1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
26 #include <linux/iomap.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52 #include <linux/sched/isolation.h>
56 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
);
57 static void submit_bh_wbc(blk_opf_t opf
, struct buffer_head
*bh
,
58 enum rw_hint hint
, struct writeback_control
*wbc
);
60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
62 inline void touch_buffer(struct buffer_head
*bh
)
64 trace_block_touch_buffer(bh
);
65 folio_mark_accessed(bh
->b_folio
);
67 EXPORT_SYMBOL(touch_buffer
);
69 void __lock_buffer(struct buffer_head
*bh
)
71 wait_on_bit_lock_io(&bh
->b_state
, BH_Lock
, TASK_UNINTERRUPTIBLE
);
73 EXPORT_SYMBOL(__lock_buffer
);
75 void unlock_buffer(struct buffer_head
*bh
)
77 clear_bit_unlock(BH_Lock
, &bh
->b_state
);
78 smp_mb__after_atomic();
79 wake_up_bit(&bh
->b_state
, BH_Lock
);
81 EXPORT_SYMBOL(unlock_buffer
);
84 * Returns if the folio has dirty or writeback buffers. If all the buffers
85 * are unlocked and clean then the folio_test_dirty information is stale. If
86 * any of the buffers are locked, it is assumed they are locked for IO.
88 void buffer_check_dirty_writeback(struct folio
*folio
,
89 bool *dirty
, bool *writeback
)
91 struct buffer_head
*head
, *bh
;
95 BUG_ON(!folio_test_locked(folio
));
97 head
= folio_buffers(folio
);
101 if (folio_test_writeback(folio
))
106 if (buffer_locked(bh
))
109 if (buffer_dirty(bh
))
112 bh
= bh
->b_this_page
;
113 } while (bh
!= head
);
117 * Block until a buffer comes unlocked. This doesn't stop it
118 * from becoming locked again - you have to lock it yourself
119 * if you want to preserve its state.
121 void __wait_on_buffer(struct buffer_head
* bh
)
123 wait_on_bit_io(&bh
->b_state
, BH_Lock
, TASK_UNINTERRUPTIBLE
);
125 EXPORT_SYMBOL(__wait_on_buffer
);
127 static void buffer_io_error(struct buffer_head
*bh
, char *msg
)
129 if (!test_bit(BH_Quiet
, &bh
->b_state
))
130 printk_ratelimited(KERN_ERR
131 "Buffer I/O error on dev %pg, logical block %llu%s\n",
132 bh
->b_bdev
, (unsigned long long)bh
->b_blocknr
, msg
);
136 * End-of-IO handler helper function which does not touch the bh after
138 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139 * a race there is benign: unlock_buffer() only use the bh's address for
140 * hashing after unlocking the buffer, so it doesn't actually touch the bh
143 static void __end_buffer_read_notouch(struct buffer_head
*bh
, int uptodate
)
146 set_buffer_uptodate(bh
);
148 /* This happens, due to failed read-ahead attempts. */
149 clear_buffer_uptodate(bh
);
155 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
158 void end_buffer_read_sync(struct buffer_head
*bh
, int uptodate
)
160 __end_buffer_read_notouch(bh
, uptodate
);
163 EXPORT_SYMBOL(end_buffer_read_sync
);
165 void end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
168 set_buffer_uptodate(bh
);
170 buffer_io_error(bh
, ", lost sync page write");
171 mark_buffer_write_io_error(bh
);
172 clear_buffer_uptodate(bh
);
177 EXPORT_SYMBOL(end_buffer_write_sync
);
180 * Various filesystems appear to want __find_get_block to be non-blocking.
181 * But it's the page lock which protects the buffers. To get around this,
182 * we get exclusion from try_to_free_buffers with the blockdev mapping's
185 * Hack idea: for the blockdev mapping, i_private_lock contention
186 * may be quite high. This code could TryLock the page, and if that
187 * succeeds, there is no need to take i_private_lock.
189 static struct buffer_head
*
190 __find_get_block_slow(struct block_device
*bdev
, sector_t block
)
192 struct address_space
*bd_mapping
= bdev
->bd_mapping
;
193 const int blkbits
= bd_mapping
->host
->i_blkbits
;
194 struct buffer_head
*ret
= NULL
;
196 struct buffer_head
*bh
;
197 struct buffer_head
*head
;
200 static DEFINE_RATELIMIT_STATE(last_warned
, HZ
, 1);
202 index
= ((loff_t
)block
<< blkbits
) / PAGE_SIZE
;
203 folio
= __filemap_get_folio(bd_mapping
, index
, FGP_ACCESSED
, 0);
207 spin_lock(&bd_mapping
->i_private_lock
);
208 head
= folio_buffers(folio
);
213 if (!buffer_mapped(bh
))
215 else if (bh
->b_blocknr
== block
) {
220 bh
= bh
->b_this_page
;
221 } while (bh
!= head
);
223 /* we might be here because some of the buffers on this page are
224 * not mapped. This is due to various races between
225 * file io on the block device and getblk. It gets dealt with
226 * elsewhere, don't buffer_error if we had some unmapped buffers
228 ratelimit_set_flags(&last_warned
, RATELIMIT_MSG_ON_RELEASE
);
229 if (all_mapped
&& __ratelimit(&last_warned
)) {
230 printk("__find_get_block_slow() failed. block=%llu, "
231 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232 "device %pg blocksize: %d\n",
233 (unsigned long long)block
,
234 (unsigned long long)bh
->b_blocknr
,
235 bh
->b_state
, bh
->b_size
, bdev
,
239 spin_unlock(&bd_mapping
->i_private_lock
);
245 static void end_buffer_async_read(struct buffer_head
*bh
, int uptodate
)
248 struct buffer_head
*first
;
249 struct buffer_head
*tmp
;
251 int folio_uptodate
= 1;
253 BUG_ON(!buffer_async_read(bh
));
257 set_buffer_uptodate(bh
);
259 clear_buffer_uptodate(bh
);
260 buffer_io_error(bh
, ", async page read");
264 * Be _very_ careful from here on. Bad things can happen if
265 * two buffer heads end IO at almost the same time and both
266 * decide that the page is now completely done.
268 first
= folio_buffers(folio
);
269 spin_lock_irqsave(&first
->b_uptodate_lock
, flags
);
270 clear_buffer_async_read(bh
);
274 if (!buffer_uptodate(tmp
))
276 if (buffer_async_read(tmp
)) {
277 BUG_ON(!buffer_locked(tmp
));
280 tmp
= tmp
->b_this_page
;
282 spin_unlock_irqrestore(&first
->b_uptodate_lock
, flags
);
284 folio_end_read(folio
, folio_uptodate
);
288 spin_unlock_irqrestore(&first
->b_uptodate_lock
, flags
);
292 struct postprocess_bh_ctx
{
293 struct work_struct work
;
294 struct buffer_head
*bh
;
297 static void verify_bh(struct work_struct
*work
)
299 struct postprocess_bh_ctx
*ctx
=
300 container_of(work
, struct postprocess_bh_ctx
, work
);
301 struct buffer_head
*bh
= ctx
->bh
;
304 valid
= fsverity_verify_blocks(bh
->b_folio
, bh
->b_size
, bh_offset(bh
));
305 end_buffer_async_read(bh
, valid
);
309 static bool need_fsverity(struct buffer_head
*bh
)
311 struct folio
*folio
= bh
->b_folio
;
312 struct inode
*inode
= folio
->mapping
->host
;
314 return fsverity_active(inode
) &&
316 folio
->index
< DIV_ROUND_UP(inode
->i_size
, PAGE_SIZE
);
319 static void decrypt_bh(struct work_struct
*work
)
321 struct postprocess_bh_ctx
*ctx
=
322 container_of(work
, struct postprocess_bh_ctx
, work
);
323 struct buffer_head
*bh
= ctx
->bh
;
326 err
= fscrypt_decrypt_pagecache_blocks(bh
->b_folio
, bh
->b_size
,
328 if (err
== 0 && need_fsverity(bh
)) {
330 * We use different work queues for decryption and for verity
331 * because verity may require reading metadata pages that need
332 * decryption, and we shouldn't recurse to the same workqueue.
334 INIT_WORK(&ctx
->work
, verify_bh
);
335 fsverity_enqueue_verify_work(&ctx
->work
);
338 end_buffer_async_read(bh
, err
== 0);
343 * I/O completion handler for block_read_full_folio() - pages
344 * which come unlocked at the end of I/O.
346 static void end_buffer_async_read_io(struct buffer_head
*bh
, int uptodate
)
348 struct inode
*inode
= bh
->b_folio
->mapping
->host
;
349 bool decrypt
= fscrypt_inode_uses_fs_layer_crypto(inode
);
350 bool verify
= need_fsverity(bh
);
352 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
353 if (uptodate
&& (decrypt
|| verify
)) {
354 struct postprocess_bh_ctx
*ctx
=
355 kmalloc(sizeof(*ctx
), GFP_ATOMIC
);
360 INIT_WORK(&ctx
->work
, decrypt_bh
);
361 fscrypt_enqueue_decrypt_work(&ctx
->work
);
363 INIT_WORK(&ctx
->work
, verify_bh
);
364 fsverity_enqueue_verify_work(&ctx
->work
);
370 end_buffer_async_read(bh
, uptodate
);
374 * Completion handler for block_write_full_folio() - folios which are unlocked
375 * during I/O, and which have the writeback flag cleared upon I/O completion.
377 static void end_buffer_async_write(struct buffer_head
*bh
, int uptodate
)
380 struct buffer_head
*first
;
381 struct buffer_head
*tmp
;
384 BUG_ON(!buffer_async_write(bh
));
388 set_buffer_uptodate(bh
);
390 buffer_io_error(bh
, ", lost async page write");
391 mark_buffer_write_io_error(bh
);
392 clear_buffer_uptodate(bh
);
395 first
= folio_buffers(folio
);
396 spin_lock_irqsave(&first
->b_uptodate_lock
, flags
);
398 clear_buffer_async_write(bh
);
400 tmp
= bh
->b_this_page
;
402 if (buffer_async_write(tmp
)) {
403 BUG_ON(!buffer_locked(tmp
));
406 tmp
= tmp
->b_this_page
;
408 spin_unlock_irqrestore(&first
->b_uptodate_lock
, flags
);
409 folio_end_writeback(folio
);
413 spin_unlock_irqrestore(&first
->b_uptodate_lock
, flags
);
418 * If a page's buffers are under async readin (end_buffer_async_read
419 * completion) then there is a possibility that another thread of
420 * control could lock one of the buffers after it has completed
421 * but while some of the other buffers have not completed. This
422 * locked buffer would confuse end_buffer_async_read() into not unlocking
423 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
424 * that this buffer is not under async I/O.
426 * The page comes unlocked when it has no locked buffer_async buffers
429 * PageLocked prevents anyone starting new async I/O reads any of
432 * PageWriteback is used to prevent simultaneous writeout of the same
435 * PageLocked prevents anyone from starting writeback of a page which is
436 * under read I/O (PageWriteback is only ever set against a locked page).
