1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * Some corrections by tytso.
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/wordpart.h>
23 #include <linux/filelock.h>
24 #include <linux/namei.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/mount.h>
32 #include <linux/audit.h>
33 #include <linux/capability.h>
34 #include <linux/file.h>
35 #include <linux/fcntl.h>
36 #include <linux/device_cgroup.h>
37 #include <linux/fs_struct.h>
38 #include <linux/posix_acl.h>
39 #include <linux/hash.h>
40 #include <linux/bitops.h>
41 #include <linux/init_task.h>
42 #include <linux/uaccess.h>
47 /* [Feb-1997 T. Schoebel-Theuer]
48 * Fundamental changes in the pathname lookup mechanisms (namei)
49 * were necessary because of omirr. The reason is that omirr needs
50 * to know the _real_ pathname, not the user-supplied one, in case
51 * of symlinks (and also when transname replacements occur).
53 * The new code replaces the old recursive symlink resolution with
54 * an iterative one (in case of non-nested symlink chains). It does
55 * this with calls to <fs>_follow_link().
56 * As a side effect, dir_namei(), _namei() and follow_link() are now
57 * replaced with a single function lookup_dentry() that can handle all
58 * the special cases of the former code.
60 * With the new dcache, the pathname is stored at each inode, at least as
61 * long as the refcount of the inode is positive. As a side effect, the
62 * size of the dcache depends on the inode cache and thus is dynamic.
64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65 * resolution to correspond with current state of the code.
67 * Note that the symlink resolution is not *completely* iterative.
68 * There is still a significant amount of tail- and mid- recursion in
69 * the algorithm. Also, note that <fs>_readlink() is not used in
70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71 * may return different results than <fs>_follow_link(). Many virtual
72 * filesystems (including /proc) exhibit this behavior.
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77 * and the name already exists in form of a symlink, try to create the new
78 * name indicated by the symlink. The old code always complained that the
79 * name already exists, due to not following the symlink even if its target
80 * is nonexistent. The new semantics affects also mknod() and link() when
81 * the name is a symlink pointing to a non-existent name.
83 * I don't know which semantics is the right one, since I have no access
84 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86 * "old" one. Personally, I think the new semantics is much more logical.
87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88 * file does succeed in both HP-UX and SunOs, but not in Solaris
89 * and in the old Linux semantics.
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93 * semantics. See the comments in "open_namei" and "do_link" below.
95 * [10-Sep-98 Alan Modra] Another symlink change.
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99 * inside the path - always follow.
100 * in the last component in creation/removal/renaming - never follow.
101 * if LOOKUP_FOLLOW passed - follow.
102 * if the pathname has trailing slashes - follow.
103 * otherwise - don't follow.
104 * (applied in that order).
106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108 * During the 2.4 we need to fix the userland stuff depending on it -
109 * hopefully we will be able to get rid of that wart in 2.5. So far only
110 * XEmacs seems to be relying on it...
113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
115 * any extra contention...
118 /* In order to reduce some races, while at the same time doing additional
119 * checking and hopefully speeding things up, we copy filenames to the
120 * kernel data space before using them..
122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123 * PATH_MAX includes the nul terminator --RR.
126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
129 getname_flags(const char __user
*filename
, int flags
)
131 struct filename
*result
;
135 result
= audit_reusename(filename
);
139 result
= __getname();
140 if (unlikely(!result
))
141 return ERR_PTR(-ENOMEM
);
144 * First, try to embed the struct filename inside the names_cache
147 kname
= (char *)result
->iname
;
148 result
->name
= kname
;
150 len
= strncpy_from_user(kname
, filename
, EMBEDDED_NAME_MAX
);
152 * Handle both empty path and copy failure in one go.
154 if (unlikely(len
<= 0)) {
155 if (unlikely(len
< 0)) {
160 /* The empty path is special. */
161 if (!(flags
& LOOKUP_EMPTY
)) {
163 return ERR_PTR(-ENOENT
);
168 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
169 * separate struct filename so we can dedicate the entire
170 * names_cache allocation for the pathname, and re-do the copy from
173 if (unlikely(len
== EMBEDDED_NAME_MAX
)) {
174 const size_t size
= offsetof(struct filename
, iname
[1]);
175 kname
= (char *)result
;
178 * size is chosen that way we to guarantee that
179 * result->iname[0] is within the same object and that
180 * kname can't be equal to result->iname, no matter what.
182 result
= kzalloc(size
, GFP_KERNEL
);
183 if (unlikely(!result
)) {
185 return ERR_PTR(-ENOMEM
);
187 result
->name
= kname
;
188 len
= strncpy_from_user(kname
, filename
, PATH_MAX
);
189 if (unlikely(len
< 0)) {
194 /* The empty path is special. */
195 if (unlikely(!len
) && !(flags
& LOOKUP_EMPTY
)) {
198 return ERR_PTR(-ENOENT
);
200 if (unlikely(len
== PATH_MAX
)) {
203 return ERR_PTR(-ENAMETOOLONG
);
207 atomic_set(&result
->refcnt
, 1);
208 result
->uptr
= filename
;
209 result
->aname
= NULL
;
210 audit_getname(result
);
214 struct filename
*getname_uflags(const char __user
*filename
, int uflags
)
216 int flags
= (uflags
& AT_EMPTY_PATH
) ? LOOKUP_EMPTY
: 0;
218 return getname_flags(filename
, flags
);
221 struct filename
*getname(const char __user
* filename
)
223 return getname_flags(filename
, 0);
226 struct filename
*__getname_maybe_null(const char __user
*pathname
)
228 struct filename
*name
;
231 /* try to save on allocations; loss on um, though */
232 if (get_user(c
, pathname
))
233 return ERR_PTR(-EFAULT
);
237 name
= getname_flags(pathname
, LOOKUP_EMPTY
);
238 if (!IS_ERR(name
) && !(name
->name
[0])) {
245 struct filename
*getname_kernel(const char * filename
)
247 struct filename
*result
;
248 int len
= strlen(filename
) + 1;
250 result
= __getname();
251 if (unlikely(!result
))
252 return ERR_PTR(-ENOMEM
);
254 if (len
<= EMBEDDED_NAME_MAX
) {
255 result
->name
= (char *)result
->iname
;
256 } else if (len
<= PATH_MAX
) {
257 const size_t size
= offsetof(struct filename
, iname
[1]);
258 struct filename
*tmp
;
260 tmp
= kmalloc(size
, GFP_KERNEL
);
261 if (unlikely(!tmp
)) {
263 return ERR_PTR(-ENOMEM
);
265 tmp
->name
= (char *)result
;
269 return ERR_PTR(-ENAMETOOLONG
);
271 memcpy((char *)result
->name
, filename
, len
);
273 result
->aname
= NULL
;
274 atomic_set(&result
->refcnt
, 1);
275 audit_getname(result
);
279 EXPORT_SYMBOL(getname_kernel
);
281 void putname(struct filename
*name
)
283 if (IS_ERR_OR_NULL(name
))
286 if (WARN_ON_ONCE(!atomic_read(&name
->refcnt
)))
289 if (!atomic_dec_and_test(&name
->refcnt
))
292 if (name
->name
!= name
->iname
) {
293 __putname(name
->name
);
298 EXPORT_SYMBOL(putname
);
301 * check_acl - perform ACL permission checking
302 * @idmap: idmap of the mount the inode was found from
303 * @inode: inode to check permissions on
304 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
306 * This function performs the ACL permission checking. Since this function
307 * retrieve POSIX acls it needs to know whether it is called from a blocking or
308 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
310 * If the inode has been found through an idmapped mount the idmap of
311 * the vfsmount must be passed through @idmap. This function will then take
312 * care to map the inode according to @idmap before checking permissions.
313 * On non-idmapped mounts or if permission checking is to be performed on the
314 * raw inode simply pass @nop_mnt_idmap.
316 static int check_acl(struct mnt_idmap
*idmap
,
317 struct inode
*inode
, int mask
)
319 #ifdef CONFIG_FS_POSIX_ACL
320 struct posix_acl
*acl
;
322 if (mask
& MAY_NOT_BLOCK
) {
323 acl
= get_cached_acl_rcu(inode
, ACL_TYPE_ACCESS
);
326 /* no ->get_inode_acl() calls in RCU mode... */
327 if (is_uncached_acl(acl
))
329 return posix_acl_permission(idmap
, inode
, acl
, mask
);
332 acl
= get_inode_acl(inode
, ACL_TYPE_ACCESS
);
336 int error
= posix_acl_permission(idmap
, inode
, acl
, mask
);
337 posix_acl_release(acl
);
346 * Very quick optimistic "we know we have no ACL's" check.
348 * Note that this is purely for ACL_TYPE_ACCESS, and purely
349 * for the "we have cached that there are no ACLs" case.
351 * If this returns true, we know there are no ACLs. But if
352 * it returns false, we might still not have ACLs (it could
353 * be the is_uncached_acl() case).
355 static inline bool no_acl_inode(struct inode
*inode
)
357 #ifdef CONFIG_FS_POSIX_ACL
358 return likely(!READ_ONCE(inode
->i_acl
));
365 * acl_permission_check - perform basic UNIX permission checking
366 * @idmap: idmap of the mount the inode was found from
367 * @inode: inode to check permissions on
368 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
370 * This function performs the basic UNIX permission checking. Since this
371 * function may retrieve POSIX acls it needs to know whether it is called from a
372 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
374 * If the inode has been found through an idmapped mount the idmap of
375 * the vfsmount must be passed through @idmap. This function will then take
376 * care to map the inode according to @idmap before checking permissions.
377 * On non-idmapped mounts or if permission checking is to be performed on the
378 * raw inode simply pass @nop_mnt_idmap.
380 static int acl_permission_check(struct mnt_idmap
*idmap
,
381 struct inode
*inode
, int mask
)
383 unsigned int mode
= inode
->i_mode
;
387 * Common cheap case: everybody has the requested
388 * rights, and there are no ACLs to check. No need
389 * to do any owner/group checks in that case.
391 * - 'mask&7' is the requested permission bit set
392 * - multiplying by 0111 spreads them out to all of ugo
393 * - '& ~mode' looks for missing inode permission bits
394 * - the '!' is for "no missing permissions"
396 * After that, we just need to check that there are no
397 * ACL's on the inode - do the 'IS_POSIXACL()' check last
398 * because it will dereference the ->i_sb pointer and we
399 * want to avoid that if at all possible.
401 if (!((mask
& 7) * 0111 & ~mode
)) {
402 if (no_acl_inode(inode
))
404 if (!IS_POSIXACL(inode
))
408 /* Are we the owner? If so, ACL's don't matter */
409 vfsuid
= i_uid_into_vfsuid(idmap
, inode
);
410 if (likely(vfsuid_eq_kuid(vfsuid
, current_fsuid()))) {
413 return (mask
& ~mode
) ? -EACCES
: 0;
416 /* Do we have ACL's? */
417 if (IS_POSIXACL(inode
) && (mode
& S_IRWXG
)) {
418 int error
= check_acl(idmap
, inode
, mask
);
419 if (error
!= -EAGAIN
)
423 /* Only RWX matters for group/other mode bits */
427 * Are the group permissions different from
428 * the other permissions in the bits we care
429 * about? Need to check group ownership if so.
431 if (mask
& (mode
^ (mode
>> 3))) {
432 vfsgid_t vfsgid
= i_gid_into_vfsgid(idmap
, inode
);
433 if (vfsgid_in_group_p(vfsgid
))
437 /* Bits in 'mode' clear that we require? */
438 return (mask
& ~mode
) ? -EACCES
: 0;
442 * generic_permission - check for access rights on a Posix-like filesystem
443 * @idmap: idmap of the mount the inode was found from
444 * @inode: inode to check access rights for
445 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
446 * %MAY_NOT_BLOCK ...)
448 * Used to check for read/write/execute permissions on a file.
449 * We use "fsuid" for this, letting us set arbitrary permissions
450 * for filesystem access without changing the "normal" uids which
451 * are used for other things.
453 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
454 * request cannot be satisfied (eg. requires blocking or too much complexity).
455 * It would then be called again in ref-walk mode.
457 * If the inode has been found through an idmapped mount the idmap of
458 * the vfsmount must be passed through @idmap. This function will then take
459 * care to map the inode according to @idmap before checking permissions.
460 * On non-idmapped mounts or if permission checking is to be performed on the
461 * raw inode simply pass @nop_mnt_idmap.
463 int generic_permission(struct mnt_idmap
*idmap
, struct inode
*inode
,
469 * Do the basic permission checks.
471 ret
= acl_permission_check(idmap
, inode
, mask
);
475 if (S_ISDIR(inode
->i_mode
)) {
476 /* DACs are overridable for directories */
477 if (!(mask
& MAY_WRITE
))
478 if (capable_wrt_inode_uidgid(idmap
, inode
,
479 CAP_DAC_READ_SEARCH
))
481 if (capable_wrt_inode_uidgid(idmap
, inode
,
488 * Searching includes executable on directories, else just read.
490 mask
&= MAY_READ
| MAY_WRITE
| MAY_EXEC
;
491 if (mask
== MAY_READ
)
492 if (capable_wrt_inode_uidgid(idmap
, inode
,
493 CAP_DAC_READ_SEARCH
))
496 * Read/write DACs are always overridable.
497 * Executable DACs are overridable when there is
498 * at least one exec bit set.
500 if (!(mask
& MAY_EXEC
) || (inode
->i_mode
& S_IXUGO
))
501 if (capable_wrt_inode_uidgid(idmap
, inode
,
507 EXPORT_SYMBOL(generic_permission
);
510 * do_inode_permission - UNIX permission checking
511 * @idmap: idmap of the mount the inode was found from
512 * @inode: inode to check permissions on
513 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
515 * We _really_ want to just do "generic_permission()" without
516 * even looking at the inode->i_op values. So we keep a cache
517 * flag in inode->i_opflags, that says "this has not special
518 * permission function, use the fast case".
520 static inline int do_inode_permission(struct mnt_idmap
*idmap
,
521 struct inode
*inode
, int mask
)
523 if (unlikely(!(inode
->i_opflags
& IOP_FASTPERM
))) {
524 if (likely(inode
->i_op
->permission
))
525 return inode
->i_op
->permission(idmap
, inode
, mask
);
527 /* This gets set once for the inode lifetime */
528 spin_lock(&inode
->i_lock
);
529 inode
->i_opflags
|= IOP_FASTPERM
;
530 spin_unlock(&inode
->i_lock
);
532 return generic_permission(idmap
, inode
, mask
);
536 * sb_permission - Check superblock-level permissions
537 * @sb: Superblock of inode to check permission on
538 * @inode: Inode to check permission on
539 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
541 * Separate out file-system wide checks from inode-specific permission checks.
543 static int sb_permission(struct super_block
*sb
, struct inode
*inode
, int mask
)
545 if (unlikely(mask
& MAY_WRITE
)) {
546 umode_t mode
= inode
->i_mode
;
548 /* Nobody gets write access to a read-only fs. */
549 if (sb_rdonly(sb
) && (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
)))
556 * inode_permission - Check for access rights to a given inode
557 * @idmap: idmap of the mount the inode was found from
558 * @inode: Inode to check permission on
559 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
561 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
562 * this, letting us set arbitrary permissions for filesystem access without
563 * changing the "normal" UIDs which are used for other things.
565 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
567 int inode_permission(struct mnt_idmap
*idmap
,
568 struct inode
*inode
, int mask
)
572 retval
= sb_permission(inode
->i_sb
, inode
, mask
);
576 if (unlikely(mask
& MAY_WRITE
)) {
578 * Nobody gets write access to an immutable file.
580 if (IS_IMMUTABLE(inode
))
584 * Updating mtime will likely cause i_uid and i_gid to be
585 * written back improperly if their true value is unknown
588 if (HAS_UNMAPPED_ID(idmap
, inode
))
592 retval
= do_inode_permission(idmap
, inode
, mask
);
596 retval
= devcgroup_inode_permission(inode
, mask
);
600 return security_inode_permission(inode
, mask
);
602 EXPORT_SYMBOL(inode_permission
);
605 * path_get - get a reference to a path
606 * @path: path to get the reference to
608 * Given a path increment the reference count to the dentry and the vfsmount.
610 void path_get(const struct path
*path
)
615 EXPORT_SYMBOL(path_get
);
618 * path_put - put a reference to a path
619 * @path: path to put the reference to
621 * Given a path decrement the reference count to the dentry and the vfsmount.
623 void path_put(const struct path
*path
)
628 EXPORT_SYMBOL(path_put
);
630 #define EMBEDDED_LEVELS 2
635 struct inode
*inode
; /* path.dentry.d_inode */
636 unsigned int flags
, state
;
637 unsigned seq
, next_seq
, m_seq
, r_seq
;
640 int total_link_count
;
643 struct delayed_call done
;
646 } *stack
, internal
[EMBEDDED_LEVELS
];
647 struct filename
*name
;
648 const char *pathname
;
649 struct nameidata
*saved
;
654 } __randomize_layout
;
656 #define ND_ROOT_PRESET 1
657 #define ND_ROOT_GRABBED 2
660 static void __set_nameidata(struct nameidata
*p
, int dfd
, struct filename
*name
)
662 struct nameidata
*old
= current
->nameidata
;
663 p
->stack
= p
->internal
;
667 p
->pathname
= likely(name
) ? name
->name
: "";
669 p
->path
.dentry
= NULL
;
670 p
->total_link_count
= old
? old
->total_link_count
: 0;
672 current
->nameidata
= p
;
675 static inline void set_nameidata(struct nameidata
*p
, int dfd
, struct filename
*name
,
676 const struct path
*root
)
678 __set_nameidata(p
, dfd
, name
);
680 if (unlikely(root
)) {
681 p
->state
= ND_ROOT_PRESET
;
686 static void restore_nameidata(void)
688 struct nameidata
*now
= current
->nameidata
, *old
= now
->saved
;
690 current
->nameidata
= old
;
692 old
->total_link_count
= now
->total_link_count
;
693 if (now
->stack
!= now
->internal
)
697 static bool nd_alloc_stack(struct nameidata
*nd
)
701 p
= kmalloc_array(MAXSYMLINKS
, sizeof(struct saved
),
702 nd
->flags
& LOOKUP_RCU
? GFP_ATOMIC
: GFP_KERNEL
);
705 memcpy(p
, nd
->internal
, sizeof(nd
->internal
));
711 * path_connected - Verify that a dentry is below mnt.mnt_root
712 * @mnt: The mountpoint to check.
713 * @dentry: The dentry to check.
715 * Rename can sometimes move a file or directory outside of a bind
716 * mount, path_connected allows those cases to be detected.
718 static bool path_connected(struct vfsmount
*mnt
, struct dentry
*dentry
)
720 struct super_block
*sb
= mnt
->mnt_sb
;
722 /* Bind mounts can have disconnected paths */
723 if (mnt
->mnt_root
== sb
->s_root
)
726 return is_subdir(dentry
, mnt
->mnt_root
);
729 static void drop_links(struct nameidata
*nd
)
733 struct saved
*last
= nd
->stack
+ i
;
734 do_delayed_call(&last
->done
);
735 clear_delayed_call(&last
->done
);
739 static void leave_rcu(struct nameidata
*nd
)
741 nd
->flags
&= ~LOOKUP_RCU
;
742 nd
->seq
= nd
->next_seq
= 0;
746 static void terminate_walk(struct nameidata
*nd
)
749 if (!(nd
->flags
& LOOKUP_RCU
)) {
752 for (i
= 0; i
< nd
->depth
; i
++)
753 path_put(&nd
->stack
[i
].link
);
754 if (nd
->state
& ND_ROOT_GRABBED
) {
756 nd
->state
&= ~ND_ROOT_GRABBED
;
763 nd
->path
.dentry
= NULL
;
766 /* path_put is needed afterwards regardless of success or failure */
767 static bool __legitimize_path(struct path
*path
, unsigned seq
, unsigned mseq
)
769 int res
= __legitimize_mnt(path
->mnt
, mseq
);
776 if (unlikely(!lockref_get_not_dead(&path
->dentry
->d_lockref
))) {
780 return !read_seqcount_retry(&path
->dentry
->d_seq
, seq
);
783 static inline bool legitimize_path(struct nameidata
*nd
,
784 struct path
*path
, unsigned seq
)
786 return __legitimize_path(path
, seq
, nd
->m_seq
);
789 static bool legitimize_links(struct nameidata
*nd
)
792 if (unlikely(nd
->flags
& LOOKUP_CACHED
)) {
797 for (i
= 0; i
< nd
->depth
; i
++) {
798 struct saved
*last
= nd
->stack
+ i
;
799 if (unlikely(!legitimize_path(nd
, &last
->link
, last
->seq
))) {
808 static bool legitimize_root(struct nameidata
*nd
)
810 /* Nothing to do if nd->root is zero or is managed by the VFS user. */
811 if (!nd
->root
.mnt
|| (nd
->state
& ND_ROOT_PRESET
))
813 nd
->state
|= ND_ROOT_GRABBED
;
814 return legitimize_path(nd
, &nd
->root
, nd
->root_seq
);
818 * Path walking has 2 modes, rcu-walk and ref-walk (see
819 * Documentation/filesystems/path-lookup.txt). In situations when we can't
820 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
821 * normal reference counts on dentries and vfsmounts to transition to ref-walk
822 * mode. Refcounts are grabbed at the last known good point before rcu-walk
823 * got stuck, so ref-walk may continue from there. If this is not successful
824 * (eg. a seqcount has changed), then failure is returned and it's up to caller
825 * to restart the path walk from the beginning in ref-walk mode.
