drm/panel-edp: Add BOE NV140FHM-NZ panel entry
[drm/drm-misc.git] / fs / btrfs / ctree.c
blob693dc27ffb8979c06da18996aa6bb98c72a6e75e
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 */
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "messages.h"
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "print-tree.h"
16 #include "locking.h"
17 #include "volumes.h"
18 #include "qgroup.h"
19 #include "tree-mod-log.h"
20 #include "tree-checker.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 #include "relocation.h"
25 #include "file-item.h"
27 static struct kmem_cache *btrfs_path_cachep;
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 const struct btrfs_key *ins_key, struct btrfs_path *path,
33 int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 struct extent_buffer *dst,
36 struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
41 static const struct btrfs_csums {
42 u16 size;
43 const char name[10];
44 const char driver[12];
45 } btrfs_csums[] = {
46 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
47 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
48 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
49 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
50 .driver = "blake2b-256" },
54 * The leaf data grows from end-to-front in the node. this returns the address
55 * of the start of the last item, which is the stop of the leaf data stack.
57 static unsigned int leaf_data_end(const struct extent_buffer *leaf)
59 u32 nr = btrfs_header_nritems(leaf);
61 if (nr == 0)
62 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
63 return btrfs_item_offset(leaf, nr - 1);
67 * Move data in a @leaf (using memmove, safe for overlapping ranges).
69 * @leaf: leaf that we're doing a memmove on
70 * @dst_offset: item data offset we're moving to
71 * @src_offset: item data offset were' moving from
72 * @len: length of the data we're moving
74 * Wrapper around memmove_extent_buffer() that takes into account the header on
75 * the leaf. The btrfs_item offset's start directly after the header, so we
76 * have to adjust any offsets to account for the header in the leaf. This
77 * handles that math to simplify the callers.
79 static inline void memmove_leaf_data(const struct extent_buffer *leaf,
80 unsigned long dst_offset,
81 unsigned long src_offset,
82 unsigned long len)
84 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
85 btrfs_item_nr_offset(leaf, 0) + src_offset, len);
89 * Copy item data from @src into @dst at the given @offset.
91 * @dst: destination leaf that we're copying into
92 * @src: source leaf that we're copying from
93 * @dst_offset: item data offset we're copying to
94 * @src_offset: item data offset were' copying from
95 * @len: length of the data we're copying
97 * Wrapper around copy_extent_buffer() that takes into account the header on
98 * the leaf. The btrfs_item offset's start directly after the header, so we
99 * have to adjust any offsets to account for the header in the leaf. This
100 * handles that math to simplify the callers.
102 static inline void copy_leaf_data(const struct extent_buffer *dst,
103 const struct extent_buffer *src,
104 unsigned long dst_offset,
105 unsigned long src_offset, unsigned long len)
107 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
108 btrfs_item_nr_offset(src, 0) + src_offset, len);
112 * Move items in a @leaf (using memmove).
114 * @dst: destination leaf for the items
115 * @dst_item: the item nr we're copying into
116 * @src_item: the item nr we're copying from
117 * @nr_items: the number of items to copy
119 * Wrapper around memmove_extent_buffer() that does the math to get the
120 * appropriate offsets into the leaf from the item numbers.
122 static inline void memmove_leaf_items(const struct extent_buffer *leaf,
123 int dst_item, int src_item, int nr_items)
125 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
126 btrfs_item_nr_offset(leaf, src_item),
127 nr_items * sizeof(struct btrfs_item));
131 * Copy items from @src into @dst at the given @offset.
133 * @dst: destination leaf for the items
134 * @src: source leaf for the items
135 * @dst_item: the item nr we're copying into
136 * @src_item: the item nr we're copying from
137 * @nr_items: the number of items to copy
139 * Wrapper around copy_extent_buffer() that does the math to get the
140 * appropriate offsets into the leaf from the item numbers.
142 static inline void copy_leaf_items(const struct extent_buffer *dst,
143 const struct extent_buffer *src,
144 int dst_item, int src_item, int nr_items)
146 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
147 btrfs_item_nr_offset(src, src_item),
148 nr_items * sizeof(struct btrfs_item));
151 /* This exists for btrfs-progs usages. */
152 u16 btrfs_csum_type_size(u16 type)
154 return btrfs_csums[type].size;
157 int btrfs_super_csum_size(const struct btrfs_super_block *s)
159 u16 t = btrfs_super_csum_type(s);
161 * csum type is validated at mount time
163 return btrfs_csum_type_size(t);
166 const char *btrfs_super_csum_name(u16 csum_type)
168 /* csum type is validated at mount time */
169 return btrfs_csums[csum_type].name;
173 * Return driver name if defined, otherwise the name that's also a valid driver
174 * name
176 const char *btrfs_super_csum_driver(u16 csum_type)
178 /* csum type is validated at mount time */
179 return btrfs_csums[csum_type].driver[0] ?
180 btrfs_csums[csum_type].driver :
181 btrfs_csums[csum_type].name;
184 size_t __attribute_const__ btrfs_get_num_csums(void)
186 return ARRAY_SIZE(btrfs_csums);
189 struct btrfs_path *btrfs_alloc_path(void)
191 might_sleep();
193 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
196 /* this also releases the path */
197 void btrfs_free_path(struct btrfs_path *p)
199 if (!p)
200 return;
201 btrfs_release_path(p);
202 kmem_cache_free(btrfs_path_cachep, p);
206 * path release drops references on the extent buffers in the path
207 * and it drops any locks held by this path
209 * It is safe to call this on paths that no locks or extent buffers held.
211 noinline void btrfs_release_path(struct btrfs_path *p)
213 int i;
215 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
216 p->slots[i] = 0;
217 if (!p->nodes[i])
218 continue;
219 if (p->locks[i]) {
220 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
221 p->locks[i] = 0;
223 free_extent_buffer(p->nodes[i]);
224 p->nodes[i] = NULL;
229 * We want the transaction abort to print stack trace only for errors where the
230 * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
231 * caused by external factors.
233 bool __cold abort_should_print_stack(int error)
235 switch (error) {
236 case -EIO:
237 case -EROFS:
238 case -ENOMEM:
239 return false;
241 return true;
245 * safely gets a reference on the root node of a tree. A lock
246 * is not taken, so a concurrent writer may put a different node
247 * at the root of the tree. See btrfs_lock_root_node for the
248 * looping required.
250 * The extent buffer returned by this has a reference taken, so
251 * it won't disappear. It may stop being the root of the tree
252 * at any time because there are no locks held.
254 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
256 struct extent_buffer *eb;
258 while (1) {
259 rcu_read_lock();
260 eb = rcu_dereference(root->node);
263 * RCU really hurts here, we could free up the root node because
264 * it was COWed but we may not get the new root node yet so do
265 * the inc_not_zero dance and if it doesn't work then
266 * synchronize_rcu and try again.
268 if (atomic_inc_not_zero(&eb->refs)) {
269 rcu_read_unlock();
270 break;
272 rcu_read_unlock();
273 synchronize_rcu();
275 return eb;
279 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
280 * just get put onto a simple dirty list. Transaction walks this list to make
281 * sure they get properly updated on disk.
283 static void add_root_to_dirty_list(struct btrfs_root *root)
285 struct btrfs_fs_info *fs_info = root->fs_info;
287 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
288 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
289 return;
291 spin_lock(&fs_info->trans_lock);
292 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
293 /* Want the extent tree to be the last on the list */
294 if (btrfs_root_id(root) == BTRFS_EXTENT_TREE_OBJECTID)
295 list_move_tail(&root->dirty_list,
296 &fs_info->dirty_cowonly_roots);
297 else
298 list_move(&root->dirty_list,
299 &fs_info->dirty_cowonly_roots);
301 spin_unlock(&fs_info->trans_lock);
305 * used by snapshot creation to make a copy of a root for a tree with
306 * a given objectid. The buffer with the new root node is returned in
307 * cow_ret, and this func returns zero on success or a negative error code.
309 int btrfs_copy_root(struct btrfs_trans_handle *trans,
310 struct btrfs_root *root,
311 struct extent_buffer *buf,
312 struct extent_buffer **cow_ret, u64 new_root_objectid)
314 struct btrfs_fs_info *fs_info = root->fs_info;
315 struct extent_buffer *cow;
316 int ret = 0;
317 int level;
318 struct btrfs_disk_key disk_key;
319 u64 reloc_src_root = 0;
321 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
322 trans->transid != fs_info->running_transaction->transid);
323 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
324 trans->transid != btrfs_get_root_last_trans(root));
326 level = btrfs_header_level(buf);
327 if (level == 0)
328 btrfs_item_key(buf, &disk_key, 0);
329 else
330 btrfs_node_key(buf, &disk_key, 0);
332 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
333 reloc_src_root = btrfs_header_owner(buf);
334 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
335 &disk_key, level, buf->start, 0,
336 reloc_src_root, BTRFS_NESTING_NEW_ROOT);
337 if (IS_ERR(cow))
338 return PTR_ERR(cow);
340 copy_extent_buffer_full(cow, buf);
341 btrfs_set_header_bytenr(cow, cow->start);
342 btrfs_set_header_generation(cow, trans->transid);
343 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
344 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
345 BTRFS_HEADER_FLAG_RELOC);
346 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
347 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
348 else
349 btrfs_set_header_owner(cow, new_root_objectid);
351 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
353 WARN_ON(btrfs_header_generation(buf) > trans->transid);
354 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
355 ret = btrfs_inc_ref(trans, root, cow, 1);
356 else
357 ret = btrfs_inc_ref(trans, root, cow, 0);
358 if (ret) {
359 btrfs_tree_unlock(cow);
360 free_extent_buffer(cow);
361 btrfs_abort_transaction(trans, ret);
362 return ret;
365 btrfs_mark_buffer_dirty(trans, cow);
366 *cow_ret = cow;
367 return 0;
371 * check if the tree block can be shared by multiple trees
373 bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
374 struct btrfs_root *root,
375 struct extent_buffer *buf)
377 const u64 buf_gen = btrfs_header_generation(buf);
380 * Tree blocks not in shareable trees and tree roots are never shared.
381 * If a block was allocated after the last snapshot and the block was
382 * not allocated by tree relocation, we know the block is not shared.
385 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
386 return false;
388 if (buf == root->node)
389 return false;
391 if (buf_gen > btrfs_root_last_snapshot(&root->root_item) &&
392 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))
393 return false;
395 if (buf != root->commit_root)
396 return true;
399 * An extent buffer that used to be the commit root may still be shared
400 * because the tree height may have increased and it became a child of a
401 * higher level root. This can happen when snapshotting a subvolume
402 * created in the current transaction.
404 if (buf_gen == trans->transid)
405 return true;
407 return false;
410 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
411 struct btrfs_root *root,
412 struct extent_buffer *buf,
413 struct extent_buffer *cow,
414 int *last_ref)
416 struct btrfs_fs_info *fs_info = root->fs_info;
417 u64 refs;
418 u64 owner;
419 u64 flags;
420 int ret;
423 * Backrefs update rules:
425 * Always use full backrefs for extent pointers in tree block
426 * allocated by tree relocation.
428 * If a shared tree block is no longer referenced by its owner
429 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
430 * use full backrefs for extent pointers in tree block.
432 * If a tree block is been relocating
433 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
434 * use full backrefs for extent pointers in tree block.
435 * The reason for this is some operations (such as drop tree)
436 * are only allowed for blocks use full backrefs.
439 if (btrfs_block_can_be_shared(trans, root, buf)) {
440 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
441 btrfs_header_level(buf), 1,
442 &refs, &flags, NULL);
443 if (ret)
444 return ret;
445 if (unlikely(refs == 0)) {
446 btrfs_crit(fs_info,
447 "found 0 references for tree block at bytenr %llu level %d root %llu",
448 buf->start, btrfs_header_level(buf),
449 btrfs_root_id(root));
450 ret = -EUCLEAN;
451 btrfs_abort_transaction(trans, ret);
452 return ret;
454 } else {
455 refs = 1;
456 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
457 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
458 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
459 else
460 flags = 0;
463 owner = btrfs_header_owner(buf);
464 if (unlikely(owner == BTRFS_TREE_RELOC_OBJECTID &&
465 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))) {
466 btrfs_crit(fs_info,
467 "found tree block at bytenr %llu level %d root %llu refs %llu flags %llx without full backref flag set",
468 buf->start, btrfs_header_level(buf),
469 btrfs_root_id(root), refs, flags);
470 ret = -EUCLEAN;
471 btrfs_abort_transaction(trans, ret);
472 return ret;
475 if (refs > 1) {
476 if ((owner == btrfs_root_id(root) ||
477 btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) &&
478 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
479 ret = btrfs_inc_ref(trans, root, buf, 1);
480 if (ret)
481 return ret;
483 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
484 ret = btrfs_dec_ref(trans, root, buf, 0);
485 if (ret)
486 return ret;
487 ret = btrfs_inc_ref(trans, root, cow, 1);
488 if (ret)
489 return ret;
491 ret = btrfs_set_disk_extent_flags(trans, buf,
492 BTRFS_BLOCK_FLAG_FULL_BACKREF);
493 if (ret)
494 return ret;
495 } else {
497 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
498 ret = btrfs_inc_ref(trans, root, cow, 1);
499 else
500 ret = btrfs_inc_ref(trans, root, cow, 0);
501 if (ret)
502 return ret;
504 } else {
505 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
506 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
507 ret = btrfs_inc_ref(trans, root, cow, 1);
508 else
509 ret = btrfs_inc_ref(trans, root, cow, 0);
510 if (ret)
511 return ret;
512 ret = btrfs_dec_ref(trans, root, buf, 1);
513 if (ret)
514 return ret;
516 btrfs_clear_buffer_dirty(trans, buf);
517 *last_ref = 1;
519 return 0;
523 * does the dirty work in cow of a single block. The parent block (if
524 * supplied) is updated to point to the new cow copy. The new buffer is marked
525 * dirty and returned locked. If you modify the block it needs to be marked
526 * dirty again.
528 * search_start -- an allocation hint for the new block
530 * empty_size -- a hint that you plan on doing more cow. This is the size in
531 * bytes the allocator should try to find free next to the block it returns.
532 * This is just a hint and may be ignored by the allocator.
534 int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
535 struct btrfs_root *root,
536 struct extent_buffer *buf,
537 struct extent_buffer *parent, int parent_slot,
538 struct extent_buffer **cow_ret,
539 u64 search_start, u64 empty_size,
540 enum btrfs_lock_nesting nest)
542 struct btrfs_fs_info *fs_info = root->fs_info;
543 struct btrfs_disk_key disk_key;
544 struct extent_buffer *cow;
545 int level, ret;
546 int last_ref = 0;
547 int unlock_orig = 0;
548 u64 parent_start = 0;
549 u64 reloc_src_root = 0;
551 if (*cow_ret == buf)
552 unlock_orig = 1;
554 btrfs_assert_tree_write_locked(buf);
556 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
557 trans->transid != fs_info->running_transaction->transid);
558 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
559 trans->transid != btrfs_get_root_last_trans(root));
561 level = btrfs_header_level(buf);
563 if (level == 0)
564 btrfs_item_key(buf, &disk_key, 0);
565 else
566 btrfs_node_key(buf, &disk_key, 0);
568 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
569 if (parent)
570 parent_start = parent->start;
571 reloc_src_root = btrfs_header_owner(buf);
573 cow = btrfs_alloc_tree_block(trans, root, parent_start,
574 btrfs_root_id(root), &disk_key, level,
575 search_start, empty_size, reloc_src_root, nest);
576 if (IS_ERR(cow))
577 return PTR_ERR(cow);
579 /* cow is set to blocking by btrfs_init_new_buffer */
581 copy_extent_buffer_full(cow, buf);
582 btrfs_set_header_bytenr(cow, cow->start);
583 btrfs_set_header_generation(cow, trans->transid);
584 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
585 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
586 BTRFS_HEADER_FLAG_RELOC);
587 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
588 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
589 else
590 btrfs_set_header_owner(cow, btrfs_root_id(root));
592 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
594 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
595 if (ret) {
596 btrfs_abort_transaction(trans, ret);
597 goto error_unlock_cow;
600 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
601 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
602 if (ret) {
603 btrfs_abort_transaction(trans, ret);
604 goto error_unlock_cow;
608 if (buf == root->node) {
609 WARN_ON(parent && parent != buf);
610 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
611 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
612 parent_start = buf->start;
614 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
615 if (ret < 0) {
616 btrfs_abort_transaction(trans, ret);
617 goto error_unlock_cow;
619 atomic_inc(&cow->refs);
620 rcu_assign_pointer(root->node, cow);
622 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
623 parent_start, last_ref);
624 free_extent_buffer(buf);
625 add_root_to_dirty_list(root);
626 if (ret < 0) {
627 btrfs_abort_transaction(trans, ret);
628 goto error_unlock_cow;
630 } else {
631 WARN_ON(trans->transid != btrfs_header_generation(parent));
632 ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
633 BTRFS_MOD_LOG_KEY_REPLACE);
634 if (ret) {
635 btrfs_abort_transaction(trans, ret);
636 goto error_unlock_cow;
638 btrfs_set_node_blockptr(parent, parent_slot,
639 cow->start);
640 btrfs_set_node_ptr_generation(parent, parent_slot,
641 trans->transid);
642 btrfs_mark_buffer_dirty(trans, parent);
643 if (last_ref) {
644 ret = btrfs_tree_mod_log_free_eb(buf);
645 if (ret) {
646 btrfs_abort_transaction(trans, ret);
647 goto error_unlock_cow;
650 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
651 parent_start, last_ref);
652 if (ret < 0) {
653 btrfs_abort_transaction(trans, ret);
654 goto error_unlock_cow;
657 if (unlock_orig)
658 btrfs_tree_unlock(buf);
659 free_extent_buffer_stale(buf);
660 btrfs_mark_buffer_dirty(trans, cow);
661 *cow_ret = cow;
662 return 0;
664 error_unlock_cow:
665 btrfs_tree_unlock(cow);
666 free_extent_buffer(cow);
667 return ret;
670 static inline int should_cow_block(struct btrfs_trans_handle *trans,
671 struct btrfs_root *root,
672 struct extent_buffer *buf)
674 if (btrfs_is_testing(root->fs_info))
675 return 0;
677 /* Ensure we can see the FORCE_COW bit */
678 smp_mb__before_atomic();
681 * We do not need to cow a block if
682 * 1) this block is not created or changed in this transaction;
683 * 2) this block does not belong to TREE_RELOC tree;
684 * 3) the root is not forced COW.
