1 // SPDX-License-Identifier: GPL-2.0
3 * Key setup facility for FS encryption support.
5 * Copyright (C) 2015, Google, Inc.
7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
8 * Heavily modified since then.
11 #include <crypto/skcipher.h>
12 #include <linux/random.h>
14 #include "fscrypt_private.h"
16 struct fscrypt_mode fscrypt_modes
[] = {
17 [FSCRYPT_MODE_AES_256_XTS
] = {
18 .friendly_name
= "AES-256-XTS",
19 .cipher_str
= "xts(aes)",
21 .security_strength
= 32,
23 .blk_crypto_mode
= BLK_ENCRYPTION_MODE_AES_256_XTS
,
25 [FSCRYPT_MODE_AES_256_CTS
] = {
26 .friendly_name
= "AES-256-CBC-CTS",
27 .cipher_str
= "cts(cbc(aes))",
29 .security_strength
= 32,
32 [FSCRYPT_MODE_AES_128_CBC
] = {
33 .friendly_name
= "AES-128-CBC-ESSIV",
34 .cipher_str
= "essiv(cbc(aes),sha256)",
36 .security_strength
= 16,
38 .blk_crypto_mode
= BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV
,
40 [FSCRYPT_MODE_AES_128_CTS
] = {
41 .friendly_name
= "AES-128-CBC-CTS",
42 .cipher_str
= "cts(cbc(aes))",
44 .security_strength
= 16,
47 [FSCRYPT_MODE_SM4_XTS
] = {
48 .friendly_name
= "SM4-XTS",
49 .cipher_str
= "xts(sm4)",
51 .security_strength
= 16,
53 .blk_crypto_mode
= BLK_ENCRYPTION_MODE_SM4_XTS
,
55 [FSCRYPT_MODE_SM4_CTS
] = {
56 .friendly_name
= "SM4-CBC-CTS",
57 .cipher_str
= "cts(cbc(sm4))",
59 .security_strength
= 16,
62 [FSCRYPT_MODE_ADIANTUM
] = {
63 .friendly_name
= "Adiantum",
64 .cipher_str
= "adiantum(xchacha12,aes)",
66 .security_strength
= 32,
68 .blk_crypto_mode
= BLK_ENCRYPTION_MODE_ADIANTUM
,
70 [FSCRYPT_MODE_AES_256_HCTR2
] = {
71 .friendly_name
= "AES-256-HCTR2",
72 .cipher_str
= "hctr2(aes)",
74 .security_strength
= 32,
79 static DEFINE_MUTEX(fscrypt_mode_key_setup_mutex
);
81 static struct fscrypt_mode
*
82 select_encryption_mode(const union fscrypt_policy
*policy
,
83 const struct inode
*inode
)
85 BUILD_BUG_ON(ARRAY_SIZE(fscrypt_modes
) != FSCRYPT_MODE_MAX
+ 1);
87 if (S_ISREG(inode
->i_mode
))
88 return &fscrypt_modes
[fscrypt_policy_contents_mode(policy
)];
90 if (S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
))
91 return &fscrypt_modes
[fscrypt_policy_fnames_mode(policy
)];
93 WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n",
94 inode
->i_ino
, (inode
->i_mode
& S_IFMT
));
95 return ERR_PTR(-EINVAL
);
98 /* Create a symmetric cipher object for the given encryption mode and key */
99 static struct crypto_skcipher
*
100 fscrypt_allocate_skcipher(struct fscrypt_mode
*mode
, const u8
*raw_key
,
101 const struct inode
*inode
)
103 struct crypto_skcipher
*tfm
;
106 tfm
= crypto_alloc_skcipher(mode
->cipher_str
, 0, 0);
108 if (PTR_ERR(tfm
) == -ENOENT
) {
110 "Missing crypto API support for %s (API name: \"%s\")",
111 mode
->friendly_name
, mode
->cipher_str
);
112 return ERR_PTR(-ENOPKG
);
114 fscrypt_err(inode
, "Error allocating '%s' transform: %ld",
115 mode
->cipher_str
, PTR_ERR(tfm
));
118 if (!xchg(&mode
->logged_cryptoapi_impl
, 1)) {
120 * fscrypt performance can vary greatly depending on which
121 * crypto algorithm implementation is used. Help people debug
122 * performance problems by logging the ->cra_driver_name the
123 * first time a mode is used.
