2 * linux/drivers/video/sa1100fb.c
4 * Copyright (C) 1999 Eric A. Thomas
5 * Based on acornfb.c Copyright (C) Russell King.
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License. See the file COPYING in the main directory of this archive for
11 * StrongARM 1100 LCD Controller Frame Buffer Driver
13 * Please direct your questions and comments on this driver to the following
16 * linux-arm-kernel@lists.arm.linux.org.uk
18 * Clean patches should be sent to the ARM Linux Patch System. Please see the
19 * following web page for more information:
21 * https://www.arm.linux.org.uk/developer/patches/info.shtml
26 * - With the Neponset plugged into an Assabet, LCD powerdown
27 * doesn't work (LCD stays powered up). Therefore we shouldn't
29 * - We don't limit the CPU clock rate nor the mode selection
30 * according to the available SDRAM bandwidth.
33 * - Linear grayscale palettes and the kernel.
34 * Such code does not belong in the kernel. The kernel frame buffer
35 * drivers do not expect a linear colourmap, but a colourmap based on
36 * the VT100 standard mapping.
38 * If your _userspace_ requires a linear colourmap, then the setup of
39 * such a colourmap belongs _in userspace_, not in the kernel. Code
40 * to set the colourmap correctly from user space has been sent to
41 * David Neuer. It's around 8 lines of C code, plus another 4 to
42 * detect if we are using grayscale.
44 * - The following must never be specified in a panel definition:
45 * LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL
47 * - The following should be specified:
48 * either LCCR0_Color or LCCR0_Mono
49 * either LCCR0_Sngl or LCCR0_Dual
50 * either LCCR0_Act or LCCR0_Pas
51 * either LCCR3_OutEnH or LCCD3_OutEnL
52 * either LCCR3_PixRsEdg or LCCR3_PixFlEdg
53 * either LCCR3_ACBsDiv or LCCR3_ACBsCntOff
57 * - Driver appears to be working for Brutus 320x200x8bpp mode. Other
58 * resolutions are working, but only the 8bpp mode is supported.
59 * Changes need to be made to the palette encode and decode routines
60 * to support 4 and 16 bpp modes.
61 * Driver is not designed to be a module. The FrameBuffer is statically
62 * allocated since dynamic allocation of a 300k buffer cannot be
66 * - FrameBuffer memory is now allocated at run-time when the
67 * driver is initialized.
69 * 2000/04/10: Nicolas Pitre <nico@fluxnic.net>
70 * - Big cleanup for dynamic selection of machine type at run time.
72 * 2000/07/19: Jamey Hicks <jamey@crl.dec.com>
73 * - Support for Bitsy aka Compaq iPAQ H3600 added.
75 * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com>
76 * Jeff Sutherland <jsutherland@accelent.com>
77 * - Resolved an issue caused by a change made to the Assabet's PLD
78 * earlier this year which broke the framebuffer driver for newer
79 * Phase 4 Assabets. Some other parameters were changed to optimize
80 * for the Sharp display.
82 * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp>
83 * - XP860 support added
85 * 2000/08/19: Mark Huang <mhuang@livetoy.com>
86 * - Allows standard options to be passed on the kernel command line
87 * for most common passive displays.
90 * - s/save_flags_cli/local_irq_save/
91 * - remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller
93 * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
94 * - Updated LART stuff. Fixed some minor bugs.
96 * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw>
97 * - Pangolin support added
99 * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de>
100 * - Huw Webpanel support added
102 * 2000/11/23: Eric Peng <ericpeng@coventive.com>
105 * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com>
106 * Cliff Brake <cbrake@accelent.com>
107 * - Added PM callback
109 * 2001/05/26: <rmk@arm.linux.org.uk>
110 * - Fix 16bpp so that (a) we use the right colours rather than some
111 * totally random colour depending on what was in page 0, and (b)
112 * we don't de-reference a NULL pointer.
113 * - remove duplicated implementation of consistent_alloc()
114 * - convert dma address types to dma_addr_t
115 * - remove unused 'montype' stuff
116 * - remove redundant zero inits of init_var after the initial
118 * - remove allow_modeset (acornfb idea does not belong here)
120 * 2001/05/28: <rmk@arm.linux.org.uk>
121 * - massive cleanup - move machine dependent data into structures
122 * - I've left various #warnings in - if you see one, and know
123 * the hardware concerned, please get in contact with me.
125 * 2001/05/31: <rmk@arm.linux.org.uk>
126 * - Fix LCCR1 HSW value, fix all machine type specifications to
127 * keep values in line. (Please check your machine type specs)
129 * 2001/06/10: <rmk@arm.linux.org.uk>
130 * - Fiddle with the LCD controller from task context only; mainly
131 * so that we can run with interrupts on, and sleep.
132 * - Convert #warnings into #errors. No pain, no gain. ;)
134 * 2001/06/14: <rmk@arm.linux.org.uk>
135 * - Make the palette BPS value for 12bpp come out correctly.
136 * - Take notice of "greyscale" on any colour depth.
137 * - Make truecolor visuals use the RGB channel encoding information.
139 * 2001/07/02: <rmk@arm.linux.org.uk>
140 * - Fix colourmap problems.
142 * 2001/07/13: <abraham@2d3d.co.za>
143 * - Added support for the ICP LCD-Kit01 on LART. This LCD is
144 * manufactured by Prime View, model no V16C6448AB
146 * 2001/07/23: <rmk@arm.linux.org.uk>
147 * - Hand merge version from handhelds.org CVS tree. See patch
148 * notes for 595/1 for more information.
149 * - Drop 12bpp (it's 16bpp with different colour register mappings).
150 * - This hardware can not do direct colour. Therefore we don't
153 * 2001/07/27: <rmk@arm.linux.org.uk>
154 * - Halve YRES on dual scan LCDs.