829 * try_to_unlazy - try to switch to ref-walk mode.
830 * @nd: nameidata pathwalk data
831 * Returns: true on success, false on failure
833 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
835 * Must be called from rcu-walk context.
836 * Nothing should touch nameidata between try_to_unlazy() failure and
839 static bool try_to_unlazy(struct nameidata
*nd
)
841 struct dentry
*parent
= nd
->path
.dentry
;
843 BUG_ON(!(nd
->flags
& LOOKUP_RCU
));
845 if (unlikely(!legitimize_links(nd
)))
847 if (unlikely(!legitimize_path(nd
, &nd
->path
, nd
->seq
)))
849 if (unlikely(!legitimize_root(nd
)))
852 BUG_ON(nd
->inode
!= parent
->d_inode
);
857 nd
->path
.dentry
= NULL
;
864 * try_to_unlazy_next - try to switch to ref-walk mode.
865 * @nd: nameidata pathwalk data
866 * @dentry: next dentry to step into
867 * Returns: true on success, false on failure
869 * Similar to try_to_unlazy(), but here we have the next dentry already
870 * picked by rcu-walk and want to legitimize that in addition to the current
871 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context.
872 * Nothing should touch nameidata between try_to_unlazy_next() failure and
875 static bool try_to_unlazy_next(struct nameidata
*nd
, struct dentry
*dentry
)
878 BUG_ON(!(nd
->flags
& LOOKUP_RCU
));
880 if (unlikely(!legitimize_links(nd
)))
882 res
= __legitimize_mnt(nd
->path
.mnt
, nd
->m_seq
);
888 if (unlikely(!lockref_get_not_dead(&nd
->path
.dentry
->d_lockref
)))
892 * We need to move both the parent and the dentry from the RCU domain
893 * to be properly refcounted. And the sequence number in the dentry
894 * validates *both* dentry counters, since we checked the sequence
895 * number of the parent after we got the child sequence number. So we
896 * know the parent must still be valid if the child sequence number is
898 if (unlikely(!lockref_get_not_dead(&dentry
->d_lockref
)))
900 if (read_seqcount_retry(&dentry
->d_seq
, nd
->next_seq
))
903 * Sequence counts matched. Now make sure that the root is
904 * still valid and get it if required.
906 if (unlikely(!legitimize_root(nd
)))
914 nd
->path
.dentry
= NULL
;
924 static inline int d_revalidate(struct dentry
*dentry
, unsigned int flags
)
926 if (unlikely(dentry
->d_flags
& DCACHE_OP_REVALIDATE
))
927 return dentry
->d_op
->d_revalidate(dentry
, flags
);
933 * complete_walk - successful completion of path walk
934 * @nd: pointer nameidata
936 * If we had been in RCU mode, drop out of it and legitimize nd->path.
937 * Revalidate the final result, unless we'd already done that during
938 * the path walk or the filesystem doesn't ask for it. Return 0 on
939 * success, -error on failure. In case of failure caller does not
940 * need to drop nd->path.
942 static int complete_walk(struct nameidata
*nd
)
944 struct dentry
*dentry
= nd
->path
.dentry
;
947 if (nd
->flags
& LOOKUP_RCU
) {
949 * We don't want to zero nd->root for scoped-lookups or
950 * externally-managed nd->root.
952 if (!(nd
->state
& ND_ROOT_PRESET
))
953 if (!(nd
->flags
& LOOKUP_IS_SCOPED
))
955 nd
->flags
&= ~LOOKUP_CACHED
;
956 if (!try_to_unlazy(nd
))
960 if (unlikely(nd
->flags
& LOOKUP_IS_SCOPED
)) {
962 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
963 * ever step outside the root during lookup" and should already
964 * be guaranteed by the rest of namei, we want to avoid a namei
965 * BUG resulting in userspace being given a path that was not
966 * scoped within the root at some point during the lookup.
968 * So, do a final sanity-check to make sure that in the
969 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
970 * we won't silently return an fd completely outside of the
971 * requested root to userspace.
973 * Userspace could move the path outside the root after this
974 * check, but as discussed elsewhere this is not a concern (the
975 * resolved file was inside the root at some point).
977 if (!path_is_under(&nd
->path
, &nd
->root
))
981 if (likely(!(nd
->state
& ND_JUMPED
)))
984 if (likely(!(dentry
->d_flags
& DCACHE_OP_WEAK_REVALIDATE
)))
987 status
= dentry
->d_op
->d_weak_revalidate(dentry
, nd
->flags
);
997 static int set_root(struct nameidata
*nd
)
999 struct fs_struct
*fs
= current
->fs
;
1002 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
1003 * still have to ensure it doesn't happen because it will cause a breakout
1006 if (WARN_ON(nd
->flags
& LOOKUP_IS_SCOPED
))
1007 return -ENOTRECOVERABLE
;
1009 if (nd
->flags
& LOOKUP_RCU
) {
1013 seq
= read_seqcount_begin(&fs
->seq
);
1014 nd
->root
= fs
->root
;
1015 nd
->root_seq
= __read_seqcount_begin(&nd
->root
.dentry
->d_seq
);
1016 } while (read_seqcount_retry(&fs
->seq
, seq
));
1018 get_fs_root(fs
, &nd
->root
);
1019 nd
->state
|= ND_ROOT_GRABBED
;
1024 static int nd_jump_root(struct nameidata
*nd
)
1026 if (unlikely(nd
->flags
& LOOKUP_BENEATH
))
1028 if (unlikely(nd
->flags
& LOOKUP_NO_XDEV
)) {
1029 /* Absolute path arguments to path_init() are allowed. */
1030 if (nd
->path
.mnt
!= NULL
&& nd
->path
.mnt
!= nd
->root
.mnt
)
1033 if (!nd
->root
.mnt
) {
1034 int error
= set_root(nd
);
1038 if (nd
->flags
& LOOKUP_RCU
) {
1040 nd
->path
= nd
->root
;
1041 d
= nd
->path
.dentry
;
1042 nd
->inode
= d
->d_inode
;
1043 nd
->seq
= nd
->root_seq
;
1044 if (read_seqcount_retry(&d
->d_seq
, nd
->seq
))
1047 path_put(&nd
->path
);
1048 nd
->path
= nd
->root
;
1049 path_get(&nd
->path
);
1050 nd
->inode
= nd
->path
.dentry
->d_inode
;
1052 nd
->state
|= ND_JUMPED
;
1057 * Helper to directly jump to a known parsed path from ->get_link,
1058 * caller must have taken a reference to path beforehand.
1060 int nd_jump_link(const struct path
*path
)
1063 struct nameidata
*nd
= current
->nameidata
;
1065 if (unlikely(nd
->flags
& LOOKUP_NO_MAGICLINKS
))
1069 if (unlikely(nd
->flags
& LOOKUP_NO_XDEV
)) {
1070 if (nd
->path
.mnt
!= path
->mnt
)
1073 /* Not currently safe for scoped-lookups. */
1074 if (unlikely(nd
->flags
& LOOKUP_IS_SCOPED
))
1077 path_put(&nd
->path
);
1079 nd
->inode
= nd
->path
.dentry
->d_inode
;
1080 nd
->state
|= ND_JUMPED
;
1088 static inline void put_link(struct nameidata
*nd
)
1090 struct saved
*last
= nd
->stack
+ --nd
->depth
;
1091 do_delayed_call(&last
->done
);
1092 if (!(nd
->flags
& LOOKUP_RCU
))
1093 path_put(&last
->link
);
1096 static int sysctl_protected_symlinks __read_mostly
;
1097 static int sysctl_protected_hardlinks __read_mostly
;
1098 static int sysctl_protected_fifos __read_mostly
;
1099 static int sysctl_protected_regular __read_mostly
;
1101 #ifdef CONFIG_SYSCTL
1102 static struct ctl_table namei_sysctls
[] = {
1104 .procname
= "protected_symlinks",
1105 .data
= &sysctl_protected_symlinks
,
1106 .maxlen
= sizeof(int),
1108 .proc_handler
= proc_dointvec_minmax
,
1109 .extra1
= SYSCTL_ZERO
,
1110 .extra2
= SYSCTL_ONE
,
1113 .procname
= "protected_hardlinks",
1114 .data
= &sysctl_protected_hardlinks
,
1115 .maxlen
= sizeof(int),
1117 .proc_handler
= proc_dointvec_minmax
,
1118 .extra1
= SYSCTL_ZERO
,
1119 .extra2
= SYSCTL_ONE
,
1122 .procname
= "protected_fifos",
1123 .data
= &sysctl_protected_fifos
,
1124 .maxlen
= sizeof(int),
1126 .proc_handler
= proc_dointvec_minmax
,
1127 .extra1
= SYSCTL_ZERO
,
1128 .extra2
= SYSCTL_TWO
,
1131 .procname
= "protected_regular",
1132 .data
= &sysctl_protected_regular
,
1133 .maxlen
= sizeof(int),
1135 .proc_handler
= proc_dointvec_minmax
,
1136 .extra1
= SYSCTL_ZERO
,
1137 .extra2
= SYSCTL_TWO
,
1141 static int __init
init_fs_namei_sysctls(void)
1143 register_sysctl_init("fs", namei_sysctls
);
1146 fs_initcall(init_fs_namei_sysctls
);
1148 #endif /* CONFIG_SYSCTL */
1151 * may_follow_link - Check symlink following for unsafe situations
1152 * @nd: nameidata pathwalk data
1153 * @inode: Used for idmapping.
1155 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1156 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1157 * in a sticky world-writable directory. This is to protect privileged
1158 * processes from failing races against path names that may change out
1159 * from under them by way of other users creating malicious symlinks.
1160 * It will permit symlinks to be followed only when outside a sticky
1161 * world-writable directory, or when the uid of the symlink and follower
1162 * match, or when the directory owner matches the symlink's owner.
1164 * Returns 0 if following the symlink is allowed, -ve on error.
1166 static inline int may_follow_link(struct nameidata
*nd
, const struct inode
*inode
)
1168 struct mnt_idmap
*idmap
;
1171 if (!sysctl_protected_symlinks
)
1174 idmap
= mnt_idmap(nd
->path
.mnt
);
1175 vfsuid
= i_uid_into_vfsuid(idmap
, inode
);
1176 /* Allowed if owner and follower match. */
1177 if (vfsuid_eq_kuid(vfsuid
, current_fsuid()))
1180 /* Allowed if parent directory not sticky and world-writable. */
1181 if ((nd
->dir_mode
& (S_ISVTX
|S_IWOTH
)) != (S_ISVTX
|S_IWOTH
))
1184 /* Allowed if parent directory and link owner match. */
1185 if (vfsuid_valid(nd
->dir_vfsuid
) && vfsuid_eq(nd
->dir_vfsuid
, vfsuid
))
1188 if (nd
->flags
& LOOKUP_RCU
)
1191 audit_inode(nd
->name
, nd
->stack
[0].link
.dentry
, 0);
1192 audit_log_path_denied(AUDIT_ANOM_LINK
, "follow_link");
1197 * safe_hardlink_source - Check for safe hardlink conditions
1198 * @idmap: idmap of the mount the inode was found from
1199 * @inode: the source inode to hardlink from
1201 * Return false if at least one of the following conditions:
1202 * - inode is not a regular file
1204 * - inode is setgid and group-exec
1205 * - access failure for read and write
1207 * Otherwise returns true.
1209 static bool safe_hardlink_source(struct mnt_idmap
*idmap
,
1210 struct inode
*inode
)
1212 umode_t mode
= inode
->i_mode
;
1214 /* Special files should not get pinned to the filesystem. */
1218 /* Setuid files should not get pinned to the filesystem. */
1222 /* Executable setgid files should not get pinned to the filesystem. */
1223 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
))
1226 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1227 if (inode_permission(idmap
, inode
, MAY_READ
| MAY_WRITE
))
1234 * may_linkat - Check permissions for creating a hardlink
1235 * @idmap: idmap of the mount the inode was found from
1236 * @link: the source to hardlink from
1238 * Block hardlink when all of:
1239 * - sysctl_protected_hardlinks enabled
1240 * - fsuid does not match inode
1241 * - hardlink source is unsafe (see safe_hardlink_source() above)
1242 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1244 * If the inode has been found through an idmapped mount the idmap of
1245 * the vfsmount must be passed through @idmap. This function will then take
1246 * care to map the inode according to @idmap before checking permissions.
1247 * On non-idmapped mounts or if permission checking is to be performed on the
1248 * raw inode simply pass @nop_mnt_idmap.
1250 * Returns 0 if successful, -ve on error.
1252 int may_linkat(struct mnt_idmap
*idmap
, const struct path
*link
)
1254 struct inode
*inode
= link
->dentry
->d_inode
;
1256 /* Inode writeback is not safe when the uid or gid are invalid. */
1257 if (!vfsuid_valid(i_uid_into_vfsuid(idmap
, inode
)) ||
1258 !vfsgid_valid(i_gid_into_vfsgid(idmap
, inode
)))
1261 if (!sysctl_protected_hardlinks
)
1264 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1265 * otherwise, it must be a safe source.
1267 if (safe_hardlink_source(idmap
, inode
) ||
1268 inode_owner_or_capable(idmap
, inode
))
1271 audit_log_path_denied(AUDIT_ANOM_LINK
, "linkat");
1276 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1277 * should be allowed, or not, on files that already
1279 * @idmap: idmap of the mount the inode was found from
1280 * @nd: nameidata pathwalk data
1281 * @inode: the inode of the file to open
1283 * Block an O_CREAT open of a FIFO (or a regular file) when:
1284 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1285 * - the file already exists
1286 * - we are in a sticky directory
1287 * - we don't own the file
1288 * - the owner of the directory doesn't own the file
1289 * - the directory is world writable
1290 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1291 * the directory doesn't have to be world writable: being group writable will
1294 * If the inode has been found through an idmapped mount the idmap of
1295 * the vfsmount must be passed through @idmap. This function will then take
1296 * care to map the inode according to @idmap before checking permissions.
1297 * On non-idmapped mounts or if permission checking is to be performed on the
1298 * raw inode simply pass @nop_mnt_idmap.
1300 * Returns 0 if the open is allowed, -ve on error.
1302 static int may_create_in_sticky(struct mnt_idmap
*idmap
, struct nameidata
*nd
,
1303 struct inode
*const inode
)
1305 umode_t dir_mode
= nd
->dir_mode
;
1306 vfsuid_t dir_vfsuid
= nd
->dir_vfsuid
, i_vfsuid
;
1308 if (likely(!(dir_mode
& S_ISVTX
)))
1311 if (S_ISREG(inode
->i_mode
) && !sysctl_protected_regular
)
1314 if (S_ISFIFO(inode
->i_mode
) && !sysctl_protected_fifos
)
1317 i_vfsuid
= i_uid_into_vfsuid(idmap
, inode
);
1319 if (vfsuid_eq(i_vfsuid
, dir_vfsuid
))
1322 if (vfsuid_eq_kuid(i_vfsuid
, current_fsuid()))
1325 if (likely(dir_mode
& 0002)) {
1326 audit_log_path_denied(AUDIT_ANOM_CREAT
, "sticky_create");
1330 if (dir_mode
& 0020) {
1331 if (sysctl_protected_fifos
>= 2 && S_ISFIFO(inode
->i_mode
)) {
1332 audit_log_path_denied(AUDIT_ANOM_CREAT
,
1333 "sticky_create_fifo");
1337 if (sysctl_protected_regular
>= 2 && S_ISREG(inode
->i_mode
)) {
1338 audit_log_path_denied(AUDIT_ANOM_CREAT
,
1339 "sticky_create_regular");
1348 * follow_up - Find the mountpoint of path's vfsmount
1350 * Given a path, find the mountpoint of its source file system.
1351 * Replace @path with the path of the mountpoint in the parent mount.
1354 * Return 1 if we went up a level and 0 if we were already at the
1357 int follow_up(struct path
*path
)
1359 struct mount
*mnt
= real_mount(path
->mnt
);
1360 struct mount
*parent
;
1361 struct dentry
*mountpoint
;
1363 read_seqlock_excl(&mount_lock
);
1364 parent
= mnt
->mnt_parent
;
1365 if (parent
== mnt
) {
1366 read_sequnlock_excl(&mount_lock
);
1369 mntget(&parent
->mnt
);
1370 mountpoint
= dget(mnt
->mnt_mountpoint
);
1371 read_sequnlock_excl(&mount_lock
);
1373 path
->dentry
= mountpoint
;
1375 path
->mnt
= &parent
->mnt
;
1378 EXPORT_SYMBOL(follow_up
);
1380 static bool choose_mountpoint_rcu(struct mount
*m
, const struct path
*root
,
1381 struct path
*path
, unsigned *seqp
)
1383 while (mnt_has_parent(m
)) {
1384 struct dentry
*mountpoint
= m
->mnt_mountpoint
;
1387 if (unlikely(root
->dentry
== mountpoint
&&
1388 root
->mnt
== &m
->mnt
))
1390 if (mountpoint
!= m
->mnt
.mnt_root
) {
1391 path
->mnt
= &m
->mnt
;
1392 path
->dentry
= mountpoint
;
1393 *seqp
= read_seqcount_begin(&mountpoint
->d_seq
);
1400 static bool choose_mountpoint(struct mount
*m
, const struct path
*root
,
1407 unsigned seq
, mseq
= read_seqbegin(&mount_lock
);
1409 found
= choose_mountpoint_rcu(m
, root
, path
, &seq
);
1410 if (unlikely(!found
)) {
1411 if (!read_seqretry(&mount_lock
, mseq
))
1414 if (likely(__legitimize_path(path
, seq
, mseq
)))
1426 * Perform an automount
1427 * - return -EISDIR to tell follow_managed() to stop and return the path we
1430 static int follow_automount(struct path
*path
, int *count
, unsigned lookup_flags
)
1432 struct dentry
*dentry
= path
->dentry
;
1434 /* We don't want to mount if someone's just doing a stat -
1435 * unless they're stat'ing a directory and appended a '/' to
1438 * We do, however, want to mount if someone wants to open or
1439 * create a file of any type under the mountpoint, wants to
1440 * traverse through the mountpoint or wants to open the
1441 * mounted directory. Also, autofs may mark negative dentries
1442 * as being automount points. These will need the attentions
1443 * of the daemon to instantiate them before they can be used.
1445 if (!(lookup_flags
& (LOOKUP_PARENT
| LOOKUP_DIRECTORY
|
1446 LOOKUP_OPEN
| LOOKUP_CREATE
| LOOKUP_AUTOMOUNT
)) &&
1450 if (count
&& (*count
)++ >= MAXSYMLINKS
)
1453 return finish_automount(dentry
->d_op
->d_automount(path
), path
);
1457 * mount traversal - out-of-line part. One note on ->d_flags accesses -
1458 * dentries are pinned but not locked here, so negative dentry can go
1459 * positive right under us. Use of smp_load_acquire() provides a barrier
1460 * sufficient for ->d_inode and ->d_flags consistency.