686 * What is forced COW:
687 * when we create snapshot during committing the transaction,
688 * after we've finished copying src root, we must COW the shared
689 * block to ensure the metadata consistency.
691 if (btrfs_header_generation(buf) == trans->transid &&
692 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
693 !(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
694 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
695 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
696 return 0;
697 return 1;
701 * COWs a single block, see btrfs_force_cow_block() for the real work.
702 * This version of it has extra checks so that a block isn't COWed more than
703 * once per transaction, as long as it hasn't been written yet
705 int btrfs_cow_block(struct btrfs_trans_handle *trans,
706 struct btrfs_root *root, struct extent_buffer *buf,
707 struct extent_buffer *parent, int parent_slot,
708 struct extent_buffer **cow_ret,
709 enum btrfs_lock_nesting nest)
711 struct btrfs_fs_info *fs_info = root->fs_info;
712 u64 search_start;
713 int ret;
715 if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
716 btrfs_abort_transaction(trans, -EUCLEAN);
717 btrfs_crit(fs_info,
718 "attempt to COW block %llu on root %llu that is being deleted",
719 buf->start, btrfs_root_id(root));
720 return -EUCLEAN;
724 * COWing must happen through a running transaction, which always
725 * matches the current fs generation (it's a transaction with a state
726 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
727 * into error state to prevent the commit of any transaction.
729 if (unlikely(trans->transaction != fs_info->running_transaction ||
730 trans->transid != fs_info->generation)) {
731 btrfs_abort_transaction(trans, -EUCLEAN);
732 btrfs_crit(fs_info,
733 "unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
734 buf->start, btrfs_root_id(root), trans->transid,
735 fs_info->running_transaction->transid,
736 fs_info->generation);
737 return -EUCLEAN;
740 if (!should_cow_block(trans, root, buf)) {
741 *cow_ret = buf;
742 return 0;
745 search_start = round_down(buf->start, SZ_1G);
748 * Before CoWing this block for later modification, check if it's
749 * the subtree root and do the delayed subtree trace if needed.
751 * Also We don't care about the error, as it's handled internally.
753 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
754 ret = btrfs_force_cow_block(trans, root, buf, parent, parent_slot,
755 cow_ret, search_start, 0, nest);
757 trace_btrfs_cow_block(root, buf, *cow_ret);
759 return ret;
761 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
764 * same as comp_keys only with two btrfs_key's
766 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
768 if (k1->objectid > k2->objectid)
769 return 1;
770 if (k1->objectid < k2->objectid)
771 return -1;
772 if (k1->type > k2->type)
773 return 1;
774 if (k1->type < k2->type)
775 return -1;
776 if (k1->offset > k2->offset)
777 return 1;
778 if (k1->offset < k2->offset)
779 return -1;
780 return 0;
784 * Search for a key in the given extent_buffer.
786 * The lower boundary for the search is specified by the slot number @first_slot.
787 * Use a value of 0 to search over the whole extent buffer. Works for both
788 * leaves and nodes.
790 * The slot in the extent buffer is returned via @slot. If the key exists in the
791 * extent buffer, then @slot will point to the slot where the key is, otherwise
792 * it points to the slot where you would insert the key.
794 * Slot may point to the total number of items (i.e. one position beyond the last
795 * key) if the key is bigger than the last key in the extent buffer.
797 int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
798 const struct btrfs_key *key, int *slot)
800 unsigned long p;
801 int item_size;
803 * Use unsigned types for the low and high slots, so that we get a more
804 * efficient division in the search loop below.
806 u32 low = first_slot;
807 u32 high = btrfs_header_nritems(eb);
808 int ret;
809 const int key_size = sizeof(struct btrfs_disk_key);
811 if (unlikely(low > high)) {
812 btrfs_err(eb->fs_info,
813 "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
814 __func__, low, high, eb->start,
815 btrfs_header_owner(eb), btrfs_header_level(eb));
816 return -EINVAL;
819 if (btrfs_header_level(eb) == 0) {
820 p = offsetof(struct btrfs_leaf, items);
821 item_size = sizeof(struct btrfs_item);
822 } else {
823 p = offsetof(struct btrfs_node, ptrs);
824 item_size = sizeof(struct btrfs_key_ptr);
827 while (low < high) {
828 const int unit_size = eb->folio_size;
829 unsigned long oil;
830 unsigned long offset;
831 struct btrfs_disk_key *tmp;
832 struct btrfs_disk_key unaligned;
833 int mid;
835 mid = (low + high) / 2;
836 offset = p + mid * item_size;
837 oil = get_eb_offset_in_folio(eb, offset);
839 if (oil + key_size <= unit_size) {
840 const unsigned long idx = get_eb_folio_index(eb, offset);
841 char *kaddr = folio_address(eb->folios[idx]);
843 oil = get_eb_offset_in_folio(eb, offset);
844 tmp = (struct btrfs_disk_key *)(kaddr + oil);
845 } else {
846 read_extent_buffer(eb, &unaligned, offset, key_size);
847 tmp = &unaligned;
850 ret = btrfs_comp_keys(tmp, key);
852 if (ret < 0)
853 low = mid + 1;
854 else if (ret > 0)
855 high = mid;
856 else {
857 *slot = mid;
858 return 0;
861 *slot = low;
862 return 1;
865 static void root_add_used_bytes(struct btrfs_root *root)
867 spin_lock(&root->accounting_lock);
868 btrfs_set_root_used(&root->root_item,
869 btrfs_root_used(&root->root_item) + root->fs_info->nodesize);
870 spin_unlock(&root->accounting_lock);
873 static void root_sub_used_bytes(struct btrfs_root *root)
875 spin_lock(&root->accounting_lock);
876 btrfs_set_root_used(&root->root_item,
877 btrfs_root_used(&root->root_item) - root->fs_info->nodesize);
878 spin_unlock(&root->accounting_lock);
881 /* given a node and slot number, this reads the blocks it points to. The
882 * extent buffer is returned with a reference taken (but unlocked).
884 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
885 int slot)
887 int level = btrfs_header_level(parent);
888 struct btrfs_tree_parent_check check = { 0 };
889 struct extent_buffer *eb;
891 if (slot < 0 || slot >= btrfs_header_nritems(parent))
892 return ERR_PTR(-ENOENT);
894 ASSERT(level);
896 check.level = level - 1;
897 check.transid = btrfs_node_ptr_generation(parent, slot);
898 check.owner_root = btrfs_header_owner(parent);
899 check.has_first_key = true;
900 btrfs_node_key_to_cpu(parent, &check.first_key, slot);
902 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
903 &check);
904 if (IS_ERR(eb))
905 return eb;
906 if (!extent_buffer_uptodate(eb)) {
907 free_extent_buffer(eb);
908 return ERR_PTR(-EIO);
911 return eb;
915 * node level balancing, used to make sure nodes are in proper order for
916 * item deletion. We balance from the top down, so we have to make sure
917 * that a deletion won't leave an node completely empty later on.
919 static noinline int balance_level(struct btrfs_trans_handle *trans,
920 struct btrfs_root *root,
921 struct btrfs_path *path, int level)
923 struct btrfs_fs_info *fs_info = root->fs_info;
924 struct extent_buffer *right = NULL;
925 struct extent_buffer *mid;
926 struct extent_buffer *left = NULL;
927 struct extent_buffer *parent = NULL;
928 int ret = 0;
929 int wret;
930 int pslot;
931 int orig_slot = path->slots[level];
932 u64 orig_ptr;
934 ASSERT(level > 0);
936 mid = path->nodes[level];
938 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
939 WARN_ON(btrfs_header_generation(mid) != trans->transid);
941 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
943 if (level < BTRFS_MAX_LEVEL - 1) {
944 parent = path->nodes[level + 1];
945 pslot = path->slots[level + 1];
949 * deal with the case where there is only one pointer in the root
950 * by promoting the node below to a root
952 if (!parent) {
953 struct extent_buffer *child;
955 if (btrfs_header_nritems(mid) != 1)
956 return 0;
958 /* promote the child to a root */
959 child = btrfs_read_node_slot(mid, 0);
960 if (IS_ERR(child)) {
961 ret = PTR_ERR(child);
962 goto out;
965 btrfs_tree_lock(child);
966 ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
967 BTRFS_NESTING_COW);
968 if (ret) {
969 btrfs_tree_unlock(child);
970 free_extent_buffer(child);
971 goto out;
974 ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
975 if (ret < 0) {
976 btrfs_tree_unlock(child);
977 free_extent_buffer(child);
978 btrfs_abort_transaction(trans, ret);
979 goto out;
981 rcu_assign_pointer(root->node, child);
983 add_root_to_dirty_list(root);
984 btrfs_tree_unlock(child);
986 path->locks[level] = 0;
987 path->nodes[level] = NULL;
988 btrfs_clear_buffer_dirty(trans, mid);
989 btrfs_tree_unlock(mid);
990 /* once for the path */
991 free_extent_buffer(mid);
993 root_sub_used_bytes(root);
994 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
995 /* once for the root ptr */
996 free_extent_buffer_stale(mid);
997 if (ret < 0) {
998 btrfs_abort_transaction(trans, ret);
999 goto out;
1001 return 0;
1003 if (btrfs_header_nritems(mid) >
1004 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1005 return 0;
1007 if (pslot) {
1008 left = btrfs_read_node_slot(parent, pslot - 1);
1009 if (IS_ERR(left)) {
1010 ret = PTR_ERR(left);
1011 left = NULL;
1012 goto out;
1015 btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
1016 wret = btrfs_cow_block(trans, root, left,
1017 parent, pslot - 1, &left,
1018 BTRFS_NESTING_LEFT_COW);
1019 if (wret) {
1020 ret = wret;
1021 goto out;
1025 if (pslot + 1 < btrfs_header_nritems(parent)) {
1026 right = btrfs_read_node_slot(parent, pslot + 1);
1027 if (IS_ERR(right)) {
1028 ret = PTR_ERR(right);
1029 right = NULL;
1030 goto out;
1033 btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
1034 wret = btrfs_cow_block(trans, root, right,
1035 parent, pslot + 1, &right,
1036 BTRFS_NESTING_RIGHT_COW);
1037 if (wret) {
1038 ret = wret;
1039 goto out;
1043 /* first, try to make some room in the middle buffer */
1044 if (left) {
1045 orig_slot += btrfs_header_nritems(left);
1046 wret = push_node_left(trans, left, mid, 1);
1047 if (wret < 0)
1048 ret = wret;
1052 * then try to empty the right most buffer into the middle
1054 if (right) {
1055 wret = push_node_left(trans, mid, right, 1);
1056 if (wret < 0 && wret != -ENOSPC)
1057 ret = wret;
1058 if (btrfs_header_nritems(right) == 0) {
1059 btrfs_clear_buffer_dirty(trans, right);
1060 btrfs_tree_unlock(right);
1061 ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1062 if (ret < 0) {
1063 free_extent_buffer_stale(right);
1064 right = NULL;
1065 goto out;
1067 root_sub_used_bytes(root);
1068 ret = btrfs_free_tree_block(trans, btrfs_root_id(root),
1069 right, 0, 1);
1070 free_extent_buffer_stale(right);
1071 right = NULL;
1072 if (ret < 0) {
1073 btrfs_abort_transaction(trans, ret);
1074 goto out;
1076 } else {
1077 struct btrfs_disk_key right_key;
1078 btrfs_node_key(right, &right_key, 0);
1079 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1080 BTRFS_MOD_LOG_KEY_REPLACE);
1081 if (ret < 0) {
1082 btrfs_abort_transaction(trans, ret);
1083 goto out;
1085 btrfs_set_node_key(parent, &right_key, pslot + 1);
1086 btrfs_mark_buffer_dirty(trans, parent);
1089 if (btrfs_header_nritems(mid) == 1) {
1091 * we're not allowed to leave a node with one item in the
1092 * tree during a delete. A deletion from lower in the tree
1093 * could try to delete the only pointer in this node.
1094 * So, pull some keys from the left.
1095 * There has to be a left pointer at this point because
1096 * otherwise we would have pulled some pointers from the
1097 * right
1099 if (unlikely(!left)) {
1100 btrfs_crit(fs_info,
1101 "missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1102 parent->start, btrfs_header_level(parent),
1103 mid->start, btrfs_root_id(root));
1104 ret = -EUCLEAN;
1105 btrfs_abort_transaction(trans, ret);
1106 goto out;
1108 wret = balance_node_right(trans, mid, left);
1109 if (wret < 0) {
1110 ret = wret;
1111 goto out;
1113 if (wret == 1) {
1114 wret = push_node_left(trans, left, mid, 1);
1115 if (wret < 0)
1116 ret = wret;
1118 BUG_ON(wret == 1);
1120 if (btrfs_header_nritems(mid) == 0) {
1121 btrfs_clear_buffer_dirty(trans, mid);
1122 btrfs_tree_unlock(mid);
1123 ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1124 if (ret < 0) {
1125 free_extent_buffer_stale(mid);
1126 mid = NULL;
1127 goto out;
1129 root_sub_used_bytes(root);
1130 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1131 free_extent_buffer_stale(mid);
1132 mid = NULL;
1133 if (ret < 0) {
1134 btrfs_abort_transaction(trans, ret);
1135 goto out;
1137 } else {
1138 /* update the parent key to reflect our changes */
1139 struct btrfs_disk_key mid_key;
1140 btrfs_node_key(mid, &mid_key, 0);
1141 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1142 BTRFS_MOD_LOG_KEY_REPLACE);
1143 if (ret < 0) {
1144 btrfs_abort_transaction(trans, ret);
1145 goto out;
1147 btrfs_set_node_key(parent, &mid_key, pslot);
1148 btrfs_mark_buffer_dirty(trans, parent);
1151 /* update the path */
1152 if (left) {
1153 if (btrfs_header_nritems(left) > orig_slot) {
1154 atomic_inc(&left->refs);
1155 /* left was locked after cow */
1156 path->nodes[level] = left;
1157 path->slots[level + 1] -= 1;
1158 path->slots[level] = orig_slot;
1159 if (mid) {
1160 btrfs_tree_unlock(mid);
1161 free_extent_buffer(mid);
1163 } else {
1164 orig_slot -= btrfs_header_nritems(left);
1165 path->slots[level] = orig_slot;
1168 /* double check we haven't messed things up */
1169 if (orig_ptr !=
1170 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1171 BUG();
1172 out:
1173 if (right) {
1174 btrfs_tree_unlock(right);
1175 free_extent_buffer(right);
1177 if (left) {
1178 if (path->nodes[level] != left)
1179 btrfs_tree_unlock(left);
1180 free_extent_buffer(left);
1182 return ret;
1185 /* Node balancing for insertion. Here we only split or push nodes around
1186 * when they are completely full. This is also done top down, so we
1187 * have to be pessimistic.
1189 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1190 struct btrfs_root *root,
1191 struct btrfs_path *path, int level)
1193 struct btrfs_fs_info *fs_info = root->fs_info;
1194 struct extent_buffer *right = NULL;
1195 struct extent_buffer *mid;
1196 struct extent_buffer *left = NULL;
1197 struct extent_buffer *parent = NULL;
1198 int ret = 0;
1199 int wret;
1200 int pslot;
1201 int orig_slot = path->slots[level];
1203 if (level == 0)
1204 return 1;
1206 mid = path->nodes[level];
1207 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1209 if (level < BTRFS_MAX_LEVEL - 1) {
1210 parent = path->nodes[level + 1];
1211 pslot = path->slots[level + 1];
1214 if (!parent)
1215 return 1;
1217 /* first, try to make some room in the middle buffer */
1218 if (pslot) {
1219 u32 left_nr;
1221 left = btrfs_read_node_slot(parent, pslot - 1);
1222 if (IS_ERR(left))
1223 return PTR_ERR(left);
1225 btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
1227 left_nr = btrfs_header_nritems(left);
1228 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1229 wret = 1;
1230 } else {
1231 ret = btrfs_cow_block(trans, root, left, parent,
1232 pslot - 1, &left,
1233 BTRFS_NESTING_LEFT_COW);
1234 if (ret)
1235 wret = 1;
1236 else {
1237 wret = push_node_left(trans, left, mid, 0);
1240 if (wret < 0)
1241 ret = wret;
1242 if (wret == 0) {
1243 struct btrfs_disk_key disk_key;
1244 orig_slot += left_nr;
1245 btrfs_node_key(mid, &disk_key, 0);
1246 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1247 BTRFS_MOD_LOG_KEY_REPLACE);
1248 if (ret < 0) {
1249 btrfs_tree_unlock(left);
1250 free_extent_buffer(left);
1251 btrfs_abort_transaction(trans, ret);
1252 return ret;
1254 btrfs_set_node_key(parent, &disk_key, pslot);
1255 btrfs_mark_buffer_dirty(trans, parent);
1256 if (btrfs_header_nritems(left) > orig_slot) {
1257 path->nodes[level] = left;
1258 path->slots[level + 1] -= 1;
1259 path->slots[level] = orig_slot;
1260 btrfs_tree_unlock(mid);
1261 free_extent_buffer(mid);
1262 } else {
1263 orig_slot -=
1264 btrfs_header_nritems(left);
1265 path->slots[level] = orig_slot;
1266 btrfs_tree_unlock(left);
1267 free_extent_buffer(left);
1269 return 0;
1271 btrfs_tree_unlock(left);
1272 free_extent_buffer(left);
1276 * then try to empty the right most buffer into the middle
1278 if (pslot + 1 < btrfs_header_nritems(parent)) {
1279 u32 right_nr;
1281 right = btrfs_read_node_slot(parent, pslot + 1);
1282 if (IS_ERR(right))
1283 return PTR_ERR(right);
1285 btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
1287 right_nr = btrfs_header_nritems(right);
1288 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1289 wret = 1;
1290 } else {
1291 ret = btrfs_cow_block(trans, root, right,
1292 parent, pslot + 1,
1293 &right, BTRFS_NESTING_RIGHT_COW);
1294 if (ret)
1295 wret = 1;
1296 else {
1297 wret = balance_node_right(trans, right, mid);
1300 if (wret < 0)
1301 ret = wret;
1302 if (wret == 0) {
1303 struct btrfs_disk_key disk_key;
1305 btrfs_node_key(right, &disk_key, 0);
1306 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1307 BTRFS_MOD_LOG_KEY_REPLACE);
1308 if (ret < 0) {
1309 btrfs_tree_unlock(right);
1310 free_extent_buffer(right);
1311 btrfs_abort_transaction(trans, ret);
1312 return ret;
1314 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1315 btrfs_mark_buffer_dirty(trans, parent);
1317 if (btrfs_header_nritems(mid) <= orig_slot) {
1318 path->nodes[level] = right;
1319 path->slots[level + 1] += 1;
1320 path->slots[level] = orig_slot -
1321 btrfs_header_nritems(mid);
1322 btrfs_tree_unlock(mid);
1323 free_extent_buffer(mid);
1324 } else {
1325 btrfs_tree_unlock(right);
1326 free_extent_buffer(right);
1328 return 0;
1330 btrfs_tree_unlock(right);
1331 free_extent_buffer(right);
1333 return 1;
1337 * readahead one full node of leaves, finding things that are close
1338 * to the block in 'slot', and triggering ra on them.
