drm/panel-edp: Add BOE NV140FHM-NZ panel entry
[drm/drm-misc.git] / fs / buffer.c
blobcc8452f6025167630bfe42d8f6652c74adfbdedd
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/buffer.c
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
8 /*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52 #include <linux/sched/isolation.h>
54 #include "internal.h"
56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
57 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
58 enum rw_hint hint, struct writeback_control *wbc);
60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
62 inline void touch_buffer(struct buffer_head *bh)
64 trace_block_touch_buffer(bh);
65 folio_mark_accessed(bh->b_folio);
67 EXPORT_SYMBOL(touch_buffer);
69 void __lock_buffer(struct buffer_head *bh)
71 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
73 EXPORT_SYMBOL(__lock_buffer);
75 void unlock_buffer(struct buffer_head *bh)
77 clear_bit_unlock(BH_Lock, &bh->b_state);
78 smp_mb__after_atomic();
79 wake_up_bit(&bh->b_state, BH_Lock);
81 EXPORT_SYMBOL(unlock_buffer);
84 * Returns if the folio has dirty or writeback buffers. If all the buffers
85 * are unlocked and clean then the folio_test_dirty information is stale. If
86 * any of the buffers are locked, it is assumed they are locked for IO.
88 void buffer_check_dirty_writeback(struct folio *folio,
89 bool *dirty, bool *writeback)
91 struct buffer_head *head, *bh;
92 *dirty = false;
93 *writeback = false;
95 BUG_ON(!folio_test_locked(folio));
97 head = folio_buffers(folio);
98 if (!head)
99 return;
101 if (folio_test_writeback(folio))
102 *writeback = true;
104 bh = head;
105 do {
106 if (buffer_locked(bh))
107 *writeback = true;
109 if (buffer_dirty(bh))
110 *dirty = true;
112 bh = bh->b_this_page;
113 } while (bh != head);
117 * Block until a buffer comes unlocked. This doesn't stop it
118 * from becoming locked again - you have to lock it yourself
119 * if you want to preserve its state.
121 void __wait_on_buffer(struct buffer_head * bh)
123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
125 EXPORT_SYMBOL(__wait_on_buffer);
127 static void buffer_io_error(struct buffer_head *bh, char *msg)
129 if (!test_bit(BH_Quiet, &bh->b_state))
130 printk_ratelimited(KERN_ERR
131 "Buffer I/O error on dev %pg, logical block %llu%s\n",
132 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
136 * End-of-IO handler helper function which does not touch the bh after
137 * unlocking it.
138 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139 * a race there is benign: unlock_buffer() only use the bh's address for
140 * hashing after unlocking the buffer, so it doesn't actually touch the bh
141 * itself.
143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
145 if (uptodate) {
146 set_buffer_uptodate(bh);
147 } else {
148 /* This happens, due to failed read-ahead attempts. */
149 clear_buffer_uptodate(bh);
151 unlock_buffer(bh);
155 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
156 * unlock the buffer.
158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
160 __end_buffer_read_notouch(bh, uptodate);
161 put_bh(bh);
163 EXPORT_SYMBOL(end_buffer_read_sync);
165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
167 if (uptodate) {
168 set_buffer_uptodate(bh);
169 } else {
170 buffer_io_error(bh, ", lost sync page write");
171 mark_buffer_write_io_error(bh);
172 clear_buffer_uptodate(bh);
174 unlock_buffer(bh);
175 put_bh(bh);
177 EXPORT_SYMBOL(end_buffer_write_sync);
180 * Various filesystems appear to want __find_get_block to be non-blocking.
181 * But it's the page lock which protects the buffers. To get around this,
182 * we get exclusion from try_to_free_buffers with the blockdev mapping's
183 * i_private_lock.
185 * Hack idea: for the blockdev mapping, i_private_lock contention
186 * may be quite high. This code could TryLock the page, and if that
187 * succeeds, there is no need to take i_private_lock.
189 static struct buffer_head *
190 __find_get_block_slow(struct block_device *bdev, sector_t block)
192 struct address_space *bd_mapping = bdev->bd_mapping;
193 const int blkbits = bd_mapping->host->i_blkbits;
194 struct buffer_head *ret = NULL;
195 pgoff_t index;
196 struct buffer_head *bh;
197 struct buffer_head *head;
198 struct folio *folio;
199 int all_mapped = 1;
200 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
202 index = ((loff_t)block << blkbits) / PAGE_SIZE;
203 folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
204 if (IS_ERR(folio))
205 goto out;
207 spin_lock(&bd_mapping->i_private_lock);
208 head = folio_buffers(folio);
209 if (!head)
210 goto out_unlock;
211 bh = head;
212 do {
213 if (!buffer_mapped(bh))
214 all_mapped = 0;
215 else if (bh->b_blocknr == block) {
216 ret = bh;
217 get_bh(bh);
218 goto out_unlock;
220 bh = bh->b_this_page;
221 } while (bh != head);
223 /* we might be here because some of the buffers on this page are
224 * not mapped. This is due to various races between
225 * file io on the block device and getblk. It gets dealt with
226 * elsewhere, don't buffer_error if we had some unmapped buffers
228 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
229 if (all_mapped && __ratelimit(&last_warned)) {
230 printk("__find_get_block_slow() failed. block=%llu, "
231 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232 "device %pg blocksize: %d\n",
233 (unsigned long long)block,
234 (unsigned long long)bh->b_blocknr,
235 bh->b_state, bh->b_size, bdev,
236 1 << blkbits);
238 out_unlock:
239 spin_unlock(&bd_mapping->i_private_lock);
240 folio_put(folio);
241 out:
242 return ret;
245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
247 unsigned long flags;
248 struct buffer_head *first;
249 struct buffer_head *tmp;
250 struct folio *folio;
251 int folio_uptodate = 1;
253 BUG_ON(!buffer_async_read(bh));
255 folio = bh->b_folio;
256 if (uptodate) {
257 set_buffer_uptodate(bh);
258 } else {
259 clear_buffer_uptodate(bh);
260 buffer_io_error(bh, ", async page read");
264 * Be _very_ careful from here on. Bad things can happen if
265 * two buffer heads end IO at almost the same time and both
266 * decide that the page is now completely done.
268 first = folio_buffers(folio);
269 spin_lock_irqsave(&first->b_uptodate_lock, flags);
270 clear_buffer_async_read(bh);
271 unlock_buffer(bh);
272 tmp = bh;
273 do {
274 if (!buffer_uptodate(tmp))
275 folio_uptodate = 0;
276 if (buffer_async_read(tmp)) {
277 BUG_ON(!buffer_locked(tmp));
278 goto still_busy;
280 tmp = tmp->b_this_page;
281 } while (tmp != bh);
282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
284 folio_end_read(folio, folio_uptodate);
285 return;
287 still_busy:
288 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
289 return;
292 struct postprocess_bh_ctx {
293 struct work_struct work;
294 struct buffer_head *bh;
297 static void verify_bh(struct work_struct *work)
299 struct postprocess_bh_ctx *ctx =
300 container_of(work, struct postprocess_bh_ctx, work);
301 struct buffer_head *bh = ctx->bh;
302 bool valid;
304 valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
305 end_buffer_async_read(bh, valid);
306 kfree(ctx);
309 static bool need_fsverity(struct buffer_head *bh)
311 struct folio *folio = bh->b_folio;
312 struct inode *inode = folio->mapping->host;
314 return fsverity_active(inode) &&
315 /* needed by ext4 */
316 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
319 static void decrypt_bh(struct work_struct *work)
321 struct postprocess_bh_ctx *ctx =
322 container_of(work, struct postprocess_bh_ctx, work);
323 struct buffer_head *bh = ctx->bh;
324 int err;
326 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
327 bh_offset(bh));
328 if (err == 0 && need_fsverity(bh)) {
330 * We use different work queues for decryption and for verity
331 * because verity may require reading metadata pages that need
332 * decryption, and we shouldn't recurse to the same workqueue.
334 INIT_WORK(&ctx->work, verify_bh);
335 fsverity_enqueue_verify_work(&ctx->work);
336 return;
338 end_buffer_async_read(bh, err == 0);
339 kfree(ctx);
343 * I/O completion handler for block_read_full_folio() - pages
344 * which come unlocked at the end of I/O.
346 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
348 struct inode *inode = bh->b_folio->mapping->host;
349 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
350 bool verify = need_fsverity(bh);
352 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
353 if (uptodate && (decrypt || verify)) {
354 struct postprocess_bh_ctx *ctx =
355 kmalloc(sizeof(*ctx), GFP_ATOMIC);
357 if (ctx) {
358 ctx->bh = bh;
359 if (decrypt) {
360 INIT_WORK(&ctx->work, decrypt_bh);
361 fscrypt_enqueue_decrypt_work(&ctx->work);
362 } else {
363 INIT_WORK(&ctx->work, verify_bh);
364 fsverity_enqueue_verify_work(&ctx->work);
366 return;
368 uptodate = 0;
370 end_buffer_async_read(bh, uptodate);
374 * Completion handler for block_write_full_folio() - folios which are unlocked
375 * during I/O, and which have the writeback flag cleared upon I/O completion.
377 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
379 unsigned long flags;
380 struct buffer_head *first;
381 struct buffer_head *tmp;
382 struct folio *folio;
384 BUG_ON(!buffer_async_write(bh));
386 folio = bh->b_folio;
387 if (uptodate) {
388 set_buffer_uptodate(bh);
389 } else {
390 buffer_io_error(bh, ", lost async page write");
391 mark_buffer_write_io_error(bh);
392 clear_buffer_uptodate(bh);
395 first = folio_buffers(folio);
396 spin_lock_irqsave(&first->b_uptodate_lock, flags);
398 clear_buffer_async_write(bh);
399 unlock_buffer(bh);
400 tmp = bh->b_this_page;
401 while (tmp != bh) {
402 if (buffer_async_write(tmp)) {
403 BUG_ON(!buffer_locked(tmp));
404 goto still_busy;
406 tmp = tmp->b_this_page;
408 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
409 folio_end_writeback(folio);
410 return;
412 still_busy:
413 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
414 return;
418 * If a page's buffers are under async readin (end_buffer_async_read
419 * completion) then there is a possibility that another thread of
420 * control could lock one of the buffers after it has completed
421 * but while some of the other buffers have not completed. This
422 * locked buffer would confuse end_buffer_async_read() into not unlocking
423 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
424 * that this buffer is not under async I/O.
426 * The page comes unlocked when it has no locked buffer_async buffers
427 * left.
429 * PageLocked prevents anyone starting new async I/O reads any of
430 * the buffers.
432 * PageWriteback is used to prevent simultaneous writeout of the same
433 * page.
435 * PageLocked prevents anyone from starting writeback of a page which is
436 * under read I/O (PageWriteback is only ever set against a locked page).
438 static void mark_buffer_async_read(struct buffer_head *bh)
440 bh->b_end_io = end_buffer_async_read_io;
441 set_buffer_async_read(bh);
444 static void mark_buffer_async_write_endio(struct buffer_head *bh,
445 bh_end_io_t *handler)
447 bh->b_end_io = handler;
448 set_buffer_async_write(bh);
451 void mark_buffer_async_write(struct buffer_head *bh)
453 mark_buffer_async_write_endio(bh, end_buffer_async_write);
455 EXPORT_SYMBOL(mark_buffer_async_write);
459 * fs/buffer.c contains helper functions for buffer-backed address space's
460 * fsync functions. A common requirement for buffer-based filesystems is
461 * that certain data from the backing blockdev needs to be written out for
462 * a successful fsync(). For example, ext2 indirect blocks need to be
463 * written back and waited upon before fsync() returns.