1462 static int __traverse_mounts(struct path
*path
, unsigned flags
, bool *jumped
,
1463 int *count
, unsigned lookup_flags
)
1465 struct vfsmount
*mnt
= path
->mnt
;
1466 bool need_mntput
= false;
1469 while (flags
& DCACHE_MANAGED_DENTRY
) {
1470 /* Allow the filesystem to manage the transit without i_mutex
1472 if (flags
& DCACHE_MANAGE_TRANSIT
) {
1473 ret
= path
->dentry
->d_op
->d_manage(path
, false);
1474 flags
= smp_load_acquire(&path
->dentry
->d_flags
);
1479 if (flags
& DCACHE_MOUNTED
) { // something's mounted on it..
1480 struct vfsmount
*mounted
= lookup_mnt(path
);
1481 if (mounted
) { // ... in our namespace
1485 path
->mnt
= mounted
;
1486 path
->dentry
= dget(mounted
->mnt_root
);
1487 // here we know it's positive
1488 flags
= path
->dentry
->d_flags
;
1494 if (!(flags
& DCACHE_NEED_AUTOMOUNT
))
1497 // uncovered automount point
1498 ret
= follow_automount(path
, count
, lookup_flags
);
1499 flags
= smp_load_acquire(&path
->dentry
->d_flags
);
1506 // possible if you race with several mount --move
1507 if (need_mntput
&& path
->mnt
== mnt
)
1509 if (!ret
&& unlikely(d_flags_negative(flags
)))
1511 *jumped
= need_mntput
;
1515 static inline int traverse_mounts(struct path
*path
, bool *jumped
,
1516 int *count
, unsigned lookup_flags
)
1518 unsigned flags
= smp_load_acquire(&path
->dentry
->d_flags
);
1521 if (likely(!(flags
& DCACHE_MANAGED_DENTRY
))) {
1523 if (unlikely(d_flags_negative(flags
)))
1527 return __traverse_mounts(path
, flags
, jumped
, count
, lookup_flags
);
1530 int follow_down_one(struct path
*path
)
1532 struct vfsmount
*mounted
;
1534 mounted
= lookup_mnt(path
);
1538 path
->mnt
= mounted
;
1539 path
->dentry
= dget(mounted
->mnt_root
);
1544 EXPORT_SYMBOL(follow_down_one
);
1547 * Follow down to the covering mount currently visible to userspace. At each
1548 * point, the filesystem owning that dentry may be queried as to whether the
1549 * caller is permitted to proceed or not.
1551 int follow_down(struct path
*path
, unsigned int flags
)
1553 struct vfsmount
*mnt
= path
->mnt
;
1555 int ret
= traverse_mounts(path
, &jumped
, NULL
, flags
);
1557 if (path
->mnt
!= mnt
)
1561 EXPORT_SYMBOL(follow_down
);
1564 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1565 * we meet a managed dentry that would need blocking.
1567 static bool __follow_mount_rcu(struct nameidata
*nd
, struct path
*path
)
1569 struct dentry
*dentry
= path
->dentry
;
1570 unsigned int flags
= dentry
->d_flags
;
1572 if (likely(!(flags
& DCACHE_MANAGED_DENTRY
)))
1575 if (unlikely(nd
->flags
& LOOKUP_NO_XDEV
))
1580 * Don't forget we might have a non-mountpoint managed dentry
1581 * that wants to block transit.
1583 if (unlikely(flags
& DCACHE_MANAGE_TRANSIT
)) {
1584 int res
= dentry
->d_op
->d_manage(path
, true);
1586 return res
== -EISDIR
;
1587 flags
= dentry
->d_flags
;
1590 if (flags
& DCACHE_MOUNTED
) {
1591 struct mount
*mounted
= __lookup_mnt(path
->mnt
, dentry
);
1593 path
->mnt
= &mounted
->mnt
;
1594 dentry
= path
->dentry
= mounted
->mnt
.mnt_root
;
1595 nd
->state
|= ND_JUMPED
;
1596 nd
->next_seq
= read_seqcount_begin(&dentry
->d_seq
);
1597 flags
= dentry
->d_flags
;
1598 // makes sure that non-RCU pathwalk could reach
1600 if (read_seqretry(&mount_lock
, nd
->m_seq
))
1604 if (read_seqretry(&mount_lock
, nd
->m_seq
))
1607 return !(flags
& DCACHE_NEED_AUTOMOUNT
);
1611 static inline int handle_mounts(struct nameidata
*nd
, struct dentry
*dentry
,
1617 path
->mnt
= nd
->path
.mnt
;
1618 path
->dentry
= dentry
;
1619 if (nd
->flags
& LOOKUP_RCU
) {
1620 unsigned int seq
= nd
->next_seq
;
1621 if (likely(__follow_mount_rcu(nd
, path
)))
1623 // *path and nd->next_seq might've been clobbered
1624 path
->mnt
= nd
->path
.mnt
;
1625 path
->dentry
= dentry
;
1627 if (!try_to_unlazy_next(nd
, dentry
))
1630 ret
= traverse_mounts(path
, &jumped
, &nd
->total_link_count
, nd
->flags
);
1632 if (unlikely(nd
->flags
& LOOKUP_NO_XDEV
))
1635 nd
->state
|= ND_JUMPED
;
1637 if (unlikely(ret
)) {
1639 if (path
->mnt
!= nd
->path
.mnt
)
1646 * This looks up the name in dcache and possibly revalidates the found dentry.
1647 * NULL is returned if the dentry does not exist in the cache.
1649 static struct dentry
*lookup_dcache(const struct qstr
*name
,
1653 struct dentry
*dentry
= d_lookup(dir
, name
);
1655 int error
= d_revalidate(dentry
, flags
);
1656 if (unlikely(error
<= 0)) {
1658 d_invalidate(dentry
);
1660 return ERR_PTR(error
);
1667 * Parent directory has inode locked exclusive. This is one
1668 * and only case when ->lookup() gets called on non in-lookup
1669 * dentries - as the matter of fact, this only gets called
1670 * when directory is guaranteed to have no in-lookup children
1673 struct dentry
*lookup_one_qstr_excl(const struct qstr
*name
,
1674 struct dentry
*base
,
1677 struct dentry
*dentry
= lookup_dcache(name
, base
, flags
);
1679 struct inode
*dir
= base
->d_inode
;
1684 /* Don't create child dentry for a dead directory. */
1685 if (unlikely(IS_DEADDIR(dir
)))
1686 return ERR_PTR(-ENOENT
);
1688 dentry
= d_alloc(base
, name
);
1689 if (unlikely(!dentry
))
1690 return ERR_PTR(-ENOMEM
);
1692 old
= dir
->i_op
->lookup(dir
, dentry
, flags
);
1693 if (unlikely(old
)) {
1699 EXPORT_SYMBOL(lookup_one_qstr_excl
);
1702 * lookup_fast - do fast lockless (but racy) lookup of a dentry
1703 * @nd: current nameidata
1705 * Do a fast, but racy lookup in the dcache for the given dentry, and
1706 * revalidate it. Returns a valid dentry pointer or NULL if one wasn't
1707 * found. On error, an ERR_PTR will be returned.
1709 * If this function returns a valid dentry and the walk is no longer
1710 * lazy, the dentry will carry a reference that must later be put. If
1711 * RCU mode is still in force, then this is not the case and the dentry
1712 * must be legitimized before use. If this returns NULL, then the walk
1713 * will no longer be in RCU mode.
1715 static struct dentry
*lookup_fast(struct nameidata
*nd
)
1717 struct dentry
*dentry
, *parent
= nd
->path
.dentry
;
1721 * Rename seqlock is not required here because in the off chance
1722 * of a false negative due to a concurrent rename, the caller is
1723 * going to fall back to non-racy lookup.
1725 if (nd
->flags
& LOOKUP_RCU
) {
1726 dentry
= __d_lookup_rcu(parent
, &nd
->last
, &nd
->next_seq
);
1727 if (unlikely(!dentry
)) {
1728 if (!try_to_unlazy(nd
))
1729 return ERR_PTR(-ECHILD
);
1734 * This sequence count validates that the parent had no
1735 * changes while we did the lookup of the dentry above.
1737 if (read_seqcount_retry(&parent
->d_seq
, nd
->seq
))
1738 return ERR_PTR(-ECHILD
);
1740 status
= d_revalidate(dentry
, nd
->flags
);
1741 if (likely(status
> 0))
1743 if (!try_to_unlazy_next(nd
, dentry
))
1744 return ERR_PTR(-ECHILD
);
1745 if (status
== -ECHILD
)
1746 /* we'd been told to redo it in non-rcu mode */
1747 status
= d_revalidate(dentry
, nd
->flags
);
1749 dentry
= __d_lookup(parent
, &nd
->last
);
1750 if (unlikely(!dentry
))
1752 status
= d_revalidate(dentry
, nd
->flags
);
1754 if (unlikely(status
<= 0)) {
1756 d_invalidate(dentry
);
1758 return ERR_PTR(status
);
1763 /* Fast lookup failed, do it the slow way */
1764 static struct dentry
*__lookup_slow(const struct qstr
*name
,
1768 struct dentry
*dentry
, *old
;
1769 struct inode
*inode
= dir
->d_inode
;
1770 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq
);
1772 /* Don't go there if it's already dead */
1773 if (unlikely(IS_DEADDIR(inode
)))
1774 return ERR_PTR(-ENOENT
);
1776 dentry
= d_alloc_parallel(dir
, name
, &wq
);
1779 if (unlikely(!d_in_lookup(dentry
))) {
1780 int error
= d_revalidate(dentry
, flags
);
1781 if (unlikely(error
<= 0)) {
1783 d_invalidate(dentry
);
1788 dentry
= ERR_PTR(error
);
1791 old
= inode
->i_op
->lookup(inode
, dentry
, flags
);
1792 d_lookup_done(dentry
);
1793 if (unlikely(old
)) {
1801 static struct dentry
*lookup_slow(const struct qstr
*name
,
1805 struct inode
*inode
= dir
->d_inode
;
1807 inode_lock_shared(inode
);
1808 res
= __lookup_slow(name
, dir
, flags
);
1809 inode_unlock_shared(inode
);
1813 static inline int may_lookup(struct mnt_idmap
*idmap
,
1814 struct nameidata
*restrict nd
)
1818 mask
= nd
->flags
& LOOKUP_RCU
? MAY_NOT_BLOCK
: 0;
1819 err
= inode_permission(idmap
, nd
->inode
, mask
| MAY_EXEC
);
1823 // If we failed, and we weren't in LOOKUP_RCU, it's final
1824 if (!(nd
->flags
& LOOKUP_RCU
))
1827 // Drop out of RCU mode to make sure it wasn't transient
1828 if (!try_to_unlazy(nd
))
1829 return -ECHILD
; // redo it all non-lazy
1831 if (err
!= -ECHILD
) // hard error
1834 return inode_permission(idmap
, nd
->inode
, MAY_EXEC
);
1837 static int reserve_stack(struct nameidata
*nd
, struct path
*link
)
1839 if (unlikely(nd
->total_link_count
++ >= MAXSYMLINKS
))
1842 if (likely(nd
->depth
!= EMBEDDED_LEVELS
))
1844 if (likely(nd
->stack
!= nd
->internal
))
1846 if (likely(nd_alloc_stack(nd
)))
1849 if (nd
->flags
& LOOKUP_RCU
) {
1850 // we need to grab link before we do unlazy. And we can't skip
1851 // unlazy even if we fail to grab the link - cleanup needs it
1852 bool grabbed_link
= legitimize_path(nd
, link
, nd
->next_seq
);
1854 if (!try_to_unlazy(nd
) || !grabbed_link
)
1857 if (nd_alloc_stack(nd
))
1863 enum {WALK_TRAILING
= 1, WALK_MORE
= 2, WALK_NOFOLLOW
= 4};
1865 static const char *pick_link(struct nameidata
*nd
, struct path
*link
,
1866 struct inode
*inode
, int flags
)
1870 int error
= reserve_stack(nd
, link
);
1872 if (unlikely(error
)) {
1873 if (!(nd
->flags
& LOOKUP_RCU
))
1875 return ERR_PTR(error
);
1877 last
= nd
->stack
+ nd
->depth
++;
1879 clear_delayed_call(&last
->done
);
1880 last
->seq
= nd
->next_seq
;
1882 if (flags
& WALK_TRAILING
) {
1883 error
= may_follow_link(nd
, inode
);
1884 if (unlikely(error
))
1885 return ERR_PTR(error
);
1888 if (unlikely(nd
->flags
& LOOKUP_NO_SYMLINKS
) ||
1889 unlikely(link
->mnt
->mnt_flags
& MNT_NOSYMFOLLOW
))
1890 return ERR_PTR(-ELOOP
);
1892 if (!(nd
->flags
& LOOKUP_RCU
)) {
1893 touch_atime(&last
->link
);
1895 } else if (atime_needs_update(&last
->link
, inode
)) {
1896 if (!try_to_unlazy(nd
))
1897 return ERR_PTR(-ECHILD
);
1898 touch_atime(&last
->link
);
1901 error
= security_inode_follow_link(link
->dentry
, inode
,
1902 nd
->flags
& LOOKUP_RCU
);
1903 if (unlikely(error
))
1904 return ERR_PTR(error
);
1906 res
= READ_ONCE(inode
->i_link
);
1908 const char * (*get
)(struct dentry
*, struct inode
*,
1909 struct delayed_call
*);
1910 get
= inode
->i_op
->get_link
;
1911 if (nd
->flags
& LOOKUP_RCU
) {
1912 res
= get(NULL
, inode
, &last
->done
);
1913 if (res
== ERR_PTR(-ECHILD
) && try_to_unlazy(nd
))
1914 res
= get(link
->dentry
, inode
, &last
->done
);
1916 res
= get(link
->dentry
, inode
, &last
->done
);
1924 error
= nd_jump_root(nd
);
1925 if (unlikely(error
))
1926 return ERR_PTR(error
);
1927 while (unlikely(*++res
== '/'))
1932 all_done
: // pure jump
1938 * Do we need to follow links? We _really_ want to be able
1939 * to do this check without having to look at inode->i_op,
1940 * so we keep a cache of "no, this doesn't need follow_link"
1941 * for the common case.
1943 * NOTE: dentry must be what nd->next_seq had been sampled from.
1945 static const char *step_into(struct nameidata
*nd
, int flags
,
1946 struct dentry
*dentry
)
1949 struct inode
*inode
;
1950 int err
= handle_mounts(nd
, dentry
, &path
);
1953 return ERR_PTR(err
);
1954 inode
= path
.dentry
->d_inode
;
1955 if (likely(!d_is_symlink(path
.dentry
)) ||
1956 ((flags
& WALK_TRAILING
) && !(nd
->flags
& LOOKUP_FOLLOW
)) ||
1957 (flags
& WALK_NOFOLLOW
)) {
1958 /* not a symlink or should not follow */
1959 if (nd
->flags
& LOOKUP_RCU
) {
1960 if (read_seqcount_retry(&path
.dentry
->d_seq
, nd
->next_seq
))
1961 return ERR_PTR(-ECHILD
);
1962 if (unlikely(!inode
))
1963 return ERR_PTR(-ENOENT
);
1965 dput(nd
->path
.dentry
);
1966 if (nd
->path
.mnt
!= path
.mnt
)
1967 mntput(nd
->path
.mnt
);
1971 nd
->seq
= nd
->next_seq
;
1974 if (nd
->flags
& LOOKUP_RCU
) {
1975 /* make sure that d_is_symlink above matches inode */
1976 if (read_seqcount_retry(&path
.dentry
->d_seq
, nd
->next_seq
))
1977 return ERR_PTR(-ECHILD
);
1979 if (path
.mnt
== nd
->path
.mnt
)
1982 return pick_link(nd
, &path
, inode
, flags
);
1985 static struct dentry
*follow_dotdot_rcu(struct nameidata
*nd
)
1987 struct dentry
*parent
, *old
;
1989 if (path_equal(&nd
->path
, &nd
->root
))
1991 if (unlikely(nd
->path
.dentry
== nd
->path
.mnt
->mnt_root
)) {
1994 if (!choose_mountpoint_rcu(real_mount(nd
->path
.mnt
),
1995 &nd
->root
, &path
, &seq
))
1997 if (unlikely(nd
->flags
& LOOKUP_NO_XDEV
))
1998 return ERR_PTR(-ECHILD
);
2000 nd
->inode
= path
.dentry
->d_inode
;
2002 // makes sure that non-RCU pathwalk could reach this state
2003 if (read_seqretry(&mount_lock
, nd
->m_seq
))
2004 return ERR_PTR(-ECHILD
);
2005 /* we know that mountpoint was pinned */
2007 old
= nd
->path
.dentry
;
2008 parent
= old
->d_parent
;
2009 nd
->next_seq
= read_seqcount_begin(&parent
->d_seq
);
2010 // makes sure that non-RCU pathwalk could reach this state
2011 if (read_seqcount_retry(&old
->d_seq
, nd
->seq
))
2012 return ERR_PTR(-ECHILD
);
2013 if (unlikely(!path_connected(nd
->path
.mnt
, parent
)))
2014 return ERR_PTR(-ECHILD
);
2017 if (read_seqretry(&mount_lock
, nd
->m_seq
))
2018 return ERR_PTR(-ECHILD
);
2019 if (unlikely(nd
->flags
& LOOKUP_BENEATH
))
2020 return ERR_PTR(-ECHILD
);
2021 nd
->next_seq
= nd
->seq
;
2022 return nd
->path
.dentry
;
2025 static struct dentry
*follow_dotdot(struct nameidata
*nd
)
2027 struct dentry
*parent
;
2029 if (path_equal(&nd
->path
, &nd
->root
))
2031 if (unlikely(nd
->path
.dentry
== nd
->path
.mnt
->mnt_root
)) {
2034 if (!choose_mountpoint(real_mount(nd
->path
.mnt
),
2037 path_put(&nd
->path
);
2039 nd
->inode
= path
.dentry
->d_inode
;
2040 if (unlikely(nd
->flags
& LOOKUP_NO_XDEV
))
2041 return ERR_PTR(-EXDEV
);
2043 /* rare case of legitimate dget_parent()... */
2044 parent
= dget_parent(nd
->path
.dentry
);
2045 if (unlikely(!path_connected(nd
->path
.mnt
, parent
))) {
2047 return ERR_PTR(-ENOENT
);
2052 if (unlikely(nd
->flags
& LOOKUP_BENEATH
))
2053 return ERR_PTR(-EXDEV
);
2054 return dget(nd
->path
.dentry
);
2057 static const char *handle_dots(struct nameidata
*nd
, int type
)
2059 if (type
== LAST_DOTDOT
) {
2060 const char *error
= NULL
;
2061 struct dentry
*parent
;
2063 if (!nd
->root
.mnt
) {
2064 error
= ERR_PTR(set_root(nd
));
2068 if (nd
->flags
& LOOKUP_RCU
)
2069 parent
= follow_dotdot_rcu(nd
);
2071 parent
= follow_dotdot(nd
);
2073 return ERR_CAST(parent
);
2074 error
= step_into(nd
, WALK_NOFOLLOW
, parent
);
2075 if (unlikely(error
))
2078 if (unlikely(nd
->flags
& LOOKUP_IS_SCOPED
)) {
2080 * If there was a racing rename or mount along our
2081 * path, then we can't be sure that ".." hasn't jumped
2082 * above nd->root (and so userspace should retry or use
2086 if (__read_seqcount_retry(&mount_lock
.seqcount
, nd
->m_seq
))
2087 return ERR_PTR(-EAGAIN
);
2088 if (__read_seqcount_retry(&rename_lock
.seqcount
, nd
->r_seq
))
2089 return ERR_PTR(-EAGAIN
);
2095 static const char *walk_component(struct nameidata
*nd
, int flags
)
2097 struct dentry
*dentry
;
2099 * "." and ".." are special - ".." especially so because it has
2100 * to be able to know about the current root directory and
2101 * parent relationships.