1340 static void reada_for_search(struct btrfs_fs_info *fs_info,
1341 struct btrfs_path *path,
1342 int level, int slot, u64 objectid)
1344 struct extent_buffer *node;
1345 struct btrfs_disk_key disk_key;
1346 u32 nritems;
1347 u64 search;
1348 u64 target;
1349 u64 nread = 0;
1350 u64 nread_max;
1351 u32 nr;
1352 u32 blocksize;
1353 u32 nscan = 0;
1355 if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1356 return;
1358 if (!path->nodes[level])
1359 return;
1361 node = path->nodes[level];
1364 * Since the time between visiting leaves is much shorter than the time
1365 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1366 * much IO at once (possibly random).
1368 if (path->reada == READA_FORWARD_ALWAYS) {
1369 if (level > 1)
1370 nread_max = node->fs_info->nodesize;
1371 else
1372 nread_max = SZ_128K;
1373 } else {
1374 nread_max = SZ_64K;
1377 search = btrfs_node_blockptr(node, slot);
1378 blocksize = fs_info->nodesize;
1379 if (path->reada != READA_FORWARD_ALWAYS) {
1380 struct extent_buffer *eb;
1382 eb = find_extent_buffer(fs_info, search);
1383 if (eb) {
1384 free_extent_buffer(eb);
1385 return;
1389 target = search;
1391 nritems = btrfs_header_nritems(node);
1392 nr = slot;
1394 while (1) {
1395 if (path->reada == READA_BACK) {
1396 if (nr == 0)
1397 break;
1398 nr--;
1399 } else if (path->reada == READA_FORWARD ||
1400 path->reada == READA_FORWARD_ALWAYS) {
1401 nr++;
1402 if (nr >= nritems)
1403 break;
1405 if (path->reada == READA_BACK && objectid) {
1406 btrfs_node_key(node, &disk_key, nr);
1407 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1408 break;
1410 search = btrfs_node_blockptr(node, nr);
1411 if (path->reada == READA_FORWARD_ALWAYS ||
1412 (search <= target && target - search <= 65536) ||
1413 (search > target && search - target <= 65536)) {
1414 btrfs_readahead_node_child(node, nr);
1415 nread += blocksize;
1417 nscan++;
1418 if (nread > nread_max || nscan > 32)
1419 break;
1423 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1425 struct extent_buffer *parent;
1426 int slot;
1427 int nritems;
1429 parent = path->nodes[level + 1];
1430 if (!parent)
1431 return;
1433 nritems = btrfs_header_nritems(parent);
1434 slot = path->slots[level + 1];
1436 if (slot > 0)
1437 btrfs_readahead_node_child(parent, slot - 1);
1438 if (slot + 1 < nritems)
1439 btrfs_readahead_node_child(parent, slot + 1);
1444 * when we walk down the tree, it is usually safe to unlock the higher layers
1445 * in the tree. The exceptions are when our path goes through slot 0, because
1446 * operations on the tree might require changing key pointers higher up in the
1447 * tree.
1449 * callers might also have set path->keep_locks, which tells this code to keep
1450 * the lock if the path points to the last slot in the block. This is part of
1451 * walking through the tree, and selecting the next slot in the higher block.
1453 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1454 * if lowest_unlock is 1, level 0 won't be unlocked
1456 static noinline void unlock_up(struct btrfs_path *path, int level,
1457 int lowest_unlock, int min_write_lock_level,
1458 int *write_lock_level)
1460 int i;
1461 int skip_level = level;
1462 bool check_skip = true;
1464 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1465 if (!path->nodes[i])
1466 break;
1467 if (!path->locks[i])
1468 break;
1470 if (check_skip) {
1471 if (path->slots[i] == 0) {
1472 skip_level = i + 1;
1473 continue;
1476 if (path->keep_locks) {
1477 u32 nritems;
1479 nritems = btrfs_header_nritems(path->nodes[i]);
1480 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1481 skip_level = i + 1;
1482 continue;
1487 if (i >= lowest_unlock && i > skip_level) {
1488 check_skip = false;
1489 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1490 path->locks[i] = 0;
1491 if (write_lock_level &&
1492 i > min_write_lock_level &&
1493 i <= *write_lock_level) {
1494 *write_lock_level = i - 1;
1501 * Helper function for btrfs_search_slot() and other functions that do a search
1502 * on a btree. The goal is to find a tree block in the cache (the radix tree at
1503 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1504 * its pages from disk.
1506 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1507 * whole btree search, starting again from the current root node.
1509 static int
1510 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1511 struct extent_buffer **eb_ret, int slot,
1512 const struct btrfs_key *key)
1514 struct btrfs_fs_info *fs_info = root->fs_info;
1515 struct btrfs_tree_parent_check check = { 0 };
1516 u64 blocknr;
1517 struct extent_buffer *tmp = NULL;
1518 int ret = 0;
1519 int parent_level;
1520 int err;
1521 bool read_tmp = false;
1522 bool tmp_locked = false;
1523 bool path_released = false;
1525 blocknr = btrfs_node_blockptr(*eb_ret, slot);
1526 parent_level = btrfs_header_level(*eb_ret);
1527 btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1528 check.has_first_key = true;
1529 check.level = parent_level - 1;
1530 check.transid = btrfs_node_ptr_generation(*eb_ret, slot);
1531 check.owner_root = btrfs_root_id(root);
1534 * If we need to read an extent buffer from disk and we are holding locks
1535 * on upper level nodes, we unlock all the upper nodes before reading the
1536 * extent buffer, and then return -EAGAIN to the caller as it needs to
1537 * restart the search. We don't release the lock on the current level
1538 * because we need to walk this node to figure out which blocks to read.
1540 tmp = find_extent_buffer(fs_info, blocknr);
1541 if (tmp) {
1542 if (p->reada == READA_FORWARD_ALWAYS)
1543 reada_for_search(fs_info, p, parent_level, slot, key->objectid);
1545 /* first we do an atomic uptodate check */
1546 if (btrfs_buffer_uptodate(tmp, check.transid, 1) > 0) {
1548 * Do extra check for first_key, eb can be stale due to
1549 * being cached, read from scrub, or have multiple
1550 * parents (shared tree blocks).
1552 if (btrfs_verify_level_key(tmp, &check)) {
1553 ret = -EUCLEAN;
1554 goto out;
1556 *eb_ret = tmp;
1557 tmp = NULL;
1558 ret = 0;
1559 goto out;
1562 if (p->nowait) {
1563 ret = -EAGAIN;
1564 goto out;
1567 if (!p->skip_locking) {
1568 btrfs_unlock_up_safe(p, parent_level + 1);
1569 tmp_locked = true;
1570 btrfs_tree_read_lock(tmp);
1571 btrfs_release_path(p);
1572 ret = -EAGAIN;
1573 path_released = true;
1576 /* Now we're allowed to do a blocking uptodate check. */
1577 err = btrfs_read_extent_buffer(tmp, &check);
1578 if (err) {
1579 ret = err;
1580 goto out;
1583 if (ret == 0) {
1584 ASSERT(!tmp_locked);
1585 *eb_ret = tmp;
1586 tmp = NULL;
1588 goto out;
1589 } else if (p->nowait) {
1590 ret = -EAGAIN;
1591 goto out;
1594 if (!p->skip_locking) {
1595 btrfs_unlock_up_safe(p, parent_level + 1);
1596 ret = -EAGAIN;
1599 if (p->reada != READA_NONE)
1600 reada_for_search(fs_info, p, parent_level, slot, key->objectid);
1602 tmp = btrfs_find_create_tree_block(fs_info, blocknr, check.owner_root, check.level);
1603 if (IS_ERR(tmp)) {
1604 ret = PTR_ERR(tmp);
1605 tmp = NULL;
1606 goto out;
1608 read_tmp = true;
1610 if (!p->skip_locking) {
1611 ASSERT(ret == -EAGAIN);
1612 tmp_locked = true;
1613 btrfs_tree_read_lock(tmp);
1614 btrfs_release_path(p);
1615 path_released = true;
1618 /* Now we're allowed to do a blocking uptodate check. */
1619 err = btrfs_read_extent_buffer(tmp, &check);
1620 if (err) {
1621 ret = err;
1622 goto out;
1626 * If the read above didn't mark this buffer up to date,
1627 * it will never end up being up to date. Set ret to EIO now
1628 * and give up so that our caller doesn't loop forever
1629 * on our EAGAINs.
1631 if (!extent_buffer_uptodate(tmp)) {
1632 ret = -EIO;
1633 goto out;
1636 if (ret == 0) {
1637 ASSERT(!tmp_locked);
1638 *eb_ret = tmp;
1639 tmp = NULL;
1641 out:
1642 if (tmp) {
1643 if (tmp_locked)
1644 btrfs_tree_read_unlock(tmp);
1645 if (read_tmp && ret && ret != -EAGAIN)
1646 free_extent_buffer_stale(tmp);
1647 else
1648 free_extent_buffer(tmp);
1650 if (ret && !path_released)
1651 btrfs_release_path(p);
1653 return ret;
1657 * helper function for btrfs_search_slot. This does all of the checks
1658 * for node-level blocks and does any balancing required based on
1659 * the ins_len.
1661 * If no extra work was required, zero is returned. If we had to
1662 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1663 * start over
1665 static int
1666 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1667 struct btrfs_root *root, struct btrfs_path *p,
1668 struct extent_buffer *b, int level, int ins_len,
1669 int *write_lock_level)
1671 struct btrfs_fs_info *fs_info = root->fs_info;
1672 int ret = 0;
1674 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1675 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1677 if (*write_lock_level < level + 1) {
1678 *write_lock_level = level + 1;
1679 btrfs_release_path(p);
1680 return -EAGAIN;
1683 reada_for_balance(p, level);
1684 ret = split_node(trans, root, p, level);
1686 b = p->nodes[level];
1687 } else if (ins_len < 0 && btrfs_header_nritems(b) <
1688 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1690 if (*write_lock_level < level + 1) {
1691 *write_lock_level = level + 1;
1692 btrfs_release_path(p);
1693 return -EAGAIN;
1696 reada_for_balance(p, level);
1697 ret = balance_level(trans, root, p, level);
1698 if (ret)
1699 return ret;
1701 b = p->nodes[level];
1702 if (!b) {
1703 btrfs_release_path(p);
1704 return -EAGAIN;
1706 BUG_ON(btrfs_header_nritems(b) == 1);
1708 return ret;
1711 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1712 u64 iobjectid, u64 ioff, u8 key_type,
1713 struct btrfs_key *found_key)
1715 int ret;
1716 struct btrfs_key key;
1717 struct extent_buffer *eb;
1719 ASSERT(path);
1720 ASSERT(found_key);
1722 key.type = key_type;
1723 key.objectid = iobjectid;
1724 key.offset = ioff;
1726 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1727 if (ret < 0)
1728 return ret;
1730 eb = path->nodes[0];
1731 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1732 ret = btrfs_next_leaf(fs_root, path);
1733 if (ret)
1734 return ret;
1735 eb = path->nodes[0];
1738 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1739 if (found_key->type != key.type ||
1740 found_key->objectid != key.objectid)
1741 return 1;
1743 return 0;
1746 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1747 struct btrfs_path *p,
1748 int write_lock_level)
1750 struct extent_buffer *b;
1751 int root_lock = 0;
1752 int level = 0;
1754 if (p->search_commit_root) {
1755 b = root->commit_root;
1756 atomic_inc(&b->refs);
1757 level = btrfs_header_level(b);
1759 * Ensure that all callers have set skip_locking when
1760 * p->search_commit_root = 1.
1762 ASSERT(p->skip_locking == 1);
1764 goto out;
1767 if (p->skip_locking) {
1768 b = btrfs_root_node(root);
1769 level = btrfs_header_level(b);
1770 goto out;
1773 /* We try very hard to do read locks on the root */
1774 root_lock = BTRFS_READ_LOCK;
1777 * If the level is set to maximum, we can skip trying to get the read
1778 * lock.
1780 if (write_lock_level < BTRFS_MAX_LEVEL) {
1782 * We don't know the level of the root node until we actually
1783 * have it read locked
1785 if (p->nowait) {
1786 b = btrfs_try_read_lock_root_node(root);
1787 if (IS_ERR(b))
1788 return b;
1789 } else {
1790 b = btrfs_read_lock_root_node(root);
1792 level = btrfs_header_level(b);
1793 if (level > write_lock_level)
1794 goto out;
1796 /* Whoops, must trade for write lock */
1797 btrfs_tree_read_unlock(b);
1798 free_extent_buffer(b);
1801 b = btrfs_lock_root_node(root);
1802 root_lock = BTRFS_WRITE_LOCK;
1804 /* The level might have changed, check again */
1805 level = btrfs_header_level(b);
1807 out:
1809 * The root may have failed to write out at some point, and thus is no
1810 * longer valid, return an error in this case.
1812 if (!extent_buffer_uptodate(b)) {
1813 if (root_lock)
1814 btrfs_tree_unlock_rw(b, root_lock);
1815 free_extent_buffer(b);
1816 return ERR_PTR(-EIO);
1819 p->nodes[level] = b;
1820 if (!p->skip_locking)
1821 p->locks[level] = root_lock;
1823 * Callers are responsible for dropping b's references.
1825 return b;
1829 * Replace the extent buffer at the lowest level of the path with a cloned
1830 * version. The purpose is to be able to use it safely, after releasing the
1831 * commit root semaphore, even if relocation is happening in parallel, the
1832 * transaction used for relocation is committed and the extent buffer is
1833 * reallocated in the next transaction.
1835 * This is used in a context where the caller does not prevent transaction
1836 * commits from happening, either by holding a transaction handle or holding
1837 * some lock, while it's doing searches through a commit root.
1838 * At the moment it's only used for send operations.
1840 static int finish_need_commit_sem_search(struct btrfs_path *path)
1842 const int i = path->lowest_level;
1843 const int slot = path->slots[i];
1844 struct extent_buffer *lowest = path->nodes[i];
1845 struct extent_buffer *clone;
1847 ASSERT(path->need_commit_sem);
1849 if (!lowest)
1850 return 0;
1852 lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1854 clone = btrfs_clone_extent_buffer(lowest);
1855 if (!clone)
1856 return -ENOMEM;
1858 btrfs_release_path(path);
1859 path->nodes[i] = clone;
1860 path->slots[i] = slot;
1862 return 0;
1865 static inline int search_for_key_slot(struct extent_buffer *eb,
1866 int search_low_slot,
1867 const struct btrfs_key *key,
1868 int prev_cmp,
1869 int *slot)
1872 * If a previous call to btrfs_bin_search() on a parent node returned an
1873 * exact match (prev_cmp == 0), we can safely assume the target key will
1874 * always be at slot 0 on lower levels, since each key pointer
1875 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1876 * subtree it points to. Thus we can skip searching lower levels.
1878 if (prev_cmp == 0) {
1879 *slot = 0;
1880 return 0;
1883 return btrfs_bin_search(eb, search_low_slot, key, slot);
1886 static int search_leaf(struct btrfs_trans_handle *trans,
1887 struct btrfs_root *root,
1888 const struct btrfs_key *key,
1889 struct btrfs_path *path,
1890 int ins_len,
1891 int prev_cmp)
1893 struct extent_buffer *leaf = path->nodes[0];
1894 int leaf_free_space = -1;
1895 int search_low_slot = 0;
1896 int ret;
1897 bool do_bin_search = true;
1900 * If we are doing an insertion, the leaf has enough free space and the
1901 * destination slot for the key is not slot 0, then we can unlock our
1902 * write lock on the parent, and any other upper nodes, before doing the
1903 * binary search on the leaf (with search_for_key_slot()), allowing other
1904 * tasks to lock the parent and any other upper nodes.
1906 if (ins_len > 0) {
1908 * Cache the leaf free space, since we will need it later and it
1909 * will not change until then.
1911 leaf_free_space = btrfs_leaf_free_space(leaf);
1914 * !path->locks[1] means we have a single node tree, the leaf is
1915 * the root of the tree.
1917 if (path->locks[1] && leaf_free_space >= ins_len) {
1918 struct btrfs_disk_key first_key;
1920 ASSERT(btrfs_header_nritems(leaf) > 0);
1921 btrfs_item_key(leaf, &first_key, 0);
1924 * Doing the extra comparison with the first key is cheap,
1925 * taking into account that the first key is very likely
1926 * already in a cache line because it immediately follows
1927 * the extent buffer's header and we have recently accessed
1928 * the header's level field.
1930 ret = btrfs_comp_keys(&first_key, key);
1931 if (ret < 0) {
1933 * The first key is smaller than the key we want
1934 * to insert, so we are safe to unlock all upper
1935 * nodes and we have to do the binary search.
1937 * We do use btrfs_unlock_up_safe() and not
1938 * unlock_up() because the later does not unlock
1939 * nodes with a slot of 0 - we can safely unlock
1940 * any node even if its slot is 0 since in this
1941 * case the key does not end up at slot 0 of the
1942 * leaf and there's no need to split the leaf.
1944 btrfs_unlock_up_safe(path, 1);
1945 search_low_slot = 1;
1946 } else {
1948 * The first key is >= then the key we want to
1949 * insert, so we can skip the binary search as
1950 * the target key will be at slot 0.
1952 * We can not unlock upper nodes when the key is
1953 * less than the first key, because we will need
1954 * to update the key at slot 0 of the parent node
1955 * and possibly of other upper nodes too.