156 * 2001/08/22: <rmk@arm.linux.org.uk>
157 * - Add b/w iPAQ pixclock value.
159 * 2001/10/12: <rmk@arm.linux.org.uk>
160 * - Add patch 681/1 and clean up stork definitions.
163 #include <linux/module.h>
164 #include <linux/kernel.h>
165 #include <linux/sched.h>
166 #include <linux/errno.h>
167 #include <linux/string.h>
168 #include <linux/interrupt.h>
169 #include <linux/slab.h>
170 #include <linux/mm.h>
171 #include <linux/fb.h>
172 #include <linux/delay.h>
173 #include <linux/init.h>
174 #include <linux/ioport.h>
175 #include <linux/cpufreq.h>
176 #include <linux/gpio/consumer.h>
177 #include <linux/platform_device.h>
178 #include <linux/dma-mapping.h>
179 #include <linux/mutex.h>
180 #include <linux/io.h>
181 #include <linux/clk.h>
183 #include <video/sa1100fb.h>
185 #include <mach/hardware.h>
186 #include <asm/mach-types.h>
189 * Complain if VAR is out of range.
193 #include "sa1100fb.h"
195 static const struct sa1100fb_rgb rgb_4
= {
196 .red
= { .offset
= 0, .length
= 4, },
197 .green
= { .offset
= 0, .length
= 4, },
198 .blue
= { .offset
= 0, .length
= 4, },
199 .transp
= { .offset
= 0, .length
= 0, },
202 static const struct sa1100fb_rgb rgb_8
= {
203 .red
= { .offset
= 0, .length
= 8, },
204 .green
= { .offset
= 0, .length
= 8, },
205 .blue
= { .offset
= 0, .length
= 8, },
206 .transp
= { .offset
= 0, .length
= 0, },
209 static const struct sa1100fb_rgb def_rgb_16
= {
210 .red
= { .offset
= 11, .length
= 5, },
211 .green
= { .offset
= 5, .length
= 6, },
212 .blue
= { .offset
= 0, .length
= 5, },
213 .transp
= { .offset
= 0, .length
= 0, },
218 static int sa1100fb_activate_var(struct fb_var_screeninfo
*var
, struct sa1100fb_info
*);
219 static void set_ctrlr_state(struct sa1100fb_info
*fbi
, u_int state
);
221 static inline void sa1100fb_schedule_work(struct sa1100fb_info
*fbi
, u_int state
)
225 local_irq_save(flags
);
227 * We need to handle two requests being made at the same time.
228 * There are two important cases:
229 * 1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
230 * We must perform the unblanking, which will do our REENABLE for us.
231 * 2. When we are blanking, but immediately unblank before we have
232 * blanked. We do the "REENABLE" thing here as well, just to be sure.
234 if (fbi
->task_state
== C_ENABLE
&& state
== C_REENABLE
)
236 if (fbi
->task_state
== C_DISABLE
&& state
== C_ENABLE
)
239 if (state
!= (u_int
)-1) {
240 fbi
->task_state
= state
;
241 schedule_work(&fbi
->task
);
243 local_irq_restore(flags
);
246 static inline u_int
chan_to_field(u_int chan
, struct fb_bitfield
*bf
)
249 chan
>>= 16 - bf
->length
;
250 return chan
<< bf
->offset
;
254 * Convert bits-per-pixel to a hardware palette PBS value.
256 static inline u_int
palette_pbs(struct fb_var_screeninfo
*var
)
259 switch (var
->bits_per_pixel
) {
260 case 4: ret
= 0 << 12; break;
261 case 8: ret
= 1 << 12; break;
262 case 16: ret
= 2 << 12; break;
268 sa1100fb_setpalettereg(u_int regno
, u_int red
, u_int green
, u_int blue
,
269 u_int trans
, struct fb_info
*info
)
271 struct sa1100fb_info
*fbi
=
272 container_of(info
, struct sa1100fb_info
, fb
);
275 if (regno
< fbi
->palette_size
) {
276 val
= ((red
>> 4) & 0xf00);
277 val
|= ((green
>> 8) & 0x0f0);
278 val
|= ((blue
>> 12) & 0x00f);
281 val
|= palette_pbs(&fbi
->fb
.var
);
283 fbi
->palette_cpu
[regno
] = val
;
290 sa1100fb_setcolreg(u_int regno
, u_int red
, u_int green
, u_int blue
,
291 u_int trans
, struct fb_info
*info
)
293 struct sa1100fb_info
*fbi
=
294 container_of(info
, struct sa1100fb_info
, fb
);
299 * If inverse mode was selected, invert all the colours
300 * rather than the register number. The register number
301 * is what you poke into the framebuffer to produce the
302 * colour you requested.
304 if (fbi
->inf
->cmap_inverse
) {
306 green
= 0xffff - green
;
307 blue
= 0xffff - blue
;
311 * If greyscale is true, then we convert the RGB value
312 * to greyscale no mater what visual we are using.
314 if (fbi
->fb
.var
.grayscale
)
315 red
= green
= blue
= (19595 * red
+ 38470 * green
+
318 switch (fbi
->fb
.fix
.visual
) {
319 case FB_VISUAL_TRUECOLOR
:
321 * 12 or 16-bit True Colour. We encode the RGB value
322 * according to the RGB bitfield information.
325 val
= chan_to_field(red
, &fbi
->fb
.var
.red
);
326 val
|= chan_to_field(green
, &fbi
->fb
.var
.green
);
327 val
|= chan_to_field(blue
, &fbi
->fb
.var
.blue
);
329 fbi
->pseudo_palette
[regno
] = val
;
334 case FB_VISUAL_STATIC_PSEUDOCOLOR
:
335 case FB_VISUAL_PSEUDOCOLOR
:
336 ret
= sa1100fb_setpalettereg(regno
, red
, green
, blue
, trans
, info
);
343 #ifdef CONFIG_CPU_FREQ
345 * sa1100fb_display_dma_period()
346 * Calculate the minimum period (in picoseconds) between two DMA
347 * requests for the LCD controller. If we hit this, it means we're
348 * doing nothing but LCD DMA.
