1 // SPDX-License-Identifier: GPL-2.0+
3 * linux/fs/jbd2/commit.c
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
9 * Journal commit routines for the generic filesystem journaling code;
10 * part of the ext2fs journaling system.
13 #include <linux/time.h>
15 #include <linux/jbd2.h>
16 #include <linux/errno.h>
17 #include <linux/slab.h>
19 #include <linux/pagemap.h>
20 #include <linux/jiffies.h>
21 #include <linux/crc32.h>
22 #include <linux/writeback.h>
23 #include <linux/backing-dev.h>
24 #include <linux/bio.h>
25 #include <linux/blkdev.h>
26 #include <linux/bitops.h>
27 #include <trace/events/jbd2.h>
30 * IO end handler for temporary buffer_heads handling writes to the journal.
32 static void journal_end_buffer_io_sync(struct buffer_head
*bh
, int uptodate
)
34 struct buffer_head
*orig_bh
= bh
->b_private
;
38 set_buffer_uptodate(bh
);
40 clear_buffer_uptodate(bh
);
42 clear_bit_unlock(BH_Shadow
, &orig_bh
->b_state
);
43 smp_mb__after_atomic();
44 wake_up_bit(&orig_bh
->b_state
, BH_Shadow
);
50 * When an ext4 file is truncated, it is possible that some pages are not
51 * successfully freed, because they are attached to a committing transaction.
52 * After the transaction commits, these pages are left on the LRU, with no
53 * ->mapping, and with attached buffers. These pages are trivially reclaimable
54 * by the VM, but their apparent absence upsets the VM accounting, and it makes
55 * the numbers in /proc/meminfo look odd.
57 * So here, we have a buffer which has just come off the forget list. Look to
58 * see if we can strip all buffers from the backing page.
60 * Called under lock_journal(), and possibly under journal_datalist_lock. The
61 * caller provided us with a ref against the buffer, and we drop that here.
63 static void release_buffer_page(struct buffer_head
*bh
)
69 if (atomic_read(&bh
->b_count
) != 1)
75 /* OK, it's a truncated page */
76 if (!folio_trylock(folio
))
81 try_to_free_buffers(folio
);
90 static void jbd2_commit_block_csum_set(journal_t
*j
, struct buffer_head
*bh
)
92 struct commit_header
*h
;
95 if (!jbd2_journal_has_csum_v2or3(j
))
98 h
= (struct commit_header
*)(bh
->b_data
);
100 h
->h_chksum_size
= 0;
102 csum
= jbd2_chksum(j
, j
->j_csum_seed
, bh
->b_data
, j
->j_blocksize
);
103 h
->h_chksum
[0] = cpu_to_be32(csum
);
107 * Done it all: now submit the commit record. We should have
108 * cleaned up our previous buffers by now, so if we are in abort
109 * mode we can now just skip the rest of the journal write
112 * Returns 1 if the journal needs to be aborted or 0 on success
114 static int journal_submit_commit_record(journal_t
*journal
,
115 transaction_t
*commit_transaction
,
116 struct buffer_head
**cbh
,
119 struct commit_header
*tmp
;
120 struct buffer_head
*bh
;
121 struct timespec64 now
;
122 blk_opf_t write_flags
= REQ_OP_WRITE
| JBD2_JOURNAL_REQ_FLAGS
;
126 if (is_journal_aborted(journal
))
129 bh
= jbd2_journal_get_descriptor_buffer(commit_transaction
,
134 tmp
= (struct commit_header
*)bh
->b_data
;
135 ktime_get_coarse_real_ts64(&now
);
136 tmp
->h_commit_sec
= cpu_to_be64(now
.tv_sec
);
137 tmp
->h_commit_nsec
= cpu_to_be32(now
.tv_nsec
);
139 if (jbd2_has_feature_checksum(journal
)) {
140 tmp
->h_chksum_type
= JBD2_CRC32_CHKSUM
;
141 tmp
->h_chksum_size
= JBD2_CRC32_CHKSUM_SIZE
;
142 tmp
->h_chksum
[0] = cpu_to_be32(crc32_sum
);
144 jbd2_commit_block_csum_set(journal
, bh
);
146 BUFFER_TRACE(bh
, "submit commit block");
148 clear_buffer_dirty(bh
);
149 set_buffer_uptodate(bh
);
150 bh
->b_end_io
= journal_end_buffer_io_sync
;
152 if (journal
->j_flags
& JBD2_BARRIER
&&
153 !jbd2_has_feature_async_commit(journal
))
154 write_flags
|= REQ_PREFLUSH
| REQ_FUA
;
156 submit_bh(write_flags
, bh
);
162 * This function along with journal_submit_commit_record
163 * allows to write the commit record asynchronously.