1956 * If the key matches the first key, then we can
1957 * unlock all the upper nodes, using
1958 * btrfs_unlock_up_safe() instead of unlock_up()
1959 * as stated above.
1961 if (ret == 0)
1962 btrfs_unlock_up_safe(path, 1);
1964 * ret is already 0 or 1, matching the result of
1965 * a btrfs_bin_search() call, so there is no need
1966 * to adjust it.
1968 do_bin_search = false;
1969 path->slots[0] = 0;
1974 if (do_bin_search) {
1975 ret = search_for_key_slot(leaf, search_low_slot, key,
1976 prev_cmp, &path->slots[0]);
1977 if (ret < 0)
1978 return ret;
1981 if (ins_len > 0) {
1983 * Item key already exists. In this case, if we are allowed to
1984 * insert the item (for example, in dir_item case, item key
1985 * collision is allowed), it will be merged with the original
1986 * item. Only the item size grows, no new btrfs item will be
1987 * added. If search_for_extension is not set, ins_len already
1988 * accounts the size btrfs_item, deduct it here so leaf space
1989 * check will be correct.
1991 if (ret == 0 && !path->search_for_extension) {
1992 ASSERT(ins_len >= sizeof(struct btrfs_item));
1993 ins_len -= sizeof(struct btrfs_item);
1996 ASSERT(leaf_free_space >= 0);
1998 if (leaf_free_space < ins_len) {
1999 int err;
2001 err = split_leaf(trans, root, key, path, ins_len,
2002 (ret == 0));
2003 ASSERT(err <= 0);
2004 if (WARN_ON(err > 0))
2005 err = -EUCLEAN;
2006 if (err)
2007 ret = err;
2011 return ret;
2015 * Look for a key in a tree and perform necessary modifications to preserve
2016 * tree invariants.
2018 * @trans: Handle of transaction, used when modifying the tree
2019 * @p: Holds all btree nodes along the search path
2020 * @root: The root node of the tree
2021 * @key: The key we are looking for
2022 * @ins_len: Indicates purpose of search:
2023 * >0 for inserts it's size of item inserted (*)
2024 * <0 for deletions
2025 * 0 for plain searches, not modifying the tree
2027 * (*) If size of item inserted doesn't include
2028 * sizeof(struct btrfs_item), then p->search_for_extension must
2029 * be set.
2030 * @cow: boolean should CoW operations be performed. Must always be 1
2031 * when modifying the tree.
2033 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2034 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2036 * If @key is found, 0 is returned and you can find the item in the leaf level
2037 * of the path (level 0)
2039 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2040 * points to the slot where it should be inserted
2042 * If an error is encountered while searching the tree a negative error number
2043 * is returned
2045 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2046 const struct btrfs_key *key, struct btrfs_path *p,
2047 int ins_len, int cow)
2049 struct btrfs_fs_info *fs_info;
2050 struct extent_buffer *b;
2051 int slot;
2052 int ret;
2053 int err;
2054 int level;
2055 int lowest_unlock = 1;
2056 /* everything at write_lock_level or lower must be write locked */
2057 int write_lock_level = 0;
2058 u8 lowest_level = 0;
2059 int min_write_lock_level;
2060 int prev_cmp;
2062 if (!root)
2063 return -EINVAL;
2065 fs_info = root->fs_info;
2066 might_sleep();
2068 lowest_level = p->lowest_level;
2069 WARN_ON(lowest_level && ins_len > 0);
2070 WARN_ON(p->nodes[0] != NULL);
2071 BUG_ON(!cow && ins_len);
2074 * For now only allow nowait for read only operations. There's no
2075 * strict reason why we can't, we just only need it for reads so it's
2076 * only implemented for reads.
2078 ASSERT(!p->nowait || !cow);
2080 if (ins_len < 0) {
2081 lowest_unlock = 2;
2083 /* when we are removing items, we might have to go up to level
2084 * two as we update tree pointers Make sure we keep write
2085 * for those levels as well
2087 write_lock_level = 2;
2088 } else if (ins_len > 0) {
2090 * for inserting items, make sure we have a write lock on
2091 * level 1 so we can update keys
2093 write_lock_level = 1;
2096 if (!cow)
2097 write_lock_level = -1;
2099 if (cow && (p->keep_locks || p->lowest_level))
2100 write_lock_level = BTRFS_MAX_LEVEL;
2102 min_write_lock_level = write_lock_level;
2104 if (p->need_commit_sem) {
2105 ASSERT(p->search_commit_root);
2106 if (p->nowait) {
2107 if (!down_read_trylock(&fs_info->commit_root_sem))
2108 return -EAGAIN;
2109 } else {
2110 down_read(&fs_info->commit_root_sem);
2114 again:
2115 prev_cmp = -1;
2116 b = btrfs_search_slot_get_root(root, p, write_lock_level);
2117 if (IS_ERR(b)) {
2118 ret = PTR_ERR(b);
2119 goto done;
2122 while (b) {
2123 int dec = 0;
2125 level = btrfs_header_level(b);
2127 if (cow) {
2128 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2131 * if we don't really need to cow this block
2132 * then we don't want to set the path blocking,
2133 * so we test it here
2135 if (!should_cow_block(trans, root, b))
2136 goto cow_done;
2139 * must have write locks on this node and the
2140 * parent
2142 if (level > write_lock_level ||
2143 (level + 1 > write_lock_level &&
2144 level + 1 < BTRFS_MAX_LEVEL &&
2145 p->nodes[level + 1])) {
2146 write_lock_level = level + 1;
2147 btrfs_release_path(p);
2148 goto again;
2151 if (last_level)
2152 err = btrfs_cow_block(trans, root, b, NULL, 0,
2154 BTRFS_NESTING_COW);
2155 else
2156 err = btrfs_cow_block(trans, root, b,
2157 p->nodes[level + 1],
2158 p->slots[level + 1], &b,
2159 BTRFS_NESTING_COW);
2160 if (err) {
2161 ret = err;
2162 goto done;
2165 cow_done:
2166 p->nodes[level] = b;
2169 * we have a lock on b and as long as we aren't changing
2170 * the tree, there is no way to for the items in b to change.
2171 * It is safe to drop the lock on our parent before we
2172 * go through the expensive btree search on b.
2174 * If we're inserting or deleting (ins_len != 0), then we might
2175 * be changing slot zero, which may require changing the parent.
2176 * So, we can't drop the lock until after we know which slot
2177 * we're operating on.
2179 if (!ins_len && !p->keep_locks) {
2180 int u = level + 1;
2182 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2183 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2184 p->locks[u] = 0;
2188 if (level == 0) {
2189 if (ins_len > 0)
2190 ASSERT(write_lock_level >= 1);
2192 ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2193 if (!p->search_for_split)
2194 unlock_up(p, level, lowest_unlock,
2195 min_write_lock_level, NULL);
2196 goto done;
2199 ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2200 if (ret < 0)
2201 goto done;
2202 prev_cmp = ret;
2204 if (ret && slot > 0) {
2205 dec = 1;
2206 slot--;
2208 p->slots[level] = slot;
2209 err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2210 &write_lock_level);
2211 if (err == -EAGAIN)
2212 goto again;
2213 if (err) {
2214 ret = err;
2215 goto done;
2217 b = p->nodes[level];
2218 slot = p->slots[level];
2221 * Slot 0 is special, if we change the key we have to update
2222 * the parent pointer which means we must have a write lock on
2223 * the parent
2225 if (slot == 0 && ins_len && write_lock_level < level + 1) {
2226 write_lock_level = level + 1;
2227 btrfs_release_path(p);
2228 goto again;
2231 unlock_up(p, level, lowest_unlock, min_write_lock_level,
2232 &write_lock_level);
2234 if (level == lowest_level) {
2235 if (dec)
2236 p->slots[level]++;
2237 goto done;
2240 err = read_block_for_search(root, p, &b, slot, key);
2241 if (err == -EAGAIN && !p->nowait)
2242 goto again;
2243 if (err) {
2244 ret = err;
2245 goto done;
2248 if (!p->skip_locking) {
2249 level = btrfs_header_level(b);
2251 btrfs_maybe_reset_lockdep_class(root, b);
2253 if (level <= write_lock_level) {
2254 btrfs_tree_lock(b);
2255 p->locks[level] = BTRFS_WRITE_LOCK;
2256 } else {
2257 if (p->nowait) {
2258 if (!btrfs_try_tree_read_lock(b)) {
2259 free_extent_buffer(b);
2260 ret = -EAGAIN;
2261 goto done;
2263 } else {
2264 btrfs_tree_read_lock(b);
2266 p->locks[level] = BTRFS_READ_LOCK;
2268 p->nodes[level] = b;
2271 ret = 1;
2272 done:
2273 if (ret < 0 && !p->skip_release_on_error)
2274 btrfs_release_path(p);
2276 if (p->need_commit_sem) {
2277 int ret2;
2279 ret2 = finish_need_commit_sem_search(p);
2280 up_read(&fs_info->commit_root_sem);
2281 if (ret2)
2282 ret = ret2;
2285 return ret;
2287 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2290 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2291 * current state of the tree together with the operations recorded in the tree
2292 * modification log to search for the key in a previous version of this tree, as
2293 * denoted by the time_seq parameter.
2295 * Naturally, there is no support for insert, delete or cow operations.
2297 * The resulting path and return value will be set up as if we called
2298 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2300 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2301 struct btrfs_path *p, u64 time_seq)
2303 struct btrfs_fs_info *fs_info = root->fs_info;
2304 struct extent_buffer *b;
2305 int slot;
2306 int ret;
2307 int err;
2308 int level;
2309 int lowest_unlock = 1;
2310 u8 lowest_level = 0;
2312 lowest_level = p->lowest_level;
2313 WARN_ON(p->nodes[0] != NULL);
2314 ASSERT(!p->nowait);
2316 if (p->search_commit_root) {
2317 BUG_ON(time_seq);
2318 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2321 again:
2322 b = btrfs_get_old_root(root, time_seq);
2323 if (!b) {
2324 ret = -EIO;
2325 goto done;
2327 level = btrfs_header_level(b);
2328 p->locks[level] = BTRFS_READ_LOCK;
2330 while (b) {
2331 int dec = 0;
2333 level = btrfs_header_level(b);
2334 p->nodes[level] = b;
2337 * we have a lock on b and as long as we aren't changing
2338 * the tree, there is no way to for the items in b to change.
2339 * It is safe to drop the lock on our parent before we
2340 * go through the expensive btree search on b.
2342 btrfs_unlock_up_safe(p, level + 1);
2344 ret = btrfs_bin_search(b, 0, key, &slot);
2345 if (ret < 0)
2346 goto done;
2348 if (level == 0) {
2349 p->slots[level] = slot;
2350 unlock_up(p, level, lowest_unlock, 0, NULL);
2351 goto done;
2354 if (ret && slot > 0) {
2355 dec = 1;
2356 slot--;
2358 p->slots[level] = slot;
2359 unlock_up(p, level, lowest_unlock, 0, NULL);
2361 if (level == lowest_level) {
2362 if (dec)
2363 p->slots[level]++;
2364 goto done;
2367 err = read_block_for_search(root, p, &b, slot, key);
2368 if (err == -EAGAIN && !p->nowait)
2369 goto again;
2370 if (err) {
2371 ret = err;
2372 goto done;
2375 level = btrfs_header_level(b);
2376 btrfs_tree_read_lock(b);
2377 b = btrfs_tree_mod_log_rewind(fs_info, b, time_seq);
2378 if (!b) {
2379 ret = -ENOMEM;
2380 goto done;
2382 p->locks[level] = BTRFS_READ_LOCK;
2383 p->nodes[level] = b;
2385 ret = 1;
2386 done:
2387 if (ret < 0)
2388 btrfs_release_path(p);
2390 return ret;
2394 * Search the tree again to find a leaf with smaller keys.
2395 * Returns 0 if it found something.
2396 * Returns 1 if there are no smaller keys.
2397 * Returns < 0 on error.
2399 * This may release the path, and so you may lose any locks held at the
2400 * time you call it.
2402 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2404 struct btrfs_key key;
2405 struct btrfs_key orig_key;
2406 struct btrfs_disk_key found_key;
2407 int ret;
2409 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2410 orig_key = key;
2412 if (key.offset > 0) {
2413 key.offset--;
2414 } else if (key.type > 0) {
2415 key.type--;
2416 key.offset = (u64)-1;
2417 } else if (key.objectid > 0) {
2418 key.objectid--;
2419 key.type = (u8)-1;
2420 key.offset = (u64)-1;
2421 } else {
2422 return 1;
2425 btrfs_release_path(path);
2426 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2427 if (ret <= 0)
2428 return ret;
2431 * Previous key not found. Even if we were at slot 0 of the leaf we had
2432 * before releasing the path and calling btrfs_search_slot(), we now may
2433 * be in a slot pointing to the same original key - this can happen if
2434 * after we released the path, one of more items were moved from a
2435 * sibling leaf into the front of the leaf we had due to an insertion
2436 * (see push_leaf_right()).
2437 * If we hit this case and our slot is > 0 and just decrement the slot
2438 * so that the caller does not process the same key again, which may or
2439 * may not break the caller, depending on its logic.
2441 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2442 btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2443 ret = btrfs_comp_keys(&found_key, &orig_key);
2444 if (ret == 0) {
2445 if (path->slots[0] > 0) {
2446 path->slots[0]--;
2447 return 0;
2450 * At slot 0, same key as before, it means orig_key is
2451 * the lowest, leftmost, key in the tree. We're done.
2453 return 1;
2457 btrfs_item_key(path->nodes[0], &found_key, 0);
2458 ret = btrfs_comp_keys(&found_key, &key);
2460 * We might have had an item with the previous key in the tree right
2461 * before we released our path. And after we released our path, that
2462 * item might have been pushed to the first slot (0) of the leaf we
2463 * were holding due to a tree balance. Alternatively, an item with the
2464 * previous key can exist as the only element of a leaf (big fat item).
2465 * Therefore account for these 2 cases, so that our callers (like
2466 * btrfs_previous_item) don't miss an existing item with a key matching
2467 * the previous key we computed above.
2469 if (ret <= 0)
2470 return 0;
2471 return 1;
2475 * helper to use instead of search slot if no exact match is needed but
2476 * instead the next or previous item should be returned.
2477 * When find_higher is true, the next higher item is returned, the next lower
2478 * otherwise.
2479 * When return_any and find_higher are both true, and no higher item is found,
2480 * return the next lower instead.
2481 * When return_any is true and find_higher is false, and no lower item is found,
2482 * return the next higher instead.
2483 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2484 * < 0 on error
2486 int btrfs_search_slot_for_read(struct btrfs_root *root,
2487 const struct btrfs_key *key,
2488 struct btrfs_path *p, int find_higher,
2489 int return_any)
2491 int ret;
2492 struct extent_buffer *leaf;
2494 again:
2495 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2496 if (ret <= 0)
2497 return ret;
2499 * a return value of 1 means the path is at the position where the
2500 * item should be inserted. Normally this is the next bigger item,
2501 * but in case the previous item is the last in a leaf, path points
2502 * to the first free slot in the previous leaf, i.e. at an invalid
2503 * item.
2505 leaf = p->nodes[0];
2507 if (find_higher) {
2508 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2509 ret = btrfs_next_leaf(root, p);
2510 if (ret <= 0)
2511 return ret;
2512 if (!return_any)
2513 return 1;
2515 * no higher item found, return the next
2516 * lower instead
2518 return_any = 0;
2519 find_higher = 0;
2520 btrfs_release_path(p);
2521 goto again;
2523 } else {
2524 if (p->slots[0] == 0) {
2525 ret = btrfs_prev_leaf(root, p);
2526 if (ret < 0)
2527 return ret;
2528 if (!ret) {
2529 leaf = p->nodes[0];
2530 if (p->slots[0] == btrfs_header_nritems(leaf))
2531 p->slots[0]--;
2532 return 0;
2534 if (!return_any)
2535 return 1;
2537 * no lower item found, return the next
2538 * higher instead
2540 return_any = 0;
2541 find_higher = 1;
2542 btrfs_release_path(p);
2543 goto again;
2544 } else {
2545 --p->slots[0];
2548 return 0;
2552 * Execute search and call btrfs_previous_item to traverse backwards if the item
2553 * was not found.
2555 * Return 0 if found, 1 if not found and < 0 if error.
2557 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2558 struct btrfs_path *path)
2560 int ret;
2562 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2563 if (ret > 0)
2564 ret = btrfs_previous_item(root, path, key->objectid, key->type);
2566 if (ret == 0)
2567 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2569 return ret;
2573 * Search for a valid slot for the given path.
2575 * @root: The root node of the tree.
2576 * @key: Will contain a valid item if found.
2577 * @path: The starting point to validate the slot.
2579 * Return: 0 if the item is valid
2580 * 1 if not found
2581 * <0 if error.
2583 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2584 struct btrfs_path *path)
2586 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2587 int ret;
2589 ret = btrfs_next_leaf(root, path);
2590 if (ret)
2591 return ret;
2594 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2595 return 0;
2599 * adjust the pointers going up the tree, starting at level
2600 * making sure the right key of each node is points to 'key'.
2601 * This is used after shifting pointers to the left, so it stops
2602 * fixing up pointers when a given leaf/node is not in slot 0 of the
2603 * higher levels
2606 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2607 const struct btrfs_path *path,
2608 const struct btrfs_disk_key *key, int level)
2610 int i;
2611 struct extent_buffer *t;
2612 int ret;
2614 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2615 int tslot = path->slots[i];
2617 if (!path->nodes[i])
2618 break;
2619 t = path->nodes[i];
2620 ret = btrfs_tree_mod_log_insert_key(t, tslot,
2621 BTRFS_MOD_LOG_KEY_REPLACE);
2622 BUG_ON(ret < 0);
2623 btrfs_set_node_key(t, key, tslot);
2624 btrfs_mark_buffer_dirty(trans, path->nodes[i]);
2625 if (tslot != 0)
2626 break;
2631 * update item key.
