1 // SPDX-License-Identifier: GPL-2.0
3 * Request reply cache. This is currently a global cache, but this may
4 * change in the future and be a per-client cache.
6 * This code is heavily inspired by the 44BSD implementation, although
7 * it does things a bit differently.
9 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
12 #include <linux/sunrpc/svc_xprt.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/sunrpc/addr.h>
16 #include <linux/highmem.h>
17 #include <linux/log2.h>
18 #include <linux/hash.h>
19 #include <net/checksum.h>
26 * We use this value to determine the number of hash buckets from the max
27 * cache size, the idea being that when the cache is at its maximum number
28 * of entries, then this should be the average number of entries per bucket.
30 #define TARGET_BUCKET_SIZE 64
32 struct nfsd_drc_bucket
{
33 struct rb_root rb_head
;
34 struct list_head lru_head
;
35 spinlock_t cache_lock
;
38 static struct kmem_cache
*drc_slab
;
40 static int nfsd_cache_append(struct svc_rqst
*rqstp
, struct kvec
*vec
);
41 static unsigned long nfsd_reply_cache_count(struct shrinker
*shrink
,
42 struct shrink_control
*sc
);
43 static unsigned long nfsd_reply_cache_scan(struct shrinker
*shrink
,
44 struct shrink_control
*sc
);
47 * Put a cap on the size of the DRC based on the amount of available
48 * low memory in the machine.
60 * ...with a hard cap of 256k entries. In the worst case, each entry will be
61 * ~1k, so the above numbers should give a rough max of the amount of memory
64 * XXX: these limits are per-container, so memory used will increase
65 * linearly with number of containers. Maybe that's OK.
68 nfsd_cache_size_limit(void)
71 unsigned long low_pages
= totalram_pages() - totalhigh_pages();
73 limit
= (16 * int_sqrt(low_pages
)) << (PAGE_SHIFT
-10);
74 return min_t(unsigned int, limit
, 256*1024);
78 * Compute the number of hash buckets we need. Divide the max cachesize by
79 * the "target" max bucket size, and round up to next power of two.
82 nfsd_hashsize(unsigned int limit
)
84 return roundup_pow_of_two(limit
/ TARGET_BUCKET_SIZE
);
87 static struct nfsd_cacherep
*
88 nfsd_cacherep_alloc(struct svc_rqst
*rqstp
, __wsum csum
,
91 struct nfsd_cacherep
*rp
;
93 rp
= kmem_cache_alloc(drc_slab
, GFP_KERNEL
);
95 rp
->c_state
= RC_UNUSED
;
96 rp
->c_type
= RC_NOCACHE
;
97 RB_CLEAR_NODE(&rp
->c_node
);
98 INIT_LIST_HEAD(&rp
->c_lru
);
100 memset(&rp
->c_key
, 0, sizeof(rp
->c_key
));
101 rp
->c_key
.k_xid
= rqstp
->rq_xid
;
102 rp
->c_key
.k_proc
= rqstp
->rq_proc
;
103 rpc_copy_addr((struct sockaddr
*)&rp
->c_key
.k_addr
, svc_addr(rqstp
));
104 rpc_set_port((struct sockaddr
*)&rp
->c_key
.k_addr
, rpc_get_port(svc_addr(rqstp
)));
105 rp
->c_key
.k_prot
= rqstp
->rq_prot
;
106 rp
->c_key
.k_vers
= rqstp
->rq_vers
;
107 rp
->c_key
.k_len
= rqstp
->rq_arg
.len
;
108 rp
->c_key
.k_csum
= csum
;
113 static void nfsd_cacherep_free(struct nfsd_cacherep
*rp
)
115 if (rp
->c_type
== RC_REPLBUFF
)
116 kfree(rp
->c_replvec
.iov_base
);
117 kmem_cache_free(drc_slab