465 * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(),
466 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
467 * management of a list of dependent buffers at ->i_mapping->i_private_list.
469 * Locking is a little subtle: try_to_free_buffers() will remove buffers
470 * from their controlling inode's queue when they are being freed. But
471 * try_to_free_buffers() will be operating against the *blockdev* mapping
472 * at the time, not against the S_ISREG file which depends on those buffers.
473 * So the locking for i_private_list is via the i_private_lock in the address_space
474 * which backs the buffers. Which is different from the address_space
475 * against which the buffers are listed. So for a particular address_space,
476 * mapping->i_private_lock does *not* protect mapping->i_private_list! In fact,
477 * mapping->i_private_list will always be protected by the backing blockdev's
478 * ->i_private_lock.
480 * Which introduces a requirement: all buffers on an address_space's
481 * ->i_private_list must be from the same address_space: the blockdev's.
483 * address_spaces which do not place buffers at ->i_private_list via these
484 * utility functions are free to use i_private_lock and i_private_list for
485 * whatever they want. The only requirement is that list_empty(i_private_list)
486 * be true at clear_inode() time.
488 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
489 * filesystems should do that. invalidate_inode_buffers() should just go
490 * BUG_ON(!list_empty).
492 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
493 * take an address_space, not an inode. And it should be called
494 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
495 * queued up.
497 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
498 * list if it is already on a list. Because if the buffer is on a list,
499 * it *must* already be on the right one. If not, the filesystem is being
500 * silly. This will save a ton of locking. But first we have to ensure
501 * that buffers are taken *off* the old inode's list when they are freed
502 * (presumably in truncate). That requires careful auditing of all
503 * filesystems (do it inside bforget()). It could also be done by bringing
504 * b_inode back.
508 * The buffer's backing address_space's i_private_lock must be held
510 static void __remove_assoc_queue(struct buffer_head *bh)
512 list_del_init(&bh->b_assoc_buffers);
513 WARN_ON(!bh->b_assoc_map);
514 bh->b_assoc_map = NULL;
517 int inode_has_buffers(struct inode *inode)
519 return !list_empty(&inode->i_data.i_private_list);
523 * osync is designed to support O_SYNC io. It waits synchronously for
524 * all already-submitted IO to complete, but does not queue any new
525 * writes to the disk.
527 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
528 * as you dirty the buffers, and then use osync_inode_buffers to wait for
529 * completion. Any other dirty buffers which are not yet queued for
530 * write will not be flushed to disk by the osync.
532 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
534 struct buffer_head *bh;
535 struct list_head *p;
536 int err = 0;
538 spin_lock(lock);
539 repeat:
540 list_for_each_prev(p, list) {
541 bh = BH_ENTRY(p);
542 if (buffer_locked(bh)) {
543 get_bh(bh);
544 spin_unlock(lock);
545 wait_on_buffer(bh);
546 if (!buffer_uptodate(bh))
547 err = -EIO;
548 brelse(bh);
549 spin_lock(lock);
550 goto repeat;
553 spin_unlock(lock);
554 return err;
558 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
559 * @mapping: the mapping which wants those buffers written
561 * Starts I/O against the buffers at mapping->i_private_list, and waits upon
562 * that I/O.
564 * Basically, this is a convenience function for fsync().
565 * @mapping is a file or directory which needs those buffers to be written for
566 * a successful fsync().
568 int sync_mapping_buffers(struct address_space *mapping)
570 struct address_space *buffer_mapping = mapping->i_private_data;
572 if (buffer_mapping == NULL || list_empty(&mapping->i_private_list))
573 return 0;
575 return fsync_buffers_list(&buffer_mapping->i_private_lock,
576 &mapping->i_private_list);
578 EXPORT_SYMBOL(sync_mapping_buffers);
581 * generic_buffers_fsync_noflush - generic buffer fsync implementation
582 * for simple filesystems with no inode lock
584 * @file: file to synchronize
585 * @start: start offset in bytes
586 * @end: end offset in bytes (inclusive)
587 * @datasync: only synchronize essential metadata if true
589 * This is a generic implementation of the fsync method for simple
590 * filesystems which track all non-inode metadata in the buffers list
591 * hanging off the address_space structure.
593 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
594 bool datasync)
596 struct inode *inode = file->f_mapping->host;
597 int err;
598 int ret;
600 err = file_write_and_wait_range(file, start, end);
601 if (err)
602 return err;
604 ret = sync_mapping_buffers(inode->i_mapping);
605 if (!(inode->i_state & I_DIRTY_ALL))
606 goto out;
607 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
608 goto out;
610 err = sync_inode_metadata(inode, 1);
611 if (ret == 0)
612 ret = err;
614 out:
615 /* check and advance again to catch errors after syncing out buffers */
616 err = file_check_and_advance_wb_err(file);
617 if (ret == 0)
618 ret = err;
619 return ret;
621 EXPORT_SYMBOL(generic_buffers_fsync_noflush);
624 * generic_buffers_fsync - generic buffer fsync implementation
625 * for simple filesystems with no inode lock
627 * @file: file to synchronize
628 * @start: start offset in bytes
629 * @end: end offset in bytes (inclusive)
630 * @datasync: only synchronize essential metadata if true
632 * This is a generic implementation of the fsync method for simple
633 * filesystems which track all non-inode metadata in the buffers list
634 * hanging off the address_space structure. This also makes sure that
635 * a device cache flush operation is called at the end.
637 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
638 bool datasync)
640 struct inode *inode = file->f_mapping->host;
641 int ret;
643 ret = generic_buffers_fsync_noflush(file, start, end, datasync);
644 if (!ret)
645 ret = blkdev_issue_flush(inode->i_sb->s_bdev);
646 return ret;
648 EXPORT_SYMBOL(generic_buffers_fsync);
651 * Called when we've recently written block `bblock', and it is known that
652 * `bblock' was for a buffer_boundary() buffer. This means that the block at
653 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
654 * dirty, schedule it for IO. So that indirects merge nicely with their data.
656 void write_boundary_block(struct block_device *bdev,
657 sector_t bblock, unsigned blocksize)
659 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
660 if (bh) {
661 if (buffer_dirty(bh))
662 write_dirty_buffer(bh, 0);
663 put_bh(bh);
667 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
669 struct address_space *mapping = inode->i_mapping;
670 struct address_space *buffer_mapping = bh->b_folio->mapping;
672 mark_buffer_dirty(bh);
673 if (!mapping->i_private_data) {
674 mapping->i_private_data = buffer_mapping;
675 } else {
676 BUG_ON(mapping->i_private_data != buffer_mapping);
678 if (!bh->b_assoc_map) {
679 spin_lock(&buffer_mapping->i_private_lock);
680 list_move_tail(&bh->b_assoc_buffers,
681 &mapping->i_private_list);
682 bh->b_assoc_map = mapping;
683 spin_unlock(&buffer_mapping->i_private_lock);
686 EXPORT_SYMBOL(mark_buffer_dirty_inode);
689 * block_dirty_folio - Mark a folio as dirty.
690 * @mapping: The address space containing this folio.
691 * @folio: The folio to mark dirty.
693 * Filesystems which use buffer_heads can use this function as their
694 * ->dirty_folio implementation. Some filesystems need to do a little
695 * work before calling this function. Filesystems which do not use
696 * buffer_heads should call filemap_dirty_folio() instead.
698 * If the folio has buffers, the uptodate buffers are set dirty, to
699 * preserve dirty-state coherency between the folio and the buffers.
700 * Buffers added to a dirty folio are created dirty.
702 * The buffers are dirtied before the folio is dirtied. There's a small
703 * race window in which writeback may see the folio cleanness but not the
704 * buffer dirtiness. That's fine. If this code were to set the folio
705 * dirty before the buffers, writeback could clear the folio dirty flag,
706 * see a bunch of clean buffers and we'd end up with dirty buffers/clean
707 * folio on the dirty folio list.
709 * We use i_private_lock to lock against try_to_free_buffers() while
710 * using the folio's buffer list. This also prevents clean buffers
711 * being added to the folio after it was set dirty.
713 * Context: May only be called from process context. Does not sleep.
714 * Caller must ensure that @folio cannot be truncated during this call,
715 * typically by holding the folio lock or having a page in the folio
716 * mapped and holding the page table lock.
718 * Return: True if the folio was dirtied; false if it was already dirtied.
720 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
722 struct buffer_head *head;
723 bool newly_dirty;
725 spin_lock(&mapping->i_private_lock);
726 head = folio_buffers(folio);
727 if (head) {
728 struct buffer_head *bh = head;
730 do {
731 set_buffer_dirty(bh);
732 bh = bh->b_this_page;
733 } while (bh != head);
736 * Lock out page's memcg migration to keep PageDirty
737 * synchronized with per-memcg dirty page counters.
739 newly_dirty = !folio_test_set_dirty(folio);
740 spin_unlock(&mapping->i_private_lock);
742 if (newly_dirty)
743 __folio_mark_dirty(folio, mapping, 1);
745 if (newly_dirty)
746 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
748 return newly_dirty;
750 EXPORT_SYMBOL(block_dirty_folio);
753 * Write out and wait upon a list of buffers.
755 * We have conflicting pressures: we want to make sure that all
756 * initially dirty buffers get waited on, but that any subsequently
757 * dirtied buffers don't. After all, we don't want fsync to last
758 * forever if somebody is actively writing to the file.
760 * Do this in two main stages: first we copy dirty buffers to a
761 * temporary inode list, queueing the writes as we go. Then we clean
762 * up, waiting for those writes to complete.
764 * During this second stage, any subsequent updates to the file may end
765 * up refiling the buffer on the original inode's dirty list again, so
766 * there is a chance we will end up with a buffer queued for write but
767 * not yet completed on that list. So, as a final cleanup we go through
768 * the osync code to catch these locked, dirty buffers without requeuing
769 * any newly dirty buffers for write.
771 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
773 struct buffer_head *bh;
774 struct address_space *mapping;
775 int err = 0, err2;
776 struct blk_plug plug;
777 LIST_HEAD(tmp);
779 blk_start_plug(&plug);
781 spin_lock(lock);
782 while (!list_empty(list)) {
783 bh = BH_ENTRY(list->next);
784 mapping = bh->b_assoc_map;
785 __remove_assoc_queue(bh);
786 /* Avoid race with mark_buffer_dirty_inode() which does
787 * a lockless check and we rely on seeing the dirty bit */
788 smp_mb();
789 if (buffer_dirty(bh) || buffer_locked(bh)) {
790 list_add(&bh->b_assoc_buffers, &tmp);
791 bh->b_assoc_map = mapping;
792 if (buffer_dirty(bh)) {
793 get_bh(bh);
794 spin_unlock(lock);
796 * Ensure any pending I/O completes so that
797 * write_dirty_buffer() actually writes the
798 * current contents - it is a noop if I/O is
799 * still in flight on potentially older
800 * contents.
802 write_dirty_buffer(bh, REQ_SYNC);
805 * Kick off IO for the previous mapping. Note
806 * that we will not run the very last mapping,
807 * wait_on_buffer() will do that for us
808 * through sync_buffer().