2633 * This function isn't completely safe. It's the caller's responsibility
2634 * that the new key won't break the order
2636 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2637 const struct btrfs_path *path,
2638 const struct btrfs_key *new_key)
2640 struct btrfs_fs_info *fs_info = trans->fs_info;
2641 struct btrfs_disk_key disk_key;
2642 struct extent_buffer *eb;
2643 int slot;
2645 eb = path->nodes[0];
2646 slot = path->slots[0];
2647 if (slot > 0) {
2648 btrfs_item_key(eb, &disk_key, slot - 1);
2649 if (unlikely(btrfs_comp_keys(&disk_key, new_key) >= 0)) {
2650 btrfs_print_leaf(eb);
2651 btrfs_crit(fs_info,
2652 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2653 slot, btrfs_disk_key_objectid(&disk_key),
2654 btrfs_disk_key_type(&disk_key),
2655 btrfs_disk_key_offset(&disk_key),
2656 new_key->objectid, new_key->type,
2657 new_key->offset);
2658 BUG();
2661 if (slot < btrfs_header_nritems(eb) - 1) {
2662 btrfs_item_key(eb, &disk_key, slot + 1);
2663 if (unlikely(btrfs_comp_keys(&disk_key, new_key) <= 0)) {
2664 btrfs_print_leaf(eb);
2665 btrfs_crit(fs_info,
2666 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2667 slot, btrfs_disk_key_objectid(&disk_key),
2668 btrfs_disk_key_type(&disk_key),
2669 btrfs_disk_key_offset(&disk_key),
2670 new_key->objectid, new_key->type,
2671 new_key->offset);
2672 BUG();
2676 btrfs_cpu_key_to_disk(&disk_key, new_key);
2677 btrfs_set_item_key(eb, &disk_key, slot);
2678 btrfs_mark_buffer_dirty(trans, eb);
2679 if (slot == 0)
2680 fixup_low_keys(trans, path, &disk_key, 1);
2684 * Check key order of two sibling extent buffers.
2686 * Return true if something is wrong.
2687 * Return false if everything is fine.
2689 * Tree-checker only works inside one tree block, thus the following
2690 * corruption can not be detected by tree-checker:
2692 * Leaf @left | Leaf @right
2693 * --------------------------------------------------------------
2694 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 |
2696 * Key f6 in leaf @left itself is valid, but not valid when the next
2697 * key in leaf @right is 7.
2698 * This can only be checked at tree block merge time.
2699 * And since tree checker has ensured all key order in each tree block
2700 * is correct, we only need to bother the last key of @left and the first
2701 * key of @right.
2703 static bool check_sibling_keys(const struct extent_buffer *left,
2704 const struct extent_buffer *right)
2706 struct btrfs_key left_last;
2707 struct btrfs_key right_first;
2708 int level = btrfs_header_level(left);
2709 int nr_left = btrfs_header_nritems(left);
2710 int nr_right = btrfs_header_nritems(right);
2712 /* No key to check in one of the tree blocks */
2713 if (!nr_left || !nr_right)
2714 return false;
2716 if (level) {
2717 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2718 btrfs_node_key_to_cpu(right, &right_first, 0);
2719 } else {
2720 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2721 btrfs_item_key_to_cpu(right, &right_first, 0);
2724 if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2725 btrfs_crit(left->fs_info, "left extent buffer:");
2726 btrfs_print_tree(left, false);
2727 btrfs_crit(left->fs_info, "right extent buffer:");
2728 btrfs_print_tree(right, false);
2729 btrfs_crit(left->fs_info,
2730 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2731 left_last.objectid, left_last.type,
2732 left_last.offset, right_first.objectid,
2733 right_first.type, right_first.offset);
2734 return true;
2736 return false;
2740 * try to push data from one node into the next node left in the
2741 * tree.
2743 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2744 * error, and > 0 if there was no room in the left hand block.
2746 static int push_node_left(struct btrfs_trans_handle *trans,
2747 struct extent_buffer *dst,
2748 struct extent_buffer *src, int empty)
2750 struct btrfs_fs_info *fs_info = trans->fs_info;
2751 int push_items = 0;
2752 int src_nritems;
2753 int dst_nritems;
2754 int ret = 0;
2756 src_nritems = btrfs_header_nritems(src);
2757 dst_nritems = btrfs_header_nritems(dst);
2758 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2759 WARN_ON(btrfs_header_generation(src) != trans->transid);
2760 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2762 if (!empty && src_nritems <= 8)
2763 return 1;
2765 if (push_items <= 0)
2766 return 1;
2768 if (empty) {
2769 push_items = min(src_nritems, push_items);
2770 if (push_items < src_nritems) {
2771 /* leave at least 8 pointers in the node if
2772 * we aren't going to empty it
2774 if (src_nritems - push_items < 8) {
2775 if (push_items <= 8)
2776 return 1;
2777 push_items -= 8;
2780 } else
2781 push_items = min(src_nritems - 8, push_items);
2783 /* dst is the left eb, src is the middle eb */
2784 if (check_sibling_keys(dst, src)) {
2785 ret = -EUCLEAN;
2786 btrfs_abort_transaction(trans, ret);
2787 return ret;
2789 ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2790 if (ret) {
2791 btrfs_abort_transaction(trans, ret);
2792 return ret;
2794 copy_extent_buffer(dst, src,
2795 btrfs_node_key_ptr_offset(dst, dst_nritems),
2796 btrfs_node_key_ptr_offset(src, 0),
2797 push_items * sizeof(struct btrfs_key_ptr));
2799 if (push_items < src_nritems) {
2801 * btrfs_tree_mod_log_eb_copy handles logging the move, so we
2802 * don't need to do an explicit tree mod log operation for it.
2804 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2805 btrfs_node_key_ptr_offset(src, push_items),
2806 (src_nritems - push_items) *
2807 sizeof(struct btrfs_key_ptr));
2809 btrfs_set_header_nritems(src, src_nritems - push_items);
2810 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2811 btrfs_mark_buffer_dirty(trans, src);
2812 btrfs_mark_buffer_dirty(trans, dst);
2814 return ret;
2818 * try to push data from one node into the next node right in the
2819 * tree.
2821 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2822 * error, and > 0 if there was no room in the right hand block.
2824 * this will only push up to 1/2 the contents of the left node over
2826 static int balance_node_right(struct btrfs_trans_handle *trans,
2827 struct extent_buffer *dst,
2828 struct extent_buffer *src)
2830 struct btrfs_fs_info *fs_info = trans->fs_info;
2831 int push_items = 0;
2832 int max_push;
2833 int src_nritems;
2834 int dst_nritems;
2835 int ret = 0;
2837 WARN_ON(btrfs_header_generation(src) != trans->transid);
2838 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2840 src_nritems = btrfs_header_nritems(src);
2841 dst_nritems = btrfs_header_nritems(dst);
2842 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2843 if (push_items <= 0)
2844 return 1;
2846 if (src_nritems < 4)
2847 return 1;
2849 max_push = src_nritems / 2 + 1;
2850 /* don't try to empty the node */
2851 if (max_push >= src_nritems)
2852 return 1;
2854 if (max_push < push_items)
2855 push_items = max_push;
2857 /* dst is the right eb, src is the middle eb */
2858 if (check_sibling_keys(src, dst)) {
2859 ret = -EUCLEAN;
2860 btrfs_abort_transaction(trans, ret);
2861 return ret;
2865 * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2866 * need to do an explicit tree mod log operation for it.
2868 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2869 btrfs_node_key_ptr_offset(dst, 0),
2870 (dst_nritems) *
2871 sizeof(struct btrfs_key_ptr));
2873 ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2874 push_items);
2875 if (ret) {
2876 btrfs_abort_transaction(trans, ret);
2877 return ret;
2879 copy_extent_buffer(dst, src,
2880 btrfs_node_key_ptr_offset(dst, 0),
2881 btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2882 push_items * sizeof(struct btrfs_key_ptr));
2884 btrfs_set_header_nritems(src, src_nritems - push_items);
2885 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2887 btrfs_mark_buffer_dirty(trans, src);
2888 btrfs_mark_buffer_dirty(trans, dst);
2890 return ret;
2894 * helper function to insert a new root level in the tree.
2895 * A new node is allocated, and a single item is inserted to
2896 * point to the existing root
2898 * returns zero on success or < 0 on failure.
2900 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2901 struct btrfs_root *root,
2902 struct btrfs_path *path, int level)
2904 u64 lower_gen;
2905 struct extent_buffer *lower;
2906 struct extent_buffer *c;
2907 struct extent_buffer *old;
2908 struct btrfs_disk_key lower_key;
2909 int ret;
2911 BUG_ON(path->nodes[level]);
2912 BUG_ON(path->nodes[level-1] != root->node);
2914 lower = path->nodes[level-1];
2915 if (level == 1)
2916 btrfs_item_key(lower, &lower_key, 0);
2917 else
2918 btrfs_node_key(lower, &lower_key, 0);
2920 c = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
2921 &lower_key, level, root->node->start, 0,
2922 0, BTRFS_NESTING_NEW_ROOT);
2923 if (IS_ERR(c))
2924 return PTR_ERR(c);
2926 root_add_used_bytes(root);
2928 btrfs_set_header_nritems(c, 1);
2929 btrfs_set_node_key(c, &lower_key, 0);
2930 btrfs_set_node_blockptr(c, 0, lower->start);
2931 lower_gen = btrfs_header_generation(lower);
2932 WARN_ON(lower_gen != trans->transid);
2934 btrfs_set_node_ptr_generation(c, 0, lower_gen);
2936 btrfs_mark_buffer_dirty(trans, c);
2938 old = root->node;
2939 ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2940 if (ret < 0) {
2941 int ret2;
2943 ret2 = btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
2944 if (ret2 < 0)
2945 btrfs_abort_transaction(trans, ret2);
2946 btrfs_tree_unlock(c);
2947 free_extent_buffer(c);
2948 return ret;
2950 rcu_assign_pointer(root->node, c);
2952 /* the super has an extra ref to root->node */
2953 free_extent_buffer(old);
2955 add_root_to_dirty_list(root);
2956 atomic_inc(&c->refs);
2957 path->nodes[level] = c;
2958 path->locks[level] = BTRFS_WRITE_LOCK;
2959 path->slots[level] = 0;
2960 return 0;
2964 * worker function to insert a single pointer in a node.
2965 * the node should have enough room for the pointer already
2967 * slot and level indicate where you want the key to go, and
2968 * blocknr is the block the key points to.
2970 static int insert_ptr(struct btrfs_trans_handle *trans,
2971 const struct btrfs_path *path,
2972 const struct btrfs_disk_key *key, u64 bytenr,
2973 int slot, int level)
2975 struct extent_buffer *lower;
2976 int nritems;
2977 int ret;
2979 BUG_ON(!path->nodes[level]);
2980 btrfs_assert_tree_write_locked(path->nodes[level]);
2981 lower = path->nodes[level];
2982 nritems = btrfs_header_nritems(lower);
2983 BUG_ON(slot > nritems);
2984 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2985 if (slot != nritems) {
2986 if (level) {
2987 ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2988 slot, nritems - slot);
2989 if (ret < 0) {
2990 btrfs_abort_transaction(trans, ret);
2991 return ret;
2994 memmove_extent_buffer(lower,
2995 btrfs_node_key_ptr_offset(lower, slot + 1),
2996 btrfs_node_key_ptr_offset(lower, slot),
2997 (nritems - slot) * sizeof(struct btrfs_key_ptr));
2999 if (level) {
3000 ret = btrfs_tree_mod_log_insert_key(lower, slot,
3001 BTRFS_MOD_LOG_KEY_ADD);
3002 if (ret < 0) {
3003 btrfs_abort_transaction(trans, ret);
3004 return ret;
3007 btrfs_set_node_key(lower, key, slot);
3008 btrfs_set_node_blockptr(lower, slot, bytenr);
3009 WARN_ON(trans->transid == 0);
3010 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3011 btrfs_set_header_nritems(lower, nritems + 1);
3012 btrfs_mark_buffer_dirty(trans, lower);
3014 return 0;
3018 * split the node at the specified level in path in two.
3019 * The path is corrected to point to the appropriate node after the split
3021 * Before splitting this tries to make some room in the node by pushing
3022 * left and right, if either one works, it returns right away.
3024 * returns 0 on success and < 0 on failure
3026 static noinline int split_node(struct btrfs_trans_handle *trans,
3027 struct btrfs_root *root,
3028 struct btrfs_path *path, int level)
3030 struct btrfs_fs_info *fs_info = root->fs_info;
3031 struct extent_buffer *c;
3032 struct extent_buffer *split;
3033 struct btrfs_disk_key disk_key;
3034 int mid;
3035 int ret;
3036 u32 c_nritems;
3038 c = path->nodes[level];
3039 WARN_ON(btrfs_header_generation(c) != trans->transid);
3040 if (c == root->node) {
3042 * trying to split the root, lets make a new one
3044 * tree mod log: We don't log_removal old root in
3045 * insert_new_root, because that root buffer will be kept as a
3046 * normal node. We are going to log removal of half of the
3047 * elements below with btrfs_tree_mod_log_eb_copy(). We're
3048 * holding a tree lock on the buffer, which is why we cannot
3049 * race with other tree_mod_log users.
3051 ret = insert_new_root(trans, root, path, level + 1);
3052 if (ret)
3053 return ret;
3054 } else {
3055 ret = push_nodes_for_insert(trans, root, path, level);
3056 c = path->nodes[level];
3057 if (!ret && btrfs_header_nritems(c) <
3058 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3059 return 0;
3060 if (ret < 0)
3061 return ret;
3064 c_nritems = btrfs_header_nritems(c);
3065 mid = (c_nritems + 1) / 2;
3066 btrfs_node_key(c, &disk_key, mid);
3068 split = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3069 &disk_key, level, c->start, 0,
3070 0, BTRFS_NESTING_SPLIT);
3071 if (IS_ERR(split))
3072 return PTR_ERR(split);
3074 root_add_used_bytes(root);
3075 ASSERT(btrfs_header_level(c) == level);
3077 ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3078 if (ret) {
3079 btrfs_tree_unlock(split);
3080 free_extent_buffer(split);
3081 btrfs_abort_transaction(trans, ret);
3082 return ret;
3084 copy_extent_buffer(split, c,
3085 btrfs_node_key_ptr_offset(split, 0),
3086 btrfs_node_key_ptr_offset(c, mid),
3087 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3088 btrfs_set_header_nritems(split, c_nritems - mid);
3089 btrfs_set_header_nritems(c, mid);
3091 btrfs_mark_buffer_dirty(trans, c);
3092 btrfs_mark_buffer_dirty(trans, split);
3094 ret = insert_ptr(trans, path, &disk_key, split->start,
3095 path->slots[level + 1] + 1, level + 1);
3096 if (ret < 0) {
3097 btrfs_tree_unlock(split);
3098 free_extent_buffer(split);
3099 return ret;
3102 if (path->slots[level] >= mid) {
3103 path->slots[level] -= mid;
3104 btrfs_tree_unlock(c);
3105 free_extent_buffer(c);
3106 path->nodes[level] = split;
3107 path->slots[level + 1] += 1;
3108 } else {
3109 btrfs_tree_unlock(split);
3110 free_extent_buffer(split);
3112 return 0;
3116 * how many bytes are required to store the items in a leaf. start
3117 * and nr indicate which items in the leaf to check. This totals up the
3118 * space used both by the item structs and the item data
3120 static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3122 int data_len;
3123 int nritems = btrfs_header_nritems(l);
3124 int end = min(nritems, start + nr) - 1;
3126 if (!nr)
3127 return 0;
3128 data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3129 data_len = data_len - btrfs_item_offset(l, end);
3130 data_len += sizeof(struct btrfs_item) * nr;
3131 WARN_ON(data_len < 0);
3132 return data_len;
3136 * The space between the end of the leaf items and
3137 * the start of the leaf data. IOW, how much room
3138 * the leaf has left for both items and data
3140 int btrfs_leaf_free_space(const struct extent_buffer *leaf)
3142 struct btrfs_fs_info *fs_info = leaf->fs_info;
3143 int nritems = btrfs_header_nritems(leaf);
3144 int ret;
3146 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3147 if (ret < 0) {
3148 btrfs_crit(fs_info,
3149 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3150 ret,
3151 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3152 leaf_space_used(leaf, 0, nritems), nritems);
3154 return ret;
3158 * min slot controls the lowest index we're willing to push to the
3159 * right. We'll push up to and including min_slot, but no lower
3161 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3162 struct btrfs_path *path,
3163 int data_size, int empty,
3164 struct extent_buffer *right,
3165 int free_space, u32 left_nritems,
3166 u32 min_slot)
3168 struct btrfs_fs_info *fs_info = right->fs_info;
3169 struct extent_buffer *left = path->nodes[0];
3170 struct extent_buffer *upper = path->nodes[1];
3171 struct btrfs_map_token token;
3172 struct btrfs_disk_key disk_key;
3173 int slot;
3174 u32 i;
3175 int push_space = 0;
3176 int push_items = 0;
3177 u32 nr;
3178 u32 right_nritems;
3179 u32 data_end;
3180 u32 this_item_size;
3182 if (empty)
3183 nr = 0;
3184 else
3185 nr = max_t(u32, 1, min_slot);
3187 if (path->slots[0] >= left_nritems)
3188 push_space += data_size;
3190 slot = path->slots[1];
3191 i = left_nritems - 1;
3192 while (i >= nr) {
3193 if (!empty && push_items > 0) {
3194 if (path->slots[0] > i)
3195 break;
3196 if (path->slots[0] == i) {
3197 int space = btrfs_leaf_free_space(left);
3199 if (space + push_space * 2 > free_space)
3200 break;
3204 if (path->slots[0] == i)
3205 push_space += data_size;
3207 this_item_size = btrfs_item_size(left, i);
3208 if (this_item_size + sizeof(struct btrfs_item) +
3209 push_space > free_space)
3210 break;
3212 push_items++;
3213 push_space += this_item_size + sizeof(struct btrfs_item);
3214 if (i == 0)
3215 break;
3216 i--;
3219 if (push_items == 0)
3220 goto out_unlock;
3222 WARN_ON(!empty && push_items == left_nritems);
3224 /* push left to right */
3225 right_nritems = btrfs_header_nritems(right);
3227 push_space = btrfs_item_data_end(left, left_nritems - push_items);
3228 push_space -= leaf_data_end(left);
3230 /* make room in the right data area */
3231 data_end = leaf_data_end(right);
3232 memmove_leaf_data(right, data_end - push_space, data_end,
3233 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3235 /* copy from the left data area */
3236 copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3237 leaf_data_end(left), push_space);
3239 memmove_leaf_items(right, push_items, 0, right_nritems);
3241 /* copy the items from left to right */
3242 copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3244 /* update the item pointers */
3245 btrfs_init_map_token(&token, right);
3246 right_nritems += push_items;
3247 btrfs_set_header_nritems(right, right_nritems);
3248 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3249 for (i = 0; i < right_nritems; i++) {
3250 push_space -= btrfs_token_item_size(&token, i);
3251 btrfs_set_token_item_offset(&token, i, push_space);
3254 left_nritems -= push_items;
3255 btrfs_set_header_nritems(left, left_nritems);
3257 if (left_nritems)
3258 btrfs_mark_buffer_dirty(trans, left);
3259 else
3260 btrfs_clear_buffer_dirty(trans, left);
3262 btrfs_mark_buffer_dirty(trans, right);
3264 btrfs_item_key(right, &disk_key, 0);
3265 btrfs_set_node_key(upper, &disk_key, slot + 1);
3266 btrfs_mark_buffer_dirty(trans, upper);
3268 /* then fixup the leaf pointer in the path */
3269 if (path->slots[0] >= left_nritems) {
3270 path->slots[0] -= left_nritems;
3271 if (btrfs_header_nritems(path->nodes[0]) == 0)
3272 btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3273 btrfs_tree_unlock(path->nodes[0]);
3274 free_extent_buffer(path->nodes[0]);
3275 path->nodes[0] = right;
3276 path->slots[1] += 1;
3277 } else {
3278 btrfs_tree_unlock(right);
3279 free_extent_buffer(right);
3281 return 0;
3283 out_unlock:
3284 btrfs_tree_unlock(right);
3285 free_extent_buffer(right);
3286 return 1;
3290 * push some data in the path leaf to the right, trying to free up at
3291 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3293 * returns 1 if the push failed because the other node didn't have enough
3294 * room, 0 if everything worked out and < 0 if there were major errors.