350 static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo
*var
)
353 * Period = pixclock * bits_per_byte * bytes_per_transfer
354 * / memory_bits_per_pixel;
356 return var
->pixclock
* 8 * 16 / var
->bits_per_pixel
;
361 * sa1100fb_check_var():
362 * Round up in the following order: bits_per_pixel, xres,
363 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
364 * bitfields, horizontal timing, vertical timing.
367 sa1100fb_check_var(struct fb_var_screeninfo
*var
, struct fb_info
*info
)
369 struct sa1100fb_info
*fbi
=
370 container_of(info
, struct sa1100fb_info
, fb
);
373 if (var
->xres
< MIN_XRES
)
374 var
->xres
= MIN_XRES
;
375 if (var
->yres
< MIN_YRES
)
376 var
->yres
= MIN_YRES
;
377 if (var
->xres
> fbi
->inf
->xres
)
378 var
->xres
= fbi
->inf
->xres
;
379 if (var
->yres
> fbi
->inf
->yres
)
380 var
->yres
= fbi
->inf
->yres
;
381 var
->xres_virtual
= max(var
->xres_virtual
, var
->xres
);
382 var
->yres_virtual
= max(var
->yres_virtual
, var
->yres
);
384 dev_dbg(fbi
->dev
, "var->bits_per_pixel=%d\n", var
->bits_per_pixel
);
385 switch (var
->bits_per_pixel
) {
400 * Copy the RGB parameters for this display
401 * from the machine specific parameters.
403 var
->red
= fbi
->rgb
[rgbidx
]->red
;
404 var
->green
= fbi
->rgb
[rgbidx
]->green
;
405 var
->blue
= fbi
->rgb
[rgbidx
]->blue
;
406 var
->transp
= fbi
->rgb
[rgbidx
]->transp
;
408 dev_dbg(fbi
->dev
, "RGBT length = %d:%d:%d:%d\n",
409 var
->red
.length
, var
->green
.length
, var
->blue
.length
,
412 dev_dbg(fbi
->dev
, "RGBT offset = %d:%d:%d:%d\n",
413 var
->red
.offset
, var
->green
.offset
, var
->blue
.offset
,
416 #ifdef CONFIG_CPU_FREQ
417 dev_dbg(fbi
->dev
, "dma period = %d ps, clock = %ld kHz\n",
418 sa1100fb_display_dma_period(var
),
419 clk_get_rate(fbi
->clk
) / 1000);
425 static void sa1100fb_set_visual(struct sa1100fb_info
*fbi
, u32 visual
)
427 if (fbi
->inf
->set_visual
)
428 fbi
->inf
->set_visual(visual
);
432 * sa1100fb_set_par():
433 * Set the user defined part of the display for the specified console
435 static int sa1100fb_set_par(struct fb_info
*info
)
437 struct sa1100fb_info
*fbi
=
438 container_of(info
, struct sa1100fb_info
, fb
);
439 struct fb_var_screeninfo
*var
= &info
->var
;
440 unsigned long palette_mem_size
;
442 dev_dbg(fbi
->dev
, "set_par\n");
444 if (var
->bits_per_pixel
== 16)
445 fbi
->fb
.fix
.visual
= FB_VISUAL_TRUECOLOR
;
446 else if (!fbi
->inf
->cmap_static
)
447 fbi
->fb
.fix
.visual
= FB_VISUAL_PSEUDOCOLOR
;
450 * Some people have weird ideas about wanting static
451 * pseudocolor maps. I suspect their user space
452 * applications are broken.
454 fbi
->fb
.fix
.visual
= FB_VISUAL_STATIC_PSEUDOCOLOR
;
457 fbi
->fb
.fix
.line_length
= var
->xres_virtual
*
458 var
->bits_per_pixel
/ 8;
459 fbi
->palette_size
= var
->bits_per_pixel
== 8 ? 256 : 16;
461 palette_mem_size
= fbi
->palette_size
* sizeof(u16
);
463 dev_dbg(fbi
->dev
, "palette_mem_size = 0x%08lx\n", palette_mem_size
);
465 fbi
->palette_cpu
= (u16
*)(fbi
->map_cpu
+ PAGE_SIZE
- palette_mem_size
);
466 fbi
->palette_dma
= fbi
->map_dma
+ PAGE_SIZE
- palette_mem_size
;
469 * Set (any) board control register to handle new color depth
471 sa1100fb_set_visual(fbi
, fbi
->fb
.fix
.visual
);
472 sa1100fb_activate_var(var
, fbi
);
479 sa1100fb_set_cmap(struct fb_cmap
*cmap
, int kspc
, int con
,
480 struct fb_info
*info
)
482 struct sa1100fb_info
*fbi
= (struct sa1100fb_info
*)info
;
485 * Make sure the user isn't doing something stupid.
487 if (!kspc
&& (fbi
->fb
.var
.bits_per_pixel
== 16 || fbi
->inf
->cmap_static
))
490 return gen_set_cmap(cmap
, kspc
, con
, info
);
495 * Formal definition of the VESA spec:
497 * This refers to the state of the display when it is in full operation
499 * This defines an optional operating state of minimal power reduction with
500 * the shortest recovery time
502 * This refers to a level of power management in which substantial power
503 * reduction is achieved by the display. The display can have a longer
504 * recovery time from this state than from the Stand-by state
506 * This indicates that the display is consuming the lowest level of power
507 * and is non-operational. Recovery from this state may optionally require
508 * the user to manually power on the monitor
510 * Now, the fbdev driver adds an additional state, (blank), where they
511 * turn off the video (maybe by colormap tricks), but don't mess with the
512 * video itself: think of it semantically between on and Stand-By.