810 brelse(bh);
811 spin_lock(lock);
816 spin_unlock(lock);
817 blk_finish_plug(&plug);
818 spin_lock(lock);
820 while (!list_empty(&tmp)) {
821 bh = BH_ENTRY(tmp.prev);
822 get_bh(bh);
823 mapping = bh->b_assoc_map;
824 __remove_assoc_queue(bh);
825 /* Avoid race with mark_buffer_dirty_inode() which does
826 * a lockless check and we rely on seeing the dirty bit */
827 smp_mb();
828 if (buffer_dirty(bh)) {
829 list_add(&bh->b_assoc_buffers,
830 &mapping->i_private_list);
831 bh->b_assoc_map = mapping;
833 spin_unlock(lock);
834 wait_on_buffer(bh);
835 if (!buffer_uptodate(bh))
836 err = -EIO;
837 brelse(bh);
838 spin_lock(lock);
841 spin_unlock(lock);
842 err2 = osync_buffers_list(lock, list);
843 if (err)
844 return err;
845 else
846 return err2;
850 * Invalidate any and all dirty buffers on a given inode. We are
851 * probably unmounting the fs, but that doesn't mean we have already
852 * done a sync(). Just drop the buffers from the inode list.
854 * NOTE: we take the inode's blockdev's mapping's i_private_lock. Which
855 * assumes that all the buffers are against the blockdev.
857 void invalidate_inode_buffers(struct inode *inode)
859 if (inode_has_buffers(inode)) {
860 struct address_space *mapping = &inode->i_data;
861 struct list_head *list = &mapping->i_private_list;
862 struct address_space *buffer_mapping = mapping->i_private_data;
864 spin_lock(&buffer_mapping->i_private_lock);
865 while (!list_empty(list))
866 __remove_assoc_queue(BH_ENTRY(list->next));
867 spin_unlock(&buffer_mapping->i_private_lock);
870 EXPORT_SYMBOL(invalidate_inode_buffers);
873 * Remove any clean buffers from the inode's buffer list. This is called
874 * when we're trying to free the inode itself. Those buffers can pin it.
876 * Returns true if all buffers were removed.
878 int remove_inode_buffers(struct inode *inode)
880 int ret = 1;
882 if (inode_has_buffers(inode)) {
883 struct address_space *mapping = &inode->i_data;
884 struct list_head *list = &mapping->i_private_list;
885 struct address_space *buffer_mapping = mapping->i_private_data;
887 spin_lock(&buffer_mapping->i_private_lock);
888 while (!list_empty(list)) {
889 struct buffer_head *bh = BH_ENTRY(list->next);
890 if (buffer_dirty(bh)) {
891 ret = 0;
892 break;
894 __remove_assoc_queue(bh);
896 spin_unlock(&buffer_mapping->i_private_lock);
898 return ret;
902 * Create the appropriate buffers when given a folio for data area and
903 * the size of each buffer.. Use the bh->b_this_page linked list to
904 * follow the buffers created. Return NULL if unable to create more
905 * buffers.
907 * The retry flag is used to differentiate async IO (paging, swapping)
908 * which may not fail from ordinary buffer allocations.
910 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
911 gfp_t gfp)
913 struct buffer_head *bh, *head;
914 long offset;
915 struct mem_cgroup *memcg, *old_memcg;
917 /* The folio lock pins the memcg */
918 memcg = folio_memcg(folio);
919 old_memcg = set_active_memcg(memcg);
921 head = NULL;
922 offset = folio_size(folio);
923 while ((offset -= size) >= 0) {
924 bh = alloc_buffer_head(gfp);
925 if (!bh)
926 goto no_grow;
928 bh->b_this_page = head;
929 bh->b_blocknr = -1;
930 head = bh;
932 bh->b_size = size;
934 /* Link the buffer to its folio */
935 folio_set_bh(bh, folio, offset);
937 out:
938 set_active_memcg(old_memcg);
939 return head;
941 * In case anything failed, we just free everything we got.
943 no_grow:
944 if (head) {
945 do {
946 bh = head;
947 head = head->b_this_page;
948 free_buffer_head(bh);
949 } while (head);
952 goto out;
954 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
956 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size)
958 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
960 return folio_alloc_buffers(page_folio(page), size, gfp);
962 EXPORT_SYMBOL_GPL(alloc_page_buffers);
964 static inline void link_dev_buffers(struct folio *folio,
965 struct buffer_head *head)
967 struct buffer_head *bh, *tail;
969 bh = head;
970 do {
971 tail = bh;
972 bh = bh->b_this_page;
973 } while (bh);
974 tail->b_this_page = head;
975 folio_attach_private(folio, head);
978 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
980 sector_t retval = ~((sector_t)0);
981 loff_t sz = bdev_nr_bytes(bdev);
983 if (sz) {
984 unsigned int sizebits = blksize_bits(size);
985 retval = (sz >> sizebits);
987 return retval;
991 * Initialise the state of a blockdev folio's buffers.
993 static sector_t folio_init_buffers(struct folio *folio,
994 struct block_device *bdev, unsigned size)
996 struct buffer_head *head = folio_buffers(folio);
997 struct buffer_head *bh = head;
998 bool uptodate = folio_test_uptodate(folio);
999 sector_t block = div_u64(folio_pos(folio), size);
1000 sector_t end_block = blkdev_max_block(bdev, size);
1002 do {
1003 if (!buffer_mapped(bh)) {
1004 bh->b_end_io = NULL;
1005 bh->b_private = NULL;
1006 bh->b_bdev = bdev;
1007 bh->b_blocknr = block;
1008 if (uptodate)
1009 set_buffer_uptodate(bh);
1010 if (block < end_block)
1011 set_buffer_mapped(bh);
1013 block++;
1014 bh = bh->b_this_page;
1015 } while (bh != head);
1018 * Caller needs to validate requested block against end of device.
1020 return end_block;
1024 * Create the page-cache folio that contains the requested block.
1026 * This is used purely for blockdev mappings.
1028 * Returns false if we have a failure which cannot be cured by retrying
1029 * without sleeping. Returns true if we succeeded, or the caller should retry.
1031 static bool grow_dev_folio(struct block_device *bdev, sector_t block,
1032 pgoff_t index, unsigned size, gfp_t gfp)
1034 struct address_space *mapping = bdev->bd_mapping;
1035 struct folio *folio;
1036 struct buffer_head *bh;
1037 sector_t end_block = 0;
1039 folio = __filemap_get_folio(mapping, index,
1040 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1041 if (IS_ERR(folio))
1042 return false;
1044 bh = folio_buffers(folio);
1045 if (bh) {
1046 if (bh->b_size == size) {
1047 end_block = folio_init_buffers(folio, bdev, size);
1048 goto unlock;
1052 * Retrying may succeed; for example the folio may finish
1053 * writeback, or buffers may be cleaned. This should not
1054 * happen very often; maybe we have old buffers attached to
1055 * this blockdev's page cache and we're trying to change
1056 * the block size?
1058 if (!try_to_free_buffers(folio)) {
1059 end_block = ~0ULL;
1060 goto unlock;
1064 bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT);
1065 if (!bh)
1066 goto unlock;
1069 * Link the folio to the buffers and initialise them. Take the
1070 * lock to be atomic wrt __find_get_block(), which does not
1071 * run under the folio lock.
1073 spin_lock(&mapping->i_private_lock);
1074 link_dev_buffers(folio, bh);
1075 end_block = folio_init_buffers(folio, bdev, size);
1076 spin_unlock(&mapping->i_private_lock);
1077 unlock:
1078 folio_unlock(folio);
1079 folio_put(folio);
1080 return block < end_block;
1084 * Create buffers for the specified block device block's folio. If
1085 * that folio was dirty, the buffers are set dirty also. Returns false
1086 * if we've hit a permanent error.
1088 static bool grow_buffers(struct block_device *bdev, sector_t block,
1089 unsigned size, gfp_t gfp)
1091 loff_t pos;
1094 * Check for a block which lies outside our maximum possible
1095 * pagecache index.
1097 if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) {
1098 printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n",
1099 __func__, (unsigned long long)block,
1100 bdev);
1101 return false;
1104 /* Create a folio with the proper size buffers */
1105 return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp);
1108 static struct buffer_head *
1109 __getblk_slow(struct block_device *bdev, sector_t block,
1110 unsigned size, gfp_t gfp)
1112 /* Size must be multiple of hard sectorsize */
1113 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1114 (size < 512 || size > PAGE_SIZE))) {
1115 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1116 size);
1117 printk(KERN_ERR "logical block size: %d\n",
1118 bdev_logical_block_size(bdev));
1120 dump_stack();
1121 return NULL;
1124 for (;;) {
1125 struct buffer_head *bh;
1127 bh = __find_get_block(bdev, block, size);
1128 if (bh)
1129 return bh;
1131 if (!grow_buffers(bdev, block, size, gfp))
1132 return NULL;
1137 * The relationship between dirty buffers and dirty pages:
1139 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1140 * the page is tagged dirty in the page cache.
1142 * At all times, the dirtiness of the buffers represents the dirtiness of
1143 * subsections of the page. If the page has buffers, the page dirty bit is
1144 * merely a hint about the true dirty state.
1146 * When a page is set dirty in its entirety, all its buffers are marked dirty
1147 * (if the page has buffers).
1149 * When a buffer is marked dirty, its page is dirtied, but the page's other
1150 * buffers are not.
1152 * Also. When blockdev buffers are explicitly read with bread(), they
1153 * individually become uptodate. But their backing page remains not
1154 * uptodate - even if all of its buffers are uptodate. A subsequent
1155 * block_read_full_folio() against that folio will discover all the uptodate
1156 * buffers, will set the folio uptodate and will perform no I/O.
1160 * mark_buffer_dirty - mark a buffer_head as needing writeout
1161 * @bh: the buffer_head to mark dirty
1163 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1164 * its backing page dirty, then tag the page as dirty in the page cache
1165 * and then attach the address_space's inode to its superblock's dirty
1166 * inode list.
1168 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->i_private_lock,
1169 * i_pages lock and mapping->host->i_lock.
1171 void mark_buffer_dirty(struct buffer_head *bh)
1173 WARN_ON_ONCE(!buffer_uptodate(bh));
1175 trace_block_dirty_buffer(bh);
1178 * Very *carefully* optimize the it-is-already-dirty case.
1180 * Don't let the final "is it dirty" escape to before we
1181 * perhaps modified the buffer.
1183 if (buffer_dirty(bh)) {
1184 smp_mb();
1185 if (buffer_dirty(bh))
1186 return;
1189 if (!test_set_buffer_dirty(bh)) {
1190 struct folio *folio = bh->b_folio;
1191 struct address_space *mapping = NULL;
1193 if (!folio_test_set_dirty(folio)) {
1194 mapping = folio->mapping;
1195 if (mapping)
1196 __folio_mark_dirty(folio, mapping, 0);
1198 if (mapping)
1199 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1202 EXPORT_SYMBOL(mark_buffer_dirty);
1204 void mark_buffer_write_io_error(struct buffer_head *bh)
1206 set_buffer_write_io_error(bh);
1207 /* FIXME: do we need to set this in both places? */
1208 if (bh->b_folio && bh->b_folio->mapping)
1209 mapping_set_error(bh->b_folio->mapping, -EIO);
1210 if (bh->b_assoc_map) {
1211 mapping_set_error(bh->b_assoc_map, -EIO);
1212 errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO);
1215 EXPORT_SYMBOL(mark_buffer_write_io_error);
1218 * __brelse - Release a buffer.