3296 * this will push starting from min_slot to the end of the leaf. It won't
3297 * push any slot lower than min_slot
3299 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3300 *root, struct btrfs_path *path,
3301 int min_data_size, int data_size,
3302 int empty, u32 min_slot)
3304 struct extent_buffer *left = path->nodes[0];
3305 struct extent_buffer *right;
3306 struct extent_buffer *upper;
3307 int slot;
3308 int free_space;
3309 u32 left_nritems;
3310 int ret;
3312 if (!path->nodes[1])
3313 return 1;
3315 slot = path->slots[1];
3316 upper = path->nodes[1];
3317 if (slot >= btrfs_header_nritems(upper) - 1)
3318 return 1;
3320 btrfs_assert_tree_write_locked(path->nodes[1]);
3322 right = btrfs_read_node_slot(upper, slot + 1);
3323 if (IS_ERR(right))
3324 return PTR_ERR(right);
3326 btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
3328 free_space = btrfs_leaf_free_space(right);
3329 if (free_space < data_size)
3330 goto out_unlock;
3332 ret = btrfs_cow_block(trans, root, right, upper,
3333 slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3334 if (ret)
3335 goto out_unlock;
3337 left_nritems = btrfs_header_nritems(left);
3338 if (left_nritems == 0)
3339 goto out_unlock;
3341 if (check_sibling_keys(left, right)) {
3342 ret = -EUCLEAN;
3343 btrfs_abort_transaction(trans, ret);
3344 btrfs_tree_unlock(right);
3345 free_extent_buffer(right);
3346 return ret;
3348 if (path->slots[0] == left_nritems && !empty) {
3349 /* Key greater than all keys in the leaf, right neighbor has
3350 * enough room for it and we're not emptying our leaf to delete
3351 * it, therefore use right neighbor to insert the new item and
3352 * no need to touch/dirty our left leaf. */
3353 btrfs_tree_unlock(left);
3354 free_extent_buffer(left);
3355 path->nodes[0] = right;
3356 path->slots[0] = 0;
3357 path->slots[1]++;
3358 return 0;
3361 return __push_leaf_right(trans, path, min_data_size, empty, right,
3362 free_space, left_nritems, min_slot);
3363 out_unlock:
3364 btrfs_tree_unlock(right);
3365 free_extent_buffer(right);
3366 return 1;
3370 * push some data in the path leaf to the left, trying to free up at
3371 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3373 * max_slot can put a limit on how far into the leaf we'll push items. The
3374 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3375 * items
3377 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3378 struct btrfs_path *path, int data_size,
3379 int empty, struct extent_buffer *left,
3380 int free_space, u32 right_nritems,
3381 u32 max_slot)
3383 struct btrfs_fs_info *fs_info = left->fs_info;
3384 struct btrfs_disk_key disk_key;
3385 struct extent_buffer *right = path->nodes[0];
3386 int i;
3387 int push_space = 0;
3388 int push_items = 0;
3389 u32 old_left_nritems;
3390 u32 nr;
3391 int ret = 0;
3392 u32 this_item_size;
3393 u32 old_left_item_size;
3394 struct btrfs_map_token token;
3396 if (empty)
3397 nr = min(right_nritems, max_slot);
3398 else
3399 nr = min(right_nritems - 1, max_slot);
3401 for (i = 0; i < nr; i++) {
3402 if (!empty && push_items > 0) {
3403 if (path->slots[0] < i)
3404 break;
3405 if (path->slots[0] == i) {
3406 int space = btrfs_leaf_free_space(right);
3408 if (space + push_space * 2 > free_space)
3409 break;
3413 if (path->slots[0] == i)
3414 push_space += data_size;
3416 this_item_size = btrfs_item_size(right, i);
3417 if (this_item_size + sizeof(struct btrfs_item) + push_space >
3418 free_space)
3419 break;
3421 push_items++;
3422 push_space += this_item_size + sizeof(struct btrfs_item);
3425 if (push_items == 0) {
3426 ret = 1;
3427 goto out;
3429 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3431 /* push data from right to left */
3432 copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3434 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3435 btrfs_item_offset(right, push_items - 1);
3437 copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3438 btrfs_item_offset(right, push_items - 1), push_space);
3439 old_left_nritems = btrfs_header_nritems(left);
3440 BUG_ON(old_left_nritems <= 0);
3442 btrfs_init_map_token(&token, left);
3443 old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3444 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3445 u32 ioff;
3447 ioff = btrfs_token_item_offset(&token, i);
3448 btrfs_set_token_item_offset(&token, i,
3449 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3451 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3453 /* fixup right node */
3454 if (push_items > right_nritems)
3455 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3456 right_nritems);
3458 if (push_items < right_nritems) {
3459 push_space = btrfs_item_offset(right, push_items - 1) -
3460 leaf_data_end(right);
3461 memmove_leaf_data(right,
3462 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3463 leaf_data_end(right), push_space);
3465 memmove_leaf_items(right, 0, push_items,
3466 btrfs_header_nritems(right) - push_items);
3469 btrfs_init_map_token(&token, right);
3470 right_nritems -= push_items;
3471 btrfs_set_header_nritems(right, right_nritems);
3472 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3473 for (i = 0; i < right_nritems; i++) {
3474 push_space = push_space - btrfs_token_item_size(&token, i);
3475 btrfs_set_token_item_offset(&token, i, push_space);
3478 btrfs_mark_buffer_dirty(trans, left);
3479 if (right_nritems)
3480 btrfs_mark_buffer_dirty(trans, right);
3481 else
3482 btrfs_clear_buffer_dirty(trans, right);
3484 btrfs_item_key(right, &disk_key, 0);
3485 fixup_low_keys(trans, path, &disk_key, 1);
3487 /* then fixup the leaf pointer in the path */
3488 if (path->slots[0] < push_items) {
3489 path->slots[0] += old_left_nritems;
3490 btrfs_tree_unlock(path->nodes[0]);
3491 free_extent_buffer(path->nodes[0]);
3492 path->nodes[0] = left;
3493 path->slots[1] -= 1;
3494 } else {
3495 btrfs_tree_unlock(left);
3496 free_extent_buffer(left);
3497 path->slots[0] -= push_items;
3499 BUG_ON(path->slots[0] < 0);
3500 return ret;
3501 out:
3502 btrfs_tree_unlock(left);
3503 free_extent_buffer(left);
3504 return ret;
3508 * push some data in the path leaf to the left, trying to free up at
3509 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3511 * max_slot can put a limit on how far into the leaf we'll push items. The
3512 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3513 * items
3515 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3516 *root, struct btrfs_path *path, int min_data_size,
3517 int data_size, int empty, u32 max_slot)
3519 struct extent_buffer *right = path->nodes[0];
3520 struct extent_buffer *left;
3521 int slot;
3522 int free_space;
3523 u32 right_nritems;
3524 int ret = 0;
3526 slot = path->slots[1];
3527 if (slot == 0)
3528 return 1;
3529 if (!path->nodes[1])
3530 return 1;
3532 right_nritems = btrfs_header_nritems(right);
3533 if (right_nritems == 0)
3534 return 1;
3536 btrfs_assert_tree_write_locked(path->nodes[1]);
3538 left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3539 if (IS_ERR(left))
3540 return PTR_ERR(left);
3542 btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
3544 free_space = btrfs_leaf_free_space(left);
3545 if (free_space < data_size) {
3546 ret = 1;
3547 goto out;
3550 ret = btrfs_cow_block(trans, root, left,
3551 path->nodes[1], slot - 1, &left,
3552 BTRFS_NESTING_LEFT_COW);
3553 if (ret) {
3554 /* we hit -ENOSPC, but it isn't fatal here */
3555 if (ret == -ENOSPC)
3556 ret = 1;
3557 goto out;
3560 if (check_sibling_keys(left, right)) {
3561 ret = -EUCLEAN;
3562 btrfs_abort_transaction(trans, ret);
3563 goto out;
3565 return __push_leaf_left(trans, path, min_data_size, empty, left,
3566 free_space, right_nritems, max_slot);
3567 out:
3568 btrfs_tree_unlock(left);
3569 free_extent_buffer(left);
3570 return ret;
3574 * split the path's leaf in two, making sure there is at least data_size
3575 * available for the resulting leaf level of the path.
3577 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3578 struct btrfs_path *path,
3579 struct extent_buffer *l,
3580 struct extent_buffer *right,
3581 int slot, int mid, int nritems)
3583 struct btrfs_fs_info *fs_info = trans->fs_info;
3584 int data_copy_size;
3585 int rt_data_off;
3586 int i;
3587 int ret;
3588 struct btrfs_disk_key disk_key;
3589 struct btrfs_map_token token;
3591 nritems = nritems - mid;
3592 btrfs_set_header_nritems(right, nritems);
3593 data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3595 copy_leaf_items(right, l, 0, mid, nritems);
3597 copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3598 leaf_data_end(l), data_copy_size);
3600 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3602 btrfs_init_map_token(&token, right);
3603 for (i = 0; i < nritems; i++) {
3604 u32 ioff;
3606 ioff = btrfs_token_item_offset(&token, i);
3607 btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3610 btrfs_set_header_nritems(l, mid);
3611 btrfs_item_key(right, &disk_key, 0);
3612 ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3613 if (ret < 0)
3614 return ret;
3616 btrfs_mark_buffer_dirty(trans, right);
3617 btrfs_mark_buffer_dirty(trans, l);
3618 BUG_ON(path->slots[0] != slot);
3620 if (mid <= slot) {
3621 btrfs_tree_unlock(path->nodes[0]);
3622 free_extent_buffer(path->nodes[0]);
3623 path->nodes[0] = right;
3624 path->slots[0] -= mid;
3625 path->slots[1] += 1;
3626 } else {
3627 btrfs_tree_unlock(right);
3628 free_extent_buffer(right);
3631 BUG_ON(path->slots[0] < 0);
3633 return 0;
3637 * double splits happen when we need to insert a big item in the middle
3638 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3639 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3640 * A B C
3642 * We avoid this by trying to push the items on either side of our target
3643 * into the adjacent leaves. If all goes well we can avoid the double split
3644 * completely.
3646 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3647 struct btrfs_root *root,
3648 struct btrfs_path *path,
3649 int data_size)
3651 int ret;
3652 int progress = 0;
3653 int slot;
3654 u32 nritems;
3655 int space_needed = data_size;
3657 slot = path->slots[0];
3658 if (slot < btrfs_header_nritems(path->nodes[0]))
3659 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3662 * try to push all the items after our slot into the
3663 * right leaf
3665 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3666 if (ret < 0)
3667 return ret;
3669 if (ret == 0)
3670 progress++;
3672 nritems = btrfs_header_nritems(path->nodes[0]);
3674 * our goal is to get our slot at the start or end of a leaf. If
3675 * we've done so we're done
3677 if (path->slots[0] == 0 || path->slots[0] == nritems)
3678 return 0;
3680 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3681 return 0;
3683 /* try to push all the items before our slot into the next leaf */
3684 slot = path->slots[0];
3685 space_needed = data_size;
3686 if (slot > 0)
3687 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3688 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3689 if (ret < 0)
3690 return ret;
3692 if (ret == 0)
3693 progress++;
3695 if (progress)
3696 return 0;
3697 return 1;
3701 * split the path's leaf in two, making sure there is at least data_size
3702 * available for the resulting leaf level of the path.
3704 * returns 0 if all went well and < 0 on failure.
3706 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3707 struct btrfs_root *root,
3708 const struct btrfs_key *ins_key,
3709 struct btrfs_path *path, int data_size,
3710 int extend)
3712 struct btrfs_disk_key disk_key;
3713 struct extent_buffer *l;
3714 u32 nritems;
3715 int mid;
3716 int slot;
3717 struct extent_buffer *right;
3718 struct btrfs_fs_info *fs_info = root->fs_info;
3719 int ret = 0;
3720 int wret;
3721 int split;
3722 int num_doubles = 0;
3723 int tried_avoid_double = 0;
3725 l = path->nodes[0];
3726 slot = path->slots[0];
3727 if (extend && data_size + btrfs_item_size(l, slot) +
3728 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3729 return -EOVERFLOW;
3731 /* first try to make some room by pushing left and right */
3732 if (data_size && path->nodes[1]) {
3733 int space_needed = data_size;
3735 if (slot < btrfs_header_nritems(l))
3736 space_needed -= btrfs_leaf_free_space(l);
3738 wret = push_leaf_right(trans, root, path, space_needed,
3739 space_needed, 0, 0);
3740 if (wret < 0)
3741 return wret;
3742 if (wret) {
3743 space_needed = data_size;
3744 if (slot > 0)
3745 space_needed -= btrfs_leaf_free_space(l);
3746 wret = push_leaf_left(trans, root, path, space_needed,
3747 space_needed, 0, (u32)-1);
3748 if (wret < 0)
3749 return wret;
3751 l = path->nodes[0];
3753 /* did the pushes work? */
3754 if (btrfs_leaf_free_space(l) >= data_size)
3755 return 0;
3758 if (!path->nodes[1]) {
3759 ret = insert_new_root(trans, root, path, 1);
3760 if (ret)
3761 return ret;
3763 again:
3764 split = 1;
3765 l = path->nodes[0];
3766 slot = path->slots[0];
3767 nritems = btrfs_header_nritems(l);
3768 mid = (nritems + 1) / 2;
3770 if (mid <= slot) {
3771 if (nritems == 1 ||
3772 leaf_space_used(l, mid, nritems - mid) + data_size >
3773 BTRFS_LEAF_DATA_SIZE(fs_info)) {
3774 if (slot >= nritems) {
3775 split = 0;
3776 } else {
3777 mid = slot;
3778 if (mid != nritems &&
3779 leaf_space_used(l, mid, nritems - mid) +
3780 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3781 if (data_size && !tried_avoid_double)
3782 goto push_for_double;
3783 split = 2;
3787 } else {
3788 if (leaf_space_used(l, 0, mid) + data_size >
3789 BTRFS_LEAF_DATA_SIZE(fs_info)) {
3790 if (!extend && data_size && slot == 0) {
3791 split = 0;
3792 } else if ((extend || !data_size) && slot == 0) {
3793 mid = 1;
3794 } else {
3795 mid = slot;
3796 if (mid != nritems &&
3797 leaf_space_used(l, mid, nritems - mid) +
3798 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3799 if (data_size && !tried_avoid_double)
3800 goto push_for_double;
3801 split = 2;
3807 if (split == 0)
3808 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3809 else
3810 btrfs_item_key(l, &disk_key, mid);
3813 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3814 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3815 * subclasses, which is 8 at the time of this patch, and we've maxed it
3816 * out. In the future we could add a
3817 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3818 * use BTRFS_NESTING_NEW_ROOT.
3820 right = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3821 &disk_key, 0, l->start, 0, 0,
3822 num_doubles ? BTRFS_NESTING_NEW_ROOT :
3823 BTRFS_NESTING_SPLIT);
3824 if (IS_ERR(right))
3825 return PTR_ERR(right);
3827 root_add_used_bytes(root);
3829 if (split == 0) {
3830 if (mid <= slot) {
3831 btrfs_set_header_nritems(right, 0);
3832 ret = insert_ptr(trans, path, &disk_key,
3833 right->start, path->slots[1] + 1, 1);
3834 if (ret < 0) {
3835 btrfs_tree_unlock(right);
3836 free_extent_buffer(right);
3837 return ret;
3839 btrfs_tree_unlock(path->nodes[0]);
3840 free_extent_buffer(path->nodes[0]);
3841 path->nodes[0] = right;
3842 path->slots[0] = 0;
3843 path->slots[1] += 1;
3844 } else {
3845 btrfs_set_header_nritems(right, 0);
3846 ret = insert_ptr(trans, path, &disk_key,
3847 right->start, path->slots[1], 1);
3848 if (ret < 0) {
3849 btrfs_tree_unlock(right);
3850 free_extent_buffer(right);
3851 return ret;
3853 btrfs_tree_unlock(path->nodes[0]);
3854 free_extent_buffer(path->nodes[0]);
3855 path->nodes[0] = right;
3856 path->slots[0] = 0;
3857 if (path->slots[1] == 0)
3858 fixup_low_keys(trans, path, &disk_key, 1);
3861 * We create a new leaf 'right' for the required ins_len and
3862 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3863 * the content of ins_len to 'right'.