438 static void mark_buffer_async_read(struct buffer_head
*bh
)
440 bh
->b_end_io
= end_buffer_async_read_io
;
441 set_buffer_async_read(bh
);
444 static void mark_buffer_async_write_endio(struct buffer_head
*bh
,
445 bh_end_io_t
*handler
)
447 bh
->b_end_io
= handler
;
448 set_buffer_async_write(bh
);
451 void mark_buffer_async_write(struct buffer_head
*bh
)
453 mark_buffer_async_write_endio(bh
, end_buffer_async_write
);
455 EXPORT_SYMBOL(mark_buffer_async_write
);
459 * fs/buffer.c contains helper functions for buffer-backed address space's
460 * fsync functions. A common requirement for buffer-based filesystems is
461 * that certain data from the backing blockdev needs to be written out for
462 * a successful fsync(). For example, ext2 indirect blocks need to be
463 * written back and waited upon before fsync() returns.
465 * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(),
466 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
467 * management of a list of dependent buffers at ->i_mapping->i_private_list.
469 * Locking is a little subtle: try_to_free_buffers() will remove buffers
470 * from their controlling inode's queue when they are being freed. But
471 * try_to_free_buffers() will be operating against the *blockdev* mapping
472 * at the time, not against the S_ISREG file which depends on those buffers.
473 * So the locking for i_private_list is via the i_private_lock in the address_space
474 * which backs the buffers. Which is different from the address_space
475 * against which the buffers are listed. So for a particular address_space,
476 * mapping->i_private_lock does *not* protect mapping->i_private_list! In fact,
477 * mapping->i_private_list will always be protected by the backing blockdev's
480 * Which introduces a requirement: all buffers on an address_space's
481 * ->i_private_list must be from the same address_space: the blockdev's.
483 * address_spaces which do not place buffers at ->i_private_list via these
484 * utility functions are free to use i_private_lock and i_private_list for
485 * whatever they want. The only requirement is that list_empty(i_private_list)
486 * be true at clear_inode() time.
488 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
489 * filesystems should do that. invalidate_inode_buffers() should just go
490 * BUG_ON(!list_empty).
492 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
493 * take an address_space, not an inode. And it should be called
494 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
497 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
498 * list if it is already on a list. Because if the buffer is on a list,
499 * it *must* already be on the right one. If not, the filesystem is being
500 * silly. This will save a ton of locking. But first we have to ensure
501 * that buffers are taken *off* the old inode's list when they are freed
502 * (presumably in truncate). That requires careful auditing of all
503 * filesystems (do it inside bforget()). It could also be done by bringing
508 * The buffer's backing address_space's i_private_lock must be held
510 static void __remove_assoc_queue(struct buffer_head
*bh
)
512 list_del_init(&bh
->b_assoc_buffers
);
513 WARN_ON(!bh
->b_assoc_map
);
514 bh
->b_assoc_map
= NULL
;
517 int inode_has_buffers(struct inode
*inode
)
519 return !list_empty(&inode
->i_data
.i_private_list
);
523 * osync is designed to support O_SYNC io. It waits synchronously for
524 * all already-submitted IO to complete, but does not queue any new
525 * writes to the disk.
527 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
528 * as you dirty the buffers, and then use osync_inode_buffers to wait for
529 * completion. Any other dirty buffers which are not yet queued for
530 * write will not be flushed to disk by the osync.
532 static int osync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
534 struct buffer_head
*bh
;
540 list_for_each_prev(p
, list
) {
542 if (buffer_locked(bh
)) {
546 if (!buffer_uptodate(bh
))
558 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
559 * @mapping: the mapping which wants those buffers written
561 * Starts I/O against the buffers at mapping->i_private_list, and waits upon
564 * Basically, this is a convenience function for fsync().
565 * @mapping is a file or directory which needs those buffers to be written for
566 * a successful fsync().
568 int sync_mapping_buffers(struct address_space
*mapping
)
570 struct address_space
*buffer_mapping
= mapping
->i_private_data
;
572 if (buffer_mapping
== NULL
|| list_empty(&mapping
->i_private_list
))
575 return fsync_buffers_list(&buffer_mapping
->i_private_lock
,
576 &mapping
->i_private_list
);
578 EXPORT_SYMBOL(sync_mapping_buffers
);
581 * generic_buffers_fsync_noflush - generic buffer fsync implementation
582 * for simple filesystems with no inode lock
584 * @file: file to synchronize
585 * @start: start offset in bytes
586 * @end: end offset in bytes (inclusive)
587 * @datasync: only synchronize essential metadata if true
589 * This is a generic implementation of the fsync method for simple
590 * filesystems which track all non-inode metadata in the buffers list
591 * hanging off the address_space structure.
593 int generic_buffers_fsync_noflush(struct file
*file
, loff_t start
, loff_t end
,
596 struct inode
*inode
= file
->f_mapping
->host
;
600 err
= file_write_and_wait_range(file
, start
, end
);
604 ret
= sync_mapping_buffers(inode
->i_mapping
);
605 if (!(inode
->i_state
& I_DIRTY_ALL
))
607 if (datasync
&& !(inode
->i_state
& I_DIRTY_DATASYNC
))
610 err
= sync_inode_metadata(inode
, 1);
615 /* check and advance again to catch errors after syncing out buffers */
616 err
= file_check_and_advance_wb_err(file
);
621 EXPORT_SYMBOL(generic_buffers_fsync_noflush
);
624 * generic_buffers_fsync - generic buffer fsync implementation
625 * for simple filesystems with no inode lock
627 * @file: file to synchronize
628 * @start: start offset in bytes
629 * @end: end offset in bytes (inclusive)
630 * @datasync: only synchronize essential metadata if true
632 * This is a generic implementation of the fsync method for simple
633 * filesystems which track all non-inode metadata in the buffers list
634 * hanging off the address_space structure. This also makes sure that
635 * a device cache flush operation is called at the end.
637 int generic_buffers_fsync(struct file
*file
, loff_t start
, loff_t end
,
640 struct inode
*inode
= file
->f_mapping
->host
;
643 ret
= generic_buffers_fsync_noflush(file
, start
, end
, datasync
);
645 ret
= blkdev_issue_flush(inode
->i_sb
->s_bdev
);
648 EXPORT_SYMBOL(generic_buffers_fsync
);
651 * Called when we've recently written block `bblock', and it is known that
652 * `bblock' was for a buffer_boundary() buffer. This means that the block at
653 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
654 * dirty, schedule it for IO. So that indirects merge nicely with their data.
656 void write_boundary_block(struct block_device
*bdev
,
657 sector_t bblock
, unsigned blocksize
)
659 struct buffer_head
*bh
= __find_get_block(bdev
, bblock
+ 1, blocksize
);
661 if (buffer_dirty(bh
))
662 write_dirty_buffer(bh
, 0);
667 void mark_buffer_dirty_inode(struct buffer_head
*bh
, struct inode
*inode
)
669 struct address_space
*mapping
= inode
->i_mapping
;
670 struct address_space
*buffer_mapping
= bh
->b_folio
->mapping
;
672 mark_buffer_dirty(bh
);
673 if (!mapping
->i_private_data
) {
674 mapping
->i_private_data
= buffer_mapping
;
676 BUG_ON(mapping
->i_private_data
!= buffer_mapping
);
678 if (!bh
->b_assoc_map
) {
679 spin_lock(&buffer_mapping
->i_private_lock
);
680 list_move_tail(&bh
->b_assoc_buffers
,
681 &mapping
->i_private_list
);
682 bh
->b_assoc_map
= mapping
;
683 spin_unlock(&buffer_mapping
->i_private_lock
);
686 EXPORT_SYMBOL(mark_buffer_dirty_inode
);
689 * block_dirty_folio - Mark a folio as dirty.
690 * @mapping: The address space containing this folio.
691 * @folio: The folio to mark dirty.
693 * Filesystems which use buffer_heads can use this function as their
694 * ->dirty_folio implementation. Some filesystems need to do a little
695 * work before calling this function. Filesystems which do not use
696 * buffer_heads should call filemap_dirty_folio() instead.
698 * If the folio has buffers, the uptodate buffers are set dirty, to
699 * preserve dirty-state coherency between the folio and the buffers.
700 * Buffers added to a dirty folio are created dirty.
702 * The buffers are dirtied before the folio is dirtied. There's a small
703 * race window in which writeback may see the folio cleanness but not the
704 * buffer dirtiness. That's fine. If this code were to set the folio
705 * dirty before the buffers, writeback could clear the folio dirty flag,
706 * see a bunch of clean buffers and we'd end up with dirty buffers/clean
707 * folio on the dirty folio list.
709 * We use i_private_lock to lock against try_to_free_buffers() while
710 * using the folio's buffer list. This also prevents clean buffers
711 * being added to the folio after it was set dirty.
713 * Context: May only be called from process context. Does not sleep.
714 * Caller must ensure that @folio cannot be truncated during this call,
715 * typically by holding the folio lock or having a page in the folio
716 * mapped and holding the page table lock.
718 * Return: True if the folio was dirtied; false if it was already dirtied.
720 bool block_dirty_folio(struct address_space
*mapping
, struct folio
*folio
)
722 struct buffer_head
*head
;
725 spin_lock(&mapping
->i_private_lock
);
726 head
= folio_buffers(folio
);
728 struct buffer_head
*bh
= head
;
731 set_buffer_dirty(bh
);
732 bh
= bh
->b_this_page
;
733 } while (bh
!= head
);
736 * Lock out page's memcg migration to keep PageDirty
737 * synchronized with per-memcg dirty page counters.
739 newly_dirty
= !folio_test_set_dirty(folio
);
740 spin_unlock(&mapping
->i_private_lock
);
743 __folio_mark_dirty(folio
, mapping
, 1);
746 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
750 EXPORT_SYMBOL(block_dirty_folio
);
753 * Write out and wait upon a list of buffers.
755 * We have conflicting pressures: we want to make sure that all
756 * initially dirty buffers get waited on, but that any subsequently
757 * dirtied buffers don't. After all, we don't want fsync to last
758 * forever if somebody is actively writing to the file.
760 * Do this in two main stages: first we copy dirty buffers to a
761 * temporary inode list, queueing the writes as we go. Then we clean
762 * up, waiting for those writes to complete.
764 * During this second stage, any subsequent updates to the file may end
765 * up refiling the buffer on the original inode's dirty list again, so
766 * there is a chance we will end up with a buffer queued for write but
767 * not yet completed on that list. So, as a final cleanup we go through
768 * the osync code to catch these locked, dirty buffers without requeuing
769 * any newly dirty buffers for write.
771 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
773 struct buffer_head
*bh
;
774 struct address_space
*mapping
;
776 struct blk_plug plug
;
779 blk_start_plug(&plug
);
782 while (!list_empty(list
)) {
783 bh
= BH_ENTRY(list
->next
);
784 mapping
= bh
->b_assoc_map
;
785 __remove_assoc_queue(bh
);
786 /* Avoid race with mark_buffer_dirty_inode() which does
787 * a lockless check and we rely on seeing the dirty bit */
789 if (buffer_dirty(bh
) || buffer_locked(bh
)) {
790 list_add(&bh
->b_assoc_buffers
, &tmp
);
791 bh
->b_assoc_map
= mapping
;
792 if (buffer_dirty(bh
)) {
796 * Ensure any pending I/O completes so that
797 * write_dirty_buffer() actually writes the
798 * current contents - it is a noop if I/O is
799 * still in flight on potentially older
802 write_dirty_buffer(bh
, REQ_SYNC
);
805 * Kick off IO for the previous mapping. Note
806 * that we will not run the very last mapping,
807 * wait_on_buffer() will do that for us
808 * through sync_buffer().