1219 * @bh: The buffer to release.
1221 * This variant of brelse() can be called if @bh is guaranteed to not be NULL.
1223 void __brelse(struct buffer_head *bh)
1225 if (atomic_read(&bh->b_count)) {
1226 put_bh(bh);
1227 return;
1229 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1231 EXPORT_SYMBOL(__brelse);
1234 * __bforget - Discard any dirty data in a buffer.
1235 * @bh: The buffer to forget.
1237 * This variant of bforget() can be called if @bh is guaranteed to not
1238 * be NULL.
1240 void __bforget(struct buffer_head *bh)
1242 clear_buffer_dirty(bh);
1243 if (bh->b_assoc_map) {
1244 struct address_space *buffer_mapping = bh->b_folio->mapping;
1246 spin_lock(&buffer_mapping->i_private_lock);
1247 list_del_init(&bh->b_assoc_buffers);
1248 bh->b_assoc_map = NULL;
1249 spin_unlock(&buffer_mapping->i_private_lock);
1251 __brelse(bh);
1253 EXPORT_SYMBOL(__bforget);
1255 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1257 lock_buffer(bh);
1258 if (buffer_uptodate(bh)) {
1259 unlock_buffer(bh);
1260 return bh;
1261 } else {
1262 get_bh(bh);
1263 bh->b_end_io = end_buffer_read_sync;
1264 submit_bh(REQ_OP_READ, bh);
1265 wait_on_buffer(bh);
1266 if (buffer_uptodate(bh))
1267 return bh;
1269 brelse(bh);
1270 return NULL;
1274 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1275 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1276 * refcount elevated by one when they're in an LRU. A buffer can only appear
1277 * once in a particular CPU's LRU. A single buffer can be present in multiple
1278 * CPU's LRUs at the same time.
1280 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1281 * sb_find_get_block().
1283 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1284 * a local interrupt disable for that.
1287 #define BH_LRU_SIZE 16
1289 struct bh_lru {
1290 struct buffer_head *bhs[BH_LRU_SIZE];
1293 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1295 #ifdef CONFIG_SMP
1296 #define bh_lru_lock() local_irq_disable()
1297 #define bh_lru_unlock() local_irq_enable()
1298 #else
1299 #define bh_lru_lock() preempt_disable()
1300 #define bh_lru_unlock() preempt_enable()
1301 #endif
1303 static inline void check_irqs_on(void)
1305 #ifdef irqs_disabled
1306 BUG_ON(irqs_disabled());
1307 #endif
1311 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1312 * inserted at the front, and the buffer_head at the back if any is evicted.
1313 * Or, if already in the LRU it is moved to the front.
1315 static void bh_lru_install(struct buffer_head *bh)
1317 struct buffer_head *evictee = bh;
1318 struct bh_lru *b;
1319 int i;
1321 check_irqs_on();
1322 bh_lru_lock();
1325 * the refcount of buffer_head in bh_lru prevents dropping the
1326 * attached page(i.e., try_to_free_buffers) so it could cause
1327 * failing page migration.
1328 * Skip putting upcoming bh into bh_lru until migration is done.
1330 if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
1331 bh_lru_unlock();
1332 return;
1335 b = this_cpu_ptr(&bh_lrus);
1336 for (i = 0; i < BH_LRU_SIZE; i++) {
1337 swap(evictee, b->bhs[i]);
1338 if (evictee == bh) {
1339 bh_lru_unlock();
1340 return;
1344 get_bh(bh);
1345 bh_lru_unlock();
1346 brelse(evictee);
1350 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1352 static struct buffer_head *
1353 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1355 struct buffer_head *ret = NULL;
1356 unsigned int i;
1358 check_irqs_on();
1359 bh_lru_lock();
1360 if (cpu_is_isolated(smp_processor_id())) {
1361 bh_lru_unlock();
1362 return NULL;
1364 for (i = 0; i < BH_LRU_SIZE; i++) {
1365 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1367 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1368 bh->b_size == size) {
1369 if (i) {
1370 while (i) {
1371 __this_cpu_write(bh_lrus.bhs[i],
1372 __this_cpu_read(bh_lrus.bhs[i - 1]));
1373 i--;
1375 __this_cpu_write(bh_lrus.bhs[0], bh);
1377 get_bh(bh);
1378 ret = bh;
1379 break;
1382 bh_lru_unlock();
1383 return ret;
1387 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1388 * it in the LRU and mark it as accessed. If it is not present then return
1389 * NULL
1391 struct buffer_head *
1392 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1394 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1396 if (bh == NULL) {
1397 /* __find_get_block_slow will mark the page accessed */
1398 bh = __find_get_block_slow(bdev, block);
1399 if (bh)
1400 bh_lru_install(bh);
1401 } else
1402 touch_buffer(bh);
1404 return bh;
1406 EXPORT_SYMBOL(__find_get_block);
1409 * bdev_getblk - Get a buffer_head in a block device's buffer cache.
1410 * @bdev: The block device.
1411 * @block: The block number.
1412 * @size: The size of buffer_heads for this @bdev.
1413 * @gfp: The memory allocation flags to use.
1415 * The returned buffer head has its reference count incremented, but is
1416 * not locked. The caller should call brelse() when it has finished
1417 * with the buffer. The buffer may not be uptodate. If needed, the
1418 * caller can bring it uptodate either by reading it or overwriting it.
1420 * Return: The buffer head, or NULL if memory could not be allocated.
1422 struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block,
1423 unsigned size, gfp_t gfp)
1425 struct buffer_head *bh = __find_get_block(bdev, block, size);
1427 might_alloc(gfp);
1428 if (bh)
1429 return bh;
1431 return __getblk_slow(bdev, block, size, gfp);
1433 EXPORT_SYMBOL(bdev_getblk);
1436 * Do async read-ahead on a buffer..
1438 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1440 struct buffer_head *bh = bdev_getblk(bdev, block, size,
1441 GFP_NOWAIT | __GFP_MOVABLE);
1443 if (likely(bh)) {
1444 bh_readahead(bh, REQ_RAHEAD);
1445 brelse(bh);
1448 EXPORT_SYMBOL(__breadahead);
1451 * __bread_gfp() - Read a block.
1452 * @bdev: The block device to read from.
1453 * @block: Block number in units of block size.
1454 * @size: The block size of this device in bytes.
1455 * @gfp: Not page allocation flags; see below.
1457 * You are not expected to call this function. You should use one of
1458 * sb_bread(), sb_bread_unmovable() or __bread().
1460 * Read a specified block, and return the buffer head that refers to it.
1461 * If @gfp is 0, the memory will be allocated using the block device's
1462 * default GFP flags. If @gfp is __GFP_MOVABLE, the memory may be
1463 * allocated from a movable area. Do not pass in a complete set of
1464 * GFP flags.
1466 * The returned buffer head has its refcount increased. The caller should
1467 * call brelse() when it has finished with the buffer.
1469 * Context: May sleep waiting for I/O.
1470 * Return: NULL if the block was unreadable.
1472 struct buffer_head *__bread_gfp(struct block_device *bdev, sector_t block,
1473 unsigned size, gfp_t gfp)
1475 struct buffer_head *bh;
1477 gfp |= mapping_gfp_constraint(bdev->bd_mapping, ~__GFP_FS);
1480 * Prefer looping in the allocator rather than here, at least that
1481 * code knows what it's doing.
1483 gfp |= __GFP_NOFAIL;
1485 bh = bdev_getblk(bdev, block, size, gfp);
1487 if (likely(bh) && !buffer_uptodate(bh))
1488 bh = __bread_slow(bh);
1489 return bh;
1491 EXPORT_SYMBOL(__bread_gfp);
1493 static void __invalidate_bh_lrus(struct bh_lru *b)
1495 int i;
1497 for (i = 0; i < BH_LRU_SIZE; i++) {
1498 brelse(b->bhs[i]);
1499 b->bhs[i] = NULL;
1503 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1504 * This doesn't race because it runs in each cpu either in irq
1505 * or with preempt disabled.
1507 static void invalidate_bh_lru(void *arg)
1509 struct bh_lru *b = &get_cpu_var(bh_lrus);
1511 __invalidate_bh_lrus(b);
1512 put_cpu_var(bh_lrus);
1515 bool has_bh_in_lru(int cpu, void *dummy)
1517 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1518 int i;
1520 for (i = 0; i < BH_LRU_SIZE; i++) {
1521 if (b->bhs[i])
1522 return true;
1525 return false;
1528 void invalidate_bh_lrus(void)
1530 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1532 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1535 * It's called from workqueue context so we need a bh_lru_lock to close
1536 * the race with preemption/irq.
1538 void invalidate_bh_lrus_cpu(void)
1540 struct bh_lru *b;
1542 bh_lru_lock();
1543 b = this_cpu_ptr(&bh_lrus);
1544 __invalidate_bh_lrus(b);
1545 bh_lru_unlock();
1548 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1549 unsigned long offset)
1551 bh->b_folio = folio;
1552 BUG_ON(offset >= folio_size(folio));
1553 if (folio_test_highmem(folio))
1555 * This catches illegal uses and preserves the offset:
1557 bh->b_data = (char *)(0 + offset);
1558 else
1559 bh->b_data = folio_address(folio) + offset;
1561 EXPORT_SYMBOL(folio_set_bh);
1564 * Called when truncating a buffer on a page completely.
1567 /* Bits that are cleared during an invalidate */
1568 #define BUFFER_FLAGS_DISCARD \
1569 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1570 1 << BH_Delay | 1 << BH_Unwritten)
1572 static void discard_buffer(struct buffer_head * bh)
1574 unsigned long b_state;
1576 lock_buffer(bh);
1577 clear_buffer_dirty(bh);
1578 bh->b_bdev = NULL;
1579 b_state = READ_ONCE(bh->b_state);
1580 do {
1581 } while (!try_cmpxchg(&bh->b_state, &b_state,
1582 b_state & ~BUFFER_FLAGS_DISCARD));
1583 unlock_buffer(bh);
1587 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1588 * @folio: The folio which is affected.
1589 * @offset: start of the range to invalidate
1590 * @length: length of the range to invalidate
1592 * block_invalidate_folio() is called when all or part of the folio has been
1593 * invalidated by a truncate operation.
1595 * block_invalidate_folio() does not have to release all buffers, but it must
1596 * ensure that no dirty buffer is left outside @offset and that no I/O
1597 * is underway against any of the blocks which are outside the truncation
1598 * point. Because the caller is about to free (and possibly reuse) those
1599 * blocks on-disk.
1601 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1603 struct buffer_head *head, *bh, *next;
1604 size_t curr_off = 0;
1605 size_t stop = length + offset;
1607 BUG_ON(!folio_test_locked(folio));
1610 * Check for overflow
1612 BUG_ON(stop > folio_size(folio) || stop < length);
1614 head = folio_buffers(folio);
1615 if (!head)
1616 return;
1618 bh = head;
1619 do {
1620 size_t next_off = curr_off + bh->b_size;
1621 next = bh->b_this_page;
1624 * Are we still fully in range ?