165 static int journal_wait_on_commit_record(journal_t
*journal
,
166 struct buffer_head
*bh
)
170 clear_buffer_dirty(bh
);
173 if (unlikely(!buffer_uptodate(bh
)))
175 put_bh(bh
); /* One for getblk() */
180 /* Send all the data buffers related to an inode */
181 int jbd2_submit_inode_data(journal_t
*journal
, struct jbd2_inode
*jinode
)
183 if (!jinode
|| !(jinode
->i_flags
& JI_WRITE_DATA
))
186 trace_jbd2_submit_inode_data(jinode
->i_vfs_inode
);
187 return journal
->j_submit_inode_data_buffers(jinode
);
190 EXPORT_SYMBOL(jbd2_submit_inode_data
);
192 int jbd2_wait_inode_data(journal_t
*journal
, struct jbd2_inode
*jinode
)
194 if (!jinode
|| !(jinode
->i_flags
& JI_WAIT_DATA
) ||
195 !jinode
->i_vfs_inode
|| !jinode
->i_vfs_inode
->i_mapping
)
197 return filemap_fdatawait_range_keep_errors(
198 jinode
->i_vfs_inode
->i_mapping
, jinode
->i_dirty_start
,
199 jinode
->i_dirty_end
);
201 EXPORT_SYMBOL(jbd2_wait_inode_data
);
204 * Submit all the data buffers of inode associated with the transaction to
207 * We are in a committing transaction. Therefore no new inode can be added to
208 * our inode list. We use JI_COMMIT_RUNNING flag to protect inode we currently
209 * operate on from being released while we write out pages.
211 static int journal_submit_data_buffers(journal_t
*journal
,
212 transaction_t
*commit_transaction
)
214 struct jbd2_inode
*jinode
;
217 spin_lock(&journal
->j_list_lock
);
218 list_for_each_entry(jinode
, &commit_transaction
->t_inode_list
, i_list
) {
219 if (!(jinode
->i_flags
& JI_WRITE_DATA
))
221 jinode
->i_flags
|= JI_COMMIT_RUNNING
;
222 spin_unlock(&journal
->j_list_lock
);
223 /* submit the inode data buffers. */
224 trace_jbd2_submit_inode_data(jinode
->i_vfs_inode
);
225 if (journal
->j_submit_inode_data_buffers
) {
226 err
= journal
->j_submit_inode_data_buffers(jinode
);
230 spin_lock(&journal
->j_list_lock
);
231 J_ASSERT(jinode
->i_transaction
== commit_transaction
);
232 jinode
->i_flags
&= ~JI_COMMIT_RUNNING
;
234 wake_up_bit(&jinode
->i_flags
, __JI_COMMIT_RUNNING
);
236 spin_unlock(&journal
->j_list_lock
);
240 int jbd2_journal_finish_inode_data_buffers(struct jbd2_inode
*jinode
)
242 struct address_space
*mapping
= jinode
->i_vfs_inode
->i_mapping
;
244 return filemap_fdatawait_range_keep_errors(mapping
,
245 jinode
->i_dirty_start
,
246 jinode
->i_dirty_end
);
250 * Wait for data submitted for writeout, refile inodes to proper
251 * transaction if needed.
254 static int journal_finish_inode_data_buffers(journal_t
*journal
,
255 transaction_t
*commit_transaction
)
257 struct jbd2_inode
*jinode
, *next_i
;
260 /* For locking, see the comment in journal_submit_data_buffers() */
261 spin_lock(&journal
->j_list_lock
);
262 list_for_each_entry(jinode
, &commit_transaction
->t_inode_list
, i_list
) {
263 if (!(jinode
->i_flags
& JI_WAIT_DATA
))
265 jinode
->i_flags
|= JI_COMMIT_RUNNING
;
266 spin_unlock(&journal
->j_list_lock
);
267 /* wait for the inode data buffers writeout. */
268 if (journal
->j_finish_inode_data_buffers
) {
269 err
= journal
->j_finish_inode_data_buffers(jinode
);
274 spin_lock(&journal
->j_list_lock
);
275 jinode
->i_flags
&= ~JI_COMMIT_RUNNING
;
277 wake_up_bit(&jinode
->i_flags
, __JI_COMMIT_RUNNING
);
280 /* Now refile inode to proper lists */
281 list_for_each_entry_safe(jinode
, next_i
,
282 &commit_transaction
->t_inode_list
, i_list
) {
283 list_del(&jinode
->i_list
);
284 if (jinode
->i_next_transaction
) {
285 jinode
->i_transaction
= jinode
->i_next_transaction
;
286 jinode
->i_next_transaction
= NULL
;
287 list_add(&jinode
->i_list
,
288 &jinode
->i_transaction
->t_inode_list
);
290 jinode
->i_transaction
= NULL
;
291 jinode
->i_dirty_start
= 0;
292 jinode
->i_dirty_end
= 0;
295 spin_unlock(&journal
->j_list_lock
);
300 static __u32
jbd2_checksum_data(__u32 crc32_sum
, struct buffer_head
*bh
)
305 addr
= kmap_local_folio(bh
->b_folio
, bh_offset(bh
));
306 checksum
= crc32_be(crc32_sum
, addr
, bh
->b_size
);
312 static void write_tag_block(journal_t
*j
, journal_block_tag_t
*tag
,
313 unsigned long long block
)
315 tag
->t_blocknr
= cpu_to_be32(block
& (u32
)~0);
316 if (jbd2_has_feature_64bit(j
))
317 tag
->t_blocknr_high
= cpu_to_be32((block
>> 31) >> 1);
320 static void jbd2_block_tag_csum_set(journal_t
*j
, journal_block_tag_t
*tag
,
321 struct buffer_head
*bh
, __u32 sequence
)
323 journal_block_tag3_t
*tag3
= (journal_block_tag3_t
*)tag
;
328 if (!jbd2_journal_has_csum_v2or3(j
))
331 seq
= cpu_to_be32(sequence
);
332 addr
= kmap_local_folio(bh
->b_folio
, bh_offset(bh
));
333 csum32
= jbd2_chksum(j
, j
->j_csum_seed
, (__u8
*)&seq
, sizeof(seq
));
334 csum32
= jbd2_chksum(j
, csum32
, addr
, bh
->b_size
);
337 if (jbd2_has_feature_csum3(j
))
338 tag3
->t_checksum
= cpu_to_be32(csum32
);
340 tag
->t_checksum
= cpu_to_be16(csum32
);
343 * jbd2_journal_commit_transaction
345 * The primary function for committing a transaction to the log. This
346 * function is called by the journal thread to begin a complete commit.