3865 return ret;
3868 ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3869 if (ret < 0) {
3870 btrfs_tree_unlock(right);
3871 free_extent_buffer(right);
3872 return ret;
3875 if (split == 2) {
3876 BUG_ON(num_doubles != 0);
3877 num_doubles++;
3878 goto again;
3881 return 0;
3883 push_for_double:
3884 push_for_double_split(trans, root, path, data_size);
3885 tried_avoid_double = 1;
3886 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3887 return 0;
3888 goto again;
3891 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3892 struct btrfs_root *root,
3893 struct btrfs_path *path, int ins_len)
3895 struct btrfs_key key;
3896 struct extent_buffer *leaf;
3897 struct btrfs_file_extent_item *fi;
3898 u64 extent_len = 0;
3899 u32 item_size;
3900 int ret;
3902 leaf = path->nodes[0];
3903 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3905 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3906 key.type != BTRFS_EXTENT_CSUM_KEY);
3908 if (btrfs_leaf_free_space(leaf) >= ins_len)
3909 return 0;
3911 item_size = btrfs_item_size(leaf, path->slots[0]);
3912 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3913 fi = btrfs_item_ptr(leaf, path->slots[0],
3914 struct btrfs_file_extent_item);
3915 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3917 btrfs_release_path(path);
3919 path->keep_locks = 1;
3920 path->search_for_split = 1;
3921 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3922 path->search_for_split = 0;
3923 if (ret > 0)
3924 ret = -EAGAIN;
3925 if (ret < 0)
3926 goto err;
3928 ret = -EAGAIN;
3929 leaf = path->nodes[0];
3930 /* if our item isn't there, return now */
3931 if (item_size != btrfs_item_size(leaf, path->slots[0]))
3932 goto err;
3934 /* the leaf has changed, it now has room. return now */
3935 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3936 goto err;
3938 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3939 fi = btrfs_item_ptr(leaf, path->slots[0],
3940 struct btrfs_file_extent_item);
3941 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3942 goto err;
3945 ret = split_leaf(trans, root, &key, path, ins_len, 1);
3946 if (ret)
3947 goto err;
3949 path->keep_locks = 0;
3950 btrfs_unlock_up_safe(path, 1);
3951 return 0;
3952 err:
3953 path->keep_locks = 0;
3954 return ret;
3957 static noinline int split_item(struct btrfs_trans_handle *trans,
3958 struct btrfs_path *path,
3959 const struct btrfs_key *new_key,
3960 unsigned long split_offset)
3962 struct extent_buffer *leaf;
3963 int orig_slot, slot;
3964 char *buf;
3965 u32 nritems;
3966 u32 item_size;
3967 u32 orig_offset;
3968 struct btrfs_disk_key disk_key;
3970 leaf = path->nodes[0];
3972 * Shouldn't happen because the caller must have previously called
3973 * setup_leaf_for_split() to make room for the new item in the leaf.
3975 if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
3976 return -ENOSPC;
3978 orig_slot = path->slots[0];
3979 orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3980 item_size = btrfs_item_size(leaf, path->slots[0]);
3982 buf = kmalloc(item_size, GFP_NOFS);
3983 if (!buf)
3984 return -ENOMEM;
3986 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3987 path->slots[0]), item_size);
3989 slot = path->slots[0] + 1;
3990 nritems = btrfs_header_nritems(leaf);
3991 if (slot != nritems) {
3992 /* shift the items */
3993 memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
3996 btrfs_cpu_key_to_disk(&disk_key, new_key);
3997 btrfs_set_item_key(leaf, &disk_key, slot);
3999 btrfs_set_item_offset(leaf, slot, orig_offset);
4000 btrfs_set_item_size(leaf, slot, item_size - split_offset);
4002 btrfs_set_item_offset(leaf, orig_slot,
4003 orig_offset + item_size - split_offset);
4004 btrfs_set_item_size(leaf, orig_slot, split_offset);
4006 btrfs_set_header_nritems(leaf, nritems + 1);
4008 /* write the data for the start of the original item */
4009 write_extent_buffer(leaf, buf,
4010 btrfs_item_ptr_offset(leaf, path->slots[0]),
4011 split_offset);
4013 /* write the data for the new item */
4014 write_extent_buffer(leaf, buf + split_offset,
4015 btrfs_item_ptr_offset(leaf, slot),
4016 item_size - split_offset);
4017 btrfs_mark_buffer_dirty(trans, leaf);
4019 BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4020 kfree(buf);
4021 return 0;
4025 * This function splits a single item into two items,
4026 * giving 'new_key' to the new item and splitting the
4027 * old one at split_offset (from the start of the item).
4029 * The path may be released by this operation. After
4030 * the split, the path is pointing to the old item. The
4031 * new item is going to be in the same node as the old one.
4033 * Note, the item being split must be smaller enough to live alone on
4034 * a tree block with room for one extra struct btrfs_item
4036 * This allows us to split the item in place, keeping a lock on the
4037 * leaf the entire time.
4039 int btrfs_split_item(struct btrfs_trans_handle *trans,
4040 struct btrfs_root *root,
4041 struct btrfs_path *path,
4042 const struct btrfs_key *new_key,
4043 unsigned long split_offset)
4045 int ret;
4046 ret = setup_leaf_for_split(trans, root, path,
4047 sizeof(struct btrfs_item));
4048 if (ret)
4049 return ret;
4051 ret = split_item(trans, path, new_key, split_offset);
4052 return ret;
4056 * make the item pointed to by the path smaller. new_size indicates
4057 * how small to make it, and from_end tells us if we just chop bytes
4058 * off the end of the item or if we shift the item to chop bytes off
4059 * the front.
4061 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4062 const struct btrfs_path *path, u32 new_size, int from_end)
4064 int slot;
4065 struct extent_buffer *leaf;
4066 u32 nritems;
4067 unsigned int data_end;
4068 unsigned int old_data_start;
4069 unsigned int old_size;
4070 unsigned int size_diff;
4071 int i;
4072 struct btrfs_map_token token;
4074 leaf = path->nodes[0];
4075 slot = path->slots[0];
4077 old_size = btrfs_item_size(leaf, slot);
4078 if (old_size == new_size)
4079 return;
4081 nritems = btrfs_header_nritems(leaf);
4082 data_end = leaf_data_end(leaf);
4084 old_data_start = btrfs_item_offset(leaf, slot);
4086 size_diff = old_size - new_size;
4088 BUG_ON(slot < 0);
4089 BUG_ON(slot >= nritems);
4092 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4094 /* first correct the data pointers */
4095 btrfs_init_map_token(&token, leaf);
4096 for (i = slot; i < nritems; i++) {
4097 u32 ioff;
4099 ioff = btrfs_token_item_offset(&token, i);
4100 btrfs_set_token_item_offset(&token, i, ioff + size_diff);
4103 /* shift the data */
4104 if (from_end) {
4105 memmove_leaf_data(leaf, data_end + size_diff, data_end,
4106 old_data_start + new_size - data_end);
4107 } else {
4108 struct btrfs_disk_key disk_key;
4109 u64 offset;
4111 btrfs_item_key(leaf, &disk_key, slot);
4113 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4114 unsigned long ptr;
4115 struct btrfs_file_extent_item *fi;
4117 fi = btrfs_item_ptr(leaf, slot,
4118 struct btrfs_file_extent_item);
4119 fi = (struct btrfs_file_extent_item *)(
4120 (unsigned long)fi - size_diff);
4122 if (btrfs_file_extent_type(leaf, fi) ==
4123 BTRFS_FILE_EXTENT_INLINE) {
4124 ptr = btrfs_item_ptr_offset(leaf, slot);
4125 memmove_extent_buffer(leaf, ptr,
4126 (unsigned long)fi,
4127 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4131 memmove_leaf_data(leaf, data_end + size_diff, data_end,
4132 old_data_start - data_end);
4134 offset = btrfs_disk_key_offset(&disk_key);
4135 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4136 btrfs_set_item_key(leaf, &disk_key, slot);
4137 if (slot == 0)
4138 fixup_low_keys(trans, path, &disk_key, 1);
4141 btrfs_set_item_size(leaf, slot, new_size);
4142 btrfs_mark_buffer_dirty(trans, leaf);
4144 if (btrfs_leaf_free_space(leaf) < 0) {
4145 btrfs_print_leaf(leaf);
4146 BUG();
4151 * make the item pointed to by the path bigger, data_size is the added size.
4153 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4154 const struct btrfs_path *path, u32 data_size)
4156 int slot;
4157 struct extent_buffer *leaf;
4158 u32 nritems;
4159 unsigned int data_end;
4160 unsigned int old_data;
4161 unsigned int old_size;
4162 int i;
4163 struct btrfs_map_token token;
4165 leaf = path->nodes[0];
4167 nritems = btrfs_header_nritems(leaf);
4168 data_end = leaf_data_end(leaf);
4170 if (btrfs_leaf_free_space(leaf) < data_size) {
4171 btrfs_print_leaf(leaf);
4172 BUG();
4174 slot = path->slots[0];
4175 old_data = btrfs_item_data_end(leaf, slot);
4177 BUG_ON(slot < 0);
4178 if (slot >= nritems) {
4179 btrfs_print_leaf(leaf);
4180 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4181 slot, nritems);
4182 BUG();
4186 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4188 /* first correct the data pointers */
4189 btrfs_init_map_token(&token, leaf);
4190 for (i = slot; i < nritems; i++) {
4191 u32 ioff;
4193 ioff = btrfs_token_item_offset(&token, i);
4194 btrfs_set_token_item_offset(&token, i, ioff - data_size);
4197 /* shift the data */
4198 memmove_leaf_data(leaf, data_end - data_size, data_end,
4199 old_data - data_end);
4201 data_end = old_data;
4202 old_size = btrfs_item_size(leaf, slot);
4203 btrfs_set_item_size(leaf, slot, old_size + data_size);
4204 btrfs_mark_buffer_dirty(trans, leaf);
4206 if (btrfs_leaf_free_space(leaf) < 0) {
4207 btrfs_print_leaf(leaf);
4208 BUG();
4213 * Make space in the node before inserting one or more items.
4215 * @trans: transaction handle
4216 * @root: root we are inserting items to
4217 * @path: points to the leaf/slot where we are going to insert new items
4218 * @batch: information about the batch of items to insert
4220 * Main purpose is to save stack depth by doing the bulk of the work in a
4221 * function that doesn't call btrfs_search_slot
4223 static void setup_items_for_insert(struct btrfs_trans_handle *trans,
4224 struct btrfs_root *root, struct btrfs_path *path,
4225 const struct btrfs_item_batch *batch)
4227 struct btrfs_fs_info *fs_info = root->fs_info;
4228 int i;
4229 u32 nritems;
4230 unsigned int data_end;
4231 struct btrfs_disk_key disk_key;
4232 struct extent_buffer *leaf;
4233 int slot;
4234 struct btrfs_map_token token;
4235 u32 total_size;
4238 * Before anything else, update keys in the parent and other ancestors
4239 * if needed, then release the write locks on them, so that other tasks
4240 * can use them while we modify the leaf.
4242 if (path->slots[0] == 0) {
4243 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4244 fixup_low_keys(trans, path, &disk_key, 1);
4246 btrfs_unlock_up_safe(path, 1);
4248 leaf = path->nodes[0];
4249 slot = path->slots[0];
4251 nritems = btrfs_header_nritems(leaf);
4252 data_end = leaf_data_end(leaf);
4253 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4255 if (btrfs_leaf_free_space(leaf) < total_size) {
4256 btrfs_print_leaf(leaf);
4257 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4258 total_size, btrfs_leaf_free_space(leaf));
4259 BUG();
4262 btrfs_init_map_token(&token, leaf);
4263 if (slot != nritems) {
4264 unsigned int old_data = btrfs_item_data_end(leaf, slot);
4266 if (old_data < data_end) {
4267 btrfs_print_leaf(leaf);
4268 btrfs_crit(fs_info,
4269 "item at slot %d with data offset %u beyond data end of leaf %u",
4270 slot, old_data, data_end);
4271 BUG();
4274 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4276 /* first correct the data pointers */
4277 for (i = slot; i < nritems; i++) {
4278 u32 ioff;
4280 ioff = btrfs_token_item_offset(&token, i);
4281 btrfs_set_token_item_offset(&token, i,
4282 ioff - batch->total_data_size);
4284 /* shift the items */
4285 memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4287 /* shift the data */
4288 memmove_leaf_data(leaf, data_end - batch->total_data_size,
4289 data_end, old_data - data_end);
4290 data_end = old_data;
4293 /* setup the item for the new data */
4294 for (i = 0; i < batch->nr; i++) {
4295 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4296 btrfs_set_item_key(leaf, &disk_key, slot + i);
4297 data_end -= batch->data_sizes[i];
4298 btrfs_set_token_item_offset(&token, slot + i, data_end);
4299 btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4302 btrfs_set_header_nritems(leaf, nritems + batch->nr);
4303 btrfs_mark_buffer_dirty(trans, leaf);
4305 if (btrfs_leaf_free_space(leaf) < 0) {
4306 btrfs_print_leaf(leaf);
4307 BUG();
4312 * Insert a new item into a leaf.
4314 * @trans: Transaction handle.
4315 * @root: The root of the btree.
4316 * @path: A path pointing to the target leaf and slot.
4317 * @key: The key of the new item.
4318 * @data_size: The size of the data associated with the new key.
4320 void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
4321 struct btrfs_root *root,
4322 struct btrfs_path *path,
4323 const struct btrfs_key *key,
4324 u32 data_size)
4326 struct btrfs_item_batch batch;
4328 batch.keys = key;
4329 batch.data_sizes = &data_size;
4330 batch.total_data_size = data_size;
4331 batch.nr = 1;
4333 setup_items_for_insert(trans, root, path, &batch);
4337 * Given a key and some data, insert items into the tree.
4338 * This does all the path init required, making room in the tree if needed.
4340 * Returns: 0 on success
4341 * -EEXIST if the first key already exists
4342 * < 0 on other errors
4344 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4345 struct btrfs_root *root,
4346 struct btrfs_path *path,
4347 const struct btrfs_item_batch *batch)
4349 int ret = 0;
4350 int slot;
4351 u32 total_size;
4353 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4354 ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4355 if (ret == 0)
4356 return -EEXIST;
4357 if (ret < 0)
4358 return ret;
4360 slot = path->slots[0];
4361 BUG_ON(slot < 0);
4363 setup_items_for_insert(trans, root, path, batch);
4364 return 0;
4368 * Given a key and some data, insert an item into the tree.
4369 * This does all the path init required, making room in the tree if needed.
4371 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4372 const struct btrfs_key *cpu_key, void *data,
4373 u32 data_size)
4375 int ret = 0;
4376 struct btrfs_path *path;
4377 struct extent_buffer *leaf;
4378 unsigned long ptr;
4380 path = btrfs_alloc_path();
4381 if (!path)
4382 return -ENOMEM;
4383 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4384 if (!ret) {
4385 leaf = path->nodes[0];
4386 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4387 write_extent_buffer(leaf, data, ptr, data_size);
4388 btrfs_mark_buffer_dirty(trans, leaf);
4390 btrfs_free_path(path);
4391 return ret;
4395 * This function duplicates an item, giving 'new_key' to the new item.
4396 * It guarantees both items live in the same tree leaf and the new item is
4397 * contiguous with the original item.
4399 * This allows us to split a file extent in place, keeping a lock on the leaf
4400 * the entire time.
4402 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4403 struct btrfs_root *root,
4404 struct btrfs_path *path,
4405 const struct btrfs_key *new_key)
4407 struct extent_buffer *leaf;
4408 int ret;
4409 u32 item_size;
4411 leaf = path->nodes[0];
4412 item_size = btrfs_item_size(leaf, path->slots[0]);
4413 ret = setup_leaf_for_split(trans, root, path,
4414 item_size + sizeof(struct btrfs_item));
4415 if (ret)
4416 return ret;
4418 path->slots[0]++;
4419 btrfs_setup_item_for_insert(trans, root, path, new_key, item_size);
4420 leaf = path->nodes[0];
4421 memcpy_extent_buffer(leaf,
4422 btrfs_item_ptr_offset(leaf, path->slots[0]),
4423 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4424 item_size);
4425 return 0;
4429 * delete the pointer from a given node.
4431 * the tree should have been previously balanced so the deletion does not
4432 * empty a node.
4434 * This is exported for use inside btrfs-progs, don't un-export it.
4436 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4437 struct btrfs_path *path, int level, int slot)
4439 struct extent_buffer *parent = path->nodes[level];
4440 u32 nritems;
4441 int ret;
4443 nritems = btrfs_header_nritems(parent);
4444 if (slot != nritems - 1) {
4445 if (level) {
4446 ret = btrfs_tree_mod_log_insert_move(parent, slot,
4447 slot + 1, nritems - slot - 1);
4448 if (ret < 0) {
4449 btrfs_abort_transaction(trans, ret);
4450 return ret;
4453 memmove_extent_buffer(parent,
4454 btrfs_node_key_ptr_offset(parent, slot),
4455 btrfs_node_key_ptr_offset(parent, slot + 1),
4456 sizeof(struct btrfs_key_ptr) *
4457 (nritems - slot - 1));
4458 } else if (level) {
4459 ret = btrfs_tree_mod_log_insert_key(parent, slot,
4460 BTRFS_MOD_LOG_KEY_REMOVE);
4461 if (ret < 0) {
4462 btrfs_abort_transaction(trans, ret);
4463 return ret;
4467 nritems--;
4468 btrfs_set_header_nritems(parent, nritems);
4469 if (nritems == 0 && parent == root->node) {
4470 BUG_ON(btrfs_header_level(root->node) != 1);
4471 /* just turn the root into a leaf and break */
4472 btrfs_set_header_level(root->node, 0);
4473 } else if (slot == 0) {
4474 struct btrfs_disk_key disk_key;
4476 btrfs_node_key(parent, &disk_key, 0);
4477 fixup_low_keys(trans, path, &disk_key, level + 1);
4479 btrfs_mark_buffer_dirty(trans, parent);
4480 return 0;
4484 * a helper function to delete the leaf pointed to by path->slots[1] and
4485 * path->nodes[1].
4487 * This deletes the pointer in path->nodes[1] and frees the leaf
4488 * block extent. zero is returned if it all worked out, < 0 otherwise.
4490 * The path must have already been setup for deleting the leaf, including
4491 * all the proper balancing. path->nodes[1] must be locked.