125 pr_info("fscrypt: %s using implementation \"%s\"\n",
126 mode
->friendly_name
, crypto_skcipher_driver_name(tfm
));
128 if (WARN_ON_ONCE(crypto_skcipher_ivsize(tfm
) != mode
->ivsize
)) {
132 crypto_skcipher_set_flags(tfm
, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS
);
133 err
= crypto_skcipher_setkey(tfm
, raw_key
, mode
->keysize
);
140 crypto_free_skcipher(tfm
);
145 * Prepare the crypto transform object or blk-crypto key in @prep_key, given the
146 * raw key, encryption mode (@ci->ci_mode), flag indicating which encryption
147 * implementation (fs-layer or blk-crypto) will be used (@ci->ci_inlinecrypt),
148 * and IV generation method (@ci->ci_policy.flags).
150 int fscrypt_prepare_key(struct fscrypt_prepared_key
*prep_key
,
151 const u8
*raw_key
, const struct fscrypt_inode_info
*ci
)
153 struct crypto_skcipher
*tfm
;
155 if (fscrypt_using_inline_encryption(ci
))
156 return fscrypt_prepare_inline_crypt_key(prep_key
, raw_key
, ci
);
158 tfm
= fscrypt_allocate_skcipher(ci
->ci_mode
, raw_key
, ci
->ci_inode
);
162 * Pairs with the smp_load_acquire() in fscrypt_is_key_prepared().
163 * I.e., here we publish ->tfm with a RELEASE barrier so that
164 * concurrent tasks can ACQUIRE it. Note that this concurrency is only
165 * possible for per-mode keys, not for per-file keys.
167 smp_store_release(&prep_key
->tfm
, tfm
);
171 /* Destroy a crypto transform object and/or blk-crypto key. */
172 void fscrypt_destroy_prepared_key(struct super_block
*sb
,
173 struct fscrypt_prepared_key
*prep_key
)
175 crypto_free_skcipher(prep_key
->tfm
);
176 fscrypt_destroy_inline_crypt_key(sb
, prep_key
);
177 memzero_explicit(prep_key
, sizeof(*prep_key
));
180 /* Given a per-file encryption key, set up the file's crypto transform object */
181 int fscrypt_set_per_file_enc_key(struct fscrypt_inode_info
*ci
,
184 ci
->ci_owns_key
= true;
185 return fscrypt_prepare_key(&ci
->ci_enc_key
, raw_key
, ci
);
188 static int setup_per_mode_enc_key(struct fscrypt_inode_info
*ci
,
189 struct fscrypt_master_key
*mk
,
190 struct fscrypt_prepared_key
*keys
,
191 u8 hkdf_context
, bool include_fs_uuid
)
193 const struct inode
*inode
= ci
->ci_inode
;
194 const struct super_block
*sb
= inode
->i_sb
;
195 struct fscrypt_mode
*mode
= ci
->ci_mode
;
196 const u8 mode_num
= mode
- fscrypt_modes
;
197 struct fscrypt_prepared_key
*prep_key
;
198 u8 mode_key
[FSCRYPT_MAX_KEY_SIZE
];
199 u8 hkdf_info
[sizeof(mode_num
) + sizeof(sb
->s_uuid
)];
200 unsigned int hkdf_infolen
= 0;
203 if (WARN_ON_ONCE(mode_num
> FSCRYPT_MODE_MAX
))
206 prep_key
= &keys
[mode_num
];
207 if (fscrypt_is_key_prepared(prep_key
, ci
)) {
208 ci
->ci_enc_key
= *prep_key
;
212 mutex_lock(&fscrypt_mode_key_setup_mutex
);
214 if (fscrypt_is_key_prepared(prep_key
, ci
))
217 BUILD_BUG_ON(sizeof(mode_num
) != 1);
218 BUILD_BUG_ON(sizeof(sb
->s_uuid
) != 16);
219 BUILD_BUG_ON(sizeof(hkdf_info
) != 17);
220 hkdf_info
[hkdf_infolen
++] = mode_num
;
221 if (include_fs_uuid
) {
222 memcpy(&hkdf_info
[hkdf_infolen
], &sb
->s_uuid
,
224 hkdf_infolen
+= sizeof(sb
->s_uuid
);
226 err
= fscrypt_hkdf_expand(&mk
->mk_secret
.hkdf
,
227 hkdf_context
, hkdf_info
, hkdf_infolen
,
228 mode_key
, mode
->keysize
);
231 err
= fscrypt_prepare_key(prep_key
, mode_key
, ci
);
232 memzero_explicit(mode_key
, mode
->keysize
);
236 ci
->ci_enc_key
= *prep_key
;
239 mutex_unlock(&fscrypt_mode_key_setup_mutex
);
244 * Derive a SipHash key from the given fscrypt master key and the given
245 * application-specific information string.