817 blk_finish_plug(&plug
);
820 while (!list_empty(&tmp
)) {
821 bh
= BH_ENTRY(tmp
.prev
);
823 mapping
= bh
->b_assoc_map
;
824 __remove_assoc_queue(bh
);
825 /* Avoid race with mark_buffer_dirty_inode() which does
826 * a lockless check and we rely on seeing the dirty bit */
828 if (buffer_dirty(bh
)) {
829 list_add(&bh
->b_assoc_buffers
,
830 &mapping
->i_private_list
);
831 bh
->b_assoc_map
= mapping
;
835 if (!buffer_uptodate(bh
))
842 err2
= osync_buffers_list(lock
, list
);
850 * Invalidate any and all dirty buffers on a given inode. We are
851 * probably unmounting the fs, but that doesn't mean we have already
852 * done a sync(). Just drop the buffers from the inode list.
854 * NOTE: we take the inode's blockdev's mapping's i_private_lock. Which
855 * assumes that all the buffers are against the blockdev.
857 void invalidate_inode_buffers(struct inode
*inode
)
859 if (inode_has_buffers(inode
)) {
860 struct address_space
*mapping
= &inode
->i_data
;
861 struct list_head
*list
= &mapping
->i_private_list
;
862 struct address_space
*buffer_mapping
= mapping
->i_private_data
;
864 spin_lock(&buffer_mapping
->i_private_lock
);
865 while (!list_empty(list
))
866 __remove_assoc_queue(BH_ENTRY(list
->next
));
867 spin_unlock(&buffer_mapping
->i_private_lock
);
870 EXPORT_SYMBOL(invalidate_inode_buffers
);
873 * Remove any clean buffers from the inode's buffer list. This is called
874 * when we're trying to free the inode itself. Those buffers can pin it.
876 * Returns true if all buffers were removed.
878 int remove_inode_buffers(struct inode
*inode
)
882 if (inode_has_buffers(inode
)) {
883 struct address_space
*mapping
= &inode
->i_data
;
884 struct list_head
*list
= &mapping
->i_private_list
;
885 struct address_space
*buffer_mapping
= mapping
->i_private_data
;
887 spin_lock(&buffer_mapping
->i_private_lock
);
888 while (!list_empty(list
)) {
889 struct buffer_head
*bh
= BH_ENTRY(list
->next
);
890 if (buffer_dirty(bh
)) {
894 __remove_assoc_queue(bh
);
896 spin_unlock(&buffer_mapping
->i_private_lock
);
902 * Create the appropriate buffers when given a folio for data area and
903 * the size of each buffer.. Use the bh->b_this_page linked list to
904 * follow the buffers created. Return NULL if unable to create more
907 * The retry flag is used to differentiate async IO (paging, swapping)
908 * which may not fail from ordinary buffer allocations.
910 struct buffer_head
*folio_alloc_buffers(struct folio
*folio
, unsigned long size
,
913 struct buffer_head
*bh
, *head
;
915 struct mem_cgroup
*memcg
, *old_memcg
;
917 /* The folio lock pins the memcg */
918 memcg
= folio_memcg(folio
);
919 old_memcg
= set_active_memcg(memcg
);
922 offset
= folio_size(folio
);
923 while ((offset
-= size
) >= 0) {
924 bh
= alloc_buffer_head(gfp
);
928 bh
->b_this_page
= head
;
934 /* Link the buffer to its folio */
935 folio_set_bh(bh
, folio
, offset
);
938 set_active_memcg(old_memcg
);
941 * In case anything failed, we just free everything we got.
947 head
= head
->b_this_page
;
948 free_buffer_head(bh
);
954 EXPORT_SYMBOL_GPL(folio_alloc_buffers
);
956 struct buffer_head
*alloc_page_buffers(struct page
*page
, unsigned long size
)
958 gfp_t gfp
= GFP_NOFS
| __GFP_ACCOUNT
;
960 return folio_alloc_buffers(page_folio(page
), size
, gfp
);
962 EXPORT_SYMBOL_GPL(alloc_page_buffers
);
964 static inline void link_dev_buffers(struct folio
*folio
,
965 struct buffer_head
*head
)
967 struct buffer_head
*bh
, *tail
;
972 bh
= bh
->b_this_page
;
974 tail
->b_this_page
= head
;
975 folio_attach_private(folio
, head
);
978 static sector_t
blkdev_max_block(struct block_device
*bdev
, unsigned int size
)
980 sector_t retval
= ~((sector_t
)0);
981 loff_t sz
= bdev_nr_bytes(bdev
);
984 unsigned int sizebits
= blksize_bits(size
);
985 retval
= (sz
>> sizebits
);
991 * Initialise the state of a blockdev folio's buffers.
993 static sector_t
folio_init_buffers(struct folio
*folio
,
994 struct block_device
*bdev
, unsigned size
)
996 struct buffer_head
*head
= folio_buffers(folio
);
997 struct buffer_head
*bh
= head
;
998 bool uptodate
= folio_test_uptodate(folio
);
999 sector_t block
= div_u64(folio_pos(folio
), size
);
1000 sector_t end_block
= blkdev_max_block(bdev
, size
);
1003 if (!buffer_mapped(bh
)) {
1004 bh
->b_end_io
= NULL
;
1005 bh
->b_private
= NULL
;
1007 bh
->b_blocknr
= block
;
1009 set_buffer_uptodate(bh
);
1010 if (block
< end_block
)
1011 set_buffer_mapped(bh
);
1014 bh
= bh
->b_this_page
;
1015 } while (bh
!= head
);
1018 * Caller needs to validate requested block against end of device.
1024 * Create the page-cache folio that contains the requested block.
1026 * This is used purely for blockdev mappings.
1028 * Returns false if we have a failure which cannot be cured by retrying
1029 * without sleeping. Returns true if we succeeded, or the caller should retry.
1031 static bool grow_dev_folio(struct block_device
*bdev
, sector_t block
,
1032 pgoff_t index
, unsigned size
, gfp_t gfp
)
1034 struct address_space
*mapping
= bdev
->bd_mapping
;
1035 struct folio
*folio
;
1036 struct buffer_head
*bh
;
1037 sector_t end_block
= 0;
1039 folio
= __filemap_get_folio(mapping
, index
,
1040 FGP_LOCK
| FGP_ACCESSED
| FGP_CREAT
, gfp
);
1044 bh
= folio_buffers(folio
);
1046 if (bh
->b_size
== size
) {
1047 end_block
= folio_init_buffers(folio
, bdev
, size
);
1052 * Retrying may succeed; for example the folio may finish
1053 * writeback, or buffers may be cleaned. This should not
1054 * happen very often; maybe we have old buffers attached to
1055 * this blockdev's page cache and we're trying to change
1058 if (!try_to_free_buffers(folio
)) {
1064 bh
= folio_alloc_buffers(folio
, size
, gfp
| __GFP_ACCOUNT
);
1069 * Link the folio to the buffers and initialise them. Take the
1070 * lock to be atomic wrt __find_get_block(), which does not
1071 * run under the folio lock.
1073 spin_lock(&mapping
->i_private_lock
);
1074 link_dev_buffers(folio
, bh
);
1075 end_block
= folio_init_buffers(folio
, bdev
, size
);
1076 spin_unlock(&mapping
->i_private_lock
);
1078 folio_unlock(folio
);
1080 return block
< end_block
;
1084 * Create buffers for the specified block device block's folio. If
1085 * that folio was dirty, the buffers are set dirty also. Returns false
1086 * if we've hit a permanent error.
1088 static bool grow_buffers(struct block_device
*bdev
, sector_t block
,
1089 unsigned size
, gfp_t gfp
)
1094 * Check for a block which lies outside our maximum possible
1097 if (check_mul_overflow(block
, (sector_t
)size
, &pos
) || pos
> MAX_LFS_FILESIZE
) {
1098 printk(KERN_ERR
"%s: requested out-of-range block %llu for device %pg\n",
1099 __func__
, (unsigned long long)block
,
1104 /* Create a folio with the proper size buffers */
1105 return grow_dev_folio(bdev
, block
, pos
/ PAGE_SIZE
, size
, gfp
);
1108 static struct buffer_head
*
1109 __getblk_slow(struct block_device
*bdev
, sector_t block
,
1110 unsigned size
, gfp_t gfp
)
1112 /* Size must be multiple of hard sectorsize */
1113 if (unlikely(size
& (bdev_logical_block_size(bdev
)-1) ||
1114 (size
< 512 || size
> PAGE_SIZE
))) {
1115 printk(KERN_ERR
"getblk(): invalid block size %d requested\n",
1117 printk(KERN_ERR
"logical block size: %d\n",
1118 bdev_logical_block_size(bdev
));
1125 struct buffer_head
*bh
;
1127 bh
= __find_get_block(bdev
, block
, size
);
1131 if (!grow_buffers(bdev
, block
, size
, gfp
))
1137 * The relationship between dirty buffers and dirty pages:
1139 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1140 * the page is tagged dirty in the page cache.
1142 * At all times, the dirtiness of the buffers represents the dirtiness of
1143 * subsections of the page. If the page has buffers, the page dirty bit is
1144 * merely a hint about the true dirty state.
1146 * When a page is set dirty in its entirety, all its buffers are marked dirty
1147 * (if the page has buffers).
1149 * When a buffer is marked dirty, its page is dirtied, but the page's other
1152 * Also. When blockdev buffers are explicitly read with bread(), they
1153 * individually become uptodate. But their backing page remains not
1154 * uptodate - even if all of its buffers are uptodate. A subsequent
1155 * block_read_full_folio() against that folio will discover all the uptodate
1156 * buffers, will set the folio uptodate and will perform no I/O.
1160 * mark_buffer_dirty - mark a buffer_head as needing writeout
1161 * @bh: the buffer_head to mark dirty
1163 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1164 * its backing page dirty, then tag the page as dirty in the page cache
1165 * and then attach the address_space's inode to its superblock's dirty
1168 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->i_private_lock,
1169 * i_pages lock and mapping->host->i_lock.
1171 void mark_buffer_dirty(struct buffer_head
*bh
)
1173 WARN_ON_ONCE(!buffer_uptodate(bh
));
1175 trace_block_dirty_buffer(bh
);
1178 * Very *carefully* optimize the it-is-already-dirty case.
1180 * Don't let the final "is it dirty" escape to before we
1181 * perhaps modified the buffer.