2103 if (unlikely(nd
->last_type
!= LAST_NORM
)) {
2104 if (!(flags
& WALK_MORE
) && nd
->depth
)
2106 return handle_dots(nd
, nd
->last_type
);
2108 dentry
= lookup_fast(nd
);
2110 return ERR_CAST(dentry
);
2111 if (unlikely(!dentry
)) {
2112 dentry
= lookup_slow(&nd
->last
, nd
->path
.dentry
, nd
->flags
);
2114 return ERR_CAST(dentry
);
2116 if (!(flags
& WALK_MORE
) && nd
->depth
)
2118 return step_into(nd
, flags
, dentry
);
2122 * We can do the critical dentry name comparison and hashing
2123 * operations one word at a time, but we are limited to:
2125 * - Architectures with fast unaligned word accesses. We could
2126 * do a "get_unaligned()" if this helps and is sufficiently
2129 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2130 * do not trap on the (extremely unlikely) case of a page
2131 * crossing operation.
2133 * - Furthermore, we need an efficient 64-bit compile for the
2134 * 64-bit case in order to generate the "number of bytes in
2135 * the final mask". Again, that could be replaced with a
2136 * efficient population count instruction or similar.
2138 #ifdef CONFIG_DCACHE_WORD_ACCESS
2140 #include <asm/word-at-a-time.h>
2144 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2146 #elif defined(CONFIG_64BIT)
2148 * Register pressure in the mixing function is an issue, particularly
2149 * on 32-bit x86, but almost any function requires one state value and
2150 * one temporary. Instead, use a function designed for two state values
2151 * and no temporaries.
2153 * This function cannot create a collision in only two iterations, so
2154 * we have two iterations to achieve avalanche. In those two iterations,
2155 * we have six layers of mixing, which is enough to spread one bit's
2156 * influence out to 2^6 = 64 state bits.
2158 * Rotate constants are scored by considering either 64 one-bit input
2159 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2160 * probability of that delta causing a change to each of the 128 output
2161 * bits, using a sample of random initial states.
2163 * The Shannon entropy of the computed probabilities is then summed
2164 * to produce a score. Ideally, any input change has a 50% chance of
2165 * toggling any given output bit.
2167 * Mixing scores (in bits) for (12,45):
2168 * Input delta: 1-bit 2-bit
2169 * 1 round: 713.3 42542.6
2170 * 2 rounds: 2753.7 140389.8
2171 * 3 rounds: 5954.1 233458.2
2172 * 4 rounds: 7862.6 256672.2
2173 * Perfect: 8192 258048
2174 * (64*128) (64*63/2 * 128)
2176 #define HASH_MIX(x, y, a) \
2178 y ^= x, x = rol64(x,12),\
2179 x += y, y = rol64(y,45),\
2183 * Fold two longs into one 32-bit hash value. This must be fast, but
2184 * latency isn't quite as critical, as there is a fair bit of additional
2185 * work done before the hash value is used.
2187 static inline unsigned int fold_hash(unsigned long x
, unsigned long y
)
2189 y
^= x
* GOLDEN_RATIO_64
;
2190 y
*= GOLDEN_RATIO_64
;
2194 #else /* 32-bit case */
2197 * Mixing scores (in bits) for (7,20):
2198 * Input delta: 1-bit 2-bit
2199 * 1 round: 330.3 9201.6
2200 * 2 rounds: 1246.4 25475.4
2201 * 3 rounds: 1907.1 31295.1
2202 * 4 rounds: 2042.3 31718.6
2203 * Perfect: 2048 31744
2204 * (32*64) (32*31/2 * 64)
2206 #define HASH_MIX(x, y, a) \
2208 y ^= x, x = rol32(x, 7),\
2209 x += y, y = rol32(y,20),\
2212 static inline unsigned int fold_hash(unsigned long x
, unsigned long y
)
2214 /* Use arch-optimized multiply if one exists */
2215 return __hash_32(y
^ __hash_32(x
));
2221 * Return the hash of a string of known length. This is carfully
2222 * designed to match hash_name(), which is the more critical function.
2223 * In particular, we must end by hashing a final word containing 0..7
2224 * payload bytes, to match the way that hash_name() iterates until it
2225 * finds the delimiter after the name.
2227 unsigned int full_name_hash(const void *salt
, const char *name
, unsigned int len
)
2229 unsigned long a
, x
= 0, y
= (unsigned long)salt
;
2234 a
= load_unaligned_zeropad(name
);
2235 if (len
< sizeof(unsigned long))
2238 name
+= sizeof(unsigned long);
2239 len
-= sizeof(unsigned long);
2241 x
^= a
& bytemask_from_count(len
);
2243 return fold_hash(x
, y
);
2245 EXPORT_SYMBOL(full_name_hash
);
2247 /* Return the "hash_len" (hash and length) of a null-terminated string */
2248 u64
hashlen_string(const void *salt
, const char *name
)
2250 unsigned long a
= 0, x
= 0, y
= (unsigned long)salt
;
2251 unsigned long adata
, mask
, len
;
2252 const struct word_at_a_time constants
= WORD_AT_A_TIME_CONSTANTS
;
2259 len
+= sizeof(unsigned long);
2261 a
= load_unaligned_zeropad(name
+len
);
2262 } while (!has_zero(a
, &adata
, &constants
));
2264 adata
= prep_zero_mask(a
, adata
, &constants
);
2265 mask
= create_zero_mask(adata
);
2266 x
^= a
& zero_bytemask(mask
);
2268 return hashlen_create(fold_hash(x
, y
), len
+ find_zero(mask
));
2270 EXPORT_SYMBOL(hashlen_string
);
2273 * Calculate the length and hash of the path component, and
2274 * return the length as the result.
2276 static inline const char *hash_name(struct nameidata
*nd
,
2278 unsigned long *lastword
)
2280 unsigned long a
, b
, x
, y
= (unsigned long)nd
->path
.dentry
;
2281 unsigned long adata
, bdata
, mask
, len
;
2282 const struct word_at_a_time constants
= WORD_AT_A_TIME_CONSTANTS
;
2285 * The first iteration is special, because it can result in
2286 * '.' and '..' and has no mixing other than the final fold.
2288 a
= load_unaligned_zeropad(name
);
2289 b
= a
^ REPEAT_BYTE('/');
2290 if (has_zero(a
, &adata
, &constants
) | has_zero(b
, &bdata
, &constants
)) {
2291 adata
= prep_zero_mask(a
, adata
, &constants
);
2292 bdata
= prep_zero_mask(b
, bdata
, &constants
);
2293 mask
= create_zero_mask(adata
| bdata
);
2294 a
&= zero_bytemask(mask
);
2296 len
= find_zero(mask
);
2297 nd
->last
.hash
= fold_hash(a
, y
);
2306 len
+= sizeof(unsigned long);
2307 a
= load_unaligned_zeropad(name
+len
);
2308 b
= a
^ REPEAT_BYTE('/');
2309 } while (!(has_zero(a
, &adata
, &constants
) | has_zero(b
, &bdata
, &constants
)));
2311 adata
= prep_zero_mask(a
, adata
, &constants
);
2312 bdata
= prep_zero_mask(b
, bdata
, &constants
);
2313 mask
= create_zero_mask(adata
| bdata
);
2314 a
&= zero_bytemask(mask
);
2316 len
+= find_zero(mask
);
2317 *lastword
= 0; // Multi-word components cannot be DOT or DOTDOT
2319 nd
->last
.hash
= fold_hash(x
, y
);
2325 * Note that the 'last' word is always zero-masked, but
2326 * was loaded as a possibly big-endian word.
2329 #define LAST_WORD_IS_DOT (0x2eul << (BITS_PER_LONG-8))
2330 #define LAST_WORD_IS_DOTDOT (0x2e2eul << (BITS_PER_LONG-16))
2333 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2335 /* Return the hash of a string of known length */
2336 unsigned int full_name_hash(const void *salt
, const char *name
, unsigned int len
)
2338 unsigned long hash
= init_name_hash(salt
);
2340 hash
= partial_name_hash((unsigned char)*name
++, hash
);
2341 return end_name_hash(hash
);
2343 EXPORT_SYMBOL(full_name_hash
);
2345 /* Return the "hash_len" (hash and length) of a null-terminated string */
2346 u64
hashlen_string(const void *salt
, const char *name
)
2348 unsigned long hash
= init_name_hash(salt
);
2349 unsigned long len
= 0, c
;
2351 c
= (unsigned char)*name
;
2354 hash
= partial_name_hash(c
, hash
);
2355 c
= (unsigned char)name
[len
];
2357 return hashlen_create(end_name_hash(hash
), len
);
2359 EXPORT_SYMBOL(hashlen_string
);
2362 * We know there's a real path component here of at least
2365 static inline const char *hash_name(struct nameidata
*nd
, const char *name
, unsigned long *lastword
)
2367 unsigned long hash
= init_name_hash(nd
->path
.dentry
);
2368 unsigned long len
= 0, c
, last
= 0;
2370 c
= (unsigned char)*name
;
2372 last
= (last
<< 8) + c
;
2374 hash
= partial_name_hash(c
, hash
);
2375 c
= (unsigned char)name
[len
];
2376 } while (c
&& c
!= '/');
2378 // This is reliable for DOT or DOTDOT, since the component
2379 // cannot contain NUL characters - top bits being zero means
2380 // we cannot have had any other pathnames.
2382 nd
->last
.hash
= end_name_hash(hash
);
2389 #ifndef LAST_WORD_IS_DOT
2390 #define LAST_WORD_IS_DOT 0x2e
2391 #define LAST_WORD_IS_DOTDOT 0x2e2e
2396 * This is the basic name resolution function, turning a pathname into
2397 * the final dentry. We expect 'base' to be positive and a directory.
2399 * Returns 0 and nd will have valid dentry and mnt on success.
2400 * Returns error and drops reference to input namei data on failure.
2402 static int link_path_walk(const char *name
, struct nameidata
*nd
)
2404 int depth
= 0; // depth <= nd->depth
2407 nd
->last_type
= LAST_ROOT
;
2408 nd
->flags
|= LOOKUP_PARENT
;
2410 return PTR_ERR(name
);
2414 nd
->dir_mode
= 0; // short-circuit the 'hardening' idiocy
2418 /* At this point we know we have a real path component. */
2420 struct mnt_idmap
*idmap
;
2422 unsigned long lastword
;
2424 idmap
= mnt_idmap(nd
->path
.mnt
);
2425 err
= may_lookup(idmap
, nd
);
2429 nd
->last
.name
= name
;
2430 name
= hash_name(nd
, name
, &lastword
);
2433 case LAST_WORD_IS_DOTDOT
:
2434 nd
->last_type
= LAST_DOTDOT
;
2435 nd
->state
|= ND_JUMPED
;
2438 case LAST_WORD_IS_DOT
:
2439 nd
->last_type
= LAST_DOT
;
2443 nd
->last_type
= LAST_NORM
;
2444 nd
->state
&= ~ND_JUMPED
;
2446 struct dentry
*parent
= nd
->path
.dentry
;
2447 if (unlikely(parent
->d_flags
& DCACHE_OP_HASH
)) {
2448 err
= parent
->d_op
->d_hash(parent
, &nd
->last
);
2457 * If it wasn't NUL, we know it was '/'. Skip that
2458 * slash, and continue until no more slashes.
2462 } while (unlikely(*name
== '/'));
2463 if (unlikely(!*name
)) {
2465 /* pathname or trailing symlink, done */
2467 nd
->dir_vfsuid
= i_uid_into_vfsuid(idmap
, nd
->inode
);
2468 nd
->dir_mode
= nd
->inode
->i_mode
;
2469 nd
->flags
&= ~LOOKUP_PARENT
;
2472 /* last component of nested symlink */
2473 name
= nd
->stack
[--depth
].name
;
2474 link
= walk_component(nd
, 0);
2476 /* not the last component */
2477 link
= walk_component(nd
, WALK_MORE
);
2479 if (unlikely(link
)) {
2481 return PTR_ERR(link
);
2482 /* a symlink to follow */
2483 nd
->stack
[depth
++].name
= name
;
2487 if (unlikely(!d_can_lookup(nd
->path
.dentry
))) {
2488 if (nd
->flags
& LOOKUP_RCU
) {
2489 if (!try_to_unlazy(nd
))
2497 /* must be paired with terminate_walk() */
2498 static const char *path_init(struct nameidata
*nd
, unsigned flags
)
2501 const char *s
= nd
->pathname
;
2503 /* LOOKUP_CACHED requires RCU, ask caller to retry */
2504 if ((flags
& (LOOKUP_RCU
| LOOKUP_CACHED
)) == LOOKUP_CACHED
)
2505 return ERR_PTR(-EAGAIN
);
2508 flags
&= ~LOOKUP_RCU
;
2509 if (flags
& LOOKUP_RCU
)
2512 nd
->seq
= nd
->next_seq
= 0;
2515 nd
->state
|= ND_JUMPED
;
2517 nd
->m_seq
= __read_seqcount_begin(&mount_lock
.seqcount
);
2518 nd
->r_seq
= __read_seqcount_begin(&rename_lock
.seqcount
);
2521 if (nd
->state
& ND_ROOT_PRESET
) {
2522 struct dentry
*root
= nd
->root
.dentry
;
2523 struct inode
*inode
= root
->d_inode
;
2524 if (*s
&& unlikely(!d_can_lookup(root
)))
2525 return ERR_PTR(-ENOTDIR
);
2526 nd
->path
= nd
->root
;
2528 if (flags
& LOOKUP_RCU
) {
2529 nd
->seq
= read_seqcount_begin(&nd
->path
.dentry
->d_seq
);
2530 nd
->root_seq
= nd
->seq
;
2532 path_get(&nd
->path
);
2537 nd
->root
.mnt
= NULL
;
2539 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2540 if (*s
== '/' && !(flags
& LOOKUP_IN_ROOT
)) {
2541 error
= nd_jump_root(nd
);
2542 if (unlikely(error
))
2543 return ERR_PTR(error
);
2547 /* Relative pathname -- get the starting-point it is relative to. */
2548 if (nd
->dfd
== AT_FDCWD
) {
2549 if (flags
& LOOKUP_RCU
) {
2550 struct fs_struct
*fs
= current
->fs
;
2554 seq
= read_seqcount_begin(&fs
->seq
);
2556 nd
->inode
= nd
->path
.dentry
->d_inode
;
2557 nd
->seq
= __read_seqcount_begin(&nd
->path
.dentry
->d_seq
);
2558 } while (read_seqcount_retry(&fs
->seq
, seq
));
2560 get_fs_pwd(current
->fs
, &nd
->path
);
2561 nd
->inode
= nd
->path
.dentry
->d_inode
;
2564 /* Caller must check execute permissions on the starting path component */
2565 CLASS(fd_raw
, f
)(nd
->dfd
);
2566 struct dentry
*dentry
;
2569 return ERR_PTR(-EBADF
);
2571 if (flags
& LOOKUP_LINKAT_EMPTY
) {
2572 if (fd_file(f
)->f_cred
!= current_cred() &&
2573 !ns_capable(fd_file(f
)->f_cred
->user_ns
, CAP_DAC_READ_SEARCH
))
2574 return ERR_PTR(-ENOENT
);
2577 dentry
= fd_file(f
)->f_path
.dentry
;
2579 if (*s
&& unlikely(!d_can_lookup(dentry
)))
2580 return ERR_PTR(-ENOTDIR
);
2582 nd
->path
= fd_file(f
)->f_path
;
2583 if (flags
& LOOKUP_RCU
) {
2584 nd
->inode
= nd
->path
.dentry
->d_inode
;
2585 nd
->seq
= read_seqcount_begin(&nd
->path
.dentry
->d_seq
);
2587 path_get(&nd
->path
);
2588 nd
->inode
= nd
->path
.dentry
->d_inode
;
2592 /* For scoped-lookups we need to set the root to the dirfd as well. */
2593 if (flags
& LOOKUP_IS_SCOPED
) {
2594 nd
->root
= nd
->path
;
2595 if (flags
& LOOKUP_RCU
) {
2596 nd
->root_seq
= nd
->seq
;
2598 path_get(&nd
->root
);
2599 nd
->state
|= ND_ROOT_GRABBED
;
2605 static inline const char *lookup_last(struct nameidata
*nd
)
2607 if (nd
->last_type
== LAST_NORM
&& nd
->last
.name
[nd
->last
.len
])
2608 nd
->flags
|= LOOKUP_FOLLOW
| LOOKUP_DIRECTORY
;
2610 return walk_component(nd
, WALK_TRAILING
);
2613 static int handle_lookup_down(struct nameidata
*nd
)
2615 if (!(nd
->flags
& LOOKUP_RCU
))
2616 dget(nd
->path
.dentry
);
2617 nd
->next_seq
= nd
->seq
;
2618 return PTR_ERR(step_into(nd
, WALK_NOFOLLOW
, nd
->path
.dentry
));
2621 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2622 static int path_lookupat(struct nameidata
*nd
, unsigned flags
, struct path
*path
)
2624 const char *s
= path_init(nd
, flags
);
2627 if (unlikely(flags
& LOOKUP_DOWN
) && !IS_ERR(s
)) {
2628 err
= handle_lookup_down(nd
);
2629 if (unlikely(err
< 0))
2633 while (!(err
= link_path_walk(s
, nd
)) &&
2634 (s
= lookup_last(nd
)) != NULL
)
2636 if (!err
&& unlikely(nd
->flags
& LOOKUP_MOUNTPOINT
)) {
2637 err
= handle_lookup_down(nd
);
2638 nd
->state
&= ~ND_JUMPED
; // no d_weak_revalidate(), please...