247 * Note that the KDF produces a byte array, but the SipHash APIs expect the key
248 * as a pair of 64-bit words. Therefore, on big endian CPUs we have to do an
249 * endianness swap in order to get the same results as on little endian CPUs.
251 static int fscrypt_derive_siphash_key(const struct fscrypt_master_key
*mk
,
252 u8 context
, const u8
*info
,
253 unsigned int infolen
, siphash_key_t
*key
)
257 err
= fscrypt_hkdf_expand(&mk
->mk_secret
.hkdf
, context
, info
, infolen
,
258 (u8
*)key
, sizeof(*key
));
262 BUILD_BUG_ON(sizeof(*key
) != 16);
263 BUILD_BUG_ON(ARRAY_SIZE(key
->key
) != 2);
264 le64_to_cpus(&key
->key
[0]);
265 le64_to_cpus(&key
->key
[1]);
269 int fscrypt_derive_dirhash_key(struct fscrypt_inode_info
*ci
,
270 const struct fscrypt_master_key
*mk
)
274 err
= fscrypt_derive_siphash_key(mk
, HKDF_CONTEXT_DIRHASH_KEY
,
275 ci
->ci_nonce
, FSCRYPT_FILE_NONCE_SIZE
,
276 &ci
->ci_dirhash_key
);
279 ci
->ci_dirhash_key_initialized
= true;
283 void fscrypt_hash_inode_number(struct fscrypt_inode_info
*ci
,
284 const struct fscrypt_master_key
*mk
)
286 WARN_ON_ONCE(ci
->ci_inode
->i_ino
== 0);
287 WARN_ON_ONCE(!mk
->mk_ino_hash_key_initialized
);
289 ci
->ci_hashed_ino
= (u32
)siphash_1u64(ci
->ci_inode
->i_ino
,
290 &mk
->mk_ino_hash_key
);
293 static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_inode_info
*ci
,
294 struct fscrypt_master_key
*mk
)
298 err
= setup_per_mode_enc_key(ci
, mk
, mk
->mk_iv_ino_lblk_32_keys
,
299 HKDF_CONTEXT_IV_INO_LBLK_32_KEY
, true);
303 /* pairs with smp_store_release() below */
304 if (!smp_load_acquire(&mk
->mk_ino_hash_key_initialized
)) {
306 mutex_lock(&fscrypt_mode_key_setup_mutex
);
308 if (mk
->mk_ino_hash_key_initialized
)
311 err
= fscrypt_derive_siphash_key(mk
,
312 HKDF_CONTEXT_INODE_HASH_KEY
,
313 NULL
, 0, &mk
->mk_ino_hash_key
);
316 /* pairs with smp_load_acquire() above */
317 smp_store_release(&mk
->mk_ino_hash_key_initialized
, true);
319 mutex_unlock(&fscrypt_mode_key_setup_mutex
);
325 * New inodes may not have an inode number assigned yet.
326 * Hashing their inode number is delayed until later.
328 if (ci
->ci_inode
->i_ino
)
329 fscrypt_hash_inode_number(ci
, mk
);
333 static int fscrypt_setup_v2_file_key(struct fscrypt_inode_info
*ci
,
334 struct fscrypt_master_key
*mk
,
335 bool need_dirhash_key
)
339 if (ci
->ci_policy
.v2
.flags
& FSCRYPT_POLICY_FLAG_DIRECT_KEY
) {
341 * DIRECT_KEY: instead of deriving per-file encryption keys, the
342 * per-file nonce will be included in all the IVs. But unlike
343 * v1 policies, for v2 policies in this case we don't encrypt
344 * with the master key directly but rather derive a per-mode
345 * encryption key. This ensures that the master key is
346 * consistently used only for HKDF, avoiding key reuse issues.