1183 if (buffer_dirty(bh
)) {
1185 if (buffer_dirty(bh
))
1189 if (!test_set_buffer_dirty(bh
)) {
1190 struct folio
*folio
= bh
->b_folio
;
1191 struct address_space
*mapping
= NULL
;
1193 if (!folio_test_set_dirty(folio
)) {
1194 mapping
= folio
->mapping
;
1196 __folio_mark_dirty(folio
, mapping
, 0);
1199 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1202 EXPORT_SYMBOL(mark_buffer_dirty
);
1204 void mark_buffer_write_io_error(struct buffer_head
*bh
)
1206 set_buffer_write_io_error(bh
);
1207 /* FIXME: do we need to set this in both places? */
1208 if (bh
->b_folio
&& bh
->b_folio
->mapping
)
1209 mapping_set_error(bh
->b_folio
->mapping
, -EIO
);
1210 if (bh
->b_assoc_map
) {
1211 mapping_set_error(bh
->b_assoc_map
, -EIO
);
1212 errseq_set(&bh
->b_assoc_map
->host
->i_sb
->s_wb_err
, -EIO
);
1215 EXPORT_SYMBOL(mark_buffer_write_io_error
);
1218 * __brelse - Release a buffer.
1219 * @bh: The buffer to release.
1221 * This variant of brelse() can be called if @bh is guaranteed to not be NULL.
1223 void __brelse(struct buffer_head
*bh
)
1225 if (atomic_read(&bh
->b_count
)) {
1229 WARN(1, KERN_ERR
"VFS: brelse: Trying to free free buffer\n");
1231 EXPORT_SYMBOL(__brelse
);
1234 * __bforget - Discard any dirty data in a buffer.
1235 * @bh: The buffer to forget.
1237 * This variant of bforget() can be called if @bh is guaranteed to not
1240 void __bforget(struct buffer_head
*bh
)
1242 clear_buffer_dirty(bh
);
1243 if (bh
->b_assoc_map
) {
1244 struct address_space
*buffer_mapping
= bh
->b_folio
->mapping
;
1246 spin_lock(&buffer_mapping
->i_private_lock
);
1247 list_del_init(&bh
->b_assoc_buffers
);
1248 bh
->b_assoc_map
= NULL
;
1249 spin_unlock(&buffer_mapping
->i_private_lock
);
1253 EXPORT_SYMBOL(__bforget
);
1255 static struct buffer_head
*__bread_slow(struct buffer_head
*bh
)
1258 if (buffer_uptodate(bh
)) {
1263 bh
->b_end_io
= end_buffer_read_sync
;
1264 submit_bh(REQ_OP_READ
, bh
);
1266 if (buffer_uptodate(bh
))
1274 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1275 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1276 * refcount elevated by one when they're in an LRU. A buffer can only appear
1277 * once in a particular CPU's LRU. A single buffer can be present in multiple
1278 * CPU's LRUs at the same time.
1280 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1281 * sb_find_get_block().
1283 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1284 * a local interrupt disable for that.
1287 #define BH_LRU_SIZE 16
1290 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1293 static DEFINE_PER_CPU(struct bh_lru
, bh_lrus
) = {{ NULL
}};
1296 #define bh_lru_lock() local_irq_disable()
1297 #define bh_lru_unlock() local_irq_enable()
1299 #define bh_lru_lock() preempt_disable()
1300 #define bh_lru_unlock() preempt_enable()
1303 static inline void check_irqs_on(void)
1305 #ifdef irqs_disabled
1306 BUG_ON(irqs_disabled());
1311 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1312 * inserted at the front, and the buffer_head at the back if any is evicted.
1313 * Or, if already in the LRU it is moved to the front.
1315 static void bh_lru_install(struct buffer_head
*bh
)
1317 struct buffer_head
*evictee
= bh
;
1325 * the refcount of buffer_head in bh_lru prevents dropping the
1326 * attached page(i.e., try_to_free_buffers) so it could cause
1327 * failing page migration.
1328 * Skip putting upcoming bh into bh_lru until migration is done.
1330 if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
1335 b
= this_cpu_ptr(&bh_lrus
);
1336 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1337 swap(evictee
, b
->bhs
[i
]);
1338 if (evictee
== bh
) {
1350 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1352 static struct buffer_head
*
1353 lookup_bh_lru(struct block_device
*bdev
, sector_t block
, unsigned size
)
1355 struct buffer_head
*ret
= NULL
;
1360 if (cpu_is_isolated(smp_processor_id())) {
1364 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1365 struct buffer_head
*bh
= __this_cpu_read(bh_lrus
.bhs
[i
]);
1367 if (bh
&& bh
->b_blocknr
== block
&& bh
->b_bdev
== bdev
&&
1368 bh
->b_size
== size
) {
1371 __this_cpu_write(bh_lrus
.bhs
[i
],
1372 __this_cpu_read(bh_lrus
.bhs
[i
- 1]));
1375 __this_cpu_write(bh_lrus
.bhs
[0], bh
);
1387 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1388 * it in the LRU and mark it as accessed. If it is not present then return
1391 struct buffer_head
*
1392 __find_get_block(struct block_device
*bdev
, sector_t block
, unsigned size
)
1394 struct buffer_head
*bh
= lookup_bh_lru(bdev
, block
, size
);
1397 /* __find_get_block_slow will mark the page accessed */
1398 bh
= __find_get_block_slow(bdev
, block
);
1406 EXPORT_SYMBOL(__find_get_block
);
1409 * bdev_getblk - Get a buffer_head in a block device's buffer cache.
1410 * @bdev: The block device.
1411 * @block: The block number.
1412 * @size: The size of buffer_heads for this @bdev.
1413 * @gfp: The memory allocation flags to use.
1415 * The returned buffer head has its reference count incremented, but is
1416 * not locked. The caller should call brelse() when it has finished
1417 * with the buffer. The buffer may not be uptodate. If needed, the
1418 * caller can bring it uptodate either by reading it or overwriting it.
1420 * Return: The buffer head, or NULL if memory could not be allocated.
1422 struct buffer_head
*bdev_getblk(struct block_device
*bdev
, sector_t block
,
1423 unsigned size
, gfp_t gfp
)
1425 struct buffer_head
*bh
= __find_get_block(bdev
, block
, size
);
1431 return __getblk_slow(bdev
, block
, size
, gfp
);
1433 EXPORT_SYMBOL(bdev_getblk
);
1436 * Do async read-ahead on a buffer..
1438 void __breadahead(struct block_device
*bdev
, sector_t block
, unsigned size
)
1440 struct buffer_head
*bh
= bdev_getblk(bdev
, block
, size
,
1441 GFP_NOWAIT
| __GFP_MOVABLE
);
1444 bh_readahead(bh
, REQ_RAHEAD
);
1448 EXPORT_SYMBOL(__breadahead
);
1451 * __bread_gfp() - Read a block.
1452 * @bdev: The block device to read from.
1453 * @block: Block number in units of block size.
1454 * @size: The block size of this device in bytes.
1455 * @gfp: Not page allocation flags; see below.
1457 * You are not expected to call this function. You should use one of
1458 * sb_bread(), sb_bread_unmovable() or __bread().
1460 * Read a specified block, and return the buffer head that refers to it.
1461 * If @gfp is 0, the memory will be allocated using the block device's
1462 * default GFP flags. If @gfp is __GFP_MOVABLE, the memory may be
1463 * allocated from a movable area. Do not pass in a complete set of
1466 * The returned buffer head has its refcount increased. The caller should
1467 * call brelse() when it has finished with the buffer.
1469 * Context: May sleep waiting for I/O.
1470 * Return: NULL if the block was unreadable.
1472 struct buffer_head
*__bread_gfp(struct block_device
*bdev
, sector_t block
,
1473 unsigned size
, gfp_t gfp
)
1475 struct buffer_head
*bh
;
1477 gfp
|= mapping_gfp_constraint(bdev
->bd_mapping
, ~__GFP_FS
);
1480 * Prefer looping in the allocator rather than here, at least that
1481 * code knows what it's doing.
1483 gfp
|= __GFP_NOFAIL
;
1485 bh
= bdev_getblk(bdev
, block
, size
, gfp
);
1487 if (likely(bh
) && !buffer_uptodate(bh
))
1488 bh
= __bread_slow(bh
);
1491 EXPORT_SYMBOL(__bread_gfp
);
1493 static void __invalidate_bh_lrus(struct bh_lru
*b
)
1497 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1503 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1504 * This doesn't race because it runs in each cpu either in irq
1505 * or with preempt disabled.
1507 static void invalidate_bh_lru(void *arg
)
1509 struct bh_lru
*b
= &get_cpu_var(bh_lrus
);
1511 __invalidate_bh_lrus(b
);
1512 put_cpu_var(bh_lrus
);
1515 bool has_bh_in_lru(int cpu
, void *dummy
)
1517 struct bh_lru
*b
= per_cpu_ptr(&bh_lrus
, cpu
);
1520 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1528 void invalidate_bh_lrus(void)
1530 on_each_cpu_cond(has_bh_in_lru
, invalidate_bh_lru
, NULL
, 1);
1532 EXPORT_SYMBOL_GPL(invalidate_bh_lrus
);
1535 * It's called from workqueue context so we need a bh_lru_lock to close
1536 * the race with preemption/irq.
1538 void invalidate_bh_lrus_cpu(void)
1543 b
= this_cpu_ptr(&bh_lrus
);
1544 __invalidate_bh_lrus(b
);
1548 void folio_set_bh(struct buffer_head
*bh
, struct folio
*folio
,
1549 unsigned long offset
)
1551 bh
->b_folio
= folio
;
1552 BUG_ON(offset
>= folio_size(folio
));
1553 if (folio_test_highmem(folio
))
1555 * This catches illegal uses and preserves the offset:
1557 bh
->b_data
= (char *)(0 + offset
);
1559 bh
->b_data
= folio_address(folio
) + offset
;
1561 EXPORT_SYMBOL(folio_set_bh
);
1564 * Called when truncating a buffer on a page completely.
1567 /* Bits that are cleared during an invalidate */
1568 #define BUFFER_FLAGS_DISCARD \
1569 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1570 1 << BH_Delay | 1 << BH_Unwritten)
1572 static void discard_buffer(struct buffer_head
* bh
)
1574 unsigned long b_state
;
1577 clear_buffer_dirty(bh
);
1579 b_state
= READ_ONCE(bh
->b_state
);
1581 } while (!try_cmpxchg(&bh
->b_state
, &b_state
,
1582 b_state
& ~BUFFER_FLAGS_DISCARD
));
1587 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1588 * @folio: The folio which is affected.
1589 * @offset: start of the range to invalidate
1590 * @length: length of the range to invalidate
1592 * block_invalidate_folio() is called when all or part of the folio has been
1593 * invalidated by a truncate operation.
1595 * block_invalidate_folio() does not have to release all buffers, but it must
1596 * ensure that no dirty buffer is left outside @offset and that no I/O
1597 * is underway against any of the blocks which are outside the truncation
1598 * point. Because the caller is about to free (and possibly reuse) those
1601 void block_invalidate_folio(struct folio
*folio
, size_t offset
, size_t length
)
1603 struct buffer_head
*head
, *bh
, *next
;
1604 size_t curr_off
= 0;
1605 size_t stop
= length
+ offset
;
1607 BUG_ON(!folio_test_locked(folio
));
1610 * Check for overflow
1612 BUG_ON(stop
> folio_size(folio
) || stop
< length
);
1614 head
= folio_buffers(folio
);
1620 size_t next_off
= curr_off
+ bh
->b_size
;
1621 next
= bh
->b_this_page
;
1624 * Are we still fully in range ?
1626 if (next_off
> stop
)
1630 * is this block fully invalidated?