, rp
);
121 nfsd_cacherep_dispose(struct list_head
*dispose
)
123 struct nfsd_cacherep
*rp
;
124 unsigned long freed
= 0;
126 while (!list_empty(dispose
)) {
127 rp
= list_first_entry(dispose
, struct nfsd_cacherep
, c_lru
);
128 list_del(&rp
->c_lru
);
129 nfsd_cacherep_free(rp
);
136 nfsd_cacherep_unlink_locked(struct nfsd_net
*nn
, struct nfsd_drc_bucket
*b
,
137 struct nfsd_cacherep
*rp
)
139 if (rp
->c_type
== RC_REPLBUFF
&& rp
->c_replvec
.iov_base
)
140 nfsd_stats_drc_mem_usage_sub(nn
, rp
->c_replvec
.iov_len
);
141 if (rp
->c_state
!= RC_UNUSED
) {
142 rb_erase(&rp
->c_node
, &b
->rb_head
);
143 list_del(&rp
->c_lru
);
144 atomic_dec(&nn
->num_drc_entries
);
145 nfsd_stats_drc_mem_usage_sub(nn
, sizeof(*rp
));
150 nfsd_reply_cache_free_locked(struct nfsd_drc_bucket
*b
, struct nfsd_cacherep
*rp
,
153 nfsd_cacherep_unlink_locked(nn
, b
, rp
);
154 nfsd_cacherep_free(rp
);
158 nfsd_reply_cache_free(struct nfsd_drc_bucket
*b
, struct nfsd_cacherep
*rp
,
161 spin_lock(&b
->cache_lock
);
162 nfsd_cacherep_unlink_locked(nn
, b
, rp
);
163 spin_unlock(&b
->cache_lock
);
164 nfsd_cacherep_free(rp
);
167 int nfsd_drc_slab_create(void)
169 drc_slab
= KMEM_CACHE(nfsd_cacherep
, 0);
170 return drc_slab
? 0: -ENOMEM
;
173 void nfsd_drc_slab_free(void)
175 kmem_cache_destroy(drc_slab
);
178 int nfsd_reply_cache_init(struct nfsd_net
*nn
)
180 unsigned int hashsize
;
183 nn
->max_drc_entries
= nfsd_cache_size_limit();
184 atomic_set(&nn
->num_drc_entries
, 0);
185 hashsize
= nfsd_hashsize(nn
->max_drc_entries
);
186 nn
->maskbits
= ilog2(hashsize
);
188 nn
->drc_hashtbl
= kvzalloc(array_size(hashsize
,
189 sizeof(*nn
->drc_hashtbl
)), GFP_KERNEL
);
190 if (!nn
->drc_hashtbl
)
193 nn
->nfsd_reply_cache_shrinker
= shrinker_alloc(0, "nfsd-reply:%s",
195 if (!nn
->nfsd_reply_cache_shrinker
)
198 nn
->nfsd_reply_cache_shrinker
->scan_objects
= nfsd_reply_cache_scan
;
199 nn
->nfsd_reply_cache_shrinker
->count_objects
= nfsd_reply_cache_count
;
200 nn
->nfsd_reply_cache_shrinker
->seeks
= 1;
201 nn
->nfsd_reply_cache_shrinker
->private_data
= nn
;
203 shrinker_register(nn
->nfsd_reply_cache_shrinker
);
205 for (i
= 0; i
< hashsize
; i
++) {
206 INIT_LIST_HEAD(&nn
->drc_hashtbl
[i
].lru_head
);
207 spin_lock_init(&nn
->drc_hashtbl
[i
].cache_lock
);
209 nn
->drc_hashsize
= hashsize
;
213 kvfree(nn
->drc_hashtbl
);
214 printk(KERN_ERR
"nfsd: failed to allocate reply cache\n");
218 void nfsd_reply_cache_shutdown(struct nfsd_net
*nn
)
220 struct nfsd_cacherep
*rp
;
223 shrinker_free(nn
->nfsd_reply_cache_shrinker
);
225 for (i
= 0; i
< nn
->drc_hashsize
; i
++) {
226 struct list_head
*head
= &nn
->drc_hashtbl
[i
].lru_head
;
227 while (!list_empty(head
)) {
228 rp
= list_first_entry(head
, struct nfsd_cacherep
, c_lru
);
229 nfsd_reply_cache_free_locked(&nn
->drc_hashtbl
[i
],
234 kvfree(nn
->drc_hashtbl
);
235 nn
->drc_hashtbl
= NULL
;
236 nn
->drc_hashsize
= 0;
241 * Move cache entry to end of LRU list, and queue the cleaner to run if it's
242 * not already scheduled.