348 err
= setup_per_mode_enc_key(ci
, mk
, mk
->mk_direct_keys
,
349 HKDF_CONTEXT_DIRECT_KEY
, false);
350 } else if (ci
->ci_policy
.v2
.flags
&
351 FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64
) {
353 * IV_INO_LBLK_64: encryption keys are derived from (master_key,
354 * mode_num, filesystem_uuid), and inode number is included in
355 * the IVs. This format is optimized for use with inline
356 * encryption hardware compliant with the UFS standard.
358 err
= setup_per_mode_enc_key(ci
, mk
, mk
->mk_iv_ino_lblk_64_keys
,
359 HKDF_CONTEXT_IV_INO_LBLK_64_KEY
,
361 } else if (ci
->ci_policy
.v2
.flags
&
362 FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32
) {
363 err
= fscrypt_setup_iv_ino_lblk_32_key(ci
, mk
);
365 u8 derived_key
[FSCRYPT_MAX_KEY_SIZE
];
367 err
= fscrypt_hkdf_expand(&mk
->mk_secret
.hkdf
,
368 HKDF_CONTEXT_PER_FILE_ENC_KEY
,
369 ci
->ci_nonce
, FSCRYPT_FILE_NONCE_SIZE
,
370 derived_key
, ci
->ci_mode
->keysize
);
374 err
= fscrypt_set_per_file_enc_key(ci
, derived_key
);
375 memzero_explicit(derived_key
, ci
->ci_mode
->keysize
);
380 /* Derive a secret dirhash key for directories that need it. */
381 if (need_dirhash_key
) {
382 err
= fscrypt_derive_dirhash_key(ci
, mk
);
391 * Check whether the size of the given master key (@mk) is appropriate for the
392 * encryption settings which a particular file will use (@ci).
394 * If the file uses a v1 encryption policy, then the master key must be at least
395 * as long as the derived key, as this is a requirement of the v1 KDF.
397 * Otherwise, the KDF can accept any size key, so we enforce a slightly looser
398 * requirement: we require that the size of the master key be at least the
399 * maximum security strength of any algorithm whose key will be derived from it
400 * (but in practice we only need to consider @ci->ci_mode, since any other
401 * possible subkeys such as DIRHASH and INODE_HASH will never increase the
402 * required key size over @ci->ci_mode). This allows AES-256-XTS keys to be
403 * derived from a 256-bit master key, which is cryptographically sufficient,
404 * rather than requiring a 512-bit master key which is unnecessarily long. (We
405 * still allow 512-bit master keys if the user chooses to use them, though.)
407 static bool fscrypt_valid_master_key_size(const struct fscrypt_master_key
*mk
,
408 const struct fscrypt_inode_info
*ci
)
410 unsigned int min_keysize
;
412 if (ci
->ci_policy
.version
== FSCRYPT_POLICY_V1
)
413 min_keysize
= ci
->ci_mode
->keysize
;
415 min_keysize
= ci
->ci_mode
->security_strength
;
417 if (mk
->mk_secret
.size
< min_keysize
) {
419 "key with %s %*phN is too short (got %u bytes, need %u+ bytes)",
420 master_key_spec_type(&mk
->mk_spec
),
421 master_key_spec_len(&mk
->mk_spec
),
422 (u8
*)&mk
->mk_spec
.u
,
423 mk
->mk_secret
.size
, min_keysize
);
430 * Find the master key, then set up the inode's actual encryption key.
432 * If the master key is found in the filesystem-level keyring, then it is
433 * returned in *mk_ret with its semaphore read-locked. This is needed to ensure
434 * that only one task links the fscrypt_inode_info into ->mk_decrypted_inodes
435 * (as multiple tasks may race to create an fscrypt_inode_info for the same
436 * inode), and to synchronize the master key being removed with a new inode
437 * starting to use it.