514 * So here's what we should do in our fbdev blank routine:
516 * VESA_NO_BLANKING (mode 0) Video on, front/back light on
517 * VESA_VSYNC_SUSPEND (mode 1) Video on, front/back light off
518 * VESA_HSYNC_SUSPEND (mode 2) Video on, front/back light off
519 * VESA_POWERDOWN (mode 3) Video off, front/back light off
521 * This will match the matrox implementation.
525 * Blank the display by setting all palette values to zero. Note, the
526 * 12 and 16 bpp modes don't really use the palette, so this will not
527 * blank the display in all modes.
529 static int sa1100fb_blank(int blank
, struct fb_info
*info
)
531 struct sa1100fb_info
*fbi
=
532 container_of(info
, struct sa1100fb_info
, fb
);
535 dev_dbg(fbi
->dev
, "sa1100fb_blank: blank=%d\n", blank
);
538 case FB_BLANK_POWERDOWN
:
539 case FB_BLANK_VSYNC_SUSPEND
:
540 case FB_BLANK_HSYNC_SUSPEND
:
541 case FB_BLANK_NORMAL
:
542 if (fbi
->fb
.fix
.visual
== FB_VISUAL_PSEUDOCOLOR
||
543 fbi
->fb
.fix
.visual
== FB_VISUAL_STATIC_PSEUDOCOLOR
)
544 for (i
= 0; i
< fbi
->palette_size
; i
++)
545 sa1100fb_setpalettereg(i
, 0, 0, 0, 0, info
);
546 sa1100fb_schedule_work(fbi
, C_DISABLE
);
549 case FB_BLANK_UNBLANK
:
550 if (fbi
->fb
.fix
.visual
== FB_VISUAL_PSEUDOCOLOR
||
551 fbi
->fb
.fix
.visual
== FB_VISUAL_STATIC_PSEUDOCOLOR
)
552 fb_set_cmap(&fbi
->fb
.cmap
, info
);
553 sa1100fb_schedule_work(fbi
, C_ENABLE
);
558 static int sa1100fb_mmap(struct fb_info
*info
,
559 struct vm_area_struct
*vma
)
561 struct sa1100fb_info
*fbi
=
562 container_of(info
, struct sa1100fb_info
, fb
);
563 unsigned long off
= vma
->vm_pgoff
<< PAGE_SHIFT
;
565 vma
->vm_page_prot
= pgprot_decrypted(vma
->vm_page_prot
);
567 if (off
< info
->fix
.smem_len
) {
568 vma
->vm_pgoff
+= 1; /* skip over the palette */
569 return dma_mmap_wc(fbi
->dev
, vma
, fbi
->map_cpu
, fbi
->map_dma
,
573 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
575 return vm_iomap_memory(vma
, info
->fix
.mmio_start
, info
->fix
.mmio_len
);
578 static const struct fb_ops sa1100fb_ops
= {
579 .owner
= THIS_MODULE
,
580 __FB_DEFAULT_IOMEM_OPS_RDWR
,
581 .fb_check_var
= sa1100fb_check_var
,
582 .fb_set_par
= sa1100fb_set_par
,
583 // .fb_set_cmap = sa1100fb_set_cmap,
584 .fb_setcolreg
= sa1100fb_setcolreg
,
585 .fb_blank
= sa1100fb_blank
,
586 __FB_DEFAULT_IOMEM_OPS_DRAW
,
587 .fb_mmap
= sa1100fb_mmap
,
591 * Calculate the PCD value from the clock rate (in picoseconds).
592 * We take account of the PPCR clock setting.
594 static inline unsigned int get_pcd(struct sa1100fb_info
*fbi
,
595 unsigned int pixclock
)
597 unsigned int pcd
= clk_get_rate(fbi
->clk
) / 100 / 1000;
602 return pcd
+ 1; /* make up for integer math truncations */
606 * sa1100fb_activate_var():
607 * Configures LCD Controller based on entries in var parameter. Settings are
608 * only written to the controller if changes were made.
610 static int sa1100fb_activate_var(struct fb_var_screeninfo
*var
, struct sa1100fb_info
*fbi
)
612 struct sa1100fb_lcd_reg new_regs
;
613 u_int half_screen_size
, yres
, pcd
;
616 dev_dbg(fbi
->dev
, "Configuring SA1100 LCD\n");
618 dev_dbg(fbi
->dev
, "var: xres=%d hslen=%d lm=%d rm=%d\n",
619 var
->xres
, var
->hsync_len
,
620 var
->left_margin
, var
->right_margin
);
621 dev_dbg(fbi
->dev
, "var: yres=%d vslen=%d um=%d bm=%d\n",
622 var
->yres
, var
->vsync_len
,
623 var
->upper_margin
, var
->lower_margin
);
626 if (var
->xres
< 16 || var
->xres
> 1024)
627 dev_err(fbi
->dev
, "%s: invalid xres %d\n",
628 fbi
->fb
.fix
.id
, var
->xres
);
629 if (var
->hsync_len
< 1 || var
->hsync_len
> 64)
630 dev_err(fbi
->dev
, "%s: invalid hsync_len %d\n",
631 fbi
->fb
.fix
.id
, var
->hsync_len
);
632 if (var
->left_margin
< 1 || var
->left_margin
> 255)
633 dev_err(fbi
->dev
, "%s: invalid left_margin %d\n",
634 fbi
->fb
.fix
.id
, var
->left_margin
);
635 if (var
->right_margin
< 1 || var
->right_margin
> 255)
636 dev_err(fbi
->dev
, "%s: invalid right_margin %d\n",
637 fbi
->fb
.fix
.id
, var
->right_margin
);
638 if (var
->yres
< 1 || var
->yres
> 1024)
639 dev_err(fbi
->dev
, "%s: invalid yres %d\n",
640 fbi
->fb
.fix
.id
, var
->yres
);
641 if (var
->vsync_len
< 1 || var
->vsync_len
> 64)
642 dev_err(fbi
->dev
, "%s: invalid vsync_len %d\n",
643 fbi
->fb
.fix
.id
, var
->vsync_len
);
644 if (var
->upper_margin
< 0 || var
->upper_margin
> 255)
645 dev_err(fbi
->dev
, "%s: invalid upper_margin %d\n",
646 fbi
->fb
.fix
.id
, var
->upper_margin
);
647 if (var
->lower_margin
< 0 || var
->lower_margin
> 255)
648 dev_err(fbi
->dev
, "%s: invalid lower_margin %d\n",
649 fbi
->fb
.fix
.id
, var
->lower_margin
);
652 new_regs
.lccr0
= fbi
->inf
->lccr0
|
653 LCCR0_LEN
| LCCR0_LDM
| LCCR0_BAM
|
654 LCCR0_ERM
| LCCR0_LtlEnd
| LCCR0_DMADel(0);
657 LCCR1_DisWdth(var
->xres
) +
658 LCCR1_HorSnchWdth(var
->hsync_len
) +
659 LCCR1_BegLnDel(var
->left_margin
) +
660 LCCR1_EndLnDel(var
->right_margin
);
663 * If we have a dual scan LCD, then we need to halve
664 * the YRES parameter.
