 pxafb_overlay_init(fbi
);
2370 #ifdef CONFIG_CPU_FREQ
2371 fbi
->freq_transition
.notifier_call
= pxafb_freq_transition
;
2372 cpufreq_register_notifier(&fbi
->freq_transition
,
2373 CPUFREQ_TRANSITION_NOTIFIER
);
2377 * Ok, now enable the LCD controller
2379 set_ctrlr_state(fbi
, C_ENABLE
);
2384 if (fbi
->fb
.cmap
.len
)
2385 fb_dealloc_cmap(&fbi
->fb
.cmap
);
2387 free_pages_exact(fbi
->video_mem
, fbi
->video_mem_size
);
2389 dma_free_coherent(&dev
->dev
, fbi
->dma_buff_size
,
2390 fbi
->dma_buff
, fbi
->dma_buff_phys
);
2395 static void pxafb_remove(struct platform_device
*dev
)
2397 struct pxafb_info
*fbi
= platform_get_drvdata(dev
);
2398 struct fb_info
*info
;
2405 pxafb_overlay_exit(fbi
);
2406 cancel_work_sync(&fbi
->task
);
2407 unregister_framebuffer(info
);
2409 pxafb_disable_controller(fbi
);
2411 if (fbi
->fb
.cmap
.len
)
2412 fb_dealloc_cmap(&fbi
->fb
.cmap
);
2414 free_pages_exact(fbi
->video_mem
, fbi
->video_mem_size
);
2416 dma_free_coherent(&dev
->dev
, fbi
->dma_buff_size
, fbi
->dma_buff
,
2417 fbi
->dma_buff_phys
);
2420 static const struct of_device_id pxafb_of_dev_id
[] = {
2421 { .compatible
= "marvell,pxa270-lcdc", },
2422 { .compatible
= "marvell,pxa300-lcdc", },
2423 { .compatible
= "marvell,pxa2xx-lcdc", },
2426 MODULE_DEVICE_TABLE(of
, pxafb_of_dev_id
);
2428 static struct platform_driver pxafb_driver
= {
2429 .probe
= pxafb_probe
,
2430 .remove
= pxafb_remove
,
2432 .name
= "pxa2xx-fb",
2433 .of_match_table
= pxafb_of_dev_id
,
2435 .pm
= &pxafb_pm_ops
,
2440 static int __init
pxafb_init(void)
2442 if (pxafb_setup_options())
2445 return platform_driver_register(&pxafb_driver
);
2448 static void __exit
pxafb_exit(void)
2450 platform_driver_unregister(&pxafb_driver
);
2453 module_init(pxafb_init
);
2454 module_exit(pxafb_exit
);
2456 MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
2457 MODULE_LICENSE("GPL");