439 static int setup_file_encryption_key(struct fscrypt_inode_info
*ci
,
440 bool need_dirhash_key
,
441 struct fscrypt_master_key
**mk_ret
)
443 struct super_block
*sb
= ci
->ci_inode
->i_sb
;
444 struct fscrypt_key_specifier mk_spec
;
445 struct fscrypt_master_key
*mk
;
448 err
= fscrypt_select_encryption_impl(ci
);
452 err
= fscrypt_policy_to_key_spec(&ci
->ci_policy
, &mk_spec
);
456 mk
= fscrypt_find_master_key(sb
, &mk_spec
);
458 const union fscrypt_policy
*dummy_policy
=
459 fscrypt_get_dummy_policy(sb
);
462 * Add the test_dummy_encryption key on-demand. In principle,
463 * it should be added at mount time. Do it here instead so that
464 * the individual filesystems don't need to worry about adding
465 * this key at mount time and cleaning up on mount failure.
468 fscrypt_policies_equal(dummy_policy
, &ci
->ci_policy
)) {
469 err
= fscrypt_add_test_dummy_key(sb
, &mk_spec
);
472 mk
= fscrypt_find_master_key(sb
, &mk_spec
);
476 if (ci
->ci_policy
.version
!= FSCRYPT_POLICY_V1
)
480 * As a legacy fallback for v1 policies, search for the key in
481 * the current task's subscribed keyrings too. Don't move this
482 * to before the search of ->s_master_keys, since users
483 * shouldn't be able to override filesystem-level keys.
485 return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci
);
487 down_read(&mk
->mk_sem
);
489 if (!mk
->mk_present
) {
490 /* FS_IOC_REMOVE_ENCRYPTION_KEY has been executed on this key */
492 goto out_release_key
;
495 if (!fscrypt_valid_master_key_size(mk
, ci
)) {
497 goto out_release_key
;
500 switch (ci
->ci_policy
.version
) {
501 case FSCRYPT_POLICY_V1
:
502 err
= fscrypt_setup_v1_file_key(ci
, mk
->mk_secret
.raw
);
504 case FSCRYPT_POLICY_V2
:
505 err
= fscrypt_setup_v2_file_key(ci
, mk
, need_dirhash_key
);
513 goto out_release_key
;
519 up_read(&mk
->mk_sem
);
520 fscrypt_put_master_key(mk
);
524 static void put_crypt_info(struct fscrypt_inode_info
*ci
)
526 struct fscrypt_master_key
*mk
;
531 if (ci
->ci_direct_key
)
532 fscrypt_put_direct_key(ci
->ci_direct_key
);
533 else if (ci
->ci_owns_key
)
534 fscrypt_destroy_prepared_key(ci
->ci_inode
->i_sb
,
537 mk
= ci
->ci_master_key
;
540 * Remove this inode from the list of inodes that were unlocked
541 * with the master key. In addition, if we're removing the last
542 * inode from an incompletely removed key, then complete the
543 * full removal of the key.
545 spin_lock(&mk
->mk_decrypted_inodes_lock
);
546 list_del(&ci
->ci_master_key_link
);
547 spin_unlock(&mk
->mk_decrypted_inodes_lock
);
548 fscrypt_put_master_key_activeref(ci
->ci_inode
->i_sb
, mk
);
550 memzero_explicit(ci
, sizeof(*ci
));
551 kmem_cache_free(fscrypt_inode_info_cachep
, ci
);
555 fscrypt_setup_encryption_info(struct inode
*inode
,
556 const union fscrypt_policy
*policy
,
557 const u8 nonce
[FSCRYPT_FILE_NONCE_SIZE
],
558 bool need_dirhash_key
)
560 struct fscrypt_inode_info
*crypt_info
;
561 struct fscrypt_mode
*mode
;
562 struct fscrypt_master_key
*mk
= NULL
;
565 res
= fscrypt_initialize(inode
->i_sb
);
569 crypt_info
= kmem_cache_zalloc(fscrypt_inode_info_cachep
, GFP_KERNEL
);
573 crypt_info
->ci_inode
= inode
;
574 crypt_info
->ci_policy
= *policy
;
575 memcpy(crypt_info
->ci_nonce
, nonce
, FSCRYPT_FILE_NONCE_SIZE
);
577 mode
= select_encryption_mode(&crypt_info
->ci_policy
, inode
);
582 WARN_ON_ONCE(mode
->ivsize
> FSCRYPT_MAX_IV_SIZE
);
583 crypt_info
->ci_mode
= mode
;
585 crypt_info
->ci_data_unit_bits
=
586 fscrypt_policy_du_bits(&crypt_info
->ci_policy
, inode
);
587 crypt_info
->ci_data_units_per_block_bits
=
588 inode
->i_blkbits
- crypt_info
->ci_data_unit_bits
;
590 res
= setup_file_encryption_key(crypt_info
, need_dirhash_key
, &mk
);
595 * For existing inodes, multiple tasks may race to set ->i_crypt_info.