2641 err
= complete_walk(nd
);
2643 if (!err
&& nd
->flags
& LOOKUP_DIRECTORY
)
2644 if (!d_can_lookup(nd
->path
.dentry
))
2648 nd
->path
.mnt
= NULL
;
2649 nd
->path
.dentry
= NULL
;
2655 int filename_lookup(int dfd
, struct filename
*name
, unsigned flags
,
2656 struct path
*path
, struct path
*root
)
2659 struct nameidata nd
;
2661 return PTR_ERR(name
);
2662 set_nameidata(&nd
, dfd
, name
, root
);
2663 retval
= path_lookupat(&nd
, flags
| LOOKUP_RCU
, path
);
2664 if (unlikely(retval
== -ECHILD
))
2665 retval
= path_lookupat(&nd
, flags
, path
);
2666 if (unlikely(retval
== -ESTALE
))
2667 retval
= path_lookupat(&nd
, flags
| LOOKUP_REVAL
, path
);
2669 if (likely(!retval
))
2670 audit_inode(name
, path
->dentry
,
2671 flags
& LOOKUP_MOUNTPOINT
? AUDIT_INODE_NOEVAL
: 0);
2672 restore_nameidata();
2676 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2677 static int path_parentat(struct nameidata
*nd
, unsigned flags
,
2678 struct path
*parent
)
2680 const char *s
= path_init(nd
, flags
);
2681 int err
= link_path_walk(s
, nd
);
2683 err
= complete_walk(nd
);
2686 nd
->path
.mnt
= NULL
;
2687 nd
->path
.dentry
= NULL
;
2693 /* Note: this does not consume "name" */
2694 static int __filename_parentat(int dfd
, struct filename
*name
,
2695 unsigned int flags
, struct path
*parent
,
2696 struct qstr
*last
, int *type
,
2697 const struct path
*root
)
2700 struct nameidata nd
;
2703 return PTR_ERR(name
);
2704 set_nameidata(&nd
, dfd
, name
, root
);
2705 retval
= path_parentat(&nd
, flags
| LOOKUP_RCU
, parent
);
2706 if (unlikely(retval
== -ECHILD
))
2707 retval
= path_parentat(&nd
, flags
, parent
);
2708 if (unlikely(retval
== -ESTALE
))
2709 retval
= path_parentat(&nd
, flags
| LOOKUP_REVAL
, parent
);
2710 if (likely(!retval
)) {
2712 *type
= nd
.last_type
;
2713 audit_inode(name
, parent
->dentry
, AUDIT_INODE_PARENT
);
2715 restore_nameidata();
2719 static int filename_parentat(int dfd
, struct filename
*name
,
2720 unsigned int flags
, struct path
*parent
,
2721 struct qstr
*last
, int *type
)
2723 return __filename_parentat(dfd
, name
, flags
, parent
, last
, type
, NULL
);
2726 /* does lookup, returns the object with parent locked */
2727 static struct dentry
*__kern_path_locked(int dfd
, struct filename
*name
, struct path
*path
)
2733 error
= filename_parentat(dfd
, name
, 0, path
, &last
, &type
);
2735 return ERR_PTR(error
);
2736 if (unlikely(type
!= LAST_NORM
)) {
2738 return ERR_PTR(-EINVAL
);
2740 inode_lock_nested(path
->dentry
->d_inode
, I_MUTEX_PARENT
);
2741 d
= lookup_one_qstr_excl(&last
, path
->dentry
, 0);
2743 inode_unlock(path
->dentry
->d_inode
);
2749 struct dentry
*kern_path_locked(const char *name
, struct path
*path
)
2751 struct filename
*filename
= getname_kernel(name
);
2752 struct dentry
*res
= __kern_path_locked(AT_FDCWD
, filename
, path
);
2758 struct dentry
*user_path_locked_at(int dfd
, const char __user
*name
, struct path
*path
)
2760 struct filename
*filename
= getname(name
);
2761 struct dentry
*res
= __kern_path_locked(dfd
, filename
, path
);
2766 EXPORT_SYMBOL(user_path_locked_at
);
2768 int kern_path(const char *name
, unsigned int flags
, struct path
*path
)
2770 struct filename
*filename
= getname_kernel(name
);
2771 int ret
= filename_lookup(AT_FDCWD
, filename
, flags
, path
, NULL
);
2777 EXPORT_SYMBOL(kern_path
);
2780 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2781 * @filename: filename structure
2782 * @flags: lookup flags
2783 * @parent: pointer to struct path to fill
2784 * @last: last component
2785 * @type: type of the last component
2786 * @root: pointer to struct path of the base directory
2788 int vfs_path_parent_lookup(struct filename
*filename
, unsigned int flags
,
2789 struct path
*parent
, struct qstr
*last
, int *type
,
2790 const struct path
*root
)
2792 return __filename_parentat(AT_FDCWD
, filename
, flags
, parent
, last
,
2795 EXPORT_SYMBOL(vfs_path_parent_lookup
);
2798 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2799 * @dentry: pointer to dentry of the base directory
2800 * @mnt: pointer to vfs mount of the base directory
2801 * @name: pointer to file name
2802 * @flags: lookup flags
2803 * @path: pointer to struct path to fill
2805 int vfs_path_lookup(struct dentry
*dentry
, struct vfsmount
*mnt
,
2806 const char *name
, unsigned int flags
,
2809 struct filename
*filename
;
2810 struct path root
= {.mnt
= mnt
, .dentry
= dentry
};
2813 filename
= getname_kernel(name
);
2814 /* the first argument of filename_lookup() is ignored with root */
2815 ret
= filename_lookup(AT_FDCWD
, filename
, flags
, path
, &root
);
2819 EXPORT_SYMBOL(vfs_path_lookup
);
2821 static int lookup_one_common(struct mnt_idmap
*idmap
,
2822 const char *name
, struct dentry
*base
, int len
,
2827 this->hash
= full_name_hash(base
, name
, len
);
2831 if (is_dot_dotdot(name
, len
))
2835 unsigned int c
= *(const unsigned char *)name
++;
2836 if (c
== '/' || c
== '\0')
2840 * See if the low-level filesystem might want
2841 * to use its own hash..
2843 if (base
->d_flags
& DCACHE_OP_HASH
) {
2844 int err
= base
->d_op
->d_hash(base
, this);
2849 return inode_permission(idmap
, base
->d_inode
, MAY_EXEC
);
2853 * try_lookup_one_len - filesystem helper to lookup single pathname component
2854 * @name: pathname component to lookup
2855 * @base: base directory to lookup from
2856 * @len: maximum length @len should be interpreted to
2858 * Look up a dentry by name in the dcache, returning NULL if it does not
2859 * currently exist. The function does not try to create a dentry.
2861 * Note that this routine is purely a helper for filesystem usage and should
2862 * not be called by generic code.
2864 * The caller must hold base->i_mutex.
2866 struct dentry
*try_lookup_one_len(const char *name
, struct dentry
*base
, int len
)
2871 WARN_ON_ONCE(!inode_is_locked(base
->d_inode
));
2873 err
= lookup_one_common(&nop_mnt_idmap
, name
, base
, len
, &this);
2875 return ERR_PTR(err
);
2877 return lookup_dcache(&this, base
, 0);
2879 EXPORT_SYMBOL(try_lookup_one_len
);
2882 * lookup_one_len - filesystem helper to lookup single pathname component
2883 * @name: pathname component to lookup
2884 * @base: base directory to lookup from
2885 * @len: maximum length @len should be interpreted to
2887 * Note that this routine is purely a helper for filesystem usage and should
2888 * not be called by generic code.
2890 * The caller must hold base->i_mutex.
2892 struct dentry
*lookup_one_len(const char *name
, struct dentry
*base
, int len
)
2894 struct dentry
*dentry
;
2898 WARN_ON_ONCE(!inode_is_locked(base
->d_inode
));
2900 err
= lookup_one_common(&nop_mnt_idmap
, name
, base
, len
, &this);
2902 return ERR_PTR(err
);
2904 dentry
= lookup_dcache(&this, base
, 0);
2905 return dentry
? dentry
: __lookup_slow(&this, base
, 0);
2907 EXPORT_SYMBOL(lookup_one_len
);
2910 * lookup_one - filesystem helper to lookup single pathname component
2911 * @idmap: idmap of the mount the lookup is performed from
2912 * @name: pathname component to lookup
2913 * @base: base directory to lookup from
2914 * @len: maximum length @len should be interpreted to
2916 * Note that this routine is purely a helper for filesystem usage and should
2917 * not be called by generic code.
2919 * The caller must hold base->i_mutex.
2921 struct dentry
*lookup_one(struct mnt_idmap
*idmap
, const char *name
,
2922 struct dentry
*base
, int len
)
2924 struct dentry
*dentry
;
2928 WARN_ON_ONCE(!inode_is_locked(base
->d_inode
));
2930 err
= lookup_one_common(idmap
, name
, base
, len
, &this);
2932 return ERR_PTR(err
);
2934 dentry
= lookup_dcache(&this, base
, 0);
2935 return dentry
? dentry
: __lookup_slow(&this, base
, 0);
2937 EXPORT_SYMBOL(lookup_one
);
2940 * lookup_one_unlocked - filesystem helper to lookup single pathname component
2941 * @idmap: idmap of the mount the lookup is performed from
2942 * @name: pathname component to lookup
2943 * @base: base directory to lookup from
2944 * @len: maximum length @len should be interpreted to
2946 * Note that this routine is purely a helper for filesystem usage and should
2947 * not be called by generic code.
2949 * Unlike lookup_one_len, it should be called without the parent
2950 * i_mutex held, and will take the i_mutex itself if necessary.
2952 struct dentry
*lookup_one_unlocked(struct mnt_idmap
*idmap
,
2953 const char *name
, struct dentry
*base
,
2960 err
= lookup_one_common(idmap
, name
, base
, len
, &this);
2962 return ERR_PTR(err
);
2964 ret
= lookup_dcache(&this, base
, 0);
2966 ret
= lookup_slow(&this, base
, 0);
2969 EXPORT_SYMBOL(lookup_one_unlocked
);
2972 * lookup_one_positive_unlocked - filesystem helper to lookup single
2973 * pathname component
2974 * @idmap: idmap of the mount the lookup is performed from
2975 * @name: pathname component to lookup
2976 * @base: base directory to lookup from
2977 * @len: maximum length @len should be interpreted to
2979 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2980 * known positive or ERR_PTR(). This is what most of the users want.
2982 * Note that pinned negative with unlocked parent _can_ become positive at any
2983 * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2984 * positives have >d_inode stable, so this one avoids such problems.
2986 * Note that this routine is purely a helper for filesystem usage and should
2987 * not be called by generic code.
2989 * The helper should be called without i_mutex held.
2991 struct dentry
*lookup_one_positive_unlocked(struct mnt_idmap
*idmap
,
2993 struct dentry
*base
, int len
)
2995 struct dentry
*ret
= lookup_one_unlocked(idmap
, name
, base
, len
);
2997 if (!IS_ERR(ret
) && d_flags_negative(smp_load_acquire(&ret
->d_flags
))) {
2999 ret
= ERR_PTR(-ENOENT
);
3003 EXPORT_SYMBOL(lookup_one_positive_unlocked
);
3006 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
3007 * @name: pathname component to lookup
3008 * @base: base directory to lookup from
3009 * @len: maximum length @len should be interpreted to
3011 * Note that this routine is purely a helper for filesystem usage and should
3012 * not be called by generic code.
3014 * Unlike lookup_one_len, it should be called without the parent
3015 * i_mutex held, and will take the i_mutex itself if necessary.
3017 struct dentry
*lookup_one_len_unlocked(const char *name
,
3018 struct dentry
*base
, int len
)
3020 return lookup_one_unlocked(&nop_mnt_idmap
, name
, base
, len
);
3022 EXPORT_SYMBOL(lookup_one_len_unlocked
);
3025 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
3026 * on negatives. Returns known positive or ERR_PTR(); that's what
3027 * most of the users want. Note that pinned negative with unlocked parent
3028 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
3029 * need to be very careful; pinned positives have ->d_inode stable, so
3030 * this one avoids such problems.
3032 struct dentry
*lookup_positive_unlocked(const char *name
,
3033 struct dentry
*base
, int len
)
3035 return lookup_one_positive_unlocked(&nop_mnt_idmap
, name
, base
, len
);
3037 EXPORT_SYMBOL(lookup_positive_unlocked
);
3039 #ifdef CONFIG_UNIX98_PTYS
3040 int path_pts(struct path
*path
)
3042 /* Find something mounted on "pts" in the same directory as
3045 struct dentry
*parent
= dget_parent(path
->dentry
);
3046 struct dentry
*child
;
3047 struct qstr
this = QSTR_INIT("pts", 3);
3049 if (unlikely(!path_connected(path
->mnt
, parent
))) {
3054 path
->dentry
= parent
;
3055 child
= d_hash_and_lookup(parent
, &this);
3056 if (IS_ERR_OR_NULL(child
))
3059 path
->dentry
= child
;
3061 follow_down(path
, 0);
3066 int user_path_at(int dfd
, const char __user
*name
, unsigned flags
,
3069 struct filename
*filename
= getname_flags(name
, flags
);
3070 int ret
= filename_lookup(dfd
, filename
, flags
, path
, NULL
);
3075 EXPORT_SYMBOL(user_path_at
);
3077 int __check_sticky(struct mnt_idmap
*idmap
, struct inode
*dir
,
3078 struct inode
*inode
)
3080 kuid_t fsuid
= current_fsuid();
3082 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap
, inode
), fsuid
))
3084 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap
, dir
), fsuid
))
3086 return !capable_wrt_inode_uidgid(idmap
, inode
, CAP_FOWNER
);
3088 EXPORT_SYMBOL(__check_sticky
);
3091 * Check whether we can remove a link victim from directory dir, check
3092 * whether the type of victim is right.
3093 * 1. We can't do it if dir is read-only (done in permission())
3094 * 2. We should have write and exec permissions on dir
3095 * 3. We can't remove anything from append-only dir
3096 * 4. We can't do anything with immutable dir (done in permission())
3097 * 5. If the sticky bit on dir is set we should either
3098 * a. be owner of dir, or
3099 * b. be owner of victim, or
3100 * c. have CAP_FOWNER capability
3101 * 6. If the victim is append-only or immutable we can't do antyhing with
3102 * links pointing to it.
3103 * 7. If the victim has an unknown uid or gid we can't change the inode.
3104 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
3105 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
3106 * 10. We can't remove a root or mountpoint.
3107 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
3108 * nfs_async_unlink().
3110 static int may_delete(struct mnt_idmap
*idmap
, struct inode
*dir
,
3111 struct dentry
*victim
, bool isdir
)
3113 struct inode
*inode
= d_backing_inode(victim
);
3116 if (d_is_negative(victim
))
3120 BUG_ON(victim
->d_parent
->d_inode
!= dir
);
3122 /* Inode writeback is not safe when the uid or gid are invalid. */
3123 if (!vfsuid_valid(i_uid_into_vfsuid(idmap
, inode
)) ||
3124 !vfsgid_valid(i_gid_into_vfsgid(idmap
, inode
)))
3127 audit_inode_child(dir
, victim
, AUDIT_TYPE_CHILD_DELETE
);
3129 error
= inode_permission(idmap
, dir
, MAY_WRITE
| MAY_EXEC
);
3135 if (check_sticky(idmap
, dir
, inode
) || IS_APPEND(inode
) ||
3136 IS_IMMUTABLE(inode
) || IS_SWAPFILE(inode
) ||
3137 HAS_UNMAPPED_ID(idmap
, inode
))
3140 if (!d_is_dir(victim
))
3142 if (IS_ROOT(victim
))
3144 } else if (d_is_dir(victim
))
3146 if (IS_DEADDIR(dir
))
3148 if (victim
->d_flags
& DCACHE_NFSFS_RENAMED
)
3153 /* Check whether we can create an object with dentry child in directory
3155 * 1. We can't do it if child already exists (open has special treatment for
3156 * this case, but since we are inlined it's OK)
3157 * 2. We can't do it if dir is read-only (done in permission())
3158 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
3159 * 4. We should have write and exec permissions on dir
3160 * 5. We can't do it if dir is immutable (done in permission())
3162 static inline int may_create(struct mnt_idmap
*idmap
,
3163 struct inode
*dir
, struct dentry
*child
)
3165 audit_inode_child(dir
, child
, AUDIT_TYPE_CHILD_CREATE
);
3168 if (IS_DEADDIR(dir
))
3170 if (!fsuidgid_has_mapping(dir
->i_sb
, idmap
))
3173 return inode_permission(idmap
, dir
, MAY_WRITE
| MAY_EXEC
);
3176 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held
3177 static struct dentry
*lock_two_directories(struct dentry
*p1
, struct dentry
*p2
)
3179 struct dentry
*p
= p1
, *q
= p2
, *r
;
3181 while ((r
= p
->d_parent
) != p2
&& r
!= p
)
3184 // p is a child of p2 and an ancestor of p1 or p1 itself
3185 inode_lock_nested(p2
->d_inode
, I_MUTEX_PARENT
);
3186 inode_lock_nested(p1
->d_inode
, I_MUTEX_PARENT2
);
3189 // p is the root of connected component that contains p1
3190 // p2 does not occur on the path from p to p1
3191 while ((r
= q
->d_parent
) != p1
&& r
!= p
&& r
!= q
)
3194 // q is a child of p1 and an ancestor of p2 or p2 itself
3195 inode_lock_nested(p1
->d_inode
, I_MUTEX_PARENT
);
3196 inode_lock_nested(p2
->d_inode
, I_MUTEX_PARENT2
);
3198 } else if (likely(r
== p
)) {
3199 // both p2 and p1 are descendents of p
3200 inode_lock_nested(p1
->d_inode
, I_MUTEX_PARENT
);
3201 inode_lock_nested(p2
->d_inode
, I_MUTEX_PARENT2
);
3203 } else { // no common ancestor at the time we'd been called
3204 mutex_unlock(&p1
->d_sb
->s_vfs_rename_mutex
);
3205 return ERR_PTR(-EXDEV
);
3210 * p1 and p2 should be directories on the same fs.
3212 struct dentry
*lock_rename(struct dentry
*p1
, struct dentry
*p2
)
3215 inode_lock_nested(p1
->d_inode
, I_MUTEX_PARENT
);
3219 mutex_lock(&p1
->d_sb
->s_vfs_rename_mutex
);
3220 return lock_two_directories(p1
, p2
);
3222 EXPORT_SYMBOL(lock_rename
);
3225 * c1 and p2 should be on the same fs.
3227 struct dentry
*lock_rename_child(struct dentry
*c1
, struct dentry
*p2
)
3229 if (READ_ONCE(c1
->d_parent
) == p2
) {
3231 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3233 inode_lock_nested(p2
->d_inode
, I_MUTEX_PARENT
);
3235 * now that p2 is locked, nobody can move in or out of it,
3236 * so the test below is safe.
3238 if (likely(c1
->d_parent
== p2
))
3242 * c1 got moved out of p2 while we'd been taking locks;
3243 * unlock and fall back to slow case.
3245 inode_unlock(p2
->d_inode
);
3248 mutex_lock(&c1
->d_sb
->s_vfs_rename_mutex
);
3250 * nobody can move out of any directories on this fs.
3252 if (likely(c1
->d_parent
!= p2
))
3253 return lock_two_directories(c1
->d_parent
, p2
);
3256 * c1 got moved into p2 while we were taking locks;
3257 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3258 * for consistency with lock_rename().
3260 inode_lock_nested(p2
->d_inode
, I_MUTEX_PARENT
);
3261 mutex_unlock(&c1
->d_sb
->s_vfs_rename_mutex
);
3264 EXPORT_SYMBOL(lock_rename_child
);
3266 void unlock_rename(struct dentry
*p1
, struct dentry
*p2
)
3268 inode_unlock(p1
->d_inode
);
3270 inode_unlock(p2
->d_inode
);
3271 mutex_unlock(&p1
->d_sb
->s_vfs_rename_mutex
);
3274 EXPORT_SYMBOL(unlock_rename
);
3277 * vfs_prepare_mode - prepare the mode to be used for a new inode
3278 * @idmap: idmap of the mount the inode was found from
3279 * @dir: parent directory of the new inode
3280 * @mode: mode of the new inode
3281 * @mask_perms: allowed permission by the vfs
3282 * @type: type of file to be created
3284 * This helper consolidates and enforces vfs restrictions on the @mode of a new
3285 * object to be created.
3287 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3288 * the kernel documentation for mode_strip_umask()). Moving umask stripping
3289 * after setgid stripping allows the same ordering for both non-POSIX ACL and
3290 * POSIX ACL supporting filesystems.
3292 * Note that it's currently valid for @type to be 0 if a directory is created.
3293 * Filesystems raise that flag individually and we need to check whether each
3294 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3297 * Returns: mode to be passed to the filesystem
3299 static inline umode_t
vfs_prepare_mode(struct mnt_idmap
*idmap
,
3300 const struct inode
*dir
, umode_t mode
,
3301 umode_t mask_perms
, umode_t type
)
3303 mode
= mode_strip_sgid(idmap
, dir
, mode
);
3304 mode
= mode_strip_umask(dir
, mode
);
3307 * Apply the vfs mandated allowed permission mask and set the type of
3308 * file to be created before we call into the filesystem.
3310 mode
&= (mask_perms
& ~S_IFMT
);
3311 mode
|= (type
& S_IFMT
);
3317 * vfs_create - create new file
3318 * @idmap: idmap of the mount the inode was found from
3319 * @dir: inode of the parent directory
3320 * @dentry: dentry of the child file
3321 * @mode: mode of the child file
3322 * @want_excl: whether the file must not yet exist
3324 * Create a new file.
3326 * If the inode has been found through an idmapped mount the idmap of
3327 * the vfsmount must be passed through @idmap. This function will then take
3328 * care to map the inode according to @idmap before checking permissions.
3329 * On non-idmapped mounts or if permission checking is to be performed on the
3330 * raw inode simply pass @nop_mnt_idmap.
3332 int vfs_create(struct mnt_idmap
*idmap
, struct inode
*dir
,
3333 struct dentry
*dentry
, umode_t mode
, bool want_excl
)
3337 error
= may_create(idmap
, dir
, dentry
);
3341 if (!dir
->i_op
->create
)
3342 return -EACCES
; /* shouldn't it be ENOSYS? */
3344 mode
= vfs_prepare_mode(idmap
, dir
, mode
, S_IALLUGO
, S_IFREG
);
3345 error
= security_inode_create(dir
, dentry
, mode
);
3348 error
= dir
->i_op
->create(idmap
, dir
, dentry
, mode
, want_excl
);
3350 fsnotify_create(dir
, dentry
);
3353 EXPORT_SYMBOL(vfs_create
);
3355 int vfs_mkobj(struct dentry
*dentry
, umode_t mode
,
3356 int (*f
)(struct dentry
*, umode_t
, void *),
3359 struct inode
*dir
= dentry
->d_parent
->d_inode
;
3360 int error
= may_create(&nop_mnt_idmap
, dir
, dentry
);
3366 error
= security_inode_create(dir
, dentry
, mode
);
3369 error
= f(dentry
, mode
, arg
);
3371 fsnotify_create(dir
, dentry
);
3374 EXPORT_SYMBOL(vfs_mkobj
);
3376 bool may_open_dev(const struct path
*path
)
3378 return !(path
->mnt
->mnt_flags
& MNT_NODEV
) &&
3379 !(path
->mnt
->mnt_sb
->s_iflags
& SB_I_NODEV
);
3382 static int may_open(struct mnt_idmap
*idmap
, const struct path
*path
,
3383 int acc_mode
, int flag
)
3385 struct dentry
*dentry
= path
->dentry
;
3386 struct inode
*inode
= dentry
->d_inode
;
3392 switch (inode
->i_mode
& S_IFMT
) {
3396 if (acc_mode
& MAY_WRITE
)
3398 if (acc_mode
& MAY_EXEC
)
3403 if (!may_open_dev(path
))
3408 if (acc_mode
& MAY_EXEC
)
3413 if ((acc_mode
& MAY_EXEC
) && path_noexec(path
))
3418 error
= inode_permission(idmap
, inode
, MAY_OPEN
| acc_mode
);
3423 * An append-only file must be opened in append mode for writing.