348 void jbd2_journal_commit_transaction(journal_t
*journal
)
350 struct transaction_stats_s stats
;
351 transaction_t
*commit_transaction
;
352 struct journal_head
*jh
;
353 struct buffer_head
*descriptor
;
354 struct buffer_head
**wbuf
= journal
->j_wbuf
;
358 unsigned long long blocknr
;
362 journal_block_tag_t
*tag
= NULL
;
367 int tag_bytes
= journal_tag_bytes(journal
);
368 struct buffer_head
*cbh
= NULL
; /* For transactional checksums */
369 __u32 crc32_sum
= ~0;
370 struct blk_plug plug
;
371 /* Tail of the journal */
372 unsigned long first_block
;
379 if (jbd2_journal_has_csum_v2or3(journal
))
380 csum_size
= sizeof(struct jbd2_journal_block_tail
);
383 * First job: lock down the current transaction and wait for
384 * all outstanding updates to complete.
387 /* Do we need to erase the effects of a prior jbd2_journal_flush? */
388 if (journal
->j_flags
& JBD2_FLUSHED
) {
389 jbd2_debug(3, "super block updated\n");
390 mutex_lock_io(&journal
->j_checkpoint_mutex
);
392 * We hold j_checkpoint_mutex so tail cannot change under us.
393 * We don't need any special data guarantees for writing sb
394 * since journal is empty and it is ok for write to be
395 * flushed only with transaction commit.
397 jbd2_journal_update_sb_log_tail(journal
,
398 journal
->j_tail_sequence
,
400 mutex_unlock(&journal
->j_checkpoint_mutex
);
402 jbd2_debug(3, "superblock not updated\n");
405 J_ASSERT(journal
->j_running_transaction
!= NULL
);
406 J_ASSERT(journal
->j_committing_transaction
== NULL
);
408 write_lock(&journal
->j_state_lock
);
409 journal
->j_flags
|= JBD2_FULL_COMMIT_ONGOING
;
410 while (journal
->j_flags
& JBD2_FAST_COMMIT_ONGOING
) {
413 prepare_to_wait(&journal
->j_fc_wait
, &wait
,
414 TASK_UNINTERRUPTIBLE
);
415 write_unlock(&journal
->j_state_lock
);
417 write_lock(&journal
->j_state_lock
);
418 finish_wait(&journal
->j_fc_wait
, &wait
);
420 * TODO: by blocking fast commits here, we are increasing
421 * fsync() latency slightly. Strictly speaking, we don't need
422 * to block fast commits until the transaction enters T_FLUSH
423 * state. So an optimization is possible where we block new fast
424 * commits here and wait for existing ones to complete
425 * just before we enter T_FLUSH. That way, the existing fast
426 * commits and this full commit can proceed parallely.
429 write_unlock(&journal
->j_state_lock
);
431 commit_transaction
= journal
->j_running_transaction
;
433 trace_jbd2_start_commit(journal
, commit_transaction
);
434 jbd2_debug(1, "JBD2: starting commit of transaction %d\n",
435 commit_transaction
->t_tid
);
437 write_lock(&journal
->j_state_lock
);
438 journal
->j_fc_off
= 0;
439 J_ASSERT(commit_transaction
->t_state
== T_RUNNING
);
440 commit_transaction
->t_state
= T_LOCKED
;
442 trace_jbd2_commit_locking(journal
, commit_transaction
);
443 stats
.run
.rs_wait
= commit_transaction
->t_max_wait
;
444 stats
.run
.rs_request_delay
= 0;
445 stats
.run
.rs_locked
= jiffies
;
446 if (commit_transaction
->t_requested
)
447 stats
.run
.rs_request_delay
=
448 jbd2_time_diff(commit_transaction
->t_requested
,
449 stats
.run
.rs_locked
);
450 stats
.run
.rs_running
= jbd2_time_diff(commit_transaction
->t_start
,
451 stats
.run
.rs_locked
);
453 // waits for any t_updates to finish
454 jbd2_journal_wait_updates(journal
);
456 commit_transaction
->t_state
= T_SWITCH
;
458 J_ASSERT (atomic_read(&commit_transaction
->t_outstanding_credits
) <=
459 journal
->j_max_transaction_buffers
);
462 * First thing we are allowed to do is to discard any remaining
463 * BJ_Reserved buffers. Note, it is _not_ permissible to assume
464 * that there are no such buffers: if a large filesystem
465 * operation like a truncate needs to split itself over multiple
466 * transactions, then it may try to do a jbd2_journal_restart() while
467 * there are still BJ_Reserved buffers outstanding. These must
468 * be released cleanly from the current transaction.