1626 if (next_off > stop)
1627 goto out;
1630 * is this block fully invalidated?
1632 if (offset <= curr_off)
1633 discard_buffer(bh);
1634 curr_off = next_off;
1635 bh = next;
1636 } while (bh != head);
1639 * We release buffers only if the entire folio is being invalidated.
1640 * The get_block cached value has been unconditionally invalidated,
1641 * so real IO is not possible anymore.
1643 if (length == folio_size(folio))
1644 filemap_release_folio(folio, 0);
1645 out:
1646 folio_clear_mappedtodisk(folio);
1647 return;
1649 EXPORT_SYMBOL(block_invalidate_folio);
1652 * We attach and possibly dirty the buffers atomically wrt
1653 * block_dirty_folio() via i_private_lock. try_to_free_buffers
1654 * is already excluded via the folio lock.
1656 struct buffer_head *create_empty_buffers(struct folio *folio,
1657 unsigned long blocksize, unsigned long b_state)
1659 struct buffer_head *bh, *head, *tail;
1660 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL;
1662 head = folio_alloc_buffers(folio, blocksize, gfp);
1663 bh = head;
1664 do {
1665 bh->b_state |= b_state;
1666 tail = bh;
1667 bh = bh->b_this_page;
1668 } while (bh);
1669 tail->b_this_page = head;
1671 spin_lock(&folio->mapping->i_private_lock);
1672 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1673 bh = head;
1674 do {
1675 if (folio_test_dirty(folio))
1676 set_buffer_dirty(bh);
1677 if (folio_test_uptodate(folio))
1678 set_buffer_uptodate(bh);
1679 bh = bh->b_this_page;
1680 } while (bh != head);
1682 folio_attach_private(folio, head);
1683 spin_unlock(&folio->mapping->i_private_lock);
1685 return head;
1687 EXPORT_SYMBOL(create_empty_buffers);
1690 * clean_bdev_aliases: clean a range of buffers in block device
1691 * @bdev: Block device to clean buffers in
1692 * @block: Start of a range of blocks to clean
1693 * @len: Number of blocks to clean
1695 * We are taking a range of blocks for data and we don't want writeback of any
1696 * buffer-cache aliases starting from return from this function and until the
1697 * moment when something will explicitly mark the buffer dirty (hopefully that
1698 * will not happen until we will free that block ;-) We don't even need to mark
1699 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1700 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1701 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1702 * would confuse anyone who might pick it with bread() afterwards...
1704 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1705 * writeout I/O going on against recently-freed buffers. We don't wait on that
1706 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1707 * need to. That happens here.
1709 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1711 struct address_space *bd_mapping = bdev->bd_mapping;
1712 const int blkbits = bd_mapping->host->i_blkbits;
1713 struct folio_batch fbatch;
1714 pgoff_t index = ((loff_t)block << blkbits) / PAGE_SIZE;
1715 pgoff_t end;
1716 int i, count;
1717 struct buffer_head *bh;
1718 struct buffer_head *head;
1720 end = ((loff_t)(block + len - 1) << blkbits) / PAGE_SIZE;
1721 folio_batch_init(&fbatch);
1722 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1723 count = folio_batch_count(&fbatch);
1724 for (i = 0; i < count; i++) {
1725 struct folio *folio = fbatch.folios[i];
1727 if (!folio_buffers(folio))
1728 continue;
1730 * We use folio lock instead of bd_mapping->i_private_lock
1731 * to pin buffers here since we can afford to sleep and
1732 * it scales better than a global spinlock lock.
1734 folio_lock(folio);
1735 /* Recheck when the folio is locked which pins bhs */
1736 head = folio_buffers(folio);
1737 if (!head)
1738 goto unlock_page;
1739 bh = head;
1740 do {
1741 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1742 goto next;
1743 if (bh->b_blocknr >= block + len)
1744 break;
1745 clear_buffer_dirty(bh);
1746 wait_on_buffer(bh);
1747 clear_buffer_req(bh);
1748 next:
1749 bh = bh->b_this_page;
1750 } while (bh != head);
1751 unlock_page:
1752 folio_unlock(folio);
1754 folio_batch_release(&fbatch);
1755 cond_resched();
1756 /* End of range already reached? */
1757 if (index > end || !index)
1758 break;
1761 EXPORT_SYMBOL(clean_bdev_aliases);
1763 static struct buffer_head *folio_create_buffers(struct folio *folio,
1764 struct inode *inode,
1765 unsigned int b_state)
1767 struct buffer_head *bh;
1769 BUG_ON(!folio_test_locked(folio));
1771 bh = folio_buffers(folio);
1772 if (!bh)
1773 bh = create_empty_buffers(folio,
1774 1 << READ_ONCE(inode->i_blkbits), b_state);
1775 return bh;
1779 * NOTE! All mapped/uptodate combinations are valid:
1781 * Mapped Uptodate Meaning
1783 * No No "unknown" - must do get_block()
1784 * No Yes "hole" - zero-filled
1785 * Yes No "allocated" - allocated on disk, not read in
1786 * Yes Yes "valid" - allocated and up-to-date in memory.
1788 * "Dirty" is valid only with the last case (mapped+uptodate).
1792 * While block_write_full_folio is writing back the dirty buffers under
1793 * the page lock, whoever dirtied the buffers may decide to clean them
1794 * again at any time. We handle that by only looking at the buffer
1795 * state inside lock_buffer().
1797 * If block_write_full_folio() is called for regular writeback
1798 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1799 * locked buffer. This only can happen if someone has written the buffer
1800 * directly, with submit_bh(). At the address_space level PageWriteback
1801 * prevents this contention from occurring.
1803 * If block_write_full_folio() is called with wbc->sync_mode ==
1804 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1805 * causes the writes to be flagged as synchronous writes.
1807 int __block_write_full_folio(struct inode *inode, struct folio *folio,
1808 get_block_t *get_block, struct writeback_control *wbc)
1810 int err;
1811 sector_t block;
1812 sector_t last_block;
1813 struct buffer_head *bh, *head;
1814 size_t blocksize;
1815 int nr_underway = 0;
1816 blk_opf_t write_flags = wbc_to_write_flags(wbc);
1818 head = folio_create_buffers(folio, inode,
1819 (1 << BH_Dirty) | (1 << BH_Uptodate));
1822 * Be very careful. We have no exclusion from block_dirty_folio
1823 * here, and the (potentially unmapped) buffers may become dirty at
1824 * any time. If a buffer becomes dirty here after we've inspected it
1825 * then we just miss that fact, and the folio stays dirty.
1827 * Buffers outside i_size may be dirtied by block_dirty_folio;
1828 * handle that here by just cleaning them.
1831 bh = head;
1832 blocksize = bh->b_size;
1834 block = div_u64(folio_pos(folio), blocksize);
1835 last_block = div_u64(i_size_read(inode) - 1, blocksize);
1838 * Get all the dirty buffers mapped to disk addresses and
1839 * handle any aliases from the underlying blockdev's mapping.
1841 do {
1842 if (block > last_block) {
1844 * mapped buffers outside i_size will occur, because
1845 * this folio can be outside i_size when there is a
1846 * truncate in progress.
1849 * The buffer was zeroed by block_write_full_folio()
1851 clear_buffer_dirty(bh);
1852 set_buffer_uptodate(bh);
1853 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1854 buffer_dirty(bh)) {
1855 WARN_ON(bh->b_size != blocksize);
1856 err = get_block(inode, block, bh, 1);
1857 if (err)
1858 goto recover;
1859 clear_buffer_delay(bh);
1860 if (buffer_new(bh)) {
1861 /* blockdev mappings never come here */
1862 clear_buffer_new(bh);
1863 clean_bdev_bh_alias(bh);
1866 bh = bh->b_this_page;
1867 block++;
1868 } while (bh != head);
1870 do {
1871 if (!buffer_mapped(bh))
1872 continue;
1874 * If it's a fully non-blocking write attempt and we cannot
1875 * lock the buffer then redirty the folio. Note that this can
1876 * potentially cause a busy-wait loop from writeback threads
1877 * and kswapd activity, but those code paths have their own
1878 * higher-level throttling.
1880 if (wbc->sync_mode != WB_SYNC_NONE) {
1881 lock_buffer(bh);
1882 } else if (!trylock_buffer(bh)) {
1883 folio_redirty_for_writepage(wbc, folio);
1884 continue;
1886 if (test_clear_buffer_dirty(bh)) {
1887 mark_buffer_async_write_endio(bh,
1888 end_buffer_async_write);
1889 } else {
1890 unlock_buffer(bh);
1892 } while ((bh = bh->b_this_page) != head);
1895 * The folio and its buffers are protected by the writeback flag,
1896 * so we can drop the bh refcounts early.
1898 BUG_ON(folio_test_writeback(folio));
1899 folio_start_writeback(folio);
1901 do {
1902 struct buffer_head *next = bh->b_this_page;
1903 if (buffer_async_write(bh)) {
1904 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1905 inode->i_write_hint, wbc);
1906 nr_underway++;
1908 bh = next;
1909 } while (bh != head);
1910 folio_unlock(folio);
1912 err = 0;
1913 done:
1914 if (nr_underway == 0) {
1916 * The folio was marked dirty, but the buffers were
1917 * clean. Someone wrote them back by hand with
1918 * write_dirty_buffer/submit_bh. A rare case.
1920 folio_end_writeback(folio);
1923 * The folio and buffer_heads can be released at any time from
1924 * here on.
1927 return err;
1929 recover:
1931 * ENOSPC, or some other error. We may already have added some
1932 * blocks to the file, so we need to write these out to avoid
1933 * exposing stale data.
1934 * The folio is currently locked and not marked for writeback
1936 bh = head;
1937 /* Recovery: lock and submit the mapped buffers */
1938 do {
1939 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1940 !buffer_delay(bh)) {
1941 lock_buffer(bh);
1942 mark_buffer_async_write_endio(bh,
1943 end_buffer_async_write);
1944 } else {
1946 * The buffer may have been set dirty during
1947 * attachment to a dirty folio.
1949 clear_buffer_dirty(bh);
1951 } while ((bh = bh->b_this_page) != head);
1952 BUG_ON(folio_test_writeback(folio));
1953 mapping_set_error(folio->mapping, err);
1954 folio_start_writeback(folio);
1955 do {
1956 struct buffer_head *next = bh->b_this_page;
1957 if (buffer_async_write(bh)) {
1958 clear_buffer_dirty(bh);
1959 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1960 inode->i_write_hint, wbc);
1961 nr_underway++;
1963 bh = next;
1964 } while (bh != head);
1965 folio_unlock(folio);
1966 goto done;
1968 EXPORT_SYMBOL(__block_write_full_folio);
1971 * If a folio has any new buffers, zero them out here, and mark them uptodate
1972 * and dirty so they'll be written out (in order to prevent uninitialised
1973 * block data from leaking). And clear the new bit.