3425 if (IS_APPEND(inode
)) {
3426 if ((flag
& O_ACCMODE
) != O_RDONLY
&& !(flag
& O_APPEND
))
3432 /* O_NOATIME can only be set by the owner or superuser */
3433 if (flag
& O_NOATIME
&& !inode_owner_or_capable(idmap
, inode
))
3439 static int handle_truncate(struct mnt_idmap
*idmap
, struct file
*filp
)
3441 const struct path
*path
= &filp
->f_path
;
3442 struct inode
*inode
= path
->dentry
->d_inode
;
3443 int error
= get_write_access(inode
);
3447 error
= security_file_truncate(filp
);
3449 error
= do_truncate(idmap
, path
->dentry
, 0,
3450 ATTR_MTIME
|ATTR_CTIME
|ATTR_OPEN
,
3453 put_write_access(inode
);
3457 static inline int open_to_namei_flags(int flag
)
3459 if ((flag
& O_ACCMODE
) == 3)
3464 static int may_o_create(struct mnt_idmap
*idmap
,
3465 const struct path
*dir
, struct dentry
*dentry
,
3468 int error
= security_path_mknod(dir
, dentry
, mode
, 0);
3472 if (!fsuidgid_has_mapping(dir
->dentry
->d_sb
, idmap
))
3475 error
= inode_permission(idmap
, dir
->dentry
->d_inode
,
3476 MAY_WRITE
| MAY_EXEC
);
3480 return security_inode_create(dir
->dentry
->d_inode
, dentry
, mode
);
3484 * Attempt to atomically look up, create and open a file from a negative
3487 * Returns 0 if successful. The file will have been created and attached to
3488 * @file by the filesystem calling finish_open().
3490 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3491 * be set. The caller will need to perform the open themselves. @path will
3492 * have been updated to point to the new dentry. This may be negative.
3494 * Returns an error code otherwise.
3496 static struct dentry
*atomic_open(struct nameidata
*nd
, struct dentry
*dentry
,
3498 int open_flag
, umode_t mode
)
3500 struct dentry
*const DENTRY_NOT_SET
= (void *) -1UL;
3501 struct inode
*dir
= nd
->path
.dentry
->d_inode
;
3504 if (nd
->flags
& LOOKUP_DIRECTORY
)
3505 open_flag
|= O_DIRECTORY
;
3507 file
->f_path
.dentry
= DENTRY_NOT_SET
;
3508 file
->f_path
.mnt
= nd
->path
.mnt
;
3509 error
= dir
->i_op
->atomic_open(dir
, dentry
, file
,
3510 open_to_namei_flags(open_flag
), mode
);
3511 d_lookup_done(dentry
);
3513 if (file
->f_mode
& FMODE_OPENED
) {
3514 if (unlikely(dentry
!= file
->f_path
.dentry
)) {
3516 dentry
= dget(file
->f_path
.dentry
);
3518 } else if (WARN_ON(file
->f_path
.dentry
== DENTRY_NOT_SET
)) {
3521 if (file
->f_path
.dentry
) {
3523 dentry
= file
->f_path
.dentry
;
3525 if (unlikely(d_is_negative(dentry
)))
3531 dentry
= ERR_PTR(error
);
3537 * Look up and maybe create and open the last component.
3539 * Must be called with parent locked (exclusive in O_CREAT case).
3541 * Returns 0 on success, that is, if
3542 * the file was successfully atomically created (if necessary) and opened, or
3543 * the file was not completely opened at this time, though lookups and
3544 * creations were performed.
3545 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3546 * In the latter case dentry returned in @path might be negative if O_CREAT
3547 * hadn't been specified.
3549 * An error code is returned on failure.
3551 static struct dentry
*lookup_open(struct nameidata
*nd
, struct file
*file
,
3552 const struct open_flags
*op
,
3555 struct mnt_idmap
*idmap
;
3556 struct dentry
*dir
= nd
->path
.dentry
;
3557 struct inode
*dir_inode
= dir
->d_inode
;
3558 int open_flag
= op
->open_flag
;
3559 struct dentry
*dentry
;
3560 int error
, create_error
= 0;
3561 umode_t mode
= op
->mode
;
3562 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq
);
3564 if (unlikely(IS_DEADDIR(dir_inode
)))
3565 return ERR_PTR(-ENOENT
);
3567 file
->f_mode
&= ~FMODE_CREATED
;
3568 dentry
= d_lookup(dir
, &nd
->last
);
3571 dentry
= d_alloc_parallel(dir
, &nd
->last
, &wq
);
3575 if (d_in_lookup(dentry
))
3578 error
= d_revalidate(dentry
, nd
->flags
);
3579 if (likely(error
> 0))
3583 d_invalidate(dentry
);
3587 if (dentry
->d_inode
) {
3588 /* Cached positive dentry: will open in f_op->open */
3592 if (open_flag
& O_CREAT
)
3593 audit_inode(nd
->name
, dir
, AUDIT_INODE_PARENT
);
3596 * Checking write permission is tricky, bacuse we don't know if we are
3597 * going to actually need it: O_CREAT opens should work as long as the
3598 * file exists. But checking existence breaks atomicity. The trick is
3599 * to check access and if not granted clear O_CREAT from the flags.
3601 * Another problem is returing the "right" error value (e.g. for an
3602 * O_EXCL open we want to return EEXIST not EROFS).
3604 if (unlikely(!got_write
))
3605 open_flag
&= ~O_TRUNC
;
3606 idmap
= mnt_idmap(nd
->path
.mnt
);
3607 if (open_flag
& O_CREAT
) {
3608 if (open_flag
& O_EXCL
)
3609 open_flag
&= ~O_TRUNC
;
3610 mode
= vfs_prepare_mode(idmap
, dir
->d_inode
, mode
, mode
, mode
);
3611 if (likely(got_write
))
3612 create_error
= may_o_create(idmap
, &nd
->path
,
3615 create_error
= -EROFS
;
3618 open_flag
&= ~O_CREAT
;
3619 if (dir_inode
->i_op
->atomic_open
) {
3620 dentry
= atomic_open(nd
, dentry
, file
, open_flag
, mode
);
3621 if (unlikely(create_error
) && dentry
== ERR_PTR(-ENOENT
))
3622 dentry
= ERR_PTR(create_error
);
3626 if (d_in_lookup(dentry
)) {
3627 struct dentry
*res
= dir_inode
->i_op
->lookup(dir_inode
, dentry
,
3629 d_lookup_done(dentry
);
3630 if (unlikely(res
)) {
3632 error
= PTR_ERR(res
);
3640 /* Negative dentry, just create the file */
3641 if (!dentry
->d_inode
&& (open_flag
& O_CREAT
)) {
3642 file
->f_mode
|= FMODE_CREATED
;
3643 audit_inode_child(dir_inode
, dentry
, AUDIT_TYPE_CHILD_CREATE
);
3644 if (!dir_inode
->i_op
->create
) {
3649 error
= dir_inode
->i_op
->create(idmap
, dir_inode
, dentry
,
3650 mode
, open_flag
& O_EXCL
);
3654 if (unlikely(create_error
) && !dentry
->d_inode
) {
3655 error
= create_error
;
3662 return ERR_PTR(error
);
3665 static inline bool trailing_slashes(struct nameidata
*nd
)
3667 return (bool)nd
->last
.name
[nd
->last
.len
];
3670 static struct dentry
*lookup_fast_for_open(struct nameidata
*nd
, int open_flag
)
3672 struct dentry
*dentry
;
3674 if (open_flag
& O_CREAT
) {
3675 if (trailing_slashes(nd
))
3676 return ERR_PTR(-EISDIR
);
3678 /* Don't bother on an O_EXCL create */
3679 if (open_flag
& O_EXCL
)
3683 if (trailing_slashes(nd
))
3684 nd
->flags
|= LOOKUP_FOLLOW
| LOOKUP_DIRECTORY
;
3686 dentry
= lookup_fast(nd
);
3687 if (IS_ERR_OR_NULL(dentry
))
3690 if (open_flag
& O_CREAT
) {
3691 /* Discard negative dentries. Need inode_lock to do the create */
3692 if (!dentry
->d_inode
) {
3693 if (!(nd
->flags
& LOOKUP_RCU
))
3701 static const char *open_last_lookups(struct nameidata
*nd
,
3702 struct file
*file
, const struct open_flags
*op
)
3704 struct dentry
*dir
= nd
->path
.dentry
;
3705 int open_flag
= op
->open_flag
;
3706 bool got_write
= false;
3707 struct dentry
*dentry
;
3710 nd
->flags
|= op
->intent
;
3712 if (nd
->last_type
!= LAST_NORM
) {
3715 return handle_dots(nd
, nd
->last_type
);
3718 /* We _can_ be in RCU mode here */
3719 dentry
= lookup_fast_for_open(nd
, open_flag
);
3721 return ERR_CAST(dentry
);
3726 if (!(open_flag
& O_CREAT
)) {
3727 if (WARN_ON_ONCE(nd
->flags
& LOOKUP_RCU
))
3728 return ERR_PTR(-ECHILD
);
3730 if (nd
->flags
& LOOKUP_RCU
) {
3731 if (!try_to_unlazy(nd
))
3732 return ERR_PTR(-ECHILD
);
3736 if (open_flag
& (O_CREAT
| O_TRUNC
| O_WRONLY
| O_RDWR
)) {
3737 got_write
= !mnt_want_write(nd
->path
.mnt
);
3739 * do _not_ fail yet - we might not need that or fail with
3740 * a different error; let lookup_open() decide; we'll be
3741 * dropping this one anyway.
3744 if (open_flag
& O_CREAT
)
3745 inode_lock(dir
->d_inode
);
3747 inode_lock_shared(dir
->d_inode
);
3748 dentry
= lookup_open(nd
, file
, op
, got_write
);
3749 if (!IS_ERR(dentry
)) {
3750 if (file
->f_mode
& FMODE_CREATED
)
3751 fsnotify_create(dir
->d_inode
, dentry
);
3752 if (file
->f_mode
& FMODE_OPENED
)
3753 fsnotify_open(file
);
3755 if (open_flag
& O_CREAT
)
3756 inode_unlock(dir
->d_inode
);
3758 inode_unlock_shared(dir
->d_inode
);
3761 mnt_drop_write(nd
->path
.mnt
);
3764 return ERR_CAST(dentry
);
3766 if (file
->f_mode
& (FMODE_OPENED
| FMODE_CREATED
)) {
3767 dput(nd
->path
.dentry
);
3768 nd
->path
.dentry
= dentry
;
3775 res
= step_into(nd
, WALK_TRAILING
, dentry
);
3777 nd
->flags
&= ~(LOOKUP_OPEN
|LOOKUP_CREATE
|LOOKUP_EXCL
);
3782 * Handle the last step of open()
3784 static int do_open(struct nameidata
*nd
,
3785 struct file
*file
, const struct open_flags
*op
)
3787 struct mnt_idmap
*idmap
;
3788 int open_flag
= op
->open_flag
;
3793 if (!(file
->f_mode
& (FMODE_OPENED
| FMODE_CREATED
))) {
3794 error
= complete_walk(nd
);
3798 if (!(file
->f_mode
& FMODE_CREATED
))
3799 audit_inode(nd
->name
, nd
->path
.dentry
, 0);
3800 idmap
= mnt_idmap(nd
->path
.mnt
);
3801 if (open_flag
& O_CREAT
) {
3802 if ((open_flag
& O_EXCL
) && !(file
->f_mode
& FMODE_CREATED
))
3804 if (d_is_dir(nd
->path
.dentry
))
3806 error
= may_create_in_sticky(idmap
, nd
,
3807 d_backing_inode(nd
->path
.dentry
));
3808 if (unlikely(error
))
3811 if ((nd
->flags
& LOOKUP_DIRECTORY
) && !d_can_lookup(nd
->path
.dentry
))
3814 do_truncate
= false;
3815 acc_mode
= op
->acc_mode
;
3816 if (file
->f_mode
& FMODE_CREATED
) {
3817 /* Don't check for write permission, don't truncate */
3818 open_flag
&= ~O_TRUNC
;
3820 } else if (d_is_reg(nd
->path
.dentry
) && open_flag
& O_TRUNC
) {
3821 error
= mnt_want_write(nd
->path
.mnt
);
3826 error
= may_open(idmap
, &nd
->path
, acc_mode
, open_flag
);
3827 if (!error
&& !(file
->f_mode
& FMODE_OPENED
))
3828 error
= vfs_open(&nd
->path
, file
);
3830 error
= security_file_post_open(file
, op
->acc_mode
);
3831 if (!error
&& do_truncate
)
3832 error
= handle_truncate(idmap
, file
);
3833 if (unlikely(error
> 0)) {
3838 mnt_drop_write(nd
->path
.mnt
);
3843 * vfs_tmpfile - create tmpfile
3844 * @idmap: idmap of the mount the inode was found from
3845 * @parentpath: pointer to the path of the base directory
3846 * @file: file descriptor of the new tmpfile
3847 * @mode: mode of the new tmpfile
3849 * Create a temporary file.
3851 * If the inode has been found through an idmapped mount the idmap of
3852 * the vfsmount must be passed through @idmap. This function will then take
3853 * care to map the inode according to @idmap before checking permissions.
3854 * On non-idmapped mounts or if permission checking is to be performed on the
3855 * raw inode simply pass @nop_mnt_idmap.
3857 int vfs_tmpfile(struct mnt_idmap
*idmap
,
3858 const struct path
*parentpath
,
3859 struct file
*file
, umode_t mode
)
3861 struct dentry
*child
;
3862 struct inode
*dir
= d_inode(parentpath
->dentry
);
3863 struct inode
*inode
;
3865 int open_flag
= file
->f_flags
;
3867 /* we want directory to be writable */
3868 error
= inode_permission(idmap
, dir
, MAY_WRITE
| MAY_EXEC
);
3871 if (!dir
->i_op
->tmpfile
)
3873 child
= d_alloc(parentpath
->dentry
, &slash_name
);
3874 if (unlikely(!child
))
3876 file
->f_path
.mnt
= parentpath
->mnt
;
3877 file
->f_path
.dentry
= child
;
3878 mode
= vfs_prepare_mode(idmap
, dir
, mode
, mode
, mode
);
3879 error
= dir
->i_op
->tmpfile(idmap
, dir
, file
, mode
);
3881 if (file
->f_mode
& FMODE_OPENED
)
3882 fsnotify_open(file
);
3885 /* Don't check for other permissions, the inode was just created */
3886 error
= may_open(idmap
, &file
->f_path
, 0, file
->f_flags
);
3889 inode
= file_inode(file
);
3890 if (!(open_flag
& O_EXCL
)) {
3891 spin_lock(&inode
->i_lock
);
3892 inode
->i_state
|= I_LINKABLE
;
3893 spin_unlock(&inode
->i_lock
);
3895 security_inode_post_create_tmpfile(idmap
, inode
);
3900 * kernel_tmpfile_open - open a tmpfile for kernel internal use
3901 * @idmap: idmap of the mount the inode was found from
3902 * @parentpath: path of the base directory
3903 * @mode: mode of the new tmpfile
3905 * @cred: credentials for open
3907 * Create and open a temporary file. The file is not accounted in nr_files,
3908 * hence this is only for kernel internal use, and must not be installed into
3909 * file tables or such.
3911 struct file
*kernel_tmpfile_open(struct mnt_idmap
*idmap
,
3912 const struct path
*parentpath
,
3913 umode_t mode
, int open_flag
,
3914 const struct cred
*cred
)
3919 file
= alloc_empty_file_noaccount(open_flag
, cred
);
3923 error
= vfs_tmpfile(idmap
, parentpath
, file
, mode
);
3926 file
= ERR_PTR(error
);
3930 EXPORT_SYMBOL(kernel_tmpfile_open
);
3932 static int do_tmpfile(struct nameidata
*nd
, unsigned flags
,
3933 const struct open_flags
*op
,
3937 int error
= path_lookupat(nd
, flags
| LOOKUP_DIRECTORY
, &path
);
3939 if (unlikely(error
))
3941 error
= mnt_want_write(path
.mnt
);
3942 if (unlikely(error
))
3944 error
= vfs_tmpfile(mnt_idmap(path
.mnt
), &path
, file
, op
->mode
);
3947 audit_inode(nd
->name
, file
->f_path
.dentry
, 0);
3949 mnt_drop_write(path
.mnt
);
3955 static int do_o_path(struct nameidata
*nd
, unsigned flags
, struct file
*file
)
3958 int error
= path_lookupat(nd
, flags
, &path
);
3960 audit_inode(nd
->name
, path
.dentry
, 0);
3961 error
= vfs_open(&path
, file
);
3967 static struct file
*path_openat(struct nameidata
*nd
,
3968 const struct open_flags
*op
, unsigned flags
)
3973 file
= alloc_empty_file(op
->open_flag
, current_cred());
3977 if (unlikely(file
->f_flags
& __O_TMPFILE
)) {
3978 error
= do_tmpfile(nd
, flags
, op
, file
);
3979 } else if (unlikely(file
->f_flags
& O_PATH
)) {
3980 error
= do_o_path(nd
, flags
, file
);
3982 const char *s
= path_init(nd
, flags
);
3983 while (!(error
= link_path_walk(s
, nd
)) &&
3984 (s
= open_last_lookups(nd
, file
, op
)) != NULL
)
3987 error
= do_open(nd
, file
, op
);
3990 if (likely(!error
)) {
3991 if (likely(file
->f_mode
& FMODE_OPENED
))
3997 if (error
== -EOPENSTALE
) {
3998 if (flags
& LOOKUP_RCU
)
4003 return ERR_PTR(error
);
4006 struct file
*do_filp_open(int dfd
, struct filename
*pathname
,
4007 const struct open_flags
*op
)
4009 struct nameidata nd
;
4010 int flags
= op
->lookup_flags
;
4013 set_nameidata(&nd
, dfd
, pathname
, NULL
);
4014 filp
= path_openat(&nd
, op
, flags
| LOOKUP_RCU
);
4015 if (unlikely(filp
== ERR_PTR(-ECHILD
)))
4016 filp
= path_openat(&nd
, op
, flags
);
4017 if (unlikely(filp
== ERR_PTR(-ESTALE
)))
4018 filp
= path_openat(&nd
, op
, flags
| LOOKUP_REVAL
);
4019 restore_nameidata();
4023 struct file
*do_file_open_root(const struct path
*root
,
4024 const char *name
, const struct open_flags
*op
)
4026 struct nameidata nd
;
4028 struct filename
*filename
;
4029 int flags
= op
->lookup_flags
;
4031 if (d_is_symlink(root
->dentry
) && op
->intent
& LOOKUP_OPEN
)
4032 return ERR_PTR(-ELOOP
);
4034 filename
= getname_kernel(name
);
4035 if (IS_ERR(filename
))
4036 return ERR_CAST(filename
);
4038 set_nameidata(&nd
, -1, filename
, root
);
4039 file
= path_openat(&nd
, op
, flags
| LOOKUP_RCU
);
4040 if (unlikely(file
== ERR_PTR(-ECHILD
)))
4041 file
= path_openat(&nd
, op
, flags
);
4042 if (unlikely(file
== ERR_PTR(-ESTALE
)))
4043 file
= path_openat(&nd
, op
, flags
| LOOKUP_REVAL
);
4044 restore_nameidata();
4049 static struct dentry
*filename_create(int dfd
, struct filename
*name
,
4050 struct path
*path
, unsigned int lookup_flags
)
4052 struct dentry
*dentry
= ERR_PTR(-EEXIST
);
4054 bool want_dir
= lookup_flags
& LOOKUP_DIRECTORY
;
4055 unsigned int reval_flag
= lookup_flags
& LOOKUP_REVAL
;
4056 unsigned int create_flags
= LOOKUP_CREATE
| LOOKUP_EXCL
;
4061 error
= filename_parentat(dfd
, name
, reval_flag
, path
, &last
, &type
);
4063 return ERR_PTR(error
);
4066 * Yucky last component or no last component at all?