667 if (fbi
->inf
->lccr0
& LCCR0_Dual
)
671 LCCR2_DisHght(yres
) +
672 LCCR2_VrtSnchWdth(var
->vsync_len
) +
673 LCCR2_BegFrmDel(var
->upper_margin
) +
674 LCCR2_EndFrmDel(var
->lower_margin
);
676 pcd
= get_pcd(fbi
, var
->pixclock
);
677 new_regs
.lccr3
= LCCR3_PixClkDiv(pcd
) | fbi
->inf
->lccr3
|
678 (var
->sync
& FB_SYNC_HOR_HIGH_ACT
? LCCR3_HorSnchH
: LCCR3_HorSnchL
) |
679 (var
->sync
& FB_SYNC_VERT_HIGH_ACT
? LCCR3_VrtSnchH
: LCCR3_VrtSnchL
);
681 dev_dbg(fbi
->dev
, "nlccr0 = 0x%08lx\n", new_regs
.lccr0
);
682 dev_dbg(fbi
->dev
, "nlccr1 = 0x%08lx\n", new_regs
.lccr1
);
683 dev_dbg(fbi
->dev
, "nlccr2 = 0x%08lx\n", new_regs
.lccr2
);
684 dev_dbg(fbi
->dev
, "nlccr3 = 0x%08lx\n", new_regs
.lccr3
);
686 half_screen_size
= var
->bits_per_pixel
;
687 half_screen_size
= half_screen_size
* var
->xres
* var
->yres
/ 16;
689 /* Update shadow copy atomically */
690 local_irq_save(flags
);
691 fbi
->dbar1
= fbi
->palette_dma
;
692 fbi
->dbar2
= fbi
->screen_dma
+ half_screen_size
;
694 fbi
->reg_lccr0
= new_regs
.lccr0
;
695 fbi
->reg_lccr1
= new_regs
.lccr1
;
696 fbi
->reg_lccr2
= new_regs
.lccr2
;
697 fbi
->reg_lccr3
= new_regs
.lccr3
;
698 local_irq_restore(flags
);
701 * Only update the registers if the controller is enabled
702 * and something has changed.
704 if (readl_relaxed(fbi
->base
+ LCCR0
) != fbi
->reg_lccr0
||
705 readl_relaxed(fbi
->base
+ LCCR1
) != fbi
->reg_lccr1
||
706 readl_relaxed(fbi
->base
+ LCCR2
) != fbi
->reg_lccr2
||
707 readl_relaxed(fbi
->base
+ LCCR3
) != fbi
->reg_lccr3
||
708 readl_relaxed(fbi
->base
+ DBAR1
) != fbi
->dbar1
||
709 readl_relaxed(fbi
->base
+ DBAR2
) != fbi
->dbar2
)
710 sa1100fb_schedule_work(fbi
, C_REENABLE
);
716 * NOTE! The following functions are purely helpers for set_ctrlr_state.
717 * Do not call them directly; set_ctrlr_state does the correct serialisation
718 * to ensure that things happen in the right way 100% of time time.
721 static inline void __sa1100fb_backlight_power(struct sa1100fb_info
*fbi
, int on
)
723 dev_dbg(fbi
->dev
, "backlight o%s\n", on
? "n" : "ff");
725 if (fbi
->inf
->backlight_power
)
726 fbi
->inf
->backlight_power(on
);
729 static inline void __sa1100fb_lcd_power(struct sa1100fb_info
*fbi
, int on
)
731 dev_dbg(fbi
->dev
, "LCD power o%s\n", on
? "n" : "ff");
733 if (fbi
->inf
->lcd_power
)
734 fbi
->inf
->lcd_power(on
);
737 static void sa1100fb_setup_gpio(struct sa1100fb_info
*fbi
)
742 * Enable GPIO<9:2> for LCD use if:
743 * 1. Active display, or
744 * 2. Color Dual Passive display
746 * see table 11.8 on page 11-27 in the SA1100 manual
749 * SA1110 spec update nr. 25 says we can and should
750 * clear LDD15 to 12 for 4 or 8bpp modes with active
753 if ((fbi
->reg_lccr0
& LCCR0_CMS
) == LCCR0_Color
&&
754 (fbi
->reg_lccr0
& (LCCR0_Dual
|LCCR0_Act
)) != 0) {
755 mask
= GPIO_LDD11
| GPIO_LDD10
| GPIO_LDD9
| GPIO_LDD8
;
757 if (fbi
->fb
.var
.bits_per_pixel
> 8 ||
758 (fbi
->reg_lccr0
& (LCCR0_Dual
|LCCR0_Act
)) == LCCR0_Dual
)
759 mask
|= GPIO_LDD15
| GPIO_LDD14
| GPIO_LDD13
| GPIO_LDD12
;
767 * SA-1100 requires the GPIO direction register set
768 * appropriately for the alternate function. Hence
769 * we set it here via bitmask rather than excessive
770 * fiddling via the GPIO subsystem - and even then
771 * we'll still have to deal with GAFR.