470 * In this case, the filesystem must still reserve write access
471 * again before modifying the buffer in the new transaction, but
472 * we do not require it to remember exactly which old buffers it
473 * has reserved. This is consistent with the existing behaviour
474 * that multiple jbd2_journal_get_write_access() calls to the same
475 * buffer are perfectly permissible.
476 * We use journal->j_state_lock here to serialize processing of
477 * t_reserved_list with eviction of buffers from journal_unmap_buffer().
479 while (commit_transaction
->t_reserved_list
) {
480 jh
= commit_transaction
->t_reserved_list
;
481 JBUFFER_TRACE(jh
, "reserved, unused: refile");
483 * A jbd2_journal_get_undo_access()+jbd2_journal_release_buffer() may
484 * leave undo-committed data.
486 if (jh
->b_committed_data
) {
487 struct buffer_head
*bh
= jh2bh(jh
);
489 spin_lock(&jh
->b_state_lock
);
490 jbd2_free(jh
->b_committed_data
, bh
->b_size
);
491 jh
->b_committed_data
= NULL
;
492 spin_unlock(&jh
->b_state_lock
);
494 jbd2_journal_refile_buffer(journal
, jh
);
497 write_unlock(&journal
->j_state_lock
);
499 * Now try to drop any written-back buffers from the journal's
500 * checkpoint lists. We do this *before* commit because it potentially
503 spin_lock(&journal
->j_list_lock
);
504 __jbd2_journal_clean_checkpoint_list(journal
, JBD2_SHRINK_BUSY_STOP
);
505 spin_unlock(&journal
->j_list_lock
);
507 jbd2_debug(3, "JBD2: commit phase 1\n");
510 * Clear revoked flag to reflect there is no revoked buffers
511 * in the next transaction which is going to be started.
513 jbd2_clear_buffer_revoked_flags(journal
);
516 * Switch to a new revoke table.
518 jbd2_journal_switch_revoke_table(journal
);
520 write_lock(&journal
->j_state_lock
);
522 * Reserved credits cannot be claimed anymore, free them
524 atomic_sub(atomic_read(&journal
->j_reserved_credits
),
525 &commit_transaction
->t_outstanding_credits
);
527 trace_jbd2_commit_flushing(journal
, commit_transaction
);
528 stats
.run
.rs_flushing
= jiffies
;
529 stats
.run
.rs_locked
= jbd2_time_diff(stats
.run
.rs_locked
,
530 stats
.run
.rs_flushing
);
532 commit_transaction
->t_state
= T_FLUSH
;
533 journal
->j_committing_transaction
= commit_transaction
;
534 journal
->j_running_transaction
= NULL
;
535 start_time
= ktime_get();
536 commit_transaction
->t_log_start
= journal
->j_head
;
537 wake_up_all(&journal
->j_wait_transaction_locked
);
538 write_unlock(&journal
->j_state_lock
);
540 jbd2_debug(3, "JBD2: commit phase 2a\n");
543 * Now start flushing things to disk, in the order they appear
544 * on the transaction lists. Data blocks go first.
546 err
= journal_submit_data_buffers(journal
, commit_transaction
);
548 jbd2_journal_abort(journal
, err
);
550 blk_start_plug(&plug
);
551 jbd2_journal_write_revoke_records(commit_transaction
, &log_bufs
);
553 jbd2_debug(3, "JBD2: commit phase 2b\n");
556 * Way to go: we have now written out all of the data for a
557 * transaction! Now comes the tricky part: we need to write out
558 * metadata. Loop over the transaction's entire buffer list:
560 write_lock(&journal
->j_state_lock
);
561 commit_transaction
->t_state
= T_COMMIT
;
562 write_unlock(&journal
->j_state_lock
);
564 trace_jbd2_commit_logging(journal
, commit_transaction
);
565 stats
.run
.rs_logging
= jiffies
;
566 stats
.run
.rs_flushing
= jbd2_time_diff(stats
.run
.rs_flushing
,
567 stats
.run
.rs_logging
);
568 stats
.run
.rs_blocks
= commit_transaction
->t_nr_buffers
;
569 stats
.run
.rs_blocks_logged
= 0;
571 J_ASSERT(commit_transaction
->t_nr_buffers
<=
572 atomic_read(&commit_transaction
->t_outstanding_credits
));
576 while (commit_transaction
->t_buffers
) {
578 /* Find the next buffer to be journaled... */
580 jh
= commit_transaction
->t_buffers
;
582 /* If we're in abort mode, we just un-journal the buffer and
585 if (is_journal_aborted(journal
)) {
586 clear_buffer_jbddirty(jh2bh(jh
));
587 JBUFFER_TRACE(jh
, "journal is aborting: refile");
588 jbd2_buffer_abort_trigger(jh
,
590 jh
->b_frozen_triggers
:
592 jbd2_journal_refile_buffer(journal
, jh
);
593 /* If that was the last one, we need to clean up
594 * any descriptor buffers which may have been
595 * already allocated, even if we are now
597 if (!commit_transaction
->t_buffers
)
598 goto start_journal_io
;
602 /* Make sure we have a descriptor block in which to
603 record the metadata buffer. */
606 J_ASSERT (bufs
== 0);
608 jbd2_debug(4, "JBD2: get descriptor\n");
610 descriptor
= jbd2_journal_get_descriptor_buffer(
612 JBD2_DESCRIPTOR_BLOCK
);
614 jbd2_journal_abort(journal
, -EIO
);
618 jbd2_debug(4, "JBD2: got buffer %llu (%p)\n",
619 (unsigned long long)descriptor
->b_blocknr
,
621 tagp
= &descriptor
->b_data
[sizeof(journal_header_t
)];
622 space_left
= descriptor
->b_size
-
623 sizeof(journal_header_t
);
625 set_buffer_jwrite(descriptor
);
626 set_buffer_dirty(descriptor
);
627 wbuf
[bufs
++] = descriptor
;
629 /* Record it so that we can wait for IO
631 BUFFER_TRACE(descriptor
, "ph3: file as descriptor");
632 jbd2_file_log_bh(&log_bufs
, descriptor
);
635 /* Where is the buffer to be written? */
637 err
= jbd2_journal_next_log_block(journal
, &blocknr
);
638 /* If the block mapping failed, just abandon the buffer
639 and repeat this loop: we'll fall into the
640 refile-on-abort condition above. */
642 jbd2_journal_abort(journal
, err
);
647 * start_this_handle() uses t_outstanding_credits to determine
648 * the free space in the log.
