1 // SPDX-License-Identifier: GPL-2.0-or-later
5 * File open, close, extend, truncate
7 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 #include <linux/capability.h>
12 #include <linux/types.h>
13 #include <linux/slab.h>
14 #include <linux/highmem.h>
15 #include <linux/pagemap.h>
16 #include <linux/uio.h>
17 #include <linux/sched.h>
18 #include <linux/splice.h>
19 #include <linux/mount.h>
20 #include <linux/writeback.h>
21 #include <linux/falloc.h>
22 #include <linux/quotaops.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
26 #include <cluster/masklog.h>
34 #include "extent_map.h"
47 #include "refcounttree.h"
48 #include "ocfs2_trace.h"
50 #include "buffer_head_io.h"
52 static int ocfs2_init_file_private(struct inode
*inode
, struct file
*file
)
54 struct ocfs2_file_private
*fp
;
56 fp
= kzalloc(sizeof(struct ocfs2_file_private
), GFP_KERNEL
);
61 mutex_init(&fp
->fp_mutex
);
62 ocfs2_file_lock_res_init(&fp
->fp_flock
, fp
);
63 file
->private_data
= fp
;
68 static void ocfs2_free_file_private(struct inode
*inode
, struct file
*file
)
70 struct ocfs2_file_private
*fp
= file
->private_data
;
71 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
74 ocfs2_simple_drop_lockres(osb
, &fp
->fp_flock
);
75 ocfs2_lock_res_free(&fp
->fp_flock
);
77 file
->private_data
= NULL
;
81 static int ocfs2_file_open(struct inode
*inode
, struct file
*file
)
84 int mode
= file
->f_flags
;
85 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
87 trace_ocfs2_file_open(inode
, file
, file
->f_path
.dentry
,
88 (unsigned long long)oi
->ip_blkno
,
89 file
->f_path
.dentry
->d_name
.len
,
90 file
->f_path
.dentry
->d_name
.name
, mode
);
92 if (file
->f_mode
& FMODE_WRITE
) {
93 status
= dquot_initialize(inode
);
98 spin_lock(&oi
->ip_lock
);
100 /* Check that the inode hasn't been wiped from disk by another
101 * node. If it hasn't then we're safe as long as we hold the
102 * spin lock until our increment of open count. */
103 if (oi
->ip_flags
& OCFS2_INODE_DELETED
) {
104 spin_unlock(&oi
->ip_lock
);
111 oi
->ip_flags
|= OCFS2_INODE_OPEN_DIRECT
;
114 spin_unlock(&oi
->ip_lock
);
116 status
= ocfs2_init_file_private(inode
, file
);
119 * We want to set open count back if we're failing the
122 spin_lock(&oi
->ip_lock
);
124 spin_unlock(&oi
->ip_lock
);
127 file
->f_mode
|= FMODE_NOWAIT
;
133 static int ocfs2_file_release(struct inode
*inode
, struct file
*file
)
135 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
137 spin_lock(&oi
->ip_lock
);
138 if (!--oi
->ip_open_count
)
139 oi
->ip_flags
&= ~OCFS2_INODE_OPEN_DIRECT
;
141 trace_ocfs2_file_release(inode
, file
, file
->f_path
.dentry
,
143 file
->f_path
.dentry
->d_name
.len
,
144 file
->f_path
.dentry
->d_name
.name
,
146 spin_unlock(&oi
->ip_lock
);
148 ocfs2_free_file_private(inode
, file
);
153 static int ocfs2_dir_open(struct inode
*inode
, struct file
*file
)
155 return ocfs2_init_file_private(inode
, file
);
158 static int ocfs2_dir_release(struct inode
*inode
, struct file
*file
)
160 ocfs2_free_file_private(inode
, file
);
164 static int ocfs2_sync_file(struct file
*file
, loff_t start
, loff_t end
,
168 struct inode
*inode
= file
->f_mapping
->host
;
169 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
170 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
171 journal_t
*journal
= osb
->journal
->j_journal
;
174 bool needs_barrier
= false;
176 trace_ocfs2_sync_file(inode
, file
, file
->f_path
.dentry
,
178 file
->f_path
.dentry
->d_name
.len
,
179 file
->f_path
.dentry
->d_name
.name
,
180 (unsigned long long)datasync
);
182 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
185 err
= file_write_and_wait_range(file
, start
, end
);
189 commit_tid
= datasync
? oi
->i_datasync_tid
: oi
->i_sync_tid
;
190 if (journal
->j_flags
& JBD2_BARRIER
&&
191 !jbd2_trans_will_send_data_barrier(journal
, commit_tid
))
192 needs_barrier
= true;
193 err
= jbd2_complete_transaction(journal
, commit_tid
);
195 ret
= blkdev_issue_flush(inode
->i_sb
->s_bdev
);
203 return (err
< 0) ? -EIO
: 0;
206 int ocfs2_should_update_atime(struct inode
*inode
,
207 struct vfsmount
*vfsmnt
)
209 struct timespec64 now
;
210 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
212 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
215 if ((inode
->i_flags
& S_NOATIME
) ||
216 ((inode
->i_sb
->s_flags
& SB_NODIRATIME
) && S_ISDIR(inode
->i_mode
)))
220 * We can be called with no vfsmnt structure - NFSD will
223 * Note that our action here is different than touch_atime() -
224 * if we can't tell whether this is a noatime mount, then we
225 * don't know whether to trust the value of s_atime_quantum.