1632 if (offset
<= curr_off
)
1634 curr_off
= next_off
;
1636 } while (bh
!= head
);
1639 * We release buffers only if the entire folio is being invalidated.
1640 * The get_block cached value has been unconditionally invalidated,
1641 * so real IO is not possible anymore.
1643 if (length
== folio_size(folio
))
1644 filemap_release_folio(folio
, 0);
1646 folio_clear_mappedtodisk(folio
);
1649 EXPORT_SYMBOL(block_invalidate_folio
);
1652 * We attach and possibly dirty the buffers atomically wrt
1653 * block_dirty_folio() via i_private_lock. try_to_free_buffers
1654 * is already excluded via the folio lock.
1656 struct buffer_head
*create_empty_buffers(struct folio
*folio
,
1657 unsigned long blocksize
, unsigned long b_state
)
1659 struct buffer_head
*bh
, *head
, *tail
;
1660 gfp_t gfp
= GFP_NOFS
| __GFP_ACCOUNT
| __GFP_NOFAIL
;
1662 head
= folio_alloc_buffers(folio
, blocksize
, gfp
);
1665 bh
->b_state
|= b_state
;
1667 bh
= bh
->b_this_page
;
1669 tail
->b_this_page
= head
;
1671 spin_lock(&folio
->mapping
->i_private_lock
);
1672 if (folio_test_uptodate(folio
) || folio_test_dirty(folio
)) {
1675 if (folio_test_dirty(folio
))
1676 set_buffer_dirty(bh
);
1677 if (folio_test_uptodate(folio
))
1678 set_buffer_uptodate(bh
);
1679 bh
= bh
->b_this_page
;
1680 } while (bh
!= head
);
1682 folio_attach_private(folio
, head
);
1683 spin_unlock(&folio
->mapping
->i_private_lock
);
1687 EXPORT_SYMBOL(create_empty_buffers
);
1690 * clean_bdev_aliases: clean a range of buffers in block device
1691 * @bdev: Block device to clean buffers in
1692 * @block: Start of a range of blocks to clean
1693 * @len: Number of blocks to clean
1695 * We are taking a range of blocks for data and we don't want writeback of any
1696 * buffer-cache aliases starting from return from this function and until the
1697 * moment when something will explicitly mark the buffer dirty (hopefully that
1698 * will not happen until we will free that block ;-) We don't even need to mark
1699 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1700 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1701 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1702 * would confuse anyone who might pick it with bread() afterwards...
1704 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1705 * writeout I/O going on against recently-freed buffers. We don't wait on that
1706 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1707 * need to. That happens here.
1709 void clean_bdev_aliases(struct block_device
*bdev
, sector_t block
, sector_t len
)
1711 struct address_space
*bd_mapping
= bdev
->bd_mapping
;
1712 const int blkbits
= bd_mapping
->host
->i_blkbits
;
1713 struct folio_batch fbatch
;
1714 pgoff_t index
= ((loff_t
)block
<< blkbits
) / PAGE_SIZE
;
1717 struct buffer_head
*bh
;
1718 struct buffer_head
*head
;
1720 end
= ((loff_t
)(block
+ len
- 1) << blkbits
) / PAGE_SIZE
;
1721 folio_batch_init(&fbatch
);
1722 while (filemap_get_folios(bd_mapping
, &index
, end
, &fbatch
)) {
1723 count
= folio_batch_count(&fbatch
);
1724 for (i
= 0; i
< count
; i
++) {
1725 struct folio
*folio
= fbatch
.folios
[i
];
1727 if (!folio_buffers(folio
))
1730 * We use folio lock instead of bd_mapping->i_private_lock
1731 * to pin buffers here since we can afford to sleep and
1732 * it scales better than a global spinlock lock.
1735 /* Recheck when the folio is locked which pins bhs */
1736 head
= folio_buffers(folio
);
1741 if (!buffer_mapped(bh
) || (bh
->b_blocknr
< block
))
1743 if (bh
->b_blocknr
>= block
+ len
)
1745 clear_buffer_dirty(bh
);
1747 clear_buffer_req(bh
);
1749 bh
= bh
->b_this_page
;
1750 } while (bh
!= head
);
1752 folio_unlock(folio
);
1754 folio_batch_release(&fbatch
);
1756 /* End of range already reached? */
1757 if (index
> end
|| !index
)
1761 EXPORT_SYMBOL(clean_bdev_aliases
);
1763 static struct buffer_head
*folio_create_buffers(struct folio
*folio
,
1764 struct inode
*inode
,
1765 unsigned int b_state
)
1767 struct buffer_head
*bh
;
1769 BUG_ON(!folio_test_locked(folio
));
1771 bh
= folio_buffers(folio
);
1773 bh
= create_empty_buffers(folio
,
1774 1 << READ_ONCE(inode
->i_blkbits
), b_state
);
1779 * NOTE! All mapped/uptodate combinations are valid:
1781 * Mapped Uptodate Meaning
1783 * No No "unknown" - must do get_block()
1784 * No Yes "hole" - zero-filled
1785 * Yes No "allocated" - allocated on disk, not read in
1786 * Yes Yes "valid" - allocated and up-to-date in memory.
1788 * "Dirty" is valid only with the last case (mapped+uptodate).
1792 * While block_write_full_folio is writing back the dirty buffers under
1793 * the page lock, whoever dirtied the buffers may decide to clean them
1794 * again at any time. We handle that by only looking at the buffer
1795 * state inside lock_buffer().
1797 * If block_write_full_folio() is called for regular writeback
1798 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1799 * locked buffer. This only can happen if someone has written the buffer
1800 * directly, with submit_bh(). At the address_space level PageWriteback
1801 * prevents this contention from occurring.
1803 * If block_write_full_folio() is called with wbc->sync_mode ==
1804 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1805 * causes the writes to be flagged as synchronous writes.
1807 int __block_write_full_folio(struct inode
*inode
, struct folio
*folio
,
1808 get_block_t
*get_block
, struct writeback_control
*wbc
)
1812 sector_t last_block
;
1813 struct buffer_head
*bh
, *head
;
1815 int nr_underway
= 0;
1816 blk_opf_t write_flags
= wbc_to_write_flags(wbc
);
1818 head
= folio_create_buffers(folio
, inode
,
1819 (1 << BH_Dirty
) | (1 << BH_Uptodate
));
1822 * Be very careful. We have no exclusion from block_dirty_folio
1823 * here, and the (potentially unmapped) buffers may become dirty at
1824 * any time. If a buffer becomes dirty here after we've inspected it
1825 * then we just miss that fact, and the folio stays dirty.
1827 * Buffers outside i_size may be dirtied by block_dirty_folio;
1828 * handle that here by just cleaning them.
1832 blocksize
= bh
->b_size
;
1834 block
= div_u64(folio_pos(folio
), blocksize
);
1835 last_block
= div_u64(i_size_read(inode
) - 1, blocksize
);
1838 * Get all the dirty buffers mapped to disk addresses and
1839 * handle any aliases from the underlying blockdev's mapping.
1842 if (block
> last_block
) {
1844 * mapped buffers outside i_size will occur, because
1845 * this folio can be outside i_size when there is a
1846 * truncate in progress.
1849 * The buffer was zeroed by block_write_full_folio()
1851 clear_buffer_dirty(bh
);
1852 set_buffer_uptodate(bh
);
1853 } else if ((!buffer_mapped(bh
) || buffer_delay(bh
)) &&
1855 WARN_ON(bh
->b_size
!= blocksize
);
1856 err
= get_block(inode
, block
, bh
, 1);
1859 clear_buffer_delay(bh
);
1860 if (buffer_new(bh
)) {
1861 /* blockdev mappings never come here */
1862 clear_buffer_new(bh
);
1863 clean_bdev_bh_alias(bh
);
1866 bh
= bh
->b_this_page
;
1868 } while (bh
!= head
);
1871 if (!buffer_mapped(bh
))
1874 * If it's a fully non-blocking write attempt and we cannot
1875 * lock the buffer then redirty the folio. Note that this can
1876 * potentially cause a busy-wait loop from writeback threads
1877 * and kswapd activity, but those code paths have their own
1878 * higher-level throttling.
1880 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
1882 } else if (!trylock_buffer(bh
)) {
1883 folio_redirty_for_writepage(wbc
, folio
);
1886 if (test_clear_buffer_dirty(bh
)) {
1887 mark_buffer_async_write_endio(bh
,
1888 end_buffer_async_write
);
1892 } while ((bh
= bh
->b_this_page
) != head
);
1895 * The folio and its buffers are protected by the writeback flag,
1896 * so we can drop the bh refcounts early.
1898 BUG_ON(folio_test_writeback(folio
));
1899 folio_start_writeback(folio
);
1902 struct buffer_head
*next
= bh
->b_this_page
;
1903 if (buffer_async_write(bh
)) {
1904 submit_bh_wbc(REQ_OP_WRITE
| write_flags
, bh
,
1905 inode
->i_write_hint
, wbc
);
1909 } while (bh
!= head
);
1910 folio_unlock(folio
);
1914 if (nr_underway
== 0) {
1916 * The folio was marked dirty, but the buffers were
1917 * clean. Someone wrote them back by hand with
1918 * write_dirty_buffer/submit_bh. A rare case.
1920 folio_end_writeback(folio
);
1923 * The folio and buffer_heads can be released at any time from
1931 * ENOSPC, or some other error. We may already have added some
1932 * blocks to the file, so we need to write these out to avoid
1933 * exposing stale data.
1934 * The folio is currently locked and not marked for writeback
1937 /* Recovery: lock and submit the mapped buffers */
1939 if (buffer_mapped(bh
) && buffer_dirty(bh
) &&
1940 !buffer_delay(bh
)) {
1942 mark_buffer_async_write_endio(bh
,
1943 end_buffer_async_write
);
1946 * The buffer may have been set dirty during
1947 * attachment to a dirty folio.
1949 clear_buffer_dirty(bh
);
1951 } while ((bh
= bh
->b_this_page
) != head
);
1952 BUG_ON(folio_test_writeback(folio
));
1953 mapping_set_error(folio
->mapping
, err
);
1954 folio_start_writeback(folio
);
1956 struct buffer_head
*next
= bh
->b_this_page
;
1957 if (buffer_async_write(bh
)) {
1958 clear_buffer_dirty(bh
);
1959 submit_bh_wbc(REQ_OP_WRITE
| write_flags
, bh
,
1960 inode
->i_write_hint
, wbc
);
1964 } while (bh
!= head
);
1965 folio_unlock(folio
);
1968 EXPORT_SYMBOL(__block_write_full_folio
);
1971 * If a folio has any new buffers, zero them out here, and mark them uptodate
1972 * and dirty so they'll be written out (in order to prevent uninitialised
1973 * block data from leaking). And clear the new bit.