650 atomic_dec(&commit_transaction
->t_outstanding_credits
);
652 /* Bump b_count to prevent truncate from stumbling over
653 the shadowed buffer! @@@ This can go if we ever get
654 rid of the shadow pairing of buffers. */
655 atomic_inc(&jh2bh(jh
)->b_count
);
658 * Make a temporary IO buffer with which to write it out
659 * (this will requeue the metadata buffer to BJ_Shadow).
661 set_bit(BH_JWrite
, &jh2bh(jh
)->b_state
);
662 JBUFFER_TRACE(jh
, "ph3: write metadata");
663 escape
= jbd2_journal_write_metadata_buffer(commit_transaction
,
664 jh
, &wbuf
[bufs
], blocknr
);
665 jbd2_file_log_bh(&io_bufs
, wbuf
[bufs
]);
667 /* Record the new block's tag in the current descriptor
672 tag_flag
|= JBD2_FLAG_ESCAPE
;
674 tag_flag
|= JBD2_FLAG_SAME_UUID
;
676 tag
= (journal_block_tag_t
*) tagp
;
677 write_tag_block(journal
, tag
, jh2bh(jh
)->b_blocknr
);
678 tag
->t_flags
= cpu_to_be16(tag_flag
);
679 jbd2_block_tag_csum_set(journal
, tag
, wbuf
[bufs
],
680 commit_transaction
->t_tid
);
682 space_left
-= tag_bytes
;
686 memcpy (tagp
, journal
->j_uuid
, 16);
692 /* If there's no more to do, or if the descriptor is full,
695 if (bufs
== journal
->j_wbufsize
||
696 commit_transaction
->t_buffers
== NULL
||
697 space_left
< tag_bytes
+ 16 + csum_size
) {
699 jbd2_debug(4, "JBD2: Submit %d IOs\n", bufs
);
701 /* Write an end-of-descriptor marker before
702 submitting the IOs. "tag" still points to
703 the last tag we set up. */
705 tag
->t_flags
|= cpu_to_be16(JBD2_FLAG_LAST_TAG
);
708 jbd2_descriptor_block_csum_set(journal
,
711 for (i
= 0; i
< bufs
; i
++) {
712 struct buffer_head
*bh
= wbuf
[i
];
717 if (jbd2_has_feature_checksum(journal
)) {
719 jbd2_checksum_data(crc32_sum
, bh
);
723 clear_buffer_dirty(bh
);
724 set_buffer_uptodate(bh
);
725 bh
->b_end_io
= journal_end_buffer_io_sync
;
726 submit_bh(REQ_OP_WRITE
| JBD2_JOURNAL_REQ_FLAGS
,
731 /* Force a new descriptor to be generated next
732 time round the loop. */
738 err
= journal_finish_inode_data_buffers(journal
, commit_transaction
);
741 "JBD2: Detected IO errors while flushing file data "
742 "on %s\n", journal
->j_devname
);
743 if (journal
->j_flags
& JBD2_ABORT_ON_SYNCDATA_ERR
)
744 jbd2_journal_abort(journal
, err
);
749 * Get current oldest transaction in the log before we issue flush
750 * to the filesystem device. After the flush we can be sure that
751 * blocks of all older transactions are checkpointed to persistent
752 * storage and we will be safe to update journal start in the
753 * superblock with the numbers we get here.