4067 * (foo/., foo/.., /////)
4069 if (unlikely(type
!= LAST_NORM
))
4072 /* don't fail immediately if it's r/o, at least try to report other errors */
4073 err2
= mnt_want_write(path
->mnt
);
4075 * Do the final lookup. Suppress 'create' if there is a trailing
4076 * '/', and a directory wasn't requested.
4078 if (last
.name
[last
.len
] && !want_dir
)
4080 inode_lock_nested(path
->dentry
->d_inode
, I_MUTEX_PARENT
);
4081 dentry
= lookup_one_qstr_excl(&last
, path
->dentry
,
4082 reval_flag
| create_flags
);
4087 if (d_is_positive(dentry
))
4091 * Special case - lookup gave negative, but... we had foo/bar/
4092 * From the vfs_mknod() POV we just have a negative dentry -
4093 * all is fine. Let's be bastards - you had / on the end, you've
4094 * been asking for (non-existent) directory. -ENOENT for you.
4096 if (unlikely(!create_flags
)) {
4100 if (unlikely(err2
)) {
4107 dentry
= ERR_PTR(error
);
4109 inode_unlock(path
->dentry
->d_inode
);
4111 mnt_drop_write(path
->mnt
);
4117 struct dentry
*kern_path_create(int dfd
, const char *pathname
,
4118 struct path
*path
, unsigned int lookup_flags
)
4120 struct filename
*filename
= getname_kernel(pathname
);
4121 struct dentry
*res
= filename_create(dfd
, filename
, path
, lookup_flags
);
4126 EXPORT_SYMBOL(kern_path_create
);
4128 void done_path_create(struct path
*path
, struct dentry
*dentry
)
4131 inode_unlock(path
->dentry
->d_inode
);
4132 mnt_drop_write(path
->mnt
);
4135 EXPORT_SYMBOL(done_path_create
);
4137 inline struct dentry
*user_path_create(int dfd
, const char __user
*pathname
,
4138 struct path
*path
, unsigned int lookup_flags
)
4140 struct filename
*filename
= getname(pathname
);
4141 struct dentry
*res
= filename_create(dfd
, filename
, path
, lookup_flags
);
4146 EXPORT_SYMBOL(user_path_create
);
4149 * vfs_mknod - create device node or file
4150 * @idmap: idmap of the mount the inode was found from
4151 * @dir: inode of the parent directory
4152 * @dentry: dentry of the child device node
4153 * @mode: mode of the child device node
4154 * @dev: device number of device to create
4156 * Create a device node or file.
4158 * If the inode has been found through an idmapped mount the idmap of
4159 * the vfsmount must be passed through @idmap. This function will then take
4160 * care to map the inode according to @idmap before checking permissions.
4161 * On non-idmapped mounts or if permission checking is to be performed on the
4162 * raw inode simply pass @nop_mnt_idmap.
4164 int vfs_mknod(struct mnt_idmap
*idmap
, struct inode
*dir
,
4165 struct dentry
*dentry
, umode_t mode
, dev_t dev
)
4167 bool is_whiteout
= S_ISCHR(mode
) && dev
== WHITEOUT_DEV
;
4168 int error
= may_create(idmap
, dir
, dentry
);
4173 if ((S_ISCHR(mode
) || S_ISBLK(mode
)) && !is_whiteout
&&
4174 !capable(CAP_MKNOD
))
4177 if (!dir
->i_op
->mknod
)
4180 mode
= vfs_prepare_mode(idmap
, dir
, mode
, mode
, mode
);
4181 error
= devcgroup_inode_mknod(mode
, dev
);
4185 error
= security_inode_mknod(dir
, dentry
, mode
, dev
);
4189 error
= dir
->i_op
->mknod(idmap
, dir
, dentry
, mode
, dev
);
4191 fsnotify_create(dir
, dentry
);
4194 EXPORT_SYMBOL(vfs_mknod
);
4196 static int may_mknod(umode_t mode
)
4198 switch (mode
& S_IFMT
) {
4204 case 0: /* zero mode translates to S_IFREG */
4213 static int do_mknodat(int dfd
, struct filename
*name
, umode_t mode
,
4216 struct mnt_idmap
*idmap
;
4217 struct dentry
*dentry
;
4220 unsigned int lookup_flags
= 0;
4222 error
= may_mknod(mode
);
4226 dentry
= filename_create(dfd
, name
, &path
, lookup_flags
);
4227 error
= PTR_ERR(dentry
);
4231 error
= security_path_mknod(&path
, dentry
,
4232 mode_strip_umask(path
.dentry
->d_inode
, mode
), dev
);
4236 idmap
= mnt_idmap(path
.mnt
);
4237 switch (mode
& S_IFMT
) {
4238 case 0: case S_IFREG
:
4239 error
= vfs_create(idmap
, path
.dentry
->d_inode
,
4240 dentry
, mode
, true);
4242 security_path_post_mknod(idmap
, dentry
);
4244 case S_IFCHR
: case S_IFBLK
:
4245 error
= vfs_mknod(idmap
, path
.dentry
->d_inode
,
4246 dentry
, mode
, new_decode_dev(dev
));
4248 case S_IFIFO
: case S_IFSOCK
:
4249 error
= vfs_mknod(idmap
, path
.dentry
->d_inode
,
4254 done_path_create(&path
, dentry
);
4255 if (retry_estale(error
, lookup_flags
)) {
4256 lookup_flags
|= LOOKUP_REVAL
;
4264 SYSCALL_DEFINE4(mknodat
, int, dfd
, const char __user
*, filename
, umode_t
, mode
,
4267 return do_mknodat(dfd
, getname(filename
), mode
, dev
);
4270 SYSCALL_DEFINE3(mknod
, const char __user
*, filename
, umode_t
, mode
, unsigned, dev
)
4272 return do_mknodat(AT_FDCWD
, getname(filename
), mode
, dev
);
4276 * vfs_mkdir - create directory
4277 * @idmap: idmap of the mount the inode was found from
4278 * @dir: inode of the parent directory
4279 * @dentry: dentry of the child directory
4280 * @mode: mode of the child directory
4282 * Create a directory.
4284 * If the inode has been found through an idmapped mount the idmap of
4285 * the vfsmount must be passed through @idmap. This function will then take
4286 * care to map the inode according to @idmap before checking permissions.
4287 * On non-idmapped mounts or if permission checking is to be performed on the
4288 * raw inode simply pass @nop_mnt_idmap.
4290 int vfs_mkdir(struct mnt_idmap
*idmap
, struct inode
*dir
,
4291 struct dentry
*dentry
, umode_t mode
)
4294 unsigned max_links
= dir
->i_sb
->s_max_links
;
4296 error
= may_create(idmap
, dir
, dentry
);
4300 if (!dir
->i_op
->mkdir
)
4303 mode
= vfs_prepare_mode(idmap
, dir
, mode
, S_IRWXUGO
| S_ISVTX
, 0);
4304 error
= security_inode_mkdir(dir
, dentry
, mode
);
4308 if (max_links
&& dir
->i_nlink
>= max_links
)
4311 error
= dir
->i_op
->mkdir(idmap
, dir
, dentry
, mode
);
4313 fsnotify_mkdir(dir
, dentry
);
4316 EXPORT_SYMBOL(vfs_mkdir
);
4318 int do_mkdirat(int dfd
, struct filename
*name
, umode_t mode
)
4320 struct dentry
*dentry
;
4323 unsigned int lookup_flags
= LOOKUP_DIRECTORY
;
4326 dentry
= filename_create(dfd
, name
, &path
, lookup_flags
);
4327 error
= PTR_ERR(dentry
);
4331 error
= security_path_mkdir(&path
, dentry
,
4332 mode_strip_umask(path
.dentry
->d_inode
, mode
));
4334 error
= vfs_mkdir(mnt_idmap(path
.mnt
), path
.dentry
->d_inode
,
4337 done_path_create(&path
, dentry
);
4338 if (retry_estale(error
, lookup_flags
)) {
4339 lookup_flags
|= LOOKUP_REVAL
;
4347 SYSCALL_DEFINE3(mkdirat
, int, dfd
, const char __user
*, pathname
, umode_t
, mode
)
4349 return do_mkdirat(dfd
, getname(pathname
), mode
);
4352 SYSCALL_DEFINE2(mkdir
, const char __user
*, pathname
, umode_t
, mode
)
4354 return do_mkdirat(AT_FDCWD
, getname(pathname
), mode
);
4358 * vfs_rmdir - remove directory
4359 * @idmap: idmap of the mount the inode was found from
4360 * @dir: inode of the parent directory
4361 * @dentry: dentry of the child directory
4363 * Remove a directory.
4365 * If the inode has been found through an idmapped mount the idmap of
4366 * the vfsmount must be passed through @idmap. This function will then take
4367 * care to map the inode according to @idmap before checking permissions.
4368 * On non-idmapped mounts or if permission checking is to be performed on the
4369 * raw inode simply pass @nop_mnt_idmap.
4371 int vfs_rmdir(struct mnt_idmap
*idmap
, struct inode
*dir
,
4372 struct dentry
*dentry
)
4374 int error
= may_delete(idmap
, dir
, dentry
, 1);
4379 if (!dir
->i_op
->rmdir
)
4383 inode_lock(dentry
->d_inode
);
4386 if (is_local_mountpoint(dentry
) ||
4387 (dentry
->d_inode
->i_flags
& S_KERNEL_FILE
))
4390 error
= security_inode_rmdir(dir
, dentry
);
4394 error
= dir
->i_op
->rmdir(dir
, dentry
);
4398 shrink_dcache_parent(dentry
);
4399 dentry
->d_inode
->i_flags
|= S_DEAD
;
4401 detach_mounts(dentry
);
4404 inode_unlock(dentry
->d_inode
);
4407 d_delete_notify(dir
, dentry
);
4410 EXPORT_SYMBOL(vfs_rmdir
);
4412 int do_rmdir(int dfd
, struct filename
*name
)
4415 struct dentry
*dentry
;
4419 unsigned int lookup_flags
= 0;
4421 error
= filename_parentat(dfd
, name
, lookup_flags
, &path
, &last
, &type
);
4437 error
= mnt_want_write(path
.mnt
);
4441 inode_lock_nested(path
.dentry
->d_inode
, I_MUTEX_PARENT
);
4442 dentry
= lookup_one_qstr_excl(&last
, path
.dentry
, lookup_flags
);
4443 error
= PTR_ERR(dentry
);
4446 if (!dentry
->d_inode
) {
4450 error
= security_path_rmdir(&path
, dentry
);
4453 error
= vfs_rmdir(mnt_idmap(path
.mnt
), path
.dentry
->d_inode
, dentry
);
4457 inode_unlock(path
.dentry
->d_inode
);
4458 mnt_drop_write(path
.mnt
);
4461 if (retry_estale(error
, lookup_flags
)) {
4462 lookup_flags
|= LOOKUP_REVAL
;
4470 SYSCALL_DEFINE1(rmdir
, const char __user
*, pathname
)
4472 return do_rmdir(AT_FDCWD
, getname(pathname
));
4476 * vfs_unlink - unlink a filesystem object
4477 * @idmap: idmap of the mount the inode was found from
4478 * @dir: parent directory
4480 * @delegated_inode: returns victim inode, if the inode is delegated.
4482 * The caller must hold dir->i_mutex.
4484 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4485 * return a reference to the inode in delegated_inode. The caller
4486 * should then break the delegation on that inode and retry. Because
4487 * breaking a delegation may take a long time, the caller should drop
4488 * dir->i_mutex before doing so.
4490 * Alternatively, a caller may pass NULL for delegated_inode. This may
4491 * be appropriate for callers that expect the underlying filesystem not
4492 * to be NFS exported.
4494 * If the inode has been found through an idmapped mount the idmap of
4495 * the vfsmount must be passed through @idmap. This function will then take
4496 * care to map the inode according to @idmap before checking permissions.
4497 * On non-idmapped mounts or if permission checking is to be performed on the
4498 * raw inode simply pass @nop_mnt_idmap.
4500 int vfs_unlink(struct mnt_idmap
*idmap
, struct inode
*dir
,
4501 struct dentry
*dentry
, struct inode
**delegated_inode
)
4503 struct inode
*target
= dentry
->d_inode
;
4504 int error
= may_delete(idmap
, dir
, dentry
, 0);
4509 if (!dir
->i_op
->unlink
)
4513 if (IS_SWAPFILE(target
))
4515 else if (is_local_mountpoint(dentry
))
4518 error
= security_inode_unlink(dir
, dentry
);
4520 error
= try_break_deleg(target
, delegated_inode
);
4523 error
= dir
->i_op
->unlink(dir
, dentry
);
4526 detach_mounts(dentry
);
4531 inode_unlock(target
);
4533 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4534 if (!error
&& dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
4535 fsnotify_unlink(dir
, dentry
);
4536 } else if (!error
) {
4537 fsnotify_link_count(target
);
4538 d_delete_notify(dir
, dentry
);
4543 EXPORT_SYMBOL(vfs_unlink
);
4546 * Make sure that the actual truncation of the file will occur outside its
4547 * directory's i_mutex. Truncate can take a long time if there is a lot of
4548 * writeout happening, and we don't want to prevent access to the directory
4549 * while waiting on the I/O.
4551 int do_unlinkat(int dfd
, struct filename
*name
)
4554 struct dentry
*dentry
;
4558 struct inode
*inode
= NULL
;
4559 struct inode
*delegated_inode
= NULL
;
4560 unsigned int lookup_flags
= 0;
4562 error
= filename_parentat(dfd
, name
, lookup_flags
, &path
, &last
, &type
);
4567 if (type
!= LAST_NORM
)
4570 error
= mnt_want_write(path
.mnt
);
4574 inode_lock_nested(path
.dentry
->d_inode
, I_MUTEX_PARENT
);
4575 dentry
= lookup_one_qstr_excl(&last
, path
.dentry
, lookup_flags
);
4576 error
= PTR_ERR(dentry
);
4577 if (!IS_ERR(dentry
)) {
4579 /* Why not before? Because we want correct error value */
4580 if (last
.name
[last
.len
] || d_is_negative(dentry
))
4582 inode
= dentry
->d_inode
;
4584 error
= security_path_unlink(&path
, dentry
);
4587 error
= vfs_unlink(mnt_idmap(path
.mnt
), path
.dentry
->d_inode
,
4588 dentry
, &delegated_inode
);
4592 inode_unlock(path
.dentry
->d_inode
);
4594 iput(inode
); /* truncate the inode here */
4596 if (delegated_inode
) {
4597 error
= break_deleg_wait(&delegated_inode
);
4601 mnt_drop_write(path
.mnt
);
4604 if (retry_estale(error
, lookup_flags
)) {
4605 lookup_flags
|= LOOKUP_REVAL
;
4614 if (d_is_negative(dentry
))
4616 else if (d_is_dir(dentry
))
4623 SYSCALL_DEFINE3(unlinkat
, int, dfd
, const char __user
*, pathname
, int, flag
)
4625 if ((flag
& ~AT_REMOVEDIR
) != 0)
4628 if (flag
& AT_REMOVEDIR
)
4629 return do_rmdir(dfd
, getname(pathname
));
4630 return do_unlinkat(dfd
, getname(pathname
));
4633 SYSCALL_DEFINE1(unlink
, const char __user
*, pathname
)
4635 return do_unlinkat(AT_FDCWD
, getname(pathname
));
4639 * vfs_symlink - create symlink
4640 * @idmap: idmap of the mount the inode was found from
4641 * @dir: inode of the parent directory
4642 * @dentry: dentry of the child symlink file
4643 * @oldname: name of the file to link to
4647 * If the inode has been found through an idmapped mount the idmap of
4648 * the vfsmount must be passed through @idmap. This function will then take
4649 * care to map the inode according to @idmap before checking permissions.
4650 * On non-idmapped mounts or if permission checking is to be performed on the
4651 * raw inode simply pass @nop_mnt_idmap.
4653 int vfs_symlink(struct mnt_idmap
*idmap
, struct inode
*dir
,
4654 struct dentry
*dentry
, const char *oldname
)
4658 error
= may_create(idmap
, dir
, dentry
);
4662 if (!dir
->i_op
->symlink
)
4665 error
= security_inode_symlink(dir
, dentry
, oldname
);
4669 error
= dir
->i_op
->symlink(idmap
, dir
, dentry
, oldname
);
4671 fsnotify_create(dir
, dentry
);
4674 EXPORT_SYMBOL(vfs_symlink
);
4676 int do_symlinkat(struct filename
*from
, int newdfd
, struct filename
*to
)
4679 struct dentry
*dentry
;
4681 unsigned int lookup_flags
= 0;
4684 error
= PTR_ERR(from
);
4688 dentry
= filename_create(newdfd
, to
, &path
, lookup_flags
);
4689 error
= PTR_ERR(dentry
);
4693 error
= security_path_symlink(&path
, dentry
, from
->name
);
4695 error
= vfs_symlink(mnt_idmap(path
.mnt
), path
.dentry
->d_inode
,
4696 dentry
, from
->name
);
4697 done_path_create(&path
, dentry
);
4698 if (retry_estale(error
, lookup_flags
)) {
4699 lookup_flags
|= LOOKUP_REVAL
;
4708 SYSCALL_DEFINE3(symlinkat
, const char __user
*, oldname
,
4709 int, newdfd
, const char __user
*, newname
)
4711 return do_symlinkat(getname(oldname
), newdfd
, getname(newname
));
4714 SYSCALL_DEFINE2(symlink
, const char __user
*, oldname
, const char __user
*, newname
)
4716 return do_symlinkat(getname(oldname
), AT_FDCWD
, getname(newname
));
4720 * vfs_link - create a new link
4721 * @old_dentry: object to be linked
4722 * @idmap: idmap of the mount
4724 * @new_dentry: where to create the new link
4725 * @delegated_inode: returns inode needing a delegation break
4727 * The caller must hold dir->i_mutex
4729 * If vfs_link discovers a delegation on the to-be-linked file in need
4730 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4731 * inode in delegated_inode. The caller should then break the delegation
4732 * and retry. Because breaking a delegation may take a long time, the
4733 * caller should drop the i_mutex before doing so.
4735 * Alternatively, a caller may pass NULL for delegated_inode. This may
4736 * be appropriate for callers that expect the underlying filesystem not
4737 * to be NFS exported.
4739 * If the inode has been found through an idmapped mount the idmap of
4740 * the vfsmount must be passed through @idmap. This function will then take
4741 * care to map the inode according to @idmap before checking permissions.
4742 * On non-idmapped mounts or if permission checking is to be performed on the
4743 * raw inode simply pass @nop_mnt_idmap.
4745 int vfs_link(struct dentry
*old_dentry
, struct mnt_idmap
*idmap
,
4746 struct inode
*dir
, struct dentry
*new_dentry
,
4747 struct inode
**delegated_inode
)
4749 struct inode
*inode
= old_dentry
->d_inode
;
4750 unsigned max_links
= dir
->i_sb
->s_max_links
;
4756 error
= may_create(idmap
, dir
, new_dentry
);
4760 if (dir
->i_sb
!= inode
->i_sb
)
4764 * A link to an append-only or immutable file cannot be created.