596 * So use cmpxchg_release(). This pairs with the smp_load_acquire() in
597 * fscrypt_get_inode_info(). I.e., here we publish ->i_crypt_info with
598 * a RELEASE barrier so that other tasks can ACQUIRE it.
600 if (cmpxchg_release(&inode
->i_crypt_info
, NULL
, crypt_info
) == NULL
) {
602 * We won the race and set ->i_crypt_info to our crypt_info.
603 * Now link it into the master key's inode list.
606 crypt_info
->ci_master_key
= mk
;
607 refcount_inc(&mk
->mk_active_refs
);
608 spin_lock(&mk
->mk_decrypted_inodes_lock
);
609 list_add(&crypt_info
->ci_master_key_link
,
610 &mk
->mk_decrypted_inodes
);
611 spin_unlock(&mk
->mk_decrypted_inodes_lock
);
618 up_read(&mk
->mk_sem
);
619 fscrypt_put_master_key(mk
);
621 put_crypt_info(crypt_info
);
626 * fscrypt_get_encryption_info() - set up an inode's encryption key
627 * @inode: the inode to set up the key for. Must be encrypted.
628 * @allow_unsupported: if %true, treat an unsupported encryption policy (or
629 * unrecognized encryption context) the same way as the key
630 * being unavailable, instead of returning an error. Use
631 * %false unless the operation being performed is needed in
632 * order for files (or directories) to be deleted.
634 * Set up ->i_crypt_info, if it hasn't already been done.
636 * Note: unless ->i_crypt_info is already set, this isn't %GFP_NOFS-safe. So
637 * generally this shouldn't be called from within a filesystem transaction.
639 * Return: 0 if ->i_crypt_info was set or was already set, *or* if the
640 * encryption key is unavailable. (Use fscrypt_has_encryption_key() to
641 * distinguish these cases.) Also can return another -errno code.
643 int fscrypt_get_encryption_info(struct inode
*inode
, bool allow_unsupported
)
646 union fscrypt_context ctx
;
647 union fscrypt_policy policy
;
649 if (fscrypt_has_encryption_key(inode
))
652 res
= inode
->i_sb
->s_cop
->get_context(inode
, &ctx
, sizeof(ctx
));
654 if (res
== -ERANGE
&& allow_unsupported
)
656 fscrypt_warn(inode
, "Error %d getting encryption context", res
);
660 res
= fscrypt_policy_from_context(&policy
, &ctx
, res
);
662 if (allow_unsupported
)
665 "Unrecognized or corrupt encryption context");
669 if (!fscrypt_supported_policy(&policy
, inode
)) {
670 if (allow_unsupported
)
675 res
= fscrypt_setup_encryption_info(inode
, &policy
,
676 fscrypt_context_nonce(&ctx
),
677 IS_CASEFOLDED(inode
) &&
678 S_ISDIR(inode
->i_mode
));
680 if (res
== -ENOPKG
&& allow_unsupported
) /* Algorithm unavailable? */
688 * fscrypt_prepare_new_inode() - prepare to create a new inode in a directory
689 * @dir: a possibly-encrypted directory
690 * @inode: the new inode. ->i_mode and ->i_blkbits must be set already.
691 * ->i_ino doesn't need to be set yet.
692 * @encrypt_ret: (output) set to %true if the new inode will be encrypted
694 * If the directory is encrypted, set up its ->i_crypt_info in preparation for
695 * encrypting the name of the new file. Also, if the new inode will be
696 * encrypted, set up its ->i_crypt_info and set *encrypt_ret=true.
698 * This isn't %GFP_NOFS-safe, and therefore it should be called before starting
699 * any filesystem transaction to create the inode. For this reason, ->i_ino
700 * isn't required to be set yet, as the filesystem may not have set it yet.