756 jbd2_journal_get_log_tail(journal
, &first_tid
, &first_block
);
758 write_lock(&journal
->j_state_lock
);
760 long freed
= first_block
- journal
->j_tail
;
762 if (first_block
< journal
->j_tail
)
763 freed
+= journal
->j_last
- journal
->j_first
;
764 /* Update tail only if we free significant amount of space */
765 if (freed
< journal
->j_max_transaction_buffers
)
768 J_ASSERT(commit_transaction
->t_state
== T_COMMIT
);
769 commit_transaction
->t_state
= T_COMMIT_DFLUSH
;
770 write_unlock(&journal
->j_state_lock
);
773 * If the journal is not located on the file system device,
774 * then we must flush the file system device before we issue
777 if (commit_transaction
->t_need_data_flush
&&
778 (journal
->j_fs_dev
!= journal
->j_dev
) &&
779 (journal
->j_flags
& JBD2_BARRIER
))
780 blkdev_issue_flush(journal
->j_fs_dev
);
782 /* Done it all: now write the commit record asynchronously. */
783 if (jbd2_has_feature_async_commit(journal
)) {
784 err
= journal_submit_commit_record(journal
, commit_transaction
,
787 jbd2_journal_abort(journal
, err
);
790 blk_finish_plug(&plug
);
792 /* Lo and behold: we have just managed to send a transaction to
793 the log. Before we can commit it, wait for the IO so far to
794 complete. Control buffers being written are on the
795 transaction's t_log_list queue, and metadata buffers are on
798 Wait for the buffers in reverse order. That way we are
799 less likely to be woken up until all IOs have completed, and
800 so we incur less scheduling load.
803 jbd2_debug(3, "JBD2: commit phase 3\n");
805 while (!list_empty(&io_bufs
)) {
806 struct buffer_head
*bh
= list_entry(io_bufs
.prev
,
813 if (unlikely(!buffer_uptodate(bh
)))
815 jbd2_unfile_log_bh(bh
);
816 stats
.run
.rs_blocks_logged
++;
819 * The list contains temporary buffer heads created by
820 * jbd2_journal_write_metadata_buffer().
822 BUFFER_TRACE(bh
, "dumping temporary bh");
824 J_ASSERT_BH(bh
, atomic_read(&bh
->b_count
) == 0);
825 free_buffer_head(bh
);
827 /* We also have to refile the corresponding shadowed buffer */
828 jh
= commit_transaction
->t_shadow_list
->b_tprev
;
830 clear_buffer_jwrite(bh
);
831 J_ASSERT_BH(bh
, buffer_jbddirty(bh
));
832 J_ASSERT_BH(bh
, !buffer_shadow(bh
));
834 /* The metadata is now released for reuse, but we need
835 to remember it against this transaction so that when
836 we finally commit, we can do any checkpointing
838 JBUFFER_TRACE(jh
, "file as BJ_Forget");
839 jbd2_journal_file_buffer(jh
, commit_transaction
, BJ_Forget
);
840 JBUFFER_TRACE(jh
, "brelse shadowed buffer");
844 J_ASSERT (commit_transaction
->t_shadow_list
== NULL
);
846 jbd2_debug(3, "JBD2: commit phase 4\n");
848 /* Here we wait for the revoke record and descriptor record buffers */
849 while (!list_empty(&log_bufs
)) {
850 struct buffer_head
*bh
;
852 bh
= list_entry(log_bufs
.prev
, struct buffer_head
, b_assoc_buffers
);
856 if (unlikely(!buffer_uptodate(bh
)))
859 BUFFER_TRACE(bh
, "ph5: control buffer writeout done: unfile");
860 clear_buffer_jwrite(bh
);
861 jbd2_unfile_log_bh(bh
);
862 stats
.run
.rs_blocks_logged
++;
863 __brelse(bh
); /* One for getblk */
864 /* AKPM: bforget here */
868 jbd2_journal_abort(journal
, err
);
870 jbd2_debug(3, "JBD2: commit phase 5\n");
871 write_lock(&journal
->j_state_lock
);
872 J_ASSERT(commit_transaction
->t_state
== T_COMMIT_DFLUSH
);
873 commit_transaction
->t_state
= T_COMMIT_JFLUSH
;
874 write_unlock(&journal
->j_state_lock
);
876 if (!jbd2_has_feature_async_commit(journal
)) {
877 err
= journal_submit_commit_record(journal
, commit_transaction
,
880 jbd2_journal_abort(journal
, err
);
883 err
= journal_wait_on_commit_record(journal
, cbh
);
884 stats
.run
.rs_blocks_logged
++;
885 if (jbd2_has_feature_async_commit(journal
) &&
886 journal
->j_flags
& JBD2_BARRIER
) {
887 blkdev_issue_flush(journal
->j_dev
);
891 jbd2_journal_abort(journal
, err
);
894 atomic_read(&commit_transaction
->t_outstanding_credits
) < 0);
897 * Now disk caches for filesystem device are flushed so we are safe to
898 * erase checkpointed transactions from the log by updating journal
902 jbd2_update_log_tail(journal
, first_tid
, first_block
);
904 /* End of a transaction! Finally, we can do checkpoint
905 processing: any buffers committed as a result of this
906 transaction can be removed from any checkpoint list it was on
909 jbd2_debug(3, "JBD2: commit phase 6\n");
911 J_ASSERT(list_empty(&commit_transaction
->t_inode_list
));
912 J_ASSERT(commit_transaction
->t_buffers
== NULL
);
913 J_ASSERT(commit_transaction
->t_checkpoint_list
== NULL
);
914 J_ASSERT(commit_transaction
->t_shadow_list
== NULL
);
918 * As there are other places (journal_unmap_buffer()) adding buffers
919 * to this list we have to be careful and hold the j_list_lock.