1975 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
1977 size_t block_start, block_end;
1978 struct buffer_head *head, *bh;
1980 BUG_ON(!folio_test_locked(folio));
1981 head = folio_buffers(folio);
1982 if (!head)
1983 return;
1985 bh = head;
1986 block_start = 0;
1987 do {
1988 block_end = block_start + bh->b_size;
1990 if (buffer_new(bh)) {
1991 if (block_end > from && block_start < to) {
1992 if (!folio_test_uptodate(folio)) {
1993 size_t start, xend;
1995 start = max(from, block_start);
1996 xend = min(to, block_end);
1998 folio_zero_segment(folio, start, xend);
1999 set_buffer_uptodate(bh);
2002 clear_buffer_new(bh);
2003 mark_buffer_dirty(bh);
2007 block_start = block_end;
2008 bh = bh->b_this_page;
2009 } while (bh != head);
2011 EXPORT_SYMBOL(folio_zero_new_buffers);
2013 static int
2014 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2015 const struct iomap *iomap)
2017 loff_t offset = (loff_t)block << inode->i_blkbits;
2019 bh->b_bdev = iomap->bdev;
2022 * Block points to offset in file we need to map, iomap contains
2023 * the offset at which the map starts. If the map ends before the
2024 * current block, then do not map the buffer and let the caller
2025 * handle it.
2027 if (offset >= iomap->offset + iomap->length)
2028 return -EIO;
2030 switch (iomap->type) {
2031 case IOMAP_HOLE:
2033 * If the buffer is not up to date or beyond the current EOF,
2034 * we need to mark it as new to ensure sub-block zeroing is
2035 * executed if necessary.
2037 if (!buffer_uptodate(bh) ||
2038 (offset >= i_size_read(inode)))
2039 set_buffer_new(bh);
2040 return 0;
2041 case IOMAP_DELALLOC:
2042 if (!buffer_uptodate(bh) ||
2043 (offset >= i_size_read(inode)))
2044 set_buffer_new(bh);
2045 set_buffer_uptodate(bh);
2046 set_buffer_mapped(bh);
2047 set_buffer_delay(bh);
2048 return 0;
2049 case IOMAP_UNWRITTEN:
2051 * For unwritten regions, we always need to ensure that regions
2052 * in the block we are not writing to are zeroed. Mark the
2053 * buffer as new to ensure this.
2055 set_buffer_new(bh);
2056 set_buffer_unwritten(bh);
2057 fallthrough;
2058 case IOMAP_MAPPED:
2059 if ((iomap->flags & IOMAP_F_NEW) ||
2060 offset >= i_size_read(inode)) {
2062 * This can happen if truncating the block device races
2063 * with the check in the caller as i_size updates on
2064 * block devices aren't synchronized by i_rwsem for
2065 * block devices.
2067 if (S_ISBLK(inode->i_mode))
2068 return -EIO;
2069 set_buffer_new(bh);
2071 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2072 inode->i_blkbits;
2073 set_buffer_mapped(bh);
2074 return 0;
2075 default:
2076 WARN_ON_ONCE(1);
2077 return -EIO;
2081 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2082 get_block_t *get_block, const struct iomap *iomap)
2084 size_t from = offset_in_folio(folio, pos);
2085 size_t to = from + len;
2086 struct inode *inode = folio->mapping->host;
2087 size_t block_start, block_end;
2088 sector_t block;
2089 int err = 0;
2090 size_t blocksize;
2091 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2093 BUG_ON(!folio_test_locked(folio));
2094 BUG_ON(to > folio_size(folio));
2095 BUG_ON(from > to);
2097 head = folio_create_buffers(folio, inode, 0);
2098 blocksize = head->b_size;
2099 block = div_u64(folio_pos(folio), blocksize);
2101 for (bh = head, block_start = 0; bh != head || !block_start;
2102 block++, block_start=block_end, bh = bh->b_this_page) {
2103 block_end = block_start + blocksize;
2104 if (block_end <= from || block_start >= to) {
2105 if (folio_test_uptodate(folio)) {
2106 if (!buffer_uptodate(bh))
2107 set_buffer_uptodate(bh);
2109 continue;
2111 if (buffer_new(bh))
2112 clear_buffer_new(bh);
2113 if (!buffer_mapped(bh)) {
2114 WARN_ON(bh->b_size != blocksize);
2115 if (get_block)
2116 err = get_block(inode, block, bh, 1);
2117 else
2118 err = iomap_to_bh(inode, block, bh, iomap);
2119 if (err)
2120 break;
2122 if (buffer_new(bh)) {
2123 clean_bdev_bh_alias(bh);
2124 if (folio_test_uptodate(folio)) {
2125 clear_buffer_new(bh);
2126 set_buffer_uptodate(bh);
2127 mark_buffer_dirty(bh);
2128 continue;
2130 if (block_end > to || block_start < from)
2131 folio_zero_segments(folio,
2132 to, block_end,
2133 block_start, from);
2134 continue;
2137 if (folio_test_uptodate(folio)) {
2138 if (!buffer_uptodate(bh))
2139 set_buffer_uptodate(bh);
2140 continue;
2142 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2143 !buffer_unwritten(bh) &&
2144 (block_start < from || block_end > to)) {
2145 bh_read_nowait(bh, 0);
2146 *wait_bh++=bh;
2150 * If we issued read requests - let them complete.
2152 while(wait_bh > wait) {
2153 wait_on_buffer(*--wait_bh);
2154 if (!buffer_uptodate(*wait_bh))
2155 err = -EIO;
2157 if (unlikely(err))
2158 folio_zero_new_buffers(folio, from, to);
2159 return err;
2162 int __block_write_begin(struct folio *folio, loff_t pos, unsigned len,
2163 get_block_t *get_block)
2165 return __block_write_begin_int(folio, pos, len, get_block, NULL);
2167 EXPORT_SYMBOL(__block_write_begin);
2169 static void __block_commit_write(struct folio *folio, size_t from, size_t to)
2171 size_t block_start, block_end;
2172 bool partial = false;
2173 unsigned blocksize;
2174 struct buffer_head *bh, *head;
2176 bh = head = folio_buffers(folio);
2177 if (!bh)
2178 return;
2179 blocksize = bh->b_size;
2181 block_start = 0;
2182 do {
2183 block_end = block_start + blocksize;
2184 if (block_end <= from || block_start >= to) {
2185 if (!buffer_uptodate(bh))
2186 partial = true;
2187 } else {
2188 set_buffer_uptodate(bh);
2189 mark_buffer_dirty(bh);
2191 if (buffer_new(bh))
2192 clear_buffer_new(bh);
2194 block_start = block_end;
2195 bh = bh->b_this_page;
2196 } while (bh != head);
2199 * If this is a partial write which happened to make all buffers
2200 * uptodate then we can optimize away a bogus read_folio() for
2201 * the next read(). Here we 'discover' whether the folio went
2202 * uptodate as a result of this (potentially partial) write.
2204 if (!partial)
2205 folio_mark_uptodate(folio);
2209 * block_write_begin takes care of the basic task of block allocation and
2210 * bringing partial write blocks uptodate first.
2212 * The filesystem needs to handle block truncation upon failure.
2214 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2215 struct folio **foliop, get_block_t *get_block)
2217 pgoff_t index = pos >> PAGE_SHIFT;
2218 struct folio *folio;
2219 int status;
2221 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2222 mapping_gfp_mask(mapping));
2223 if (IS_ERR(folio))
2224 return PTR_ERR(folio);
2226 status = __block_write_begin_int(folio, pos, len, get_block, NULL);
2227 if (unlikely(status)) {
2228 folio_unlock(folio);
2229 folio_put(folio);
2230 folio = NULL;
2233 *foliop = folio;
2234 return status;
2236 EXPORT_SYMBOL(block_write_begin);
2238 int block_write_end(struct file *file, struct address_space *mapping,
2239 loff_t pos, unsigned len, unsigned copied,
2240 struct folio *folio, void *fsdata)
2242 size_t start = pos - folio_pos(folio);
2244 if (unlikely(copied < len)) {
2246 * The buffers that were written will now be uptodate, so
2247 * we don't have to worry about a read_folio reading them
2248 * and overwriting a partial write. However if we have
2249 * encountered a short write and only partially written
2250 * into a buffer, it will not be marked uptodate, so a
2251 * read_folio might come in and destroy our partial write.
2253 * Do the simplest thing, and just treat any short write to a
2254 * non uptodate folio as a zero-length write, and force the
2255 * caller to redo the whole thing.
2257 if (!folio_test_uptodate(folio))
2258 copied = 0;
2260 folio_zero_new_buffers(folio, start+copied, start+len);
2262 flush_dcache_folio(folio);
2264 /* This could be a short (even 0-length) commit */
2265 __block_commit_write(folio, start, start + copied);
2267 return copied;
2269 EXPORT_SYMBOL(block_write_end);
2271 int generic_write_end(struct file *file, struct address_space *mapping,
2272 loff_t pos, unsigned len, unsigned copied,
2273 struct folio *folio, void *fsdata)
2275 struct inode *inode = mapping->host;
2276 loff_t old_size = inode->i_size;
2277 bool i_size_changed = false;
2279 copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata);
2282 * No need to use i_size_read() here, the i_size cannot change under us
2283 * because we hold i_rwsem.
2285 * But it's important to update i_size while still holding folio lock:
2286 * page writeout could otherwise come in and zero beyond i_size.
2288 if (pos + copied > inode->i_size) {
2289 i_size_write(inode, pos + copied);
2290 i_size_changed = true;
2293 folio_unlock(folio);
2294 folio_put(folio);
2296 if (old_size < pos)
2297 pagecache_isize_extended(inode, old_size, pos);
2299 * Don't mark the inode dirty under page lock. First, it unnecessarily
2300 * makes the holding time of page lock longer. Second, it forces lock
2301 * ordering of page lock and transaction start for journaling
2302 * filesystems.
2304 if (i_size_changed)
2305 mark_inode_dirty(inode);
2306 return copied;
2308 EXPORT_SYMBOL(generic_write_end);
2311 * block_is_partially_uptodate checks whether buffers within a folio are
2312 * uptodate or not.
2314 * Returns true if all buffers which correspond to the specified part
2315 * of the folio are uptodate.
2317 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2319 unsigned block_start, block_end, blocksize;
2320 unsigned to;
2321 struct buffer_head *bh, *head;
2322 bool ret = true;
2324 head = folio_buffers(folio);
2325 if (!head)
2326 return false;
2327 blocksize = head->b_size;
2328 to = min_t(unsigned, folio_size(folio) - from, count);
2329 to = from + to;
2330 if (from < blocksize && to > folio_size(folio) - blocksize)
2331 return false;
2333 bh = head;
2334 block_start = 0;
2335 do {
2336 block_end = block_start + blocksize;
2337 if (block_end > from && block_start < to) {
2338 if (!buffer_uptodate(bh)) {
2339 ret = false;
2340 break;
2342 if (block_end >= to)
2343 break;
2345 block_start = block_end;
2346 bh = bh->b_this_page;
2347 } while (bh != head);
2349 return ret;
2351 EXPORT_SYMBOL(block_is_partially_uptodate);
2354 * Generic "read_folio" function for block devices that have the normal
2355 * get_block functionality. This is most of the block device filesystems.
2356 * Reads the folio asynchronously --- the unlock_buffer() and
2357 * set/clear_buffer_uptodate() functions propagate buffer state into the
2358 * folio once IO has completed.