245 lru_put_end(struct nfsd_drc_bucket
*b
, struct nfsd_cacherep
*rp
)
247 rp
->c_timestamp
= jiffies
;
248 list_move_tail(&rp
->c_lru
, &b
->lru_head
);
251 static noinline
struct nfsd_drc_bucket
*
252 nfsd_cache_bucket_find(__be32 xid
, struct nfsd_net
*nn
)
254 unsigned int hash
= hash_32((__force u32
)xid
, nn
->maskbits
);
256 return &nn
->drc_hashtbl
[hash
];
260 * Remove and return no more than @max expired entries in bucket @b.
261 * If @max is zero, do not limit the number of removed entries.
264 nfsd_prune_bucket_locked(struct nfsd_net
*nn
, struct nfsd_drc_bucket
*b
,
265 unsigned int max
, struct list_head
*dispose
)
267 unsigned long expiry
= jiffies
- RC_EXPIRE
;
268 struct nfsd_cacherep
*rp
, *tmp
;
269 unsigned int freed
= 0;
271 lockdep_assert_held(&b
->cache_lock
);
273 /* The bucket LRU is ordered oldest-first. */
274 list_for_each_entry_safe(rp
, tmp
, &b
->lru_head
, c_lru
) {
276 * Don't free entries attached to calls that are still
277 * in-progress, but do keep scanning the list.
279 if (rp
->c_state
== RC_INPROG
)
282 if (atomic_read(&nn
->num_drc_entries
) <= nn
->max_drc_entries
&&
283 time_before(expiry
, rp
->c_timestamp
))
286 nfsd_cacherep_unlink_locked(nn
, b
, rp
);
287 list_add(&rp
->c_lru
, dispose
);
289 if (max
&& ++freed
> max
)
295 * nfsd_reply_cache_count - count_objects method for the DRC shrinker
296 * @shrink: our registered shrinker context
297 * @sc: garbage collection parameters
299 * Returns the total number of entries in the duplicate reply cache. To
300 * keep things simple and quick, this is not the number of expired entries
301 * in the cache (ie, the number that would be removed by a call to
302 * nfsd_reply_cache_scan).
305 nfsd_reply_cache_count(struct shrinker
*shrink
, struct shrink_control
*sc
)
307 struct nfsd_net
*nn
= shrink
->private_data
;
309 return atomic_read(&nn
->num_drc_entries
);
313 * nfsd_reply_cache_scan - scan_objects method for the DRC shrinker
314 * @shrink: our registered shrinker context
315 * @sc: garbage collection parameters
317 * Free expired entries on each bucket's LRU list until we've released
318 * nr_to_scan freed objects. Nothing will be released if the cache
319 * has not exceeded it's max_drc_entries limit.
321 * Returns the number of entries released by this call.
324 nfsd_reply_cache_scan(struct shrinker
*shrink
, struct shrink_control
*sc
)
326 struct nfsd_net
*nn
= shrink
->private_data
;
327 unsigned long freed
= 0;
331 for (i
= 0; i
< nn
->drc_hashsize
; i
++) {
332 struct nfsd_drc_bucket
*b
= &nn
->drc_hashtbl
[i
];
334 if (list_empty(&b
->lru_head
))
337 spin_lock(&b
->cache_lock
);
338 nfsd_prune_bucket_locked(nn
, b
, 0, &dispose
);
339 spin_unlock(&b
->cache_lock
);
341 freed
+= nfsd_cacherep_dispose(&dispose
);
342 if (freed
> sc
->nr_to_scan
)
349 * nfsd_cache_csum - Checksum incoming NFS Call arguments
350 * @buf: buffer containing a whole RPC Call message
351 * @start: starting byte of the NFS Call header
352 * @remaining: size of the NFS Call header, in bytes
354 * Compute a weak checksum of the leading bytes of an NFS procedure
355 * call header to help verify that a retransmitted Call matches an
356 * entry in the duplicate reply cache.