921 spin_lock(&journal
->j_list_lock
);
922 while (commit_transaction
->t_forget
) {
923 transaction_t
*cp_transaction
;
924 struct buffer_head
*bh
;
928 jh
= commit_transaction
->t_forget
;
929 spin_unlock(&journal
->j_list_lock
);
932 * Get a reference so that bh cannot be freed before we are
936 spin_lock(&jh
->b_state_lock
);
937 J_ASSERT_JH(jh
, jh
->b_transaction
== commit_transaction
);
940 * If there is undo-protected committed data against
941 * this buffer, then we can remove it now. If it is a
942 * buffer needing such protection, the old frozen_data
943 * field now points to a committed version of the
944 * buffer, so rotate that field to the new committed
947 * Otherwise, we can just throw away the frozen data now.
949 * We also know that the frozen data has already fired
950 * its triggers if they exist, so we can clear that too.
952 if (jh
->b_committed_data
) {
953 jbd2_free(jh
->b_committed_data
, bh
->b_size
);
954 jh
->b_committed_data
= NULL
;
955 if (jh
->b_frozen_data
) {
956 jh
->b_committed_data
= jh
->b_frozen_data
;
957 jh
->b_frozen_data
= NULL
;
958 jh
->b_frozen_triggers
= NULL
;
960 } else if (jh
->b_frozen_data
) {
961 jbd2_free(jh
->b_frozen_data
, bh
->b_size
);
962 jh
->b_frozen_data
= NULL
;
963 jh
->b_frozen_triggers
= NULL
;
966 spin_lock(&journal
->j_list_lock
);
967 cp_transaction
= jh
->b_cp_transaction
;
968 if (cp_transaction
) {
969 JBUFFER_TRACE(jh
, "remove from old cp transaction");
970 cp_transaction
->t_chp_stats
.cs_dropped
++;
971 __jbd2_journal_remove_checkpoint(jh
);
974 /* Only re-checkpoint the buffer_head if it is marked
975 * dirty. If the buffer was added to the BJ_Forget list
976 * by jbd2_journal_forget, it may no longer be dirty and
977 * there's no point in keeping a checkpoint record for
981 * A buffer which has been freed while still being journaled
982 * by a previous transaction, refile the buffer to BJ_Forget of
983 * the running transaction. If the just committed transaction
984 * contains "add to orphan" operation, we can completely
985 * invalidate the buffer now. We are rather through in that
986 * since the buffer may be still accessible when blocksize <
987 * pagesize and it is attached to the last partial page.
989 if (buffer_freed(bh
) && !jh
->b_next_transaction
) {
990 struct address_space
*mapping
;
992 clear_buffer_freed(bh
);
993 clear_buffer_jbddirty(bh
);
996 * Block device buffers need to stay mapped all the
997 * time, so it is enough to clear buffer_jbddirty and
998 * buffer_freed bits. For the file mapping buffers (i.e.
999 * journalled data) we need to unmap buffer and clear
1000 * more bits. We also need to be careful about the check
1001 * because the data page mapping can get cleared under
1002 * our hands. Note that if mapping == NULL, we don't
1003 * need to make buffer unmapped because the page is
1004 * already detached from the mapping and buffers cannot
1007 mapping
= READ_ONCE(bh
->b_folio
->mapping
);
1008 if (mapping
&& !sb_is_blkdev_sb(mapping
->host
->i_sb
)) {
1009 clear_buffer_mapped(bh
);
1010 clear_buffer_new(bh
);
1011 clear_buffer_req(bh
);
1016 if (buffer_jbddirty(bh
)) {
1017 JBUFFER_TRACE(jh
, "add to new checkpointing trans");
1018 __jbd2_journal_insert_checkpoint(jh
, commit_transaction
);
1019 if (is_journal_aborted(journal
))
1020 clear_buffer_jbddirty(bh
);
1022 J_ASSERT_BH(bh
, !buffer_dirty(bh
));
1024 * The buffer on BJ_Forget list and not jbddirty means
1025 * it has been freed by this transaction and hence it
1026 * could not have been reallocated until this
1027 * transaction has committed. *BUT* it could be
1028 * reallocated once we have written all the data to
1029 * disk and before we process the buffer on BJ_Forget
1032 if (!jh
->b_next_transaction
)
1035 JBUFFER_TRACE(jh
, "refile or unfile buffer");
1036 drop_ref
= __jbd2_journal_refile_buffer(jh
);
1037 spin_unlock(&jh
->b_state_lock
);
1039 jbd2_journal_put_journal_head(jh
);
1041 release_buffer_page(bh
); /* Drops bh reference */
1044 cond_resched_lock(&journal
->j_list_lock
);
1046 spin_unlock(&journal
->j_list_lock
);
1048 * This is a bit sleazy. We use j_list_lock to protect transition
1049 * of a transaction into T_FINISHED state and calling
1050 * __jbd2_journal_drop_transaction(). Otherwise we could race with
1051 * other checkpointing code processing the transaction...
1053 write_lock(&journal
->j_state_lock
);
1054 spin_lock(&journal
->j_list_lock
);
1056 * Now recheck if some buffers did not get attached to the transaction
1057 * while the lock was dropped...