1975 void folio_zero_new_buffers(struct folio
*folio
, size_t from
, size_t to
)
1977 size_t block_start
, block_end
;
1978 struct buffer_head
*head
, *bh
;
1980 BUG_ON(!folio_test_locked(folio
));
1981 head
= folio_buffers(folio
);
1988 block_end
= block_start
+ bh
->b_size
;
1990 if (buffer_new(bh
)) {
1991 if (block_end
> from
&& block_start
< to
) {
1992 if (!folio_test_uptodate(folio
)) {
1995 start
= max(from
, block_start
);
1996 xend
= min(to
, block_end
);
1998 folio_zero_segment(folio
, start
, xend
);
1999 set_buffer_uptodate(bh
);
2002 clear_buffer_new(bh
);
2003 mark_buffer_dirty(bh
);
2007 block_start
= block_end
;
2008 bh
= bh
->b_this_page
;
2009 } while (bh
!= head
);
2011 EXPORT_SYMBOL(folio_zero_new_buffers
);
2014 iomap_to_bh(struct inode
*inode
, sector_t block
, struct buffer_head
*bh
,
2015 const struct iomap
*iomap
)
2017 loff_t offset
= (loff_t
)block
<< inode
->i_blkbits
;
2019 bh
->b_bdev
= iomap
->bdev
;
2022 * Block points to offset in file we need to map, iomap contains
2023 * the offset at which the map starts. If the map ends before the
2024 * current block, then do not map the buffer and let the caller
2027 if (offset
>= iomap
->offset
+ iomap
->length
)
2030 switch (iomap
->type
) {
2033 * If the buffer is not up to date or beyond the current EOF,
2034 * we need to mark it as new to ensure sub-block zeroing is
2035 * executed if necessary.
2037 if (!buffer_uptodate(bh
) ||
2038 (offset
>= i_size_read(inode
)))
2041 case IOMAP_DELALLOC
:
2042 if (!buffer_uptodate(bh
) ||
2043 (offset
>= i_size_read(inode
)))
2045 set_buffer_uptodate(bh
);
2046 set_buffer_mapped(bh
);
2047 set_buffer_delay(bh
);
2049 case IOMAP_UNWRITTEN
:
2051 * For unwritten regions, we always need to ensure that regions
2052 * in the block we are not writing to are zeroed. Mark the
2053 * buffer as new to ensure this.
2056 set_buffer_unwritten(bh
);
2059 if ((iomap
->flags
& IOMAP_F_NEW
) ||
2060 offset
>= i_size_read(inode
)) {
2062 * This can happen if truncating the block device races
2063 * with the check in the caller as i_size updates on
2064 * block devices aren't synchronized by i_rwsem for
2067 if (S_ISBLK(inode
->i_mode
))
2071 bh
->b_blocknr
= (iomap
->addr
+ offset
- iomap
->offset
) >>
2073 set_buffer_mapped(bh
);
2081 int __block_write_begin_int(struct folio
*folio
, loff_t pos
, unsigned len
,
2082 get_block_t
*get_block
, const struct iomap
*iomap
)
2084 size_t from
= offset_in_folio(folio
, pos
);
2085 size_t to
= from
+ len
;
2086 struct inode
*inode
= folio
->mapping
->host
;
2087 size_t block_start
, block_end
;
2091 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
=wait
;
2093 BUG_ON(!folio_test_locked(folio
));
2094 BUG_ON(to
> folio_size(folio
));
2097 head
= folio_create_buffers(folio
, inode
, 0);
2098 blocksize
= head
->b_size
;
2099 block
= div_u64(folio_pos(folio
), blocksize
);
2101 for (bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
2102 block
++, block_start
=block_end
, bh
= bh
->b_this_page
) {
2103 block_end
= block_start
+ blocksize
;
2104 if (block_end
<= from
|| block_start
>= to
) {
2105 if (folio_test_uptodate(folio
)) {
2106 if (!buffer_uptodate(bh
))
2107 set_buffer_uptodate(bh
);
2112 clear_buffer_new(bh
);
2113 if (!buffer_mapped(bh
)) {
2114 WARN_ON(bh
->b_size
!= blocksize
);
2116 err
= get_block(inode
, block
, bh
, 1);
2118 err
= iomap_to_bh(inode
, block
, bh
, iomap
);
2122 if (buffer_new(bh
)) {
2123 clean_bdev_bh_alias(bh
);
2124 if (folio_test_uptodate(folio
)) {
2125 clear_buffer_new(bh
);
2126 set_buffer_uptodate(bh
);
2127 mark_buffer_dirty(bh
);
2130 if (block_end
> to
|| block_start
< from
)
2131 folio_zero_segments(folio
,
2137 if (folio_test_uptodate(folio
)) {
2138 if (!buffer_uptodate(bh
))
2139 set_buffer_uptodate(bh
);
2142 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
2143 !buffer_unwritten(bh
) &&
2144 (block_start
< from
|| block_end
> to
)) {
2145 bh_read_nowait(bh
, 0);
2150 * If we issued read requests - let them complete.
2152 while(wait_bh
> wait
) {
2153 wait_on_buffer(*--wait_bh
);
2154 if (!buffer_uptodate(*wait_bh
))
2158 folio_zero_new_buffers(folio
, from
, to
);
2162 int __block_write_begin(struct folio
*folio
, loff_t pos
, unsigned len
,
2163 get_block_t
*get_block
)
2165 return __block_write_begin_int(folio
, pos
, len
, get_block
, NULL
);
2167 EXPORT_SYMBOL(__block_write_begin
);
2169 static void __block_commit_write(struct folio
*folio
, size_t from
, size_t to
)
2171 size_t block_start
, block_end
;
2172 bool partial
= false;
2174 struct buffer_head
*bh
, *head
;
2176 bh
= head
= folio_buffers(folio
);
2179 blocksize
= bh
->b_size
;
2183 block_end
= block_start
+ blocksize
;
2184 if (block_end
<= from
|| block_start
>= to
) {
2185 if (!buffer_uptodate(bh
))
2188 set_buffer_uptodate(bh
);
2189 mark_buffer_dirty(bh
);
2192 clear_buffer_new(bh
);
2194 block_start
= block_end
;
2195 bh
= bh
->b_this_page
;
2196 } while (bh
!= head
);
2199 * If this is a partial write which happened to make all buffers
2200 * uptodate then we can optimize away a bogus read_folio() for
2201 * the next read(). Here we 'discover' whether the folio went
2202 * uptodate as a result of this (potentially partial) write.
2205 folio_mark_uptodate(folio
);
2209 * block_write_begin takes care of the basic task of block allocation and
2210 * bringing partial write blocks uptodate first.
2212 * The filesystem needs to handle block truncation upon failure.
2214 int block_write_begin(struct address_space
*mapping
, loff_t pos
, unsigned len
,
2215 struct folio
**foliop
, get_block_t
*get_block
)
2217 pgoff_t index
= pos
>> PAGE_SHIFT
;
2218 struct folio
*folio
;
2221 folio
= __filemap_get_folio(mapping
, index
, FGP_WRITEBEGIN
,
2222 mapping_gfp_mask(mapping
));
2224 return PTR_ERR(folio
);
2226 status
= __block_write_begin_int(folio
, pos
, len
, get_block
, NULL
);
2227 if (unlikely(status
)) {
2228 folio_unlock(folio
);
2236 EXPORT_SYMBOL(block_write_begin
);
2238 int block_write_end(struct file
*file
, struct address_space
*mapping
,
2239 loff_t pos
, unsigned len
, unsigned copied
,
2240 struct folio
*folio
, void *fsdata
)
2242 size_t start
= pos
- folio_pos(folio
);
2244 if (unlikely(copied
< len
)) {
2246 * The buffers that were written will now be uptodate, so
2247 * we don't have to worry about a read_folio reading them
2248 * and overwriting a partial write. However if we have
2249 * encountered a short write and only partially written
2250 * into a buffer, it will not be marked uptodate, so a
2251 * read_folio might come in and destroy our partial write.
2253 * Do the simplest thing, and just treat any short write to a
2254 * non uptodate folio as a zero-length write, and force the
2255 * caller to redo the whole thing.
2257 if (!folio_test_uptodate(folio
))
2260 folio_zero_new_buffers(folio
, start
+copied
, start
+len
);
2262 flush_dcache_folio(folio
);
2264 /* This could be a short (even 0-length) commit */
2265 __block_commit_write(folio
, start
, start
+ copied
);
2269 EXPORT_SYMBOL(block_write_end
);
2271 int generic_write_end(struct file
*file
, struct address_space
*mapping
,
2272 loff_t pos
, unsigned len
, unsigned copied
,
2273 struct folio
*folio
, void *fsdata
)
2275 struct inode
*inode
= mapping
->host
;
2276 loff_t old_size
= inode
->i_size
;
2277 bool i_size_changed
= false;
2279 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, folio
, fsdata
);
2282 * No need to use i_size_read() here, the i_size cannot change under us
2283 * because we hold i_rwsem.
2285 * But it's important to update i_size while still holding folio lock:
2286 * page writeout could otherwise come in and zero beyond i_size.
2288 if (pos
+ copied
> inode
->i_size
) {
2289 i_size_write(inode
, pos
+ copied
);
2290 i_size_changed
= true;
2293 folio_unlock(folio
);
2297 pagecache_isize_extended(inode
, old_size
, pos
);
2299 * Don't mark the inode dirty under page lock. First, it unnecessarily
2300 * makes the holding time of page lock longer. Second, it forces lock
2301 * ordering of page lock and transaction start for journaling
2305 mark_inode_dirty(inode
);
2308 EXPORT_SYMBOL(generic_write_end
);
2311 * block_is_partially_uptodate checks whether buffers within a folio are
2314 * Returns true if all buffers which correspond to the specified part
2315 * of the folio are uptodate.
2317 bool block_is_partially_uptodate(struct folio
*folio
, size_t from
, size_t count
)
2319 unsigned block_start
, block_end
, blocksize
;
2321 struct buffer_head
*bh
, *head
;
2324 head
= folio_buffers(folio
);
2327 blocksize
= head
->b_size
;
2328 to
= min_t(unsigned, folio_size(folio
) - from
, count
);
2330 if (from
< blocksize
&& to
> folio_size(folio
) - blocksize
)
2336 block_end
= block_start
+ blocksize
;
2337 if (block_end
> from
&& block_start
< to
) {
2338 if (!buffer_uptodate(bh
)) {
2342 if (block_end
>= to
)
2345 block_start
= block_end
;
2346 bh
= bh
->b_this_page
;
2347 } while (bh
!= head
);
2351 EXPORT_SYMBOL(block_is_partially_uptodate
);
2354 * Generic "read_folio" function for block devices that have the normal
2355 * get_block functionality. This is most of the block device filesystems.
2356 * Reads the folio asynchronously --- the unlock_buffer() and
2357 * set/clear_buffer_uptodate() functions propagate buffer state into the
2358 * folio once IO has completed.