773 local_irq_save(flags
);
776 local_irq_restore(flags
);
780 static void sa1100fb_enable_controller(struct sa1100fb_info
*fbi
)
782 dev_dbg(fbi
->dev
, "Enabling LCD controller\n");
785 * Make sure the mode bits are present in the first palette entry
787 fbi
->palette_cpu
[0] &= 0xcfff;
788 fbi
->palette_cpu
[0] |= palette_pbs(&fbi
->fb
.var
);
790 /* enable LCD controller clock */
791 clk_prepare_enable(fbi
->clk
);
793 /* Sequence from 11.7.10 */
794 writel_relaxed(fbi
->reg_lccr3
, fbi
->base
+ LCCR3
);
795 writel_relaxed(fbi
->reg_lccr2
, fbi
->base
+ LCCR2
);
796 writel_relaxed(fbi
->reg_lccr1
, fbi
->base
+ LCCR1
);
797 writel_relaxed(fbi
->reg_lccr0
& ~LCCR0_LEN
, fbi
->base
+ LCCR0
);
798 writel_relaxed(fbi
->dbar1
, fbi
->base
+ DBAR1
);
799 writel_relaxed(fbi
->dbar2
, fbi
->base
+ DBAR2
);
800 writel_relaxed(fbi
->reg_lccr0
| LCCR0_LEN
, fbi
->base
+ LCCR0
);
802 if (fbi
->shannon_lcden
)
803 gpiod_set_value(fbi
->shannon_lcden
, 1);
805 dev_dbg(fbi
->dev
, "DBAR1: 0x%08x\n", readl_relaxed(fbi
->base
+ DBAR1
));
806 dev_dbg(fbi
->dev
, "DBAR2: 0x%08x\n", readl_relaxed(fbi
->base
+ DBAR2
));
807 dev_dbg(fbi
->dev
, "LCCR0: 0x%08x\n", readl_relaxed(fbi
->base
+ LCCR0
));
808 dev_dbg(fbi
->dev
, "LCCR1: 0x%08x\n", readl_relaxed(fbi
->base
+ LCCR1
));
809 dev_dbg(fbi
->dev
, "LCCR2: 0x%08x\n", readl_relaxed(fbi
->base
+ LCCR2
));
810 dev_dbg(fbi
->dev
, "LCCR3: 0x%08x\n", readl_relaxed(fbi
->base
+ LCCR3
));
813 static void sa1100fb_disable_controller(struct sa1100fb_info
*fbi
)
815 DECLARE_WAITQUEUE(wait
, current
);
818 dev_dbg(fbi
->dev
, "Disabling LCD controller\n");
820 if (fbi
->shannon_lcden
)
821 gpiod_set_value(fbi
->shannon_lcden
, 0);
823 set_current_state(TASK_UNINTERRUPTIBLE
);
824 add_wait_queue(&fbi
->ctrlr_wait
, &wait
);
826 /* Clear LCD Status Register */
827 writel_relaxed(~0, fbi
->base
+ LCSR
);
829 lccr0
= readl_relaxed(fbi
->base
+ LCCR0
);
830 lccr0
&= ~LCCR0_LDM
; /* Enable LCD Disable Done Interrupt */
831 writel_relaxed(lccr0
, fbi
->base
+ LCCR0
);
832 lccr0
&= ~LCCR0_LEN
; /* Disable LCD Controller */
833 writel_relaxed(lccr0
, fbi
->base
+ LCCR0
);
835 schedule_timeout(20 * HZ
/ 1000);
836 remove_wait_queue(&fbi
->ctrlr_wait
, &wait
);
838 /* disable LCD controller clock */
839 clk_disable_unprepare(fbi
->clk
);
843 * sa1100fb_handle_irq: Handle 'LCD DONE' interrupts.
845 static irqreturn_t
sa1100fb_handle_irq(int irq
, void *dev_id
)
847 struct sa1100fb_info
*fbi
= dev_id
;
848 unsigned int lcsr
= readl_relaxed(fbi
->base
+ LCSR
);
850 if (lcsr
& LCSR_LDD
) {
851 u32 lccr0
= readl_relaxed(fbi
->base
+ LCCR0
) | LCCR0_LDM
;
852 writel_relaxed(lccr0
, fbi
->base
+ LCCR0
);
853 wake_up(&fbi
->ctrlr_wait
);
856 writel_relaxed(lcsr
, fbi
->base
+ LCSR
);
861 * This function must be called from task context only, since it will
862 * sleep when disabling the LCD controller, or if we get two contending
863 * processes trying to alter state.
865 static void set_ctrlr_state(struct sa1100fb_info
*fbi
, u_int state
)
869 mutex_lock(&fbi
->ctrlr_lock
);
871 old_state
= fbi
->state
;
874 * Hack around fbcon initialisation.
876 if (old_state
== C_STARTUP
&& state
== C_REENABLE
)
880 case C_DISABLE_CLKCHANGE
:
882 * Disable controller for clock change. If the
883 * controller is already disabled, then do nothing.