358 * To avoid assumptions about how the RPC message is laid out in
359 * @buf and what else it might contain (eg, a GSS MIC suffix), the
360 * caller passes us the exact location and length of the NFS Call
363 * Returns a 32-bit checksum value, as defined in RFC 793.
365 static __wsum
nfsd_cache_csum(struct xdr_buf
*buf
, unsigned int start
,
366 unsigned int remaining
)
368 unsigned int base
, len
;
369 struct xdr_buf subbuf
;
374 if (remaining
> RC_CSUMLEN
)
375 remaining
= RC_CSUMLEN
;
376 if (xdr_buf_subsegment(buf
, &subbuf
, start
, remaining
))
379 /* rq_arg.head first */
380 if (subbuf
.head
[0].iov_len
) {
381 len
= min_t(unsigned int, subbuf
.head
[0].iov_len
, remaining
);
382 csum
= csum_partial(subbuf
.head
[0].iov_base
, len
, csum
);
386 /* Continue into page array */
387 idx
= subbuf
.page_base
/ PAGE_SIZE
;
388 base
= subbuf
.page_base
& ~PAGE_MASK
;
390 p
= page_address(subbuf
.pages
[idx
]) + base
;
391 len
= min_t(unsigned int, PAGE_SIZE
- base
, remaining
);
392 csum
= csum_partial(p
, len
, csum
);
401 nfsd_cache_key_cmp(const struct nfsd_cacherep
*key
,
402 const struct nfsd_cacherep
*rp
, struct nfsd_net
*nn
)
404 if (key
->c_key
.k_xid
== rp
->c_key
.k_xid
&&
405 key
->c_key
.k_csum
!= rp
->c_key
.k_csum
) {
406 nfsd_stats_payload_misses_inc(nn
);
407 trace_nfsd_drc_mismatch(nn
, key
, rp
);
410 return memcmp(&key
->c_key
, &rp
->c_key
, sizeof(key
->c_key
));
414 * Search the request hash for an entry that matches the given rqstp.
415 * Must be called with cache_lock held. Returns the found entry or
416 * inserts an empty key on failure.
418 static struct nfsd_cacherep
*
419 nfsd_cache_insert(struct nfsd_drc_bucket
*b
, struct nfsd_cacherep
*key
,
422 struct nfsd_cacherep
*rp
, *ret
= key
;
423 struct rb_node
**p
= &b
->rb_head
.rb_node
,
425 unsigned int entries
= 0;
431 rp
= rb_entry(parent
, struct nfsd_cacherep
, c_node
);
433 cmp
= nfsd_cache_key_cmp(key
, rp
, nn
);
435 p
= &parent
->rb_left
;
437 p
= &parent
->rb_right
;
443 rb_link_node(&key
->c_node
, parent
, p
);
444 rb_insert_color(&key
->c_node
, &b
->rb_head
);
446 /* tally hash chain length stats */
447 if (entries
> nn
->longest_chain
) {
448 nn
->longest_chain
= entries
;
449 nn
->longest_chain_cachesize
= atomic_read(&nn
->num_drc_entries
);
450 } else if (entries
== nn
->longest_chain
) {
451 /* prefer to keep the smallest cachesize possible here */
452 nn
->longest_chain_cachesize
= min_t(unsigned int,
453 nn
->longest_chain_cachesize
,
454 atomic_read(&nn
->num_drc_entries
));
462 * nfsd_cache_lookup - Find an entry in the duplicate reply cache
463 * @rqstp: Incoming Call to find
464 * @start: starting byte in @rqstp->rq_arg of the NFS Call header
465 * @len: size of the NFS Call header, in bytes
466 * @cacherep: OUT: DRC entry for this request
468 * Try to find an entry matching the current call in the cache. When none
469 * is found, we try to grab the oldest expired entry off the LRU list. If
470 * a suitable one isn't there, then drop the cache_lock and allocate a
471 * new one, then search again in case one got inserted while this thread
472 * didn't hold the lock.