2360 int block_read_full_folio(struct folio
*folio
, get_block_t
*get_block
)
2362 struct inode
*inode
= folio
->mapping
->host
;
2363 sector_t iblock
, lblock
;
2364 struct buffer_head
*bh
, *head
, *arr
[MAX_BUF_PER_PAGE
];
2367 int fully_mapped
= 1;
2368 bool page_error
= false;
2369 loff_t limit
= i_size_read(inode
);
2371 /* This is needed for ext4. */
2372 if (IS_ENABLED(CONFIG_FS_VERITY
) && IS_VERITY(inode
))
2373 limit
= inode
->i_sb
->s_maxbytes
;
2375 VM_BUG_ON_FOLIO(folio_test_large(folio
), folio
);
2377 head
= folio_create_buffers(folio
, inode
, 0);
2378 blocksize
= head
->b_size
;
2380 iblock
= div_u64(folio_pos(folio
), blocksize
);
2381 lblock
= div_u64(limit
+ blocksize
- 1, blocksize
);
2387 if (buffer_uptodate(bh
))
2390 if (!buffer_mapped(bh
)) {
2394 if (iblock
< lblock
) {
2395 WARN_ON(bh
->b_size
!= blocksize
);
2396 err
= get_block(inode
, iblock
, bh
, 0);
2400 if (!buffer_mapped(bh
)) {
2401 folio_zero_range(folio
, i
* blocksize
,
2404 set_buffer_uptodate(bh
);
2408 * get_block() might have updated the buffer
2411 if (buffer_uptodate(bh
))
2415 } while (i
++, iblock
++, (bh
= bh
->b_this_page
) != head
);
2418 folio_set_mappedtodisk(folio
);
2422 * All buffers are uptodate or get_block() returned an
2423 * error when trying to map them - we can finish the read.
2425 folio_end_read(folio
, !page_error
);
2429 /* Stage two: lock the buffers */
2430 for (i
= 0; i
< nr
; i
++) {
2433 mark_buffer_async_read(bh
);
2437 * Stage 3: start the IO. Check for uptodateness
2438 * inside the buffer lock in case another process reading
2439 * the underlying blockdev brought it uptodate (the sct fix).
2441 for (i
= 0; i
< nr
; i
++) {
2443 if (buffer_uptodate(bh
))
2444 end_buffer_async_read(bh
, 1);
2446 submit_bh(REQ_OP_READ
, bh
);
2450 EXPORT_SYMBOL(block_read_full_folio
);
2452 /* utility function for filesystems that need to do work on expanding
2453 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2454 * deal with the hole.
2456 int generic_cont_expand_simple(struct inode
*inode
, loff_t size
)
2458 struct address_space
*mapping
= inode
->i_mapping
;
2459 const struct address_space_operations
*aops
= mapping
->a_ops
;
2460 struct folio
*folio
;
2461 void *fsdata
= NULL
;
2464 err
= inode_newsize_ok(inode
, size
);
2468 err
= aops
->write_begin(NULL
, mapping
, size
, 0, &folio
, &fsdata
);
2472 err
= aops
->write_end(NULL
, mapping
, size
, 0, 0, folio
, fsdata
);
2478 EXPORT_SYMBOL(generic_cont_expand_simple
);
2480 static int cont_expand_zero(struct file
*file
, struct address_space
*mapping
,
2481 loff_t pos
, loff_t
*bytes
)
2483 struct inode
*inode
= mapping
->host
;
2484 const struct address_space_operations
*aops
= mapping
->a_ops
;
2485 unsigned int blocksize
= i_blocksize(inode
);
2486 struct folio
*folio
;
2487 void *fsdata
= NULL
;
2488 pgoff_t index
, curidx
;
2490 unsigned zerofrom
, offset
, len
;
2493 index
= pos
>> PAGE_SHIFT
;
2494 offset
= pos
& ~PAGE_MASK
;
2496 while (index
> (curidx
= (curpos
= *bytes
)>>PAGE_SHIFT
)) {
2497 zerofrom
= curpos
& ~PAGE_MASK
;
2498 if (zerofrom
& (blocksize
-1)) {
2499 *bytes
|= (blocksize
-1);
2502 len
= PAGE_SIZE
- zerofrom
;
2504 err
= aops
->write_begin(file
, mapping
, curpos
, len
,
2508 folio_zero_range(folio
, offset_in_folio(folio
, curpos
), len
);
2509 err
= aops
->write_end(file
, mapping
, curpos
, len
, len
,
2516 balance_dirty_pages_ratelimited(mapping
);
2518 if (fatal_signal_pending(current
)) {
2524 /* page covers the boundary, find the boundary offset */
2525 if (index
== curidx
) {
2526 zerofrom
= curpos
& ~PAGE_MASK
;
2527 /* if we will expand the thing last block will be filled */
2528 if (offset
<= zerofrom
) {
2531 if (zerofrom
& (blocksize
-1)) {
2532 *bytes
|= (blocksize
-1);
2535 len
= offset
- zerofrom
;
2537 err
= aops
->write_begin(file
, mapping
, curpos
, len
,
2541 folio_zero_range(folio
, offset_in_folio(folio
, curpos
), len
);
2542 err
= aops
->write_end(file
, mapping
, curpos
, len
, len
,
2554 * For moronic filesystems that do not allow holes in file.
2555 * We may have to extend the file.
2557 int cont_write_begin(struct file
*file
, struct address_space
*mapping
,
2558 loff_t pos
, unsigned len
,
2559 struct folio
**foliop
, void **fsdata
,
2560 get_block_t
*get_block
, loff_t
*bytes
)
2562 struct inode
*inode
= mapping
->host
;
2563 unsigned int blocksize
= i_blocksize(inode
);
2564 unsigned int zerofrom
;
2567 err
= cont_expand_zero(file
, mapping
, pos
, bytes
);
2571 zerofrom
= *bytes
& ~PAGE_MASK
;
2572 if (pos
+len
> *bytes
&& zerofrom
& (blocksize
-1)) {
2573 *bytes
|= (blocksize
-1);
2577 return block_write_begin(mapping
, pos
, len
, foliop
, get_block
);
2579 EXPORT_SYMBOL(cont_write_begin
);
2581 void block_commit_write(struct page
*page
, unsigned from
, unsigned to
)
2583 struct folio
*folio
= page_folio(page
);
2584 __block_commit_write(folio
, from
, to
);
2586 EXPORT_SYMBOL(block_commit_write
);
2589 * block_page_mkwrite() is not allowed to change the file size as it gets
2590 * called from a page fault handler when a page is first dirtied. Hence we must
2591 * be careful to check for EOF conditions here. We set the page up correctly
2592 * for a written page which means we get ENOSPC checking when writing into
2593 * holes and correct delalloc and unwritten extent mapping on filesystems that
2594 * support these features.
2596 * We are not allowed to take the i_mutex here so we have to play games to
2597 * protect against truncate races as the page could now be beyond EOF. Because
2598 * truncate writes the inode size before removing pages, once we have the
2599 * page lock we can determine safely if the page is beyond EOF. If it is not
2600 * beyond EOF, then the page is guaranteed safe against truncation until we
2603 * Direct callers of this function should protect against filesystem freezing
2604 * using sb_start_pagefault() - sb_end_pagefault() functions.
2606 int block_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
2607 get_block_t get_block
)
2609 struct folio
*folio
= page_folio(vmf
->page
);
2610 struct inode
*inode
= file_inode(vma
->vm_file
);
2616 size
= i_size_read(inode
);
2617 if ((folio
->mapping
!= inode
->i_mapping
) ||
2618 (folio_pos(folio
) >= size
)) {
2619 /* We overload EFAULT to mean page got truncated */
2624 end
= folio_size(folio
);
2625 /* folio is wholly or partially inside EOF */
2626 if (folio_pos(folio
) + end
> size
)
2627 end
= size
- folio_pos(folio
);
2629 ret
= __block_write_begin_int(folio
, 0, end
, get_block
, NULL
);
2633 __block_commit_write(folio
, 0, end
);
2635 folio_mark_dirty(folio
);
2636 folio_wait_stable(folio
);
2639 folio_unlock(folio
);
2642 EXPORT_SYMBOL(block_page_mkwrite
);
2644 int block_truncate_page(struct address_space
*mapping
,
2645 loff_t from
, get_block_t
*get_block
)
2647 pgoff_t index
= from
>> PAGE_SHIFT
;
2650 size_t offset
, length
, pos
;
2651 struct inode
*inode
= mapping
->host
;
2652 struct folio
*folio
;
2653 struct buffer_head
*bh
;
2656 blocksize
= i_blocksize(inode
);
2657 length
= from
& (blocksize
- 1);
2659 /* Block boundary? Nothing to do */
2663 length
= blocksize
- length
;
2664 iblock
= ((loff_t
)index
* PAGE_SIZE
) >> inode
->i_blkbits
;
2666 folio
= filemap_grab_folio(mapping
, index
);
2668 return PTR_ERR(folio
);
2670 bh
= folio_buffers(folio
);
2672 bh
= create_empty_buffers(folio
, blocksize
, 0);
2674 /* Find the buffer that contains "offset" */
2675 offset
= offset_in_folio(folio
, from
);
2677 while (offset
>= pos
) {
2678 bh
= bh
->b_this_page
;
2683 if (!buffer_mapped(bh
)) {
2684 WARN_ON(bh
->b_size
!= blocksize
);
2685 err
= get_block(inode
, iblock
, bh
, 0);
2688 /* unmapped? It's a hole - nothing to do */
2689 if (!buffer_mapped(bh
))
2693 /* Ok, it's mapped. Make sure it's up-to-date */
2694 if (folio_test_uptodate(folio
))
2695 set_buffer_uptodate(bh
);
2697 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) && !buffer_unwritten(bh
)) {
2698 err
= bh_read(bh
, 0);
2699 /* Uhhuh. Read error. Complain and punt. */
2704 folio_zero_range(folio
, offset
, length
);
2705 mark_buffer_dirty(bh
);
2708 folio_unlock(folio
);
2713 EXPORT_SYMBOL(block_truncate_page
);
2716 * The generic ->writepage function for buffer-backed address_spaces
2718 int block_write_full_folio(struct folio
*folio
, struct writeback_control
*wbc
,
2721 struct inode
* const inode
= folio
->mapping
->host
;
2722 loff_t i_size
= i_size_read(inode
);
2724 /* Is the folio fully inside i_size? */
2725 if (folio_pos(folio
) + folio_size(folio
) <= i_size
)
2726 return __block_write_full_folio(inode
, folio
, get_block
, wbc
);
2728 /* Is the folio fully outside i_size? (truncate in progress) */
2729 if (folio_pos(folio
) >= i_size
) {
2730 folio_unlock(folio
);
2731 return 0; /* don't care */
2735 * The folio straddles i_size. It must be zeroed out on each and every
2736 * writepage invocation because it may be mmapped. "A file is mapped
2737 * in multiples of the page size. For a file that is not a multiple of
2738 * the page size, the remaining memory is zeroed when mapped, and
2739 * writes to that region are not written out to the file."