1059 if (commit_transaction
->t_forget
) {
1060 spin_unlock(&journal
->j_list_lock
);
1061 write_unlock(&journal
->j_state_lock
);
1065 /* Add the transaction to the checkpoint list
1066 * __journal_remove_checkpoint() can not destroy transaction
1067 * under us because it is not marked as T_FINISHED yet */
1068 if (journal
->j_checkpoint_transactions
== NULL
) {
1069 journal
->j_checkpoint_transactions
= commit_transaction
;
1070 commit_transaction
->t_cpnext
= commit_transaction
;
1071 commit_transaction
->t_cpprev
= commit_transaction
;
1073 commit_transaction
->t_cpnext
=
1074 journal
->j_checkpoint_transactions
;
1075 commit_transaction
->t_cpprev
=
1076 commit_transaction
->t_cpnext
->t_cpprev
;
1077 commit_transaction
->t_cpnext
->t_cpprev
=
1079 commit_transaction
->t_cpprev
->t_cpnext
=
1082 spin_unlock(&journal
->j_list_lock
);
1084 /* Done with this transaction! */
1086 jbd2_debug(3, "JBD2: commit phase 7\n");
1088 J_ASSERT(commit_transaction
->t_state
== T_COMMIT_JFLUSH
);
1090 commit_transaction
->t_start
= jiffies
;
1091 stats
.run
.rs_logging
= jbd2_time_diff(stats
.run
.rs_logging
,
1092 commit_transaction
->t_start
);
1095 * File the transaction statistics
1097 stats
.ts_tid
= commit_transaction
->t_tid
;
1098 stats
.run
.rs_handle_count
=
1099 atomic_read(&commit_transaction
->t_handle_count
);
1100 trace_jbd2_run_stats(journal
->j_fs_dev
->bd_dev
,
1101 commit_transaction
->t_tid
, &stats
.run
);
1102 stats
.ts_requested
= (commit_transaction
->t_requested
) ? 1 : 0;
1104 commit_transaction
->t_state
= T_COMMIT_CALLBACK
;
1105 J_ASSERT(commit_transaction
== journal
->j_committing_transaction
);
1106 WRITE_ONCE(journal
->j_commit_sequence
, commit_transaction
->t_tid
);
1107 journal
->j_committing_transaction
= NULL
;
1108 commit_time
= ktime_to_ns(ktime_sub(ktime_get(), start_time
));
1111 * weight the commit time higher than the average time so we don't
1112 * react too strongly to vast changes in the commit time
1114 if (likely(journal
->j_average_commit_time
))
1115 journal
->j_average_commit_time
= (commit_time
+
1116 journal
->j_average_commit_time
*3) / 4;
1118 journal
->j_average_commit_time
= commit_time
;
1120 write_unlock(&journal
->j_state_lock
);
1122 if (journal
->j_commit_callback
)
1123 journal
->j_commit_callback(journal
, commit_transaction
);
1124 if (journal
->j_fc_cleanup_callback
)
1125 journal
->j_fc_cleanup_callback(journal
, 1, commit_transaction
->t_tid
);
1127 trace_jbd2_end_commit(journal
, commit_transaction
);
1128 jbd2_debug(1, "JBD2: commit %d complete, head %d\n",
1129 journal
->j_commit_sequence
, journal
->j_tail_sequence
);
1131 write_lock(&journal
->j_state_lock
);
1132 journal
->j_flags
&= ~JBD2_FULL_COMMIT_ONGOING
;
1133 journal
->j_flags
&= ~JBD2_FAST_COMMIT_ONGOING
;
1134 spin_lock(&journal
->j_list_lock
);
1135 commit_transaction
->t_state
= T_FINISHED
;
1136 /* Check if the transaction can be dropped now that we are finished */
1137 if (commit_transaction
->t_checkpoint_list
== NULL
) {
1138 __jbd2_journal_drop_transaction(journal
, commit_transaction
);
1139 jbd2_journal_free_transaction(commit_transaction
);
1141 spin_unlock(&journal
->j_list_lock
);
1142 write_unlock(&journal
->j_state_lock
);
1143 wake_up(&journal
->j_wait_done_commit
);
1144 wake_up(&journal
->j_fc_wait
);
1147 * Calculate overall stats
1149 spin_lock(&journal
->j_history_lock
);
1150 journal
->j_stats
.ts_tid
++;
1151 journal
->j_stats
.ts_requested
+= stats
.ts_requested
;
1152 journal
->j_stats
.run
.rs_wait
+= stats
.run
.rs_wait
;
1153 journal
->j_stats
.run
.rs_request_delay
+= stats
.run
.rs_request_delay
;
1154 journal
->j_stats
.run
.rs_running
+= stats
.run
.rs_running
;
1155 journal
->j_stats
.run
.rs_locked
+= stats
.run
.rs_locked
;
1156 journal
->j_stats
.run
.rs_flushing
+= stats
.run
.rs_flushing
;
1157 journal
->j_stats
.run
.rs_logging
+= stats
.run
.rs_logging
;
1158 journal
->j_stats
.run
.rs_handle_count
+= stats
.run
.rs_handle_count
;
1159 journal
->j_stats
.run
.rs_blocks
+= stats
.run
.rs_blocks
;
1160 journal
->j_stats
.run
.rs_blocks_logged
+= stats
.run
.rs_blocks_logged
;
1161 spin_unlock(&journal
->j_history_lock
);