4493 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4494 struct btrfs_root *root,
4495 struct btrfs_path *path,
4496 struct extent_buffer *leaf)
4498 int ret;
4500 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4501 ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4502 if (ret < 0)
4503 return ret;
4506 * btrfs_free_extent is expensive, we want to make sure we
4507 * aren't holding any locks when we call it
4509 btrfs_unlock_up_safe(path, 0);
4511 root_sub_used_bytes(root);
4513 atomic_inc(&leaf->refs);
4514 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4515 free_extent_buffer_stale(leaf);
4516 if (ret < 0)
4517 btrfs_abort_transaction(trans, ret);
4519 return ret;
4522 * delete the item at the leaf level in path. If that empties
4523 * the leaf, remove it from the tree
4525 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4526 struct btrfs_path *path, int slot, int nr)
4528 struct btrfs_fs_info *fs_info = root->fs_info;
4529 struct extent_buffer *leaf;
4530 int ret = 0;
4531 int wret;
4532 u32 nritems;
4534 leaf = path->nodes[0];
4535 nritems = btrfs_header_nritems(leaf);
4537 if (slot + nr != nritems) {
4538 const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4539 const int data_end = leaf_data_end(leaf);
4540 struct btrfs_map_token token;
4541 u32 dsize = 0;
4542 int i;
4544 for (i = 0; i < nr; i++)
4545 dsize += btrfs_item_size(leaf, slot + i);
4547 memmove_leaf_data(leaf, data_end + dsize, data_end,
4548 last_off - data_end);
4550 btrfs_init_map_token(&token, leaf);
4551 for (i = slot + nr; i < nritems; i++) {
4552 u32 ioff;
4554 ioff = btrfs_token_item_offset(&token, i);
4555 btrfs_set_token_item_offset(&token, i, ioff + dsize);
4558 memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4560 btrfs_set_header_nritems(leaf, nritems - nr);
4561 nritems -= nr;
4563 /* delete the leaf if we've emptied it */
4564 if (nritems == 0) {
4565 if (leaf == root->node) {
4566 btrfs_set_header_level(leaf, 0);
4567 } else {
4568 btrfs_clear_buffer_dirty(trans, leaf);
4569 ret = btrfs_del_leaf(trans, root, path, leaf);
4570 if (ret < 0)
4571 return ret;
4573 } else {
4574 int used = leaf_space_used(leaf, 0, nritems);
4575 if (slot == 0) {
4576 struct btrfs_disk_key disk_key;
4578 btrfs_item_key(leaf, &disk_key, 0);
4579 fixup_low_keys(trans, path, &disk_key, 1);
4583 * Try to delete the leaf if it is mostly empty. We do this by
4584 * trying to move all its items into its left and right neighbours.
4585 * If we can't move all the items, then we don't delete it - it's
4586 * not ideal, but future insertions might fill the leaf with more
4587 * items, or items from other leaves might be moved later into our
4588 * leaf due to deletions on those leaves.
4590 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4591 u32 min_push_space;
4593 /* push_leaf_left fixes the path.
4594 * make sure the path still points to our leaf
4595 * for possible call to btrfs_del_ptr below
4597 slot = path->slots[1];
4598 atomic_inc(&leaf->refs);
4600 * We want to be able to at least push one item to the
4601 * left neighbour leaf, and that's the first item.
4603 min_push_space = sizeof(struct btrfs_item) +
4604 btrfs_item_size(leaf, 0);
4605 wret = push_leaf_left(trans, root, path, 0,
4606 min_push_space, 1, (u32)-1);
4607 if (wret < 0 && wret != -ENOSPC)
4608 ret = wret;
4610 if (path->nodes[0] == leaf &&
4611 btrfs_header_nritems(leaf)) {
4613 * If we were not able to push all items from our
4614 * leaf to its left neighbour, then attempt to
4615 * either push all the remaining items to the
4616 * right neighbour or none. There's no advantage
4617 * in pushing only some items, instead of all, as
4618 * it's pointless to end up with a leaf having
4619 * too few items while the neighbours can be full
4620 * or nearly full.
4622 nritems = btrfs_header_nritems(leaf);
4623 min_push_space = leaf_space_used(leaf, 0, nritems);
4624 wret = push_leaf_right(trans, root, path, 0,
4625 min_push_space, 1, 0);
4626 if (wret < 0 && wret != -ENOSPC)
4627 ret = wret;
4630 if (btrfs_header_nritems(leaf) == 0) {
4631 path->slots[1] = slot;
4632 ret = btrfs_del_leaf(trans, root, path, leaf);
4633 if (ret < 0)
4634 return ret;
4635 free_extent_buffer(leaf);
4636 ret = 0;
4637 } else {
4638 /* if we're still in the path, make sure
4639 * we're dirty. Otherwise, one of the
4640 * push_leaf functions must have already
4641 * dirtied this buffer
4643 if (path->nodes[0] == leaf)
4644 btrfs_mark_buffer_dirty(trans, leaf);
4645 free_extent_buffer(leaf);
4647 } else {
4648 btrfs_mark_buffer_dirty(trans, leaf);
4651 return ret;
4655 * A helper function to walk down the tree starting at min_key, and looking
4656 * for nodes or leaves that are have a minimum transaction id.
4657 * This is used by the btree defrag code, and tree logging
4659 * This does not cow, but it does stuff the starting key it finds back
4660 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4661 * key and get a writable path.
4663 * This honors path->lowest_level to prevent descent past a given level
4664 * of the tree.
4666 * min_trans indicates the oldest transaction that you are interested
4667 * in walking through. Any nodes or leaves older than min_trans are
4668 * skipped over (without reading them).
4670 * returns zero if something useful was found, < 0 on error and 1 if there
4671 * was nothing in the tree that matched the search criteria.
4673 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4674 struct btrfs_path *path,
4675 u64 min_trans)
4677 struct extent_buffer *cur;
4678 struct btrfs_key found_key;
4679 int slot;
4680 int sret;
4681 u32 nritems;
4682 int level;
4683 int ret = 1;
4684 int keep_locks = path->keep_locks;
4686 ASSERT(!path->nowait);
4687 path->keep_locks = 1;
4688 again:
4689 cur = btrfs_read_lock_root_node(root);
4690 level = btrfs_header_level(cur);
4691 WARN_ON(path->nodes[level]);
4692 path->nodes[level] = cur;
4693 path->locks[level] = BTRFS_READ_LOCK;
4695 if (btrfs_header_generation(cur) < min_trans) {
4696 ret = 1;
4697 goto out;
4699 while (1) {
4700 nritems = btrfs_header_nritems(cur);
4701 level = btrfs_header_level(cur);
4702 sret = btrfs_bin_search(cur, 0, min_key, &slot);
4703 if (sret < 0) {
4704 ret = sret;
4705 goto out;
4708 /* at the lowest level, we're done, setup the path and exit */
4709 if (level == path->lowest_level) {
4710 if (slot >= nritems)
4711 goto find_next_key;
4712 ret = 0;
4713 path->slots[level] = slot;
4714 btrfs_item_key_to_cpu(cur, &found_key, slot);
4715 goto out;
4717 if (sret && slot > 0)
4718 slot--;
4720 * check this node pointer against the min_trans parameters.
4721 * If it is too old, skip to the next one.
4723 while (slot < nritems) {
4724 u64 gen;
4726 gen = btrfs_node_ptr_generation(cur, slot);
4727 if (gen < min_trans) {
4728 slot++;
4729 continue;
4731 break;
4733 find_next_key:
4735 * we didn't find a candidate key in this node, walk forward
4736 * and find another one
4738 if (slot >= nritems) {
4739 path->slots[level] = slot;
4740 sret = btrfs_find_next_key(root, path, min_key, level,
4741 min_trans);
4742 if (sret == 0) {
4743 btrfs_release_path(path);
4744 goto again;
4745 } else {
4746 goto out;
4749 /* save our key for returning back */
4750 btrfs_node_key_to_cpu(cur, &found_key, slot);
4751 path->slots[level] = slot;
4752 if (level == path->lowest_level) {
4753 ret = 0;
4754 goto out;
4756 cur = btrfs_read_node_slot(cur, slot);
4757 if (IS_ERR(cur)) {
4758 ret = PTR_ERR(cur);
4759 goto out;
4762 btrfs_tree_read_lock(cur);
4764 path->locks[level - 1] = BTRFS_READ_LOCK;
4765 path->nodes[level - 1] = cur;
4766 unlock_up(path, level, 1, 0, NULL);
4768 out:
4769 path->keep_locks = keep_locks;
4770 if (ret == 0) {
4771 btrfs_unlock_up_safe(path, path->lowest_level + 1);
4772 memcpy(min_key, &found_key, sizeof(found_key));
4774 return ret;
4778 * this is similar to btrfs_next_leaf, but does not try to preserve
4779 * and fixup the path. It looks for and returns the next key in the
4780 * tree based on the current path and the min_trans parameters.
4782 * 0 is returned if another key is found, < 0 if there are any errors
4783 * and 1 is returned if there are no higher keys in the tree
4785 * path->keep_locks should be set to 1 on the search made before
4786 * calling this function.
4788 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4789 struct btrfs_key *key, int level, u64 min_trans)
4791 int slot;
4792 struct extent_buffer *c;
4794 WARN_ON(!path->keep_locks && !path->skip_locking);
4795 while (level < BTRFS_MAX_LEVEL) {
4796 if (!path->nodes[level])
4797 return 1;
4799 slot = path->slots[level] + 1;
4800 c = path->nodes[level];
4801 next:
4802 if (slot >= btrfs_header_nritems(c)) {
4803 int ret;
4804 int orig_lowest;
4805 struct btrfs_key cur_key;
4806 if (level + 1 >= BTRFS_MAX_LEVEL ||
4807 !path->nodes[level + 1])
4808 return 1;
4810 if (path->locks[level + 1] || path->skip_locking) {
4811 level++;
4812 continue;
4815 slot = btrfs_header_nritems(c) - 1;
4816 if (level == 0)
4817 btrfs_item_key_to_cpu(c, &cur_key, slot);
4818 else
4819 btrfs_node_key_to_cpu(c, &cur_key, slot);
4821 orig_lowest = path->lowest_level;
4822 btrfs_release_path(path);
4823 path->lowest_level = level;
4824 ret = btrfs_search_slot(NULL, root, &cur_key, path,
4825 0, 0);
4826 path->lowest_level = orig_lowest;
4827 if (ret < 0)
4828 return ret;
4830 c = path->nodes[level];
4831 slot = path->slots[level];
4832 if (ret == 0)
4833 slot++;
4834 goto next;
4837 if (level == 0)
4838 btrfs_item_key_to_cpu(c, key, slot);
4839 else {
4840 u64 gen = btrfs_node_ptr_generation(c, slot);
4842 if (gen < min_trans) {
4843 slot++;
4844 goto next;
4846 btrfs_node_key_to_cpu(c, key, slot);
4848 return 0;
4850 return 1;
4853 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4854 u64 time_seq)
4856 int slot;
4857 int level;
4858 struct extent_buffer *c;
4859 struct extent_buffer *next;
4860 struct btrfs_fs_info *fs_info = root->fs_info;
4861 struct btrfs_key key;
4862 bool need_commit_sem = false;
4863 u32 nritems;
4864 int ret;
4865 int i;
4868 * The nowait semantics are used only for write paths, where we don't
4869 * use the tree mod log and sequence numbers.
4871 if (time_seq)
4872 ASSERT(!path->nowait);
4874 nritems = btrfs_header_nritems(path->nodes[0]);
4875 if (nritems == 0)
4876 return 1;
4878 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4879 again:
4880 level = 1;
4881 next = NULL;
4882 btrfs_release_path(path);
4884 path->keep_locks = 1;
4886 if (time_seq) {
4887 ret = btrfs_search_old_slot(root, &key, path, time_seq);
4888 } else {
4889 if (path->need_commit_sem) {
4890 path->need_commit_sem = 0;
4891 need_commit_sem = true;
4892 if (path->nowait) {
4893 if (!down_read_trylock(&fs_info->commit_root_sem)) {
4894 ret = -EAGAIN;
4895 goto done;
4897 } else {
4898 down_read(&fs_info->commit_root_sem);
4901 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4903 path->keep_locks = 0;
4905 if (ret < 0)
4906 goto done;
4908 nritems = btrfs_header_nritems(path->nodes[0]);
4910 * by releasing the path above we dropped all our locks. A balance
4911 * could have added more items next to the key that used to be
4912 * at the very end of the block. So, check again here and
4913 * advance the path if there are now more items available.
4915 if (nritems > 0 && path->slots[0] < nritems - 1) {
4916 if (ret == 0)
4917 path->slots[0]++;
4918 ret = 0;
4919 goto done;
4922 * So the above check misses one case:
4923 * - after releasing the path above, someone has removed the item that
4924 * used to be at the very end of the block, and balance between leafs
4925 * gets another one with bigger key.offset to replace it.
4927 * This one should be returned as well, or we can get leaf corruption
4928 * later(esp. in __btrfs_drop_extents()).
4930 * And a bit more explanation about this check,
4931 * with ret > 0, the key isn't found, the path points to the slot
4932 * where it should be inserted, so the path->slots[0] item must be the
4933 * bigger one.
4935 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4936 ret = 0;
4937 goto done;
4940 while (level < BTRFS_MAX_LEVEL) {
4941 if (!path->nodes[level]) {
4942 ret = 1;
4943 goto done;
4946 slot = path->slots[level] + 1;
4947 c = path->nodes[level];
4948 if (slot >= btrfs_header_nritems(c)) {
4949 level++;
4950 if (level == BTRFS_MAX_LEVEL) {
4951 ret = 1;
4952 goto done;
4954 continue;
4959 * Our current level is where we're going to start from, and to
4960 * make sure lockdep doesn't complain we need to drop our locks
4961 * and nodes from 0 to our current level.
4963 for (i = 0; i < level; i++) {
4964 if (path->locks[level]) {
4965 btrfs_tree_read_unlock(path->nodes[i]);
4966 path->locks[i] = 0;
4968 free_extent_buffer(path->nodes[i]);
4969 path->nodes[i] = NULL;
4972 next = c;
4973 ret = read_block_for_search(root, path, &next, slot, &key);
4974 if (ret == -EAGAIN && !path->nowait)
4975 goto again;
4977 if (ret < 0) {
4978 btrfs_release_path(path);
4979 goto done;
4982 if (!path->skip_locking) {
4983 ret = btrfs_try_tree_read_lock(next);
4984 if (!ret && path->nowait) {
4985 ret = -EAGAIN;
4986 goto done;
4988 if (!ret && time_seq) {
4990 * If we don't get the lock, we may be racing
4991 * with push_leaf_left, holding that lock while
4992 * itself waiting for the leaf we've currently
4993 * locked. To solve this situation, we give up
4994 * on our lock and cycle.
4996 free_extent_buffer(next);
4997 btrfs_release_path(path);
4998 cond_resched();
4999 goto again;
5001 if (!ret)
5002 btrfs_tree_read_lock(next);
5004 break;
5006 path->slots[level] = slot;
5007 while (1) {
5008 level--;
5009 path->nodes[level] = next;
5010 path->slots[level] = 0;
5011 if (!path->skip_locking)
5012 path->locks[level] = BTRFS_READ_LOCK;
5013 if (!level)
5014 break;
5016 ret = read_block_for_search(root, path, &next, 0, &key);
5017 if (ret == -EAGAIN && !path->nowait)
5018 goto again;
5020 if (ret < 0) {
5021 btrfs_release_path(path);
5022 goto done;
5025 if (!path->skip_locking) {
5026 if (path->nowait) {
5027 if (!btrfs_try_tree_read_lock(next)) {
5028 ret = -EAGAIN;
5029 goto done;
5031 } else {
5032 btrfs_tree_read_lock(next);
5036 ret = 0;
5037 done:
5038 unlock_up(path, 0, 1, 0, NULL);
5039 if (need_commit_sem) {
5040 int ret2;
5042 path->need_commit_sem = 1;
5043 ret2 = finish_need_commit_sem_search(path);
5044 up_read(&fs_info->commit_root_sem);
5045 if (ret2)
5046 ret = ret2;
5049 return ret;
5052 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
5054 path->slots[0]++;
5055 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
5056 return btrfs_next_old_leaf(root, path, time_seq);
5057 return 0;
5061 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5062 * searching until it gets past min_objectid or finds an item of 'type'
5064 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5066 int btrfs_previous_item(struct btrfs_root *root,
5067 struct btrfs_path *path, u64 min_objectid,
5068 int type)
5070 struct btrfs_key found_key;
5071 struct extent_buffer *leaf;
5072 u32 nritems;
5073 int ret;
5075 while (1) {
5076 if (path->slots[0] == 0) {
5077 ret = btrfs_prev_leaf(root, path);
5078 if (ret != 0)
5079 return ret;
5080 } else {
5081 path->slots[0]--;
5083 leaf = path->nodes[0];
5084 nritems = btrfs_header_nritems(leaf);
5085 if (nritems == 0)
5086 return 1;
5087 if (path->slots[0] == nritems)
5088 path->slots[0]--;
5090 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5091 if (found_key.objectid < min_objectid)
5092 break;
5093 if (found_key.type == type)
5094 return 0;
5095 if (found_key.objectid == min_objectid &&
5096 found_key.type < type)
5097 break;
5099 return 1;
5103 * search in extent tree to find a previous Metadata/Data extent item with
5104 * min objecitd.
5106 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5108 int btrfs_previous_extent_item(struct btrfs_root *root,
5109 struct btrfs_path *path, u64 min_objectid)
5111 struct btrfs_key found_key;
5112 struct extent_buffer *leaf;
5113 u32 nritems;
5114 int ret;
5116 while (1) {
5117 if (path->slots[0] == 0) {
5118 ret = btrfs_prev_leaf(root, path);
5119 if (ret != 0)
5120 return ret;
5121 } else {
5122 path->slots[0]--;
5124 leaf = path->nodes[0];
5125 nritems = btrfs_header_nritems(leaf);
5126 if (nritems == 0)
5127 return 1;
5128 if (path->slots[0] == nritems)
5129 path->slots[0]--;
5131 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5132 if (found_key.objectid < min_objectid)
5133 break;
5134 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5135 found_key.type == BTRFS_METADATA_ITEM_KEY)
5136 return 0;
5137 if (found_key.objectid == min_objectid &&
5138 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5139 break;
5141 return 1;
5144 int __init btrfs_ctree_init(void)
5146 btrfs_path_cachep = KMEM_CACHE(btrfs_path, 0);
5147 if (!btrfs_path_cachep)
5148 return -ENOMEM;
5149 return 0;
5152 void __cold btrfs_ctree_exit(void)
5154 kmem_cache_destroy(btrfs_path_cachep);