4766 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
4769 * Updating the link count will likely cause i_uid and i_gid to
4770 * be writen back improperly if their true value is unknown to
4773 if (HAS_UNMAPPED_ID(idmap
, inode
))
4775 if (!dir
->i_op
->link
)
4777 if (S_ISDIR(inode
->i_mode
))
4780 error
= security_inode_link(old_dentry
, dir
, new_dentry
);
4785 /* Make sure we don't allow creating hardlink to an unlinked file */
4786 if (inode
->i_nlink
== 0 && !(inode
->i_state
& I_LINKABLE
))
4788 else if (max_links
&& inode
->i_nlink
>= max_links
)
4791 error
= try_break_deleg(inode
, delegated_inode
);
4793 error
= dir
->i_op
->link(old_dentry
, dir
, new_dentry
);
4796 if (!error
&& (inode
->i_state
& I_LINKABLE
)) {
4797 spin_lock(&inode
->i_lock
);
4798 inode
->i_state
&= ~I_LINKABLE
;
4799 spin_unlock(&inode
->i_lock
);
4801 inode_unlock(inode
);
4803 fsnotify_link(dir
, inode
, new_dentry
);
4806 EXPORT_SYMBOL(vfs_link
);
4809 * Hardlinks are often used in delicate situations. We avoid
4810 * security-related surprises by not following symlinks on the
4813 * We don't follow them on the oldname either to be compatible
4814 * with linux 2.0, and to avoid hard-linking to directories
4815 * and other special files. --ADM
4817 int do_linkat(int olddfd
, struct filename
*old
, int newdfd
,
4818 struct filename
*new, int flags
)
4820 struct mnt_idmap
*idmap
;
4821 struct dentry
*new_dentry
;
4822 struct path old_path
, new_path
;
4823 struct inode
*delegated_inode
= NULL
;
4827 if ((flags
& ~(AT_SYMLINK_FOLLOW
| AT_EMPTY_PATH
)) != 0) {
4832 * To use null names we require CAP_DAC_READ_SEARCH or
4833 * that the open-time creds of the dfd matches current.
4834 * This ensures that not everyone will be able to create
4835 * a hardlink using the passed file descriptor.
4837 if (flags
& AT_EMPTY_PATH
)
4838 how
|= LOOKUP_LINKAT_EMPTY
;
4840 if (flags
& AT_SYMLINK_FOLLOW
)
4841 how
|= LOOKUP_FOLLOW
;
4843 error
= filename_lookup(olddfd
, old
, how
, &old_path
, NULL
);
4847 new_dentry
= filename_create(newdfd
, new, &new_path
,
4848 (how
& LOOKUP_REVAL
));
4849 error
= PTR_ERR(new_dentry
);
4850 if (IS_ERR(new_dentry
))
4854 if (old_path
.mnt
!= new_path
.mnt
)
4856 idmap
= mnt_idmap(new_path
.mnt
);
4857 error
= may_linkat(idmap
, &old_path
);
4858 if (unlikely(error
))
4860 error
= security_path_link(old_path
.dentry
, &new_path
, new_dentry
);
4863 error
= vfs_link(old_path
.dentry
, idmap
, new_path
.dentry
->d_inode
,
4864 new_dentry
, &delegated_inode
);
4866 done_path_create(&new_path
, new_dentry
);
4867 if (delegated_inode
) {
4868 error
= break_deleg_wait(&delegated_inode
);
4870 path_put(&old_path
);
4874 if (retry_estale(error
, how
)) {
4875 path_put(&old_path
);
4876 how
|= LOOKUP_REVAL
;
4880 path_put(&old_path
);
4888 SYSCALL_DEFINE5(linkat
, int, olddfd
, const char __user
*, oldname
,
4889 int, newdfd
, const char __user
*, newname
, int, flags
)
4891 return do_linkat(olddfd
, getname_uflags(oldname
, flags
),
4892 newdfd
, getname(newname
), flags
);
4895 SYSCALL_DEFINE2(link
, const char __user
*, oldname
, const char __user
*, newname
)
4897 return do_linkat(AT_FDCWD
, getname(oldname
), AT_FDCWD
, getname(newname
), 0);
4901 * vfs_rename - rename a filesystem object
4902 * @rd: pointer to &struct renamedata info
4904 * The caller must hold multiple mutexes--see lock_rename()).
4906 * If vfs_rename discovers a delegation in need of breaking at either
4907 * the source or destination, it will return -EWOULDBLOCK and return a
4908 * reference to the inode in delegated_inode. The caller should then
4909 * break the delegation and retry. Because breaking a delegation may
4910 * take a long time, the caller should drop all locks before doing
4913 * Alternatively, a caller may pass NULL for delegated_inode. This may
4914 * be appropriate for callers that expect the underlying filesystem not
4915 * to be NFS exported.
4917 * The worst of all namespace operations - renaming directory. "Perverted"
4918 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4921 * a) we can get into loop creation.
4922 * b) race potential - two innocent renames can create a loop together.
4923 * That's where 4.4BSD screws up. Current fix: serialization on
4924 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4926 * c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4927 * and source (if it's a non-directory or a subdirectory that moves to
4928 * different parent).
4929 * And that - after we got ->i_mutex on parents (until then we don't know
4930 * whether the target exists). Solution: try to be smart with locking
4931 * order for inodes. We rely on the fact that tree topology may change
4932 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4933 * move will be locked. Thus we can rank directories by the tree
4934 * (ancestors first) and rank all non-directories after them.
4935 * That works since everybody except rename does "lock parent, lookup,
4936 * lock child" and rename is under ->s_vfs_rename_mutex.
4937 * HOWEVER, it relies on the assumption that any object with ->lookup()
4938 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4939 * we'd better make sure that there's no link(2) for them.
4940 * d) conversion from fhandle to dentry may come in the wrong moment - when
4941 * we are removing the target. Solution: we will have to grab ->i_mutex
4942 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4943 * ->i_mutex on parents, which works but leads to some truly excessive
4946 int vfs_rename(struct renamedata
*rd
)
4949 struct inode
*old_dir
= rd
->old_dir
, *new_dir
= rd
->new_dir
;
4950 struct dentry
*old_dentry
= rd
->old_dentry
;
4951 struct dentry
*new_dentry
= rd
->new_dentry
;
4952 struct inode
**delegated_inode
= rd
->delegated_inode
;
4953 unsigned int flags
= rd
->flags
;
4954 bool is_dir
= d_is_dir(old_dentry
);
4955 struct inode
*source
= old_dentry
->d_inode
;
4956 struct inode
*target
= new_dentry
->d_inode
;
4957 bool new_is_dir
= false;
4958 unsigned max_links
= new_dir
->i_sb
->s_max_links
;
4959 struct name_snapshot old_name
;
4960 bool lock_old_subdir
, lock_new_subdir
;
4962 if (source
== target
)
4965 error
= may_delete(rd
->old_mnt_idmap
, old_dir
, old_dentry
, is_dir
);
4970 error
= may_create(rd
->new_mnt_idmap
, new_dir
, new_dentry
);
4972 new_is_dir
= d_is_dir(new_dentry
);
4974 if (!(flags
& RENAME_EXCHANGE
))
4975 error
= may_delete(rd
->new_mnt_idmap
, new_dir
,
4976 new_dentry
, is_dir
);
4978 error
= may_delete(rd
->new_mnt_idmap
, new_dir
,
4979 new_dentry
, new_is_dir
);
4984 if (!old_dir
->i_op
->rename
)
4988 * If we are going to change the parent - check write permissions,
4989 * we'll need to flip '..'.
4991 if (new_dir
!= old_dir
) {
4993 error
= inode_permission(rd
->old_mnt_idmap
, source
,
4998 if ((flags
& RENAME_EXCHANGE
) && new_is_dir
) {
4999 error
= inode_permission(rd
->new_mnt_idmap
, target
,
5006 error
= security_inode_rename(old_dir
, old_dentry
, new_dir
, new_dentry
,
5011 take_dentry_name_snapshot(&old_name
, old_dentry
);
5015 * The source subdirectory needs to be locked on cross-directory
5016 * rename or cross-directory exchange since its parent changes.
5017 * The target subdirectory needs to be locked on cross-directory
5018 * exchange due to parent change and on any rename due to becoming
5020 * Non-directories need locking in all cases (for NFS reasons);
5021 * they get locked after any subdirectories (in inode address order).
5023 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
5024 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
5026 lock_old_subdir
= new_dir
!= old_dir
;
5027 lock_new_subdir
= new_dir
!= old_dir
|| !(flags
& RENAME_EXCHANGE
);
5029 if (lock_old_subdir
)
5030 inode_lock_nested(source
, I_MUTEX_CHILD
);
5031 if (target
&& (!new_is_dir
|| lock_new_subdir
))
5033 } else if (new_is_dir
) {
5034 if (lock_new_subdir
)
5035 inode_lock_nested(target
, I_MUTEX_CHILD
);
5038 lock_two_nondirectories(source
, target
);
5042 if (IS_SWAPFILE(source
) || (target
&& IS_SWAPFILE(target
)))
5046 if (is_local_mountpoint(old_dentry
) || is_local_mountpoint(new_dentry
))
5049 if (max_links
&& new_dir
!= old_dir
) {
5051 if (is_dir
&& !new_is_dir
&& new_dir
->i_nlink
>= max_links
)
5053 if ((flags
& RENAME_EXCHANGE
) && !is_dir
&& new_is_dir
&&
5054 old_dir
->i_nlink
>= max_links
)
5058 error
= try_break_deleg(source
, delegated_inode
);
5062 if (target
&& !new_is_dir
) {
5063 error
= try_break_deleg(target
, delegated_inode
);
5067 error
= old_dir
->i_op
->rename(rd
->new_mnt_idmap
, old_dir
, old_dentry
,
5068 new_dir
, new_dentry
, flags
);
5072 if (!(flags
& RENAME_EXCHANGE
) && target
) {
5074 shrink_dcache_parent(new_dentry
);
5075 target
->i_flags
|= S_DEAD
;
5077 dont_mount(new_dentry
);
5078 detach_mounts(new_dentry
);
5080 if (!(old_dir
->i_sb
->s_type
->fs_flags
& FS_RENAME_DOES_D_MOVE
)) {
5081 if (!(flags
& RENAME_EXCHANGE
))
5082 d_move(old_dentry
, new_dentry
);
5084 d_exchange(old_dentry
, new_dentry
);
5087 if (!is_dir
|| lock_old_subdir
)
5088 inode_unlock(source
);
5089 if (target
&& (!new_is_dir
|| lock_new_subdir
))
5090 inode_unlock(target
);
5093 fsnotify_move(old_dir
, new_dir
, &old_name
.name
, is_dir
,
5094 !(flags
& RENAME_EXCHANGE
) ? target
: NULL
, old_dentry
);
5095 if (flags
& RENAME_EXCHANGE
) {
5096 fsnotify_move(new_dir
, old_dir
, &old_dentry
->d_name
,
5097 new_is_dir
, NULL
, new_dentry
);
5100 release_dentry_name_snapshot(&old_name
);
5104 EXPORT_SYMBOL(vfs_rename
);
5106 int do_renameat2(int olddfd
, struct filename
*from
, int newdfd
,
5107 struct filename
*to
, unsigned int flags
)
5109 struct renamedata rd
;
5110 struct dentry
*old_dentry
, *new_dentry
;
5111 struct dentry
*trap
;
5112 struct path old_path
, new_path
;
5113 struct qstr old_last
, new_last
;
5114 int old_type
, new_type
;
5115 struct inode
*delegated_inode
= NULL
;
5116 unsigned int lookup_flags
= 0, target_flags
= LOOKUP_RENAME_TARGET
;
5117 bool should_retry
= false;
5118 int error
= -EINVAL
;
5120 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
5123 if ((flags
& (RENAME_NOREPLACE
| RENAME_WHITEOUT
)) &&
5124 (flags
& RENAME_EXCHANGE
))
5127 if (flags
& RENAME_EXCHANGE
)
5131 error
= filename_parentat(olddfd
, from
, lookup_flags
, &old_path
,
5132 &old_last
, &old_type
);
5136 error
= filename_parentat(newdfd
, to
, lookup_flags
, &new_path
, &new_last
,
5142 if (old_path
.mnt
!= new_path
.mnt
)
5146 if (old_type
!= LAST_NORM
)
5149 if (flags
& RENAME_NOREPLACE
)
5151 if (new_type
!= LAST_NORM
)
5154 error
= mnt_want_write(old_path
.mnt
);
5159 trap
= lock_rename(new_path
.dentry
, old_path
.dentry
);
5161 error
= PTR_ERR(trap
);
5162 goto exit_lock_rename
;
5165 old_dentry
= lookup_one_qstr_excl(&old_last
, old_path
.dentry
,
5167 error
= PTR_ERR(old_dentry
);
5168 if (IS_ERR(old_dentry
))
5170 /* source must exist */
5172 if (d_is_negative(old_dentry
))
5174 new_dentry
= lookup_one_qstr_excl(&new_last
, new_path
.dentry
,
5175 lookup_flags
| target_flags
);
5176 error
= PTR_ERR(new_dentry
);
5177 if (IS_ERR(new_dentry
))
5180 if ((flags
& RENAME_NOREPLACE
) && d_is_positive(new_dentry
))
5182 if (flags
& RENAME_EXCHANGE
) {
5184 if (d_is_negative(new_dentry
))
5187 if (!d_is_dir(new_dentry
)) {
5189 if (new_last
.name
[new_last
.len
])
5193 /* unless the source is a directory trailing slashes give -ENOTDIR */
5194 if (!d_is_dir(old_dentry
)) {
5196 if (old_last
.name
[old_last
.len
])
5198 if (!(flags
& RENAME_EXCHANGE
) && new_last
.name
[new_last
.len
])
5201 /* source should not be ancestor of target */
5203 if (old_dentry
== trap
)
5205 /* target should not be an ancestor of source */
5206 if (!(flags
& RENAME_EXCHANGE
))
5208 if (new_dentry
== trap
)
5211 error
= security_path_rename(&old_path
, old_dentry
,
5212 &new_path
, new_dentry
, flags
);
5216 rd
.old_dir
= old_path
.dentry
->d_inode
;
5217 rd
.old_dentry
= old_dentry
;
5218 rd
.old_mnt_idmap
= mnt_idmap(old_path
.mnt
);
5219 rd
.new_dir
= new_path
.dentry
->d_inode
;
5220 rd
.new_dentry
= new_dentry
;
5221 rd
.new_mnt_idmap
= mnt_idmap(new_path
.mnt
);
5222 rd
.delegated_inode
= &delegated_inode
;
5224 error
= vfs_rename(&rd
);
5230 unlock_rename(new_path
.dentry
, old_path
.dentry
);
5232 if (delegated_inode
) {
5233 error
= break_deleg_wait(&delegated_inode
);
5237 mnt_drop_write(old_path
.mnt
);
5239 if (retry_estale(error
, lookup_flags
))
5240 should_retry
= true;
5241 path_put(&new_path
);
5243 path_put(&old_path
);
5245 should_retry
= false;
5246 lookup_flags
|= LOOKUP_REVAL
;
5255 SYSCALL_DEFINE5(renameat2
, int, olddfd
, const char __user
*, oldname
,
5256 int, newdfd
, const char __user
*, newname
, unsigned int, flags
)
5258 return do_renameat2(olddfd
, getname(oldname
), newdfd
, getname(newname
),
5262 SYSCALL_DEFINE4(renameat
, int, olddfd
, const char __user
*, oldname
,
5263 int, newdfd
, const char __user
*, newname
)
5265 return do_renameat2(olddfd
, getname(oldname
), newdfd
, getname(newname
),
5269 SYSCALL_DEFINE2(rename
, const char __user
*, oldname
, const char __user
*, newname
)
5271 return do_renameat2(AT_FDCWD
, getname(oldname
), AT_FDCWD
,
5272 getname(newname
), 0);
5275 int readlink_copy(char __user
*buffer
, int buflen
, const char *link
)
5277 int len
= PTR_ERR(link
);
5282 if (len
> (unsigned) buflen
)
5284 if (copy_to_user(buffer
, link
, len
))
5291 * vfs_readlink - copy symlink body into userspace buffer
5292 * @dentry: dentry on which to get symbolic link
5293 * @buffer: user memory pointer
5294 * @buflen: size of buffer
5296 * Does not touch atime. That's up to the caller if necessary
5298 * Does not call security hook.
5300 int vfs_readlink(struct dentry
*dentry
, char __user
*buffer
, int buflen
)
5302 struct inode
*inode
= d_inode(dentry
);
5303 DEFINE_DELAYED_CALL(done
);
5307 if (unlikely(!(inode
->i_opflags
& IOP_DEFAULT_READLINK
))) {
5308 if (unlikely(inode
->i_op
->readlink
))
5309 return inode
->i_op
->readlink(dentry
, buffer
, buflen
);
5311 if (!d_is_symlink(dentry
))
5314 spin_lock(&inode
->i_lock
);
5315 inode
->i_opflags
|= IOP_DEFAULT_READLINK
;
5316 spin_unlock(&inode
->i_lock
);
5319 link
= READ_ONCE(inode
->i_link
);
5321 link
= inode
->i_op
->get_link(dentry
, inode
, &done
);
5323 return PTR_ERR(link
);
5325 res
= readlink_copy(buffer
, buflen
, link
);
5326 do_delayed_call(&done
);
5329 EXPORT_SYMBOL(vfs_readlink
);
5332 * vfs_get_link - get symlink body
5333 * @dentry: dentry on which to get symbolic link
5334 * @done: caller needs to free returned data with this
5336 * Calls security hook and i_op->get_link() on the supplied inode.
5338 * It does not touch atime. That's up to the caller if necessary.
5340 * Does not work on "special" symlinks like /proc/$$/fd/N
5342 const char *vfs_get_link(struct dentry
*dentry
, struct delayed_call
*done
)
5344 const char *res
= ERR_PTR(-EINVAL
);
5345 struct inode
*inode
= d_inode(dentry
);
5347 if (d_is_symlink(dentry
)) {
5348 res
= ERR_PTR(security_inode_readlink(dentry
));
5350 res
= inode
->i_op
->get_link(dentry
, inode
, done
);
5354 EXPORT_SYMBOL(vfs_get_link
);
5356 /* get the link contents into pagecache */
5357 const char *page_get_link(struct dentry
*dentry
, struct inode
*inode
,
5358 struct delayed_call
*callback
)
5362 struct address_space
*mapping
= inode
->i_mapping
;
5365 page
= find_get_page(mapping
, 0);
5367 return ERR_PTR(-ECHILD
);
5368 if (!PageUptodate(page
)) {
5370 return ERR_PTR(-ECHILD
);
5373 page
= read_mapping_page(mapping
, 0, NULL
);
5377 set_delayed_call(callback
, page_put_link
, page
);
5378 BUG_ON(mapping_gfp_mask(mapping
) & __GFP_HIGHMEM
);
5379 kaddr
= page_address(page
);
5380 nd_terminate_link(kaddr
, inode
->i_size
, PAGE_SIZE
- 1);
5384 EXPORT_SYMBOL(page_get_link
);
5386 void page_put_link(void *arg
)
5390 EXPORT_SYMBOL(page_put_link
);
5392 int page_readlink(struct dentry
*dentry
, char __user
*buffer
, int buflen
)
5394 DEFINE_DELAYED_CALL(done
);
5395 int res
= readlink_copy(buffer
, buflen
,
5396 page_get_link(dentry
, d_inode(dentry
),
5398 do_delayed_call(&done
);
5401 EXPORT_SYMBOL(page_readlink
);
5403 int page_symlink(struct inode
*inode
, const char *symname
, int len
)
5405 struct address_space
*mapping
= inode
->i_mapping
;
5406 const struct address_space_operations
*aops
= mapping
->a_ops
;
5407 bool nofs
= !mapping_gfp_constraint(mapping
, __GFP_FS
);
5408 struct folio
*folio
;
5409 void *fsdata
= NULL
;
5415 flags
= memalloc_nofs_save();
5416 err
= aops
->write_begin(NULL
, mapping
, 0, len
-1, &folio
, &fsdata
);
5418 memalloc_nofs_restore(flags
);
5422 memcpy(folio_address(folio
), symname
, len
- 1);
5424 err
= aops
->write_end(NULL
, mapping
, 0, len
- 1, len
- 1,
5431 mark_inode_dirty(inode
);
5436 EXPORT_SYMBOL(page_symlink
);
5438 const struct inode_operations page_symlink_inode_operations
= {
5439 .get_link
= page_get_link
,
5441 EXPORT_SYMBOL(page_symlink_inode_operations
);