475 * %RC_DOIT: Process the request normally
476 * %RC_REPLY: Reply from cache
477 * %RC_DROPIT: Do not process the request further
479 int nfsd_cache_lookup(struct svc_rqst
*rqstp
, unsigned int start
,
480 unsigned int len
, struct nfsd_cacherep
**cacherep
)
482 struct nfsd_net
*nn
= net_generic(SVC_NET(rqstp
), nfsd_net_id
);
483 struct nfsd_cacherep
*rp
, *found
;
485 struct nfsd_drc_bucket
*b
;
486 int type
= rqstp
->rq_cachetype
;
490 if (type
== RC_NOCACHE
) {
491 nfsd_stats_rc_nocache_inc(nn
);
495 csum
= nfsd_cache_csum(&rqstp
->rq_arg
, start
, len
);
498 * Since the common case is a cache miss followed by an insert,
499 * preallocate an entry.
501 rp
= nfsd_cacherep_alloc(rqstp
, csum
, nn
);
505 b
= nfsd_cache_bucket_find(rqstp
->rq_xid
, nn
);
506 spin_lock(&b
->cache_lock
);
507 found
= nfsd_cache_insert(b
, rp
, nn
);
511 rp
->c_state
= RC_INPROG
;
512 nfsd_prune_bucket_locked(nn
, b
, 3, &dispose
);
513 spin_unlock(&b
->cache_lock
);
515 nfsd_cacherep_dispose(&dispose
);
517 nfsd_stats_rc_misses_inc(nn
);
518 atomic_inc(&nn
->num_drc_entries
);
519 nfsd_stats_drc_mem_usage_add(nn
, sizeof(*rp
));
523 /* We found a matching entry which is either in progress or done. */
524 nfsd_reply_cache_free_locked(NULL
, rp
, nn
);
525 nfsd_stats_rc_hits_inc(nn
);
529 /* Request being processed */
530 if (rp
->c_state
== RC_INPROG
)
533 /* From the hall of fame of impractical attacks:
534 * Is this a user who tries to snoop on the cache? */
536 if (!test_bit(RQ_SECURE
, &rqstp
->rq_flags
) && rp
->c_secure
)
539 /* Compose RPC reply header */
540 switch (rp
->c_type
) {
544 xdr_stream_encode_be32(&rqstp
->rq_res_stream
, rp
->c_replstat
);
548 if (!nfsd_cache_append(rqstp
, &rp
->c_replvec
))
549 goto out_unlock
; /* should not happen */
553 WARN_ONCE(1, "nfsd: bad repcache type %d\n", rp
->c_type
);
557 trace_nfsd_drc_found(nn
, rqstp
, rtn
);
559 spin_unlock(&b
->cache_lock
);
565 * nfsd_cache_update - Update an entry in the duplicate reply cache.
566 * @rqstp: svc_rqst with a finished Reply
567 * @rp: IN: DRC entry for this request
568 * @cachetype: which cache to update
569 * @statp: pointer to Reply's NFS status code, or NULL
571 * This is called from nfsd_dispatch when the procedure has been
572 * executed and the complete reply is in rqstp->rq_res.
574 * We're copying around data here rather than swapping buffers because
575 * the toplevel loop requires max-sized buffers, which would be a waste
576 * of memory for a cache with a max reply size of 100 bytes (diropokres).
578 * If we should start to use different types of cache entries tailored
579 * specifically for attrstat and fh's, we may save even more space.
581 * Also note that a cachetype of RC_NOCACHE can legally be passed when
582 * nfsd failed to encode a reply that otherwise would have been cached.