2360 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2362 struct inode *inode = folio->mapping->host;
2363 sector_t iblock, lblock;
2364 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2365 size_t blocksize;
2366 int nr, i;
2367 int fully_mapped = 1;
2368 bool page_error = false;
2369 loff_t limit = i_size_read(inode);
2371 /* This is needed for ext4. */
2372 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2373 limit = inode->i_sb->s_maxbytes;
2375 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2377 head = folio_create_buffers(folio, inode, 0);
2378 blocksize = head->b_size;
2380 iblock = div_u64(folio_pos(folio), blocksize);
2381 lblock = div_u64(limit + blocksize - 1, blocksize);
2382 bh = head;
2383 nr = 0;
2384 i = 0;
2386 do {
2387 if (buffer_uptodate(bh))
2388 continue;
2390 if (!buffer_mapped(bh)) {
2391 int err = 0;
2393 fully_mapped = 0;
2394 if (iblock < lblock) {
2395 WARN_ON(bh->b_size != blocksize);
2396 err = get_block(inode, iblock, bh, 0);
2397 if (err)
2398 page_error = true;
2400 if (!buffer_mapped(bh)) {
2401 folio_zero_range(folio, i * blocksize,
2402 blocksize);
2403 if (!err)
2404 set_buffer_uptodate(bh);
2405 continue;
2408 * get_block() might have updated the buffer
2409 * synchronously
2411 if (buffer_uptodate(bh))
2412 continue;
2414 arr[nr++] = bh;
2415 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2417 if (fully_mapped)
2418 folio_set_mappedtodisk(folio);
2420 if (!nr) {
2422 * All buffers are uptodate or get_block() returned an
2423 * error when trying to map them - we can finish the read.
2425 folio_end_read(folio, !page_error);
2426 return 0;
2429 /* Stage two: lock the buffers */
2430 for (i = 0; i < nr; i++) {
2431 bh = arr[i];
2432 lock_buffer(bh);
2433 mark_buffer_async_read(bh);
2437 * Stage 3: start the IO. Check for uptodateness
2438 * inside the buffer lock in case another process reading
2439 * the underlying blockdev brought it uptodate (the sct fix).
2441 for (i = 0; i < nr; i++) {
2442 bh = arr[i];
2443 if (buffer_uptodate(bh))
2444 end_buffer_async_read(bh, 1);
2445 else
2446 submit_bh(REQ_OP_READ, bh);
2448 return 0;
2450 EXPORT_SYMBOL(block_read_full_folio);
2452 /* utility function for filesystems that need to do work on expanding
2453 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2454 * deal with the hole.
2456 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2458 struct address_space *mapping = inode->i_mapping;
2459 const struct address_space_operations *aops = mapping->a_ops;
2460 struct folio *folio;
2461 void *fsdata = NULL;
2462 int err;
2464 err = inode_newsize_ok(inode, size);
2465 if (err)
2466 goto out;
2468 err = aops->write_begin(NULL, mapping, size, 0, &folio, &fsdata);
2469 if (err)
2470 goto out;
2472 err = aops->write_end(NULL, mapping, size, 0, 0, folio, fsdata);
2473 BUG_ON(err > 0);
2475 out:
2476 return err;
2478 EXPORT_SYMBOL(generic_cont_expand_simple);
2480 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2481 loff_t pos, loff_t *bytes)
2483 struct inode *inode = mapping->host;
2484 const struct address_space_operations *aops = mapping->a_ops;
2485 unsigned int blocksize = i_blocksize(inode);
2486 struct folio *folio;
2487 void *fsdata = NULL;
2488 pgoff_t index, curidx;
2489 loff_t curpos;
2490 unsigned zerofrom, offset, len;
2491 int err = 0;
2493 index = pos >> PAGE_SHIFT;
2494 offset = pos & ~PAGE_MASK;
2496 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2497 zerofrom = curpos & ~PAGE_MASK;
2498 if (zerofrom & (blocksize-1)) {
2499 *bytes |= (blocksize-1);
2500 (*bytes)++;
2502 len = PAGE_SIZE - zerofrom;
2504 err = aops->write_begin(file, mapping, curpos, len,
2505 &folio, &fsdata);
2506 if (err)
2507 goto out;
2508 folio_zero_range(folio, offset_in_folio(folio, curpos), len);
2509 err = aops->write_end(file, mapping, curpos, len, len,
2510 folio, fsdata);
2511 if (err < 0)
2512 goto out;
2513 BUG_ON(err != len);
2514 err = 0;
2516 balance_dirty_pages_ratelimited(mapping);
2518 if (fatal_signal_pending(current)) {
2519 err = -EINTR;
2520 goto out;
2524 /* page covers the boundary, find the boundary offset */
2525 if (index == curidx) {
2526 zerofrom = curpos & ~PAGE_MASK;
2527 /* if we will expand the thing last block will be filled */
2528 if (offset <= zerofrom) {
2529 goto out;
2531 if (zerofrom & (blocksize-1)) {
2532 *bytes |= (blocksize-1);
2533 (*bytes)++;
2535 len = offset - zerofrom;
2537 err = aops->write_begin(file, mapping, curpos, len,
2538 &folio, &fsdata);
2539 if (err)
2540 goto out;
2541 folio_zero_range(folio, offset_in_folio(folio, curpos), len);
2542 err = aops->write_end(file, mapping, curpos, len, len,
2543 folio, fsdata);
2544 if (err < 0)
2545 goto out;
2546 BUG_ON(err != len);
2547 err = 0;
2549 out:
2550 return err;
2554 * For moronic filesystems that do not allow holes in file.
2555 * We may have to extend the file.
2557 int cont_write_begin(struct file *file, struct address_space *mapping,
2558 loff_t pos, unsigned len,
2559 struct folio **foliop, void **fsdata,
2560 get_block_t *get_block, loff_t *bytes)
2562 struct inode *inode = mapping->host;
2563 unsigned int blocksize = i_blocksize(inode);
2564 unsigned int zerofrom;
2565 int err;
2567 err = cont_expand_zero(file, mapping, pos, bytes);
2568 if (err)
2569 return err;
2571 zerofrom = *bytes & ~PAGE_MASK;
2572 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2573 *bytes |= (blocksize-1);
2574 (*bytes)++;
2577 return block_write_begin(mapping, pos, len, foliop, get_block);
2579 EXPORT_SYMBOL(cont_write_begin);
2581 void block_commit_write(struct page *page, unsigned from, unsigned to)
2583 struct folio *folio = page_folio(page);
2584 __block_commit_write(folio, from, to);
2586 EXPORT_SYMBOL(block_commit_write);
2589 * block_page_mkwrite() is not allowed to change the file size as it gets
2590 * called from a page fault handler when a page is first dirtied. Hence we must
2591 * be careful to check for EOF conditions here. We set the page up correctly
2592 * for a written page which means we get ENOSPC checking when writing into
2593 * holes and correct delalloc and unwritten extent mapping on filesystems that
2594 * support these features.
2596 * We are not allowed to take the i_mutex here so we have to play games to
2597 * protect against truncate races as the page could now be beyond EOF. Because
2598 * truncate writes the inode size before removing pages, once we have the
2599 * page lock we can determine safely if the page is beyond EOF. If it is not
2600 * beyond EOF, then the page is guaranteed safe against truncation until we
2601 * unlock the page.
2603 * Direct callers of this function should protect against filesystem freezing
2604 * using sb_start_pagefault() - sb_end_pagefault() functions.
2606 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2607 get_block_t get_block)
2609 struct folio *folio = page_folio(vmf->page);
2610 struct inode *inode = file_inode(vma->vm_file);
2611 unsigned long end;
2612 loff_t size;
2613 int ret;
2615 folio_lock(folio);
2616 size = i_size_read(inode);
2617 if ((folio->mapping != inode->i_mapping) ||
2618 (folio_pos(folio) >= size)) {
2619 /* We overload EFAULT to mean page got truncated */
2620 ret = -EFAULT;
2621 goto out_unlock;
2624 end = folio_size(folio);
2625 /* folio is wholly or partially inside EOF */
2626 if (folio_pos(folio) + end > size)
2627 end = size - folio_pos(folio);
2629 ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2630 if (unlikely(ret))
2631 goto out_unlock;
2633 __block_commit_write(folio, 0, end);
2635 folio_mark_dirty(folio);
2636 folio_wait_stable(folio);
2637 return 0;
2638 out_unlock:
2639 folio_unlock(folio);
2640 return ret;
2642 EXPORT_SYMBOL(block_page_mkwrite);
2644 int block_truncate_page(struct address_space *mapping,
2645 loff_t from, get_block_t *get_block)
2647 pgoff_t index = from >> PAGE_SHIFT;
2648 unsigned blocksize;
2649 sector_t iblock;
2650 size_t offset, length, pos;
2651 struct inode *inode = mapping->host;
2652 struct folio *folio;
2653 struct buffer_head *bh;
2654 int err = 0;
2656 blocksize = i_blocksize(inode);
2657 length = from & (blocksize - 1);
2659 /* Block boundary? Nothing to do */
2660 if (!length)
2661 return 0;
2663 length = blocksize - length;
2664 iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits;
2666 folio = filemap_grab_folio(mapping, index);
2667 if (IS_ERR(folio))
2668 return PTR_ERR(folio);
2670 bh = folio_buffers(folio);
2671 if (!bh)
2672 bh = create_empty_buffers(folio, blocksize, 0);
2674 /* Find the buffer that contains "offset" */
2675 offset = offset_in_folio(folio, from);
2676 pos = blocksize;
2677 while (offset >= pos) {
2678 bh = bh->b_this_page;
2679 iblock++;
2680 pos += blocksize;
2683 if (!buffer_mapped(bh)) {
2684 WARN_ON(bh->b_size != blocksize);
2685 err = get_block(inode, iblock, bh, 0);
2686 if (err)
2687 goto unlock;
2688 /* unmapped? It's a hole - nothing to do */
2689 if (!buffer_mapped(bh))
2690 goto unlock;
2693 /* Ok, it's mapped. Make sure it's up-to-date */
2694 if (folio_test_uptodate(folio))
2695 set_buffer_uptodate(bh);
2697 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2698 err = bh_read(bh, 0);
2699 /* Uhhuh. Read error. Complain and punt. */
2700 if (err < 0)
2701 goto unlock;
2704 folio_zero_range(folio, offset, length);
2705 mark_buffer_dirty(bh);
2707 unlock:
2708 folio_unlock(folio);
2709 folio_put(folio);
2711 return err;
2713 EXPORT_SYMBOL(block_truncate_page);
2716 * The generic ->writepage function for buffer-backed address_spaces
2718 int block_write_full_folio(struct folio *folio, struct writeback_control *wbc,
2719 void *get_block)
2721 struct inode * const inode = folio->mapping->host;
2722 loff_t i_size = i_size_read(inode);
2724 /* Is the folio fully inside i_size? */
2725 if (folio_pos(folio) + folio_size(folio) <= i_size)
2726 return __block_write_full_folio(inode, folio, get_block, wbc);
2728 /* Is the folio fully outside i_size? (truncate in progress) */
2729 if (folio_pos(folio) >= i_size) {
2730 folio_unlock(folio);
2731 return 0; /* don't care */
2735 * The folio straddles i_size. It must be zeroed out on each and every
2736 * writepage invocation because it may be mmapped. "A file is mapped
2737 * in multiples of the page size. For a file that is not a multiple of
2738 * the page size, the remaining memory is zeroed when mapped, and
2739 * writes to that region are not written out to the file."