885 if (old_state
!= C_DISABLE
&& old_state
!= C_DISABLE_PM
) {
887 sa1100fb_disable_controller(fbi
);
896 if (old_state
!= C_DISABLE
) {
899 __sa1100fb_backlight_power(fbi
, 0);
900 if (old_state
!= C_DISABLE_CLKCHANGE
)
901 sa1100fb_disable_controller(fbi
);
902 __sa1100fb_lcd_power(fbi
, 0);
906 case C_ENABLE_CLKCHANGE
:
908 * Enable the controller after clock change. Only
909 * do this if we were disabled for the clock change.
911 if (old_state
== C_DISABLE_CLKCHANGE
) {
912 fbi
->state
= C_ENABLE
;
913 sa1100fb_enable_controller(fbi
);
919 * Re-enable the controller only if it was already
920 * enabled. This is so we reprogram the control
923 if (old_state
== C_ENABLE
) {
924 sa1100fb_disable_controller(fbi
);
925 sa1100fb_setup_gpio(fbi
);
926 sa1100fb_enable_controller(fbi
);
932 * Re-enable the controller after PM. This is not
933 * perfect - think about the case where we were doing
934 * a clock change, and we suspended half-way through.
936 if (old_state
!= C_DISABLE_PM
)
942 * Power up the LCD screen, enable controller, and
943 * turn on the backlight.
945 if (old_state
!= C_ENABLE
) {
946 fbi
->state
= C_ENABLE
;
947 sa1100fb_setup_gpio(fbi
);
948 __sa1100fb_lcd_power(fbi
, 1);
949 sa1100fb_enable_controller(fbi
);
950 __sa1100fb_backlight_power(fbi
, 1);
954 mutex_unlock(&fbi
->ctrlr_lock
);
958 * Our LCD controller task (which is called when we blank or unblank)
961 static void sa1100fb_task(struct work_struct
*w
)
963 struct sa1100fb_info
*fbi
= container_of(w
, struct sa1100fb_info
, task
);
964 u_int state
= xchg(&fbi
->task_state
, -1);
966 set_ctrlr_state(fbi
, state
);
969 #ifdef CONFIG_CPU_FREQ
971 * CPU clock speed change handler. We need to adjust the LCD timing
972 * parameters when the CPU clock is adjusted by the power management
976 sa1100fb_freq_transition(struct notifier_block
*nb
, unsigned long val
,
979 struct sa1100fb_info
*fbi
= TO_INF(nb
, freq_transition
);
983 case CPUFREQ_PRECHANGE
:
984 set_ctrlr_state(fbi
, C_DISABLE_CLKCHANGE
);
987 case CPUFREQ_POSTCHANGE
:
988 pcd
= get_pcd(fbi
, fbi
->fb
.var
.pixclock
);
989 fbi
->reg_lccr3
= (fbi
->reg_lccr3
& ~0xff) | LCCR3_PixClkDiv(pcd
);
990 set_ctrlr_state(fbi
, C_ENABLE_CLKCHANGE
);
999 * Power management hooks. Note that we won't be called from IRQ context,
1000 * unlike the blank functions above, so we may sleep.
1002 static int sa1100fb_suspend(struct platform_device
*dev
, pm_message_t state
)
1004 struct sa1100fb_info
*fbi
= platform_get_drvdata(dev
);
1006 set_ctrlr_state(fbi
, C_DISABLE_PM
);
1010 static int sa1100fb_resume(struct platform_device
*dev
)
1012 struct sa1100fb_info
*fbi
= platform_get_drvdata(dev
);
1014 set_ctrlr_state(fbi
, C_ENABLE_PM
);
1018 #define sa1100fb_suspend NULL
1019 #define sa1100fb_resume NULL
1023 * sa1100fb_map_video_memory():
1024 * Allocates the DRAM memory for the frame buffer. This buffer is
1025 * remapped into a non-cached, non-buffered, memory region to
1026 * allow palette and pixel writes to occur without flushing the
1027 * cache. Once this area is remapped, all virtual memory
1028 * access to the video memory should occur at the new region.
1030 static int sa1100fb_map_video_memory(struct sa1100fb_info
*fbi
)
1033 * We reserve one page for the palette, plus the size
1034 * of the framebuffer.
1036 fbi
->map_size
= PAGE_ALIGN(fbi
->fb
.fix
.smem_len
+ PAGE_SIZE
);
1037 fbi
->map_cpu
= dma_alloc_wc(fbi
->dev
, fbi
->map_size
, &fbi
->map_dma
,
1041 fbi
->fb
.screen_base
= fbi
->map_cpu
+ PAGE_SIZE
;
1042 fbi
->screen_dma
= fbi
->map_dma
+ PAGE_SIZE
;
1044 * FIXME: this is actually the wrong thing to place in
1045 * smem_start. But fbdev suffers from the problem that
1046 * it needs an API which doesn't exist (in this case,
1047 * dma_writecombine_mmap)
1049 fbi
->fb
.fix
.smem_start
= fbi
->screen_dma
;
1052 return fbi
->map_cpu
? 0 : -ENOMEM
;
1055 /* Fake monspecs to fill in fbinfo structure */
1056 static const struct fb_monspecs monspecs
= {
1064 static struct sa1100fb_info
*sa1100fb_init_fbinfo(struct device
*dev
)
1066 struct sa1100fb_mach_info
*inf
= dev_get_platdata(dev
);
1067 struct sa1100fb_info
*fbi
;
1070 fbi
= devm_kzalloc(dev
, sizeof(struct sa1100fb_info
), GFP_KERNEL
);
1076 strcpy(fbi
->fb
.fix
.id
, SA1100_NAME
);
1078 fbi
->fb
.fix
.type
= FB_TYPE_PACKED_PIXELS
;
1079 fbi
->fb
.fix
.type_aux
= 0;
1080 fbi
->fb
.fix
.xpanstep
= 0;
1081 fbi
->fb
.fix
.ypanstep
= 0;
1082 fbi
->fb
.fix
.ywrapstep
= 0;
1083 fbi
->fb
.fix
.accel
= FB_ACCEL_NONE
;
1085 fbi
->fb
.var
.nonstd
= 0;
1086 fbi
->fb
.var
.activate
= FB_ACTIVATE_NOW
;
1087 fbi
->fb
.var
.height
= -1;
1088 fbi
->fb
.var
.width
= -1;
1089 fbi
->fb
.var
.accel_flags
= 0;
1090 fbi
->fb
.var
.vmode
= FB_VMODE_NONINTERLACED
;
1092 fbi
->fb
.fbops
= &sa1100fb_ops
;
1093 fbi
->fb
.monspecs
= monspecs
;
1094 fbi
->fb
.pseudo_palette
= fbi
->pseudo_palette
;
1096 fbi
->rgb
[RGB_4
] = &rgb_4
;
1097 fbi
->rgb
[RGB_8
] = &rgb_8
;
1098 fbi
->rgb
[RGB_16
] = &def_rgb_16
;
1101 * People just don't seem to get this. We don't support
1102 * anything but correct entries now, so panic if someone
1103 * does something stupid.