583 * In this case, nfsd_cache_update is called with statp == NULL.
585 void nfsd_cache_update(struct svc_rqst
*rqstp
, struct nfsd_cacherep
*rp
,
586 int cachetype
, __be32
*statp
)
588 struct nfsd_net
*nn
= net_generic(SVC_NET(rqstp
), nfsd_net_id
);
589 struct kvec
*resv
= &rqstp
->rq_res
.head
[0], *cachv
;
590 struct nfsd_drc_bucket
*b
;
597 b
= nfsd_cache_bucket_find(rp
->c_key
.k_xid
, nn
);
599 len
= resv
->iov_len
- ((char*)statp
- (char*)resv
->iov_base
);
602 /* Don't cache excessive amounts of data and XDR failures */
603 if (!statp
|| len
> (256 >> 2)) {
604 nfsd_reply_cache_free(b
, rp
, nn
);
611 printk("nfsd: RC_REPLSTAT/reply len %d!\n",len
);
612 rp
->c_replstat
= *statp
;
615 cachv
= &rp
->c_replvec
;
617 cachv
->iov_base
= kmalloc(bufsize
, GFP_KERNEL
);
618 if (!cachv
->iov_base
) {
619 nfsd_reply_cache_free(b
, rp
, nn
);
622 cachv
->iov_len
= bufsize
;
623 memcpy(cachv
->iov_base
, statp
, bufsize
);
626 nfsd_reply_cache_free(b
, rp
, nn
);
629 spin_lock(&b
->cache_lock
);
630 nfsd_stats_drc_mem_usage_add(nn
, bufsize
);
632 rp
->c_secure
= test_bit(RQ_SECURE
, &rqstp
->rq_flags
);
633 rp
->c_type
= cachetype
;
634 rp
->c_state
= RC_DONE
;
635 spin_unlock(&b
->cache_lock
);
640 nfsd_cache_append(struct svc_rqst
*rqstp
, struct kvec
*data
)
644 p
= xdr_reserve_space(&rqstp
->rq_res_stream
, data
->iov_len
);
647 memcpy(p
, data
->iov_base
, data
->iov_len
);
648 xdr_commit_encode(&rqstp
->rq_res_stream
);
653 * Note that fields may be added, removed or reordered in the future. Programs
654 * scraping this file for info should test the labels to ensure they're
655 * getting the correct field.
657 int nfsd_reply_cache_stats_show(struct seq_file
*m
, void *v
)
659 struct nfsd_net
*nn
= net_generic(file_inode(m
->file
)->i_sb
->s_fs_info
,
662 seq_printf(m
, "max entries: %u\n", nn
->max_drc_entries
);
663 seq_printf(m
, "num entries: %u\n",
664 atomic_read(&nn
->num_drc_entries
));
665 seq_printf(m
, "hash buckets: %u\n", 1 << nn
->maskbits
);
666 seq_printf(m
, "mem usage: %lld\n",
667 percpu_counter_sum_positive(&nn
->counter
[NFSD_STATS_DRC_MEM_USAGE
]));
668 seq_printf(m
, "cache hits: %lld\n",
669 percpu_counter_sum_positive(&nn
->counter
[NFSD_STATS_RC_HITS
]));
670 seq_printf(m
, "cache misses: %lld\n",
671 percpu_counter_sum_positive(&nn
->counter
[NFSD_STATS_RC_MISSES
]));
672 seq_printf(m
, "not cached: %lld\n",
673 percpu_counter_sum_positive(&nn
->counter
[NFSD_STATS_RC_NOCACHE
]));
674 seq_printf(m
, "payload misses: %lld\n",
675 percpu_counter_sum_positive(&nn
->counter
[NFSD_STATS_PAYLOAD_MISSES
]));
676 seq_printf(m
, "longest chain len: %u\n", nn
->longest_chain
);
677 seq_printf(m
, "cachesize at longest: %u\n", nn
->longest_chain_cachesize
);