702 * This doesn't persist the new inode's encryption context. That still needs to
703 * be done later by calling fscrypt_set_context().
705 * Return: 0 on success, -ENOKEY if the encryption key is missing, or another
708 int fscrypt_prepare_new_inode(struct inode
*dir
, struct inode
*inode
,
711 const union fscrypt_policy
*policy
;
712 u8 nonce
[FSCRYPT_FILE_NONCE_SIZE
];
714 policy
= fscrypt_policy_to_inherit(dir
);
718 return PTR_ERR(policy
);
720 if (WARN_ON_ONCE(inode
->i_blkbits
== 0))
723 if (WARN_ON_ONCE(inode
->i_mode
== 0))
727 * Only regular files, directories, and symlinks are encrypted.
728 * Special files like device nodes and named pipes aren't.
730 if (!S_ISREG(inode
->i_mode
) &&
731 !S_ISDIR(inode
->i_mode
) &&
732 !S_ISLNK(inode
->i_mode
))
737 get_random_bytes(nonce
, FSCRYPT_FILE_NONCE_SIZE
);
738 return fscrypt_setup_encryption_info(inode
, policy
, nonce
,
739 IS_CASEFOLDED(dir
) &&
740 S_ISDIR(inode
->i_mode
));
742 EXPORT_SYMBOL_GPL(fscrypt_prepare_new_inode
);
745 * fscrypt_put_encryption_info() - free most of an inode's fscrypt data
746 * @inode: an inode being evicted
748 * Free the inode's fscrypt_inode_info. Filesystems must call this when the
749 * inode is being evicted. An RCU grace period need not have elapsed yet.
751 void fscrypt_put_encryption_info(struct inode
*inode
)
753 put_crypt_info(inode
->i_crypt_info
);
754 inode
->i_crypt_info
= NULL
;
756 EXPORT_SYMBOL(fscrypt_put_encryption_info
);
759 * fscrypt_free_inode() - free an inode's fscrypt data requiring RCU delay
760 * @inode: an inode being freed
762 * Free the inode's cached decrypted symlink target, if any. Filesystems must
763 * call this after an RCU grace period, just before they free the inode.
765 void fscrypt_free_inode(struct inode
*inode
)
767 if (IS_ENCRYPTED(inode
) && S_ISLNK(inode
->i_mode
)) {
768 kfree(inode
->i_link
);
769 inode
->i_link
= NULL
;
772 EXPORT_SYMBOL(fscrypt_free_inode
);
775 * fscrypt_drop_inode() - check whether the inode's master key has been removed
776 * @inode: an inode being considered for eviction
778 * Filesystems supporting fscrypt must call this from their ->drop_inode()
779 * method so that encrypted inodes are evicted as soon as they're no longer in
780 * use and their master key has been removed.
782 * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0
784 int fscrypt_drop_inode(struct inode
*inode
)
786 const struct fscrypt_inode_info
*ci
= fscrypt_get_inode_info(inode
);
789 * If ci is NULL, then the inode doesn't have an encryption key set up
790 * so it's irrelevant. If ci_master_key is NULL, then the master key
791 * was provided via the legacy mechanism of the process-subscribed
792 * keyrings, so we don't know whether it's been removed or not.
794 if (!ci
|| !ci
->ci_master_key
)
798 * With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes
799 * protected by the key were cleaned by sync_filesystem(). But if
800 * userspace is still using the files, inodes can be dirtied between
801 * then and now. We mustn't lose any writes, so skip dirty inodes here.
803 if (inode
->i_state
& I_DIRTY_ALL
)
807 * We can't take ->mk_sem here, since this runs in atomic context.
808 * Therefore, ->mk_present can change concurrently, and our result may
809 * immediately become outdated. But there's no correctness problem with
810 * unnecessarily evicting. Nor is there a correctness problem with not
811 * evicting while iput() is racing with the key being removed, since
812 * then the thread removing the key will either evict the inode itself
813 * or will correctly detect that it wasn't evicted due to the race.
815 return !READ_ONCE(ci
->ci_master_key
->mk_present
);
817 EXPORT_SYMBOL_GPL(fscrypt_drop_inode
);