1105 if (inf
->lccr3
& (LCCR3_VrtSnchL
|LCCR3_HorSnchL
|0xff) ||
1107 panic("sa1100fb error: invalid LCCR3 fields set or zero "
1110 fbi
->fb
.var
.xres
= inf
->xres
;
1111 fbi
->fb
.var
.xres_virtual
= inf
->xres
;
1112 fbi
->fb
.var
.yres
= inf
->yres
;
1113 fbi
->fb
.var
.yres_virtual
= inf
->yres
;
1114 fbi
->fb
.var
.bits_per_pixel
= inf
->bpp
;
1115 fbi
->fb
.var
.pixclock
= inf
->pixclock
;
1116 fbi
->fb
.var
.hsync_len
= inf
->hsync_len
;
1117 fbi
->fb
.var
.left_margin
= inf
->left_margin
;
1118 fbi
->fb
.var
.right_margin
= inf
->right_margin
;
1119 fbi
->fb
.var
.vsync_len
= inf
->vsync_len
;
1120 fbi
->fb
.var
.upper_margin
= inf
->upper_margin
;
1121 fbi
->fb
.var
.lower_margin
= inf
->lower_margin
;
1122 fbi
->fb
.var
.sync
= inf
->sync
;
1123 fbi
->fb
.var
.grayscale
= inf
->cmap_greyscale
;
1124 fbi
->state
= C_STARTUP
;
1125 fbi
->task_state
= (u_char
)-1;
1126 fbi
->fb
.fix
.smem_len
= inf
->xres
* inf
->yres
*
1130 /* Copy the RGB bitfield overrides */
1131 for (i
= 0; i
< NR_RGB
; i
++)
1133 fbi
->rgb
[i
] = inf
->rgb
[i
];
1135 init_waitqueue_head(&fbi
->ctrlr_wait
);
1136 INIT_WORK(&fbi
->task
, sa1100fb_task
);
1137 mutex_init(&fbi
->ctrlr_lock
);
1142 static int sa1100fb_probe(struct platform_device
*pdev
)
1144 struct sa1100fb_info
*fbi
;
1147 if (!dev_get_platdata(&pdev
->dev
)) {
1148 dev_err(&pdev
->dev
, "no platform LCD data\n");
1152 irq
= platform_get_irq(pdev
, 0);
1156 fbi
= sa1100fb_init_fbinfo(&pdev
->dev
);
1160 fbi
->base
= devm_platform_ioremap_resource(pdev
, 0);
1161 if (IS_ERR(fbi
->base
))
1162 return PTR_ERR(fbi
->base
);
1164 fbi
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
1165 if (IS_ERR(fbi
->clk
))
1166 return PTR_ERR(fbi
->clk
);
1168 ret
= devm_request_irq(&pdev
->dev
, irq
, sa1100fb_handle_irq
, 0,
1171 dev_err(&pdev
->dev
, "request_irq failed: %d\n", ret
);
1175 fbi
->shannon_lcden
= gpiod_get_optional(&pdev
->dev
, "shannon-lcden",
1177 if (IS_ERR(fbi
->shannon_lcden
))
1178 return PTR_ERR(fbi
->shannon_lcden
);
1180 /* Initialize video memory */
1181 ret
= sa1100fb_map_video_memory(fbi
);
1186 * This makes sure that our colour bitfield
1187 * descriptors are correctly initialised.
1189 sa1100fb_check_var(&fbi
->fb
.var
, &fbi
->fb
);
1191 platform_set_drvdata(pdev
, fbi
);
1193 ret
= register_framebuffer(&fbi
->fb
);
1195 dma_free_wc(fbi
->dev
, fbi
->map_size
, fbi
->map_cpu
,
1200 #ifdef CONFIG_CPU_FREQ
1201 fbi
->freq_transition
.notifier_call
= sa1100fb_freq_transition
;
1202 cpufreq_register_notifier(&fbi
->freq_transition
, CPUFREQ_TRANSITION_NOTIFIER
);
1205 /* This driver cannot be unloaded at the moment */
1209 static struct platform_driver sa1100fb_driver
= {
1210 .probe
= sa1100fb_probe
,
1211 .suspend
= sa1100fb_suspend
,
1212 .resume
= sa1100fb_resume
,
1214 .name
= "sa11x0-fb",
1218 static int __init
sa1100fb_init(void)
1220 if (fb_get_options("sa1100fb", NULL
))
1223 return platform_driver_register(&sa1100fb_driver
);
1226 module_init(sa1100fb_init
);
1227 MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver");
1228 MODULE_LICENSE("GPL");