2741 folio_zero_segment(folio, offset_in_folio(folio, i_size),
2742 folio_size(folio));
2743 return __block_write_full_folio(inode, folio, get_block, wbc);
2746 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2747 get_block_t *get_block)
2749 struct inode *inode = mapping->host;
2750 struct buffer_head tmp = {
2751 .b_size = i_blocksize(inode),
2754 get_block(inode, block, &tmp, 0);
2755 return tmp.b_blocknr;
2757 EXPORT_SYMBOL(generic_block_bmap);
2759 static void end_bio_bh_io_sync(struct bio *bio)
2761 struct buffer_head *bh = bio->bi_private;
2763 if (unlikely(bio_flagged(bio, BIO_QUIET)))
2764 set_bit(BH_Quiet, &bh->b_state);
2766 bh->b_end_io(bh, !bio->bi_status);
2767 bio_put(bio);
2770 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2771 enum rw_hint write_hint,
2772 struct writeback_control *wbc)
2774 const enum req_op op = opf & REQ_OP_MASK;
2775 struct bio *bio;
2777 BUG_ON(!buffer_locked(bh));
2778 BUG_ON(!buffer_mapped(bh));
2779 BUG_ON(!bh->b_end_io);
2780 BUG_ON(buffer_delay(bh));
2781 BUG_ON(buffer_unwritten(bh));
2784 * Only clear out a write error when rewriting
2786 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2787 clear_buffer_write_io_error(bh);
2789 if (buffer_meta(bh))
2790 opf |= REQ_META;
2791 if (buffer_prio(bh))
2792 opf |= REQ_PRIO;
2794 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2796 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2798 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2799 bio->bi_write_hint = write_hint;
2801 bio_add_folio_nofail(bio, bh->b_folio, bh->b_size, bh_offset(bh));
2803 bio->bi_end_io = end_bio_bh_io_sync;
2804 bio->bi_private = bh;
2806 /* Take care of bh's that straddle the end of the device */
2807 guard_bio_eod(bio);
2809 if (wbc) {
2810 wbc_init_bio(wbc, bio);
2811 wbc_account_cgroup_owner(wbc, bh->b_folio, bh->b_size);
2814 submit_bio(bio);
2817 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2819 submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL);
2821 EXPORT_SYMBOL(submit_bh);
2823 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2825 lock_buffer(bh);
2826 if (!test_clear_buffer_dirty(bh)) {
2827 unlock_buffer(bh);
2828 return;
2830 bh->b_end_io = end_buffer_write_sync;
2831 get_bh(bh);
2832 submit_bh(REQ_OP_WRITE | op_flags, bh);
2834 EXPORT_SYMBOL(write_dirty_buffer);
2837 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2838 * and then start new I/O and then wait upon it. The caller must have a ref on
2839 * the buffer_head.
2841 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2843 WARN_ON(atomic_read(&bh->b_count) < 1);
2844 lock_buffer(bh);
2845 if (test_clear_buffer_dirty(bh)) {
2847 * The bh should be mapped, but it might not be if the
2848 * device was hot-removed. Not much we can do but fail the I/O.
2850 if (!buffer_mapped(bh)) {
2851 unlock_buffer(bh);
2852 return -EIO;
2855 get_bh(bh);
2856 bh->b_end_io = end_buffer_write_sync;
2857 submit_bh(REQ_OP_WRITE | op_flags, bh);
2858 wait_on_buffer(bh);
2859 if (!buffer_uptodate(bh))
2860 return -EIO;
2861 } else {
2862 unlock_buffer(bh);
2864 return 0;
2866 EXPORT_SYMBOL(__sync_dirty_buffer);
2868 int sync_dirty_buffer(struct buffer_head *bh)
2870 return __sync_dirty_buffer(bh, REQ_SYNC);
2872 EXPORT_SYMBOL(sync_dirty_buffer);
2874 static inline int buffer_busy(struct buffer_head *bh)
2876 return atomic_read(&bh->b_count) |
2877 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2880 static bool
2881 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2883 struct buffer_head *head = folio_buffers(folio);
2884 struct buffer_head *bh;
2886 bh = head;
2887 do {
2888 if (buffer_busy(bh))
2889 goto failed;
2890 bh = bh->b_this_page;
2891 } while (bh != head);
2893 do {
2894 struct buffer_head *next = bh->b_this_page;
2896 if (bh->b_assoc_map)
2897 __remove_assoc_queue(bh);
2898 bh = next;
2899 } while (bh != head);
2900 *buffers_to_free = head;
2901 folio_detach_private(folio);
2902 return true;
2903 failed:
2904 return false;
2908 * try_to_free_buffers - Release buffers attached to this folio.
2909 * @folio: The folio.
2911 * If any buffers are in use (dirty, under writeback, elevated refcount),
2912 * no buffers will be freed.
2914 * If the folio is dirty but all the buffers are clean then we need to
2915 * be sure to mark the folio clean as well. This is because the folio
2916 * may be against a block device, and a later reattachment of buffers
2917 * to a dirty folio will set *all* buffers dirty. Which would corrupt
2918 * filesystem data on the same device.
2920 * The same applies to regular filesystem folios: if all the buffers are
2921 * clean then we set the folio clean and proceed. To do that, we require
2922 * total exclusion from block_dirty_folio(). That is obtained with
2923 * i_private_lock.
2925 * Exclusion against try_to_free_buffers may be obtained by either
2926 * locking the folio or by holding its mapping's i_private_lock.
2928 * Context: Process context. @folio must be locked. Will not sleep.
2929 * Return: true if all buffers attached to this folio were freed.
2931 bool try_to_free_buffers(struct folio *folio)
2933 struct address_space * const mapping = folio->mapping;
2934 struct buffer_head *buffers_to_free = NULL;
2935 bool ret = 0;
2937 BUG_ON(!folio_test_locked(folio));
2938 if (folio_test_writeback(folio))
2939 return false;
2941 if (mapping == NULL) { /* can this still happen? */
2942 ret = drop_buffers(folio, &buffers_to_free);
2943 goto out;
2946 spin_lock(&mapping->i_private_lock);
2947 ret = drop_buffers(folio, &buffers_to_free);
2950 * If the filesystem writes its buffers by hand (eg ext3)
2951 * then we can have clean buffers against a dirty folio. We
2952 * clean the folio here; otherwise the VM will never notice
2953 * that the filesystem did any IO at all.
2955 * Also, during truncate, discard_buffer will have marked all
2956 * the folio's buffers clean. We discover that here and clean
2957 * the folio also.
2959 * i_private_lock must be held over this entire operation in order
2960 * to synchronise against block_dirty_folio and prevent the
2961 * dirty bit from being lost.
2963 if (ret)
2964 folio_cancel_dirty(folio);
2965 spin_unlock(&mapping->i_private_lock);
2966 out:
2967 if (buffers_to_free) {
2968 struct buffer_head *bh = buffers_to_free;
2970 do {
2971 struct buffer_head *next = bh->b_this_page;
2972 free_buffer_head(bh);
2973 bh = next;
2974 } while (bh != buffers_to_free);
2976 return ret;
2978 EXPORT_SYMBOL(try_to_free_buffers);
2981 * Buffer-head allocation
2983 static struct kmem_cache *bh_cachep __ro_after_init;
2986 * Once the number of bh's in the machine exceeds this level, we start
2987 * stripping them in writeback.
2989 static unsigned long max_buffer_heads __ro_after_init;
2991 int buffer_heads_over_limit;
2993 struct bh_accounting {
2994 int nr; /* Number of live bh's */
2995 int ratelimit; /* Limit cacheline bouncing */
2998 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3000 static void recalc_bh_state(void)
3002 int i;
3003 int tot = 0;
3005 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3006 return;
3007 __this_cpu_write(bh_accounting.ratelimit, 0);
3008 for_each_online_cpu(i)
3009 tot += per_cpu(bh_accounting, i).nr;
3010 buffer_heads_over_limit = (tot > max_buffer_heads);
3013 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3015 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3016 if (ret) {
3017 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3018 spin_lock_init(&ret->b_uptodate_lock);
3019 preempt_disable();
3020 __this_cpu_inc(bh_accounting.nr);
3021 recalc_bh_state();
3022 preempt_enable();
3024 return ret;
3026 EXPORT_SYMBOL(alloc_buffer_head);
3028 void free_buffer_head(struct buffer_head *bh)
3030 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3031 kmem_cache_free(bh_cachep, bh);
3032 preempt_disable();
3033 __this_cpu_dec(bh_accounting.nr);
3034 recalc_bh_state();
3035 preempt_enable();
3037 EXPORT_SYMBOL(free_buffer_head);
3039 static int buffer_exit_cpu_dead(unsigned int cpu)
3041 int i;
3042 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3044 for (i = 0; i < BH_LRU_SIZE; i++) {
3045 brelse(b->bhs[i]);
3046 b->bhs[i] = NULL;
3048 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3049 per_cpu(bh_accounting, cpu).nr = 0;
3050 return 0;
3054 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3055 * @bh: struct buffer_head
3057 * Return true if the buffer is up-to-date and false,
3058 * with the buffer locked, if not.
3060 int bh_uptodate_or_lock(struct buffer_head *bh)
3062 if (!buffer_uptodate(bh)) {
3063 lock_buffer(bh);
3064 if (!buffer_uptodate(bh))
3065 return 0;
3066 unlock_buffer(bh);
3068 return 1;
3070 EXPORT_SYMBOL(bh_uptodate_or_lock);
3073 * __bh_read - Submit read for a locked buffer
3074 * @bh: struct buffer_head
3075 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3076 * @wait: wait until reading finish
3078 * Returns zero on success or don't wait, and -EIO on error.
3080 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3082 int ret = 0;
3084 BUG_ON(!buffer_locked(bh));
3086 get_bh(bh);
3087 bh->b_end_io = end_buffer_read_sync;
3088 submit_bh(REQ_OP_READ | op_flags, bh);
3089 if (wait) {
3090 wait_on_buffer(bh);
3091 if (!buffer_uptodate(bh))
3092 ret = -EIO;
3094 return ret;
3096 EXPORT_SYMBOL(__bh_read);
3099 * __bh_read_batch - Submit read for a batch of unlocked buffers
3100 * @nr: entry number of the buffer batch
3101 * @bhs: a batch of struct buffer_head
3102 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3103 * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3104 * buffer that cannot lock.
3106 * Returns zero on success or don't wait, and -EIO on error.
3108 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3109 blk_opf_t op_flags, bool force_lock)
3111 int i;
3113 for (i = 0; i < nr; i++) {
3114 struct buffer_head *bh = bhs[i];
3116 if (buffer_uptodate(bh))
3117 continue;
3119 if (force_lock)
3120 lock_buffer(bh);
3121 else
3122 if (!trylock_buffer(bh))
3123 continue;
3125 if (buffer_uptodate(bh)) {
3126 unlock_buffer(bh);
3127 continue;
3130 bh->b_end_io = end_buffer_read_sync;
3131 get_bh(bh);
3132 submit_bh(REQ_OP_READ | op_flags, bh);
3135 EXPORT_SYMBOL(__bh_read_batch);
3137 void __init buffer_init(void)
3139 unsigned long nrpages;
3140 int ret;
3142 bh_cachep = KMEM_CACHE(buffer_head,
3143 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC);
3145 * Limit the bh occupancy to 10% of ZONE_NORMAL
3147 nrpages = (nr_free_buffer_pages() * 10) / 100;
3148 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3149 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3150 NULL, buffer_exit_cpu_dead);
3151 WARN_ON(ret < 0);