2741 folio_zero_segment(folio
, offset_in_folio(folio
, i_size
),
2743 return __block_write_full_folio(inode
, folio
, get_block
, wbc
);
2746 sector_t
generic_block_bmap(struct address_space
*mapping
, sector_t block
,
2747 get_block_t
*get_block
)
2749 struct inode
*inode
= mapping
->host
;
2750 struct buffer_head tmp
= {
2751 .b_size
= i_blocksize(inode
),
2754 get_block(inode
, block
, &tmp
, 0);
2755 return tmp
.b_blocknr
;
2757 EXPORT_SYMBOL(generic_block_bmap
);
2759 static void end_bio_bh_io_sync(struct bio
*bio
)
2761 struct buffer_head
*bh
= bio
->bi_private
;
2763 if (unlikely(bio_flagged(bio
, BIO_QUIET
)))
2764 set_bit(BH_Quiet
, &bh
->b_state
);
2766 bh
->b_end_io(bh
, !bio
->bi_status
);
2770 static void submit_bh_wbc(blk_opf_t opf
, struct buffer_head
*bh
,
2771 enum rw_hint write_hint
,
2772 struct writeback_control
*wbc
)
2774 const enum req_op op
= opf
& REQ_OP_MASK
;
2777 BUG_ON(!buffer_locked(bh
));
2778 BUG_ON(!buffer_mapped(bh
));
2779 BUG_ON(!bh
->b_end_io
);
2780 BUG_ON(buffer_delay(bh
));
2781 BUG_ON(buffer_unwritten(bh
));
2784 * Only clear out a write error when rewriting
2786 if (test_set_buffer_req(bh
) && (op
== REQ_OP_WRITE
))
2787 clear_buffer_write_io_error(bh
);
2789 if (buffer_meta(bh
))
2791 if (buffer_prio(bh
))
2794 bio
= bio_alloc(bh
->b_bdev
, 1, opf
, GFP_NOIO
);
2796 fscrypt_set_bio_crypt_ctx_bh(bio
, bh
, GFP_NOIO
);
2798 bio
->bi_iter
.bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
2799 bio
->bi_write_hint
= write_hint
;
2801 bio_add_folio_nofail(bio
, bh
->b_folio
, bh
->b_size
, bh_offset(bh
));
2803 bio
->bi_end_io
= end_bio_bh_io_sync
;
2804 bio
->bi_private
= bh
;
2806 /* Take care of bh's that straddle the end of the device */
2810 wbc_init_bio(wbc
, bio
);
2811 wbc_account_cgroup_owner(wbc
, bh
->b_folio
, bh
->b_size
);
2817 void submit_bh(blk_opf_t opf
, struct buffer_head
*bh
)
2819 submit_bh_wbc(opf
, bh
, WRITE_LIFE_NOT_SET
, NULL
);
2821 EXPORT_SYMBOL(submit_bh
);
2823 void write_dirty_buffer(struct buffer_head
*bh
, blk_opf_t op_flags
)
2826 if (!test_clear_buffer_dirty(bh
)) {
2830 bh
->b_end_io
= end_buffer_write_sync
;
2832 submit_bh(REQ_OP_WRITE
| op_flags
, bh
);
2834 EXPORT_SYMBOL(write_dirty_buffer
);
2837 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2838 * and then start new I/O and then wait upon it. The caller must have a ref on
2841 int __sync_dirty_buffer(struct buffer_head
*bh
, blk_opf_t op_flags
)
2843 WARN_ON(atomic_read(&bh
->b_count
) < 1);
2845 if (test_clear_buffer_dirty(bh
)) {
2847 * The bh should be mapped, but it might not be if the
2848 * device was hot-removed. Not much we can do but fail the I/O.
2850 if (!buffer_mapped(bh
)) {
2856 bh
->b_end_io
= end_buffer_write_sync
;
2857 submit_bh(REQ_OP_WRITE
| op_flags
, bh
);
2859 if (!buffer_uptodate(bh
))
2866 EXPORT_SYMBOL(__sync_dirty_buffer
);
2868 int sync_dirty_buffer(struct buffer_head
*bh
)
2870 return __sync_dirty_buffer(bh
, REQ_SYNC
);
2872 EXPORT_SYMBOL(sync_dirty_buffer
);
2874 static inline int buffer_busy(struct buffer_head
*bh
)
2876 return atomic_read(&bh
->b_count
) |
2877 (bh
->b_state
& ((1 << BH_Dirty
) | (1 << BH_Lock
)));
2881 drop_buffers(struct folio
*folio
, struct buffer_head
**buffers_to_free
)
2883 struct buffer_head
*head
= folio_buffers(folio
);
2884 struct buffer_head
*bh
;
2888 if (buffer_busy(bh
))
2890 bh
= bh
->b_this_page
;
2891 } while (bh
!= head
);
2894 struct buffer_head
*next
= bh
->b_this_page
;
2896 if (bh
->b_assoc_map
)
2897 __remove_assoc_queue(bh
);
2899 } while (bh
!= head
);
2900 *buffers_to_free
= head
;
2901 folio_detach_private(folio
);
2908 * try_to_free_buffers - Release buffers attached to this folio.
2909 * @folio: The folio.
2911 * If any buffers are in use (dirty, under writeback, elevated refcount),
2912 * no buffers will be freed.
2914 * If the folio is dirty but all the buffers are clean then we need to
2915 * be sure to mark the folio clean as well. This is because the folio
2916 * may be against a block device, and a later reattachment of buffers
2917 * to a dirty folio will set *all* buffers dirty. Which would corrupt
2918 * filesystem data on the same device.
2920 * The same applies to regular filesystem folios: if all the buffers are
2921 * clean then we set the folio clean and proceed. To do that, we require
2922 * total exclusion from block_dirty_folio(). That is obtained with
2925 * Exclusion against try_to_free_buffers may be obtained by either
2926 * locking the folio or by holding its mapping's i_private_lock.
2928 * Context: Process context. @folio must be locked. Will not sleep.
2929 * Return: true if all buffers attached to this folio were freed.
2931 bool try_to_free_buffers(struct folio
*folio
)
2933 struct address_space
* const mapping
= folio
->mapping
;
2934 struct buffer_head
*buffers_to_free
= NULL
;
2937 BUG_ON(!folio_test_locked(folio
));
2938 if (folio_test_writeback(folio
))
2941 if (mapping
== NULL
) { /* can this still happen? */
2942 ret
= drop_buffers(folio
, &buffers_to_free
);
2946 spin_lock(&mapping
->i_private_lock
);
2947 ret
= drop_buffers(folio
, &buffers_to_free
);
2950 * If the filesystem writes its buffers by hand (eg ext3)
2951 * then we can have clean buffers against a dirty folio. We
2952 * clean the folio here; otherwise the VM will never notice
2953 * that the filesystem did any IO at all.
2955 * Also, during truncate, discard_buffer will have marked all
2956 * the folio's buffers clean. We discover that here and clean
2959 * i_private_lock must be held over this entire operation in order
2960 * to synchronise against block_dirty_folio and prevent the
2961 * dirty bit from being lost.
2964 folio_cancel_dirty(folio
);
2965 spin_unlock(&mapping
->i_private_lock
);
2967 if (buffers_to_free
) {
2968 struct buffer_head
*bh
= buffers_to_free
;
2971 struct buffer_head
*next
= bh
->b_this_page
;
2972 free_buffer_head(bh
);
2974 } while (bh
!= buffers_to_free
);
2978 EXPORT_SYMBOL(try_to_free_buffers
);
2981 * Buffer-head allocation
2983 static struct kmem_cache
*bh_cachep __ro_after_init
;
2986 * Once the number of bh's in the machine exceeds this level, we start
2987 * stripping them in writeback.
2989 static unsigned long max_buffer_heads __ro_after_init
;
2991 int buffer_heads_over_limit
;
2993 struct bh_accounting
{
2994 int nr
; /* Number of live bh's */
2995 int ratelimit
; /* Limit cacheline bouncing */
2998 static DEFINE_PER_CPU(struct bh_accounting
, bh_accounting
) = {0, 0};
3000 static void recalc_bh_state(void)
3005 if (__this_cpu_inc_return(bh_accounting
.ratelimit
) - 1 < 4096)
3007 __this_cpu_write(bh_accounting
.ratelimit
, 0);
3008 for_each_online_cpu(i
)
3009 tot
+= per_cpu(bh_accounting
, i
).nr
;
3010 buffer_heads_over_limit
= (tot
> max_buffer_heads
);
3013 struct buffer_head
*alloc_buffer_head(gfp_t gfp_flags
)
3015 struct buffer_head
*ret
= kmem_cache_zalloc(bh_cachep
, gfp_flags
);
3017 INIT_LIST_HEAD(&ret
->b_assoc_buffers
);
3018 spin_lock_init(&ret
->b_uptodate_lock
);
3020 __this_cpu_inc(bh_accounting
.nr
);
3026 EXPORT_SYMBOL(alloc_buffer_head
);
3028 void free_buffer_head(struct buffer_head
*bh
)
3030 BUG_ON(!list_empty(&bh
->b_assoc_buffers
));
3031 kmem_cache_free(bh_cachep
, bh
);
3033 __this_cpu_dec(bh_accounting
.nr
);
3037 EXPORT_SYMBOL(free_buffer_head
);
3039 static int buffer_exit_cpu_dead(unsigned int cpu
)
3042 struct bh_lru
*b
= &per_cpu(bh_lrus
, cpu
);
3044 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
3048 this_cpu_add(bh_accounting
.nr
, per_cpu(bh_accounting
, cpu
).nr
);
3049 per_cpu(bh_accounting
, cpu
).nr
= 0;
3054 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3055 * @bh: struct buffer_head
3057 * Return true if the buffer is up-to-date and false,
3058 * with the buffer locked, if not.
3060 int bh_uptodate_or_lock(struct buffer_head
*bh
)
3062 if (!buffer_uptodate(bh
)) {
3064 if (!buffer_uptodate(bh
))
3070 EXPORT_SYMBOL(bh_uptodate_or_lock
);
3073 * __bh_read - Submit read for a locked buffer
3074 * @bh: struct buffer_head
3075 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3076 * @wait: wait until reading finish
3078 * Returns zero on success or don't wait, and -EIO on error.
3080 int __bh_read(struct buffer_head
*bh
, blk_opf_t op_flags
, bool wait
)
3084 BUG_ON(!buffer_locked(bh
));
3087 bh
->b_end_io
= end_buffer_read_sync
;
3088 submit_bh(REQ_OP_READ
| op_flags
, bh
);
3091 if (!buffer_uptodate(bh
))
3096 EXPORT_SYMBOL(__bh_read
);
3099 * __bh_read_batch - Submit read for a batch of unlocked buffers
3100 * @nr: entry number of the buffer batch
3101 * @bhs: a batch of struct buffer_head
3102 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3103 * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3104 * buffer that cannot lock.
3106 * Returns zero on success or don't wait, and -EIO on error.
3108 void __bh_read_batch(int nr
, struct buffer_head
*bhs
[],
3109 blk_opf_t op_flags
, bool force_lock
)
3113 for (i
= 0; i
< nr
; i
++) {
3114 struct buffer_head
*bh
= bhs
[i
];
3116 if (buffer_uptodate(bh
))
3122 if (!trylock_buffer(bh
))
3125 if (buffer_uptodate(bh
)) {
3130 bh
->b_end_io
= end_buffer_read_sync
;
3132 submit_bh(REQ_OP_READ
| op_flags
, bh
);
3135 EXPORT_SYMBOL(__bh_read_batch
);
3137 void __init
buffer_init(void)
3139 unsigned long nrpages
;
3142 bh_cachep
= KMEM_CACHE(buffer_head
,
3143 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
);
3145 * Limit the bh occupancy to 10% of ZONE_NORMAL
3147 nrpages
= (nr_free_buffer_pages() * 10) / 100;
3148 max_buffer_heads
= nrpages
* (PAGE_SIZE
/ sizeof(struct buffer_head
));
3149 ret
= cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD
, "fs/buffer:dead",
3150 NULL
, buffer_exit_cpu_dead
);