230 if ((vfsmnt
->mnt_flags
& MNT_NOATIME
) ||
231 ((vfsmnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
)))
234 if (vfsmnt
->mnt_flags
& MNT_RELATIME
) {
235 struct timespec64 ctime
= inode_get_ctime(inode
);
236 struct timespec64 atime
= inode_get_atime(inode
);
237 struct timespec64 mtime
= inode_get_mtime(inode
);
239 if ((timespec64_compare(&atime
, &mtime
) <= 0) ||
240 (timespec64_compare(&atime
, &ctime
) <= 0))
246 now
= current_time(inode
);
247 if ((now
.tv_sec
- inode_get_atime_sec(inode
) <= osb
->s_atime_quantum
))
253 int ocfs2_update_inode_atime(struct inode
*inode
,
254 struct buffer_head
*bh
)
257 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
259 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*) bh
->b_data
;
261 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
262 if (IS_ERR(handle
)) {
263 ret
= PTR_ERR(handle
);
268 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), bh
,
269 OCFS2_JOURNAL_ACCESS_WRITE
);
276 * Don't use ocfs2_mark_inode_dirty() here as we don't always
277 * have i_rwsem to guard against concurrent changes to other
280 inode_set_atime_to_ts(inode
, current_time(inode
));
281 di
->i_atime
= cpu_to_le64(inode_get_atime_sec(inode
));
282 di
->i_atime_nsec
= cpu_to_le32(inode_get_atime_nsec(inode
));
283 ocfs2_update_inode_fsync_trans(handle
, inode
, 0);
284 ocfs2_journal_dirty(handle
, bh
);
287 ocfs2_commit_trans(osb
, handle
);
292 int ocfs2_set_inode_size(handle_t
*handle
,
294 struct buffer_head
*fe_bh
,
299 i_size_write(inode
, new_i_size
);
300 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
301 inode_set_mtime_to_ts(inode
, inode_set_ctime_current(inode
));
303 status
= ocfs2_mark_inode_dirty(handle
, inode
, fe_bh
);
313 int ocfs2_simple_size_update(struct inode
*inode
,
314 struct buffer_head
*di_bh
,
318 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
319 handle_t
*handle
= NULL
;
321 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
322 if (IS_ERR(handle
)) {
323 ret
= PTR_ERR(handle
);
328 ret
= ocfs2_set_inode_size(handle
, inode
, di_bh
,
333 ocfs2_update_inode_fsync_trans(handle
, inode
, 0);
334 ocfs2_commit_trans(osb
, handle
);
339 static int ocfs2_cow_file_pos(struct inode
*inode
,
340 struct buffer_head
*fe_bh
,
344 u32 phys
, cpos
= offset
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
345 unsigned int num_clusters
= 0;
346 unsigned int ext_flags
= 0;
349 * If the new offset is aligned to the range of the cluster, there is
350 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
353 if ((offset
& (OCFS2_SB(inode
->i_sb
)->s_clustersize
- 1)) == 0)
356 status
= ocfs2_get_clusters(inode
, cpos
, &phys
,
357 &num_clusters
, &ext_flags
);
363 if (!(ext_flags
& OCFS2_EXT_REFCOUNTED
))
366 return ocfs2_refcount_cow(inode
, fe_bh
, cpos
, 1, cpos
+1);
372 static int ocfs2_orphan_for_truncate(struct ocfs2_super
*osb
,
374 struct buffer_head
*fe_bh
,
379 struct ocfs2_dinode
*di
;
383 * We need to CoW the cluster contains the offset if it is reflinked
384 * since we will call ocfs2_zero_range_for_truncate later which will
385 * write "0" from offset to the end of the cluster.
387 status
= ocfs2_cow_file_pos(inode
, fe_bh
, new_i_size
);
393 /* TODO: This needs to actually orphan the inode in this
396 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
397 if (IS_ERR(handle
)) {
398 status
= PTR_ERR(handle
);
403 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), fe_bh
,
404 OCFS2_JOURNAL_ACCESS_WRITE
);
411 * Do this before setting i_size.
413 cluster_bytes
= ocfs2_align_bytes_to_clusters(inode
->i_sb
, new_i_size
);
414 status
= ocfs2_zero_range_for_truncate(inode
, handle
, new_i_size
,
421 i_size_write(inode
, new_i_size
);
422 inode_set_mtime_to_ts(inode
, inode_set_ctime_current(inode
));
424 di
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
425 di
->i_size
= cpu_to_le64(new_i_size
);
426 di
->i_ctime
= di
->i_mtime
= cpu_to_le64(inode_get_ctime_sec(inode
));
427 di
->i_ctime_nsec
= di
->i_mtime_nsec
= cpu_to_le32(inode_get_ctime_nsec(inode
));
428 ocfs2_update_inode_fsync_trans(handle
, inode
, 0);
430 ocfs2_journal_dirty(handle
, fe_bh
);
433 ocfs2_commit_trans(osb
, handle
);
438 int ocfs2_truncate_file(struct inode
*inode
,
439 struct buffer_head
*di_bh
,
443 struct ocfs2_dinode
*fe
= NULL
;
444 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
446 /* We trust di_bh because it comes from ocfs2_inode_lock(), which
447 * already validated it */
448 fe
= (struct ocfs2_dinode
*) di_bh
->b_data
;
450 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
451 (unsigned long long)le64_to_cpu(fe
->i_size
),
452 (unsigned long long)new_i_size
);
454 mlog_bug_on_msg(le64_to_cpu(fe
->i_size
) != i_size_read(inode
),
455 "Inode %llu, inode i_size = %lld != di "
456 "i_size = %llu, i_flags = 0x%x\n",
457 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
459 (unsigned long long)le64_to_cpu(fe
->i_size
),
460 le32_to_cpu(fe
->i_flags
));
462 if (new_i_size
> le64_to_cpu(fe
->i_size
)) {
463 trace_ocfs2_truncate_file_error(
464 (unsigned long long)le64_to_cpu(fe
->i_size
),
465 (unsigned long long)new_i_size
);
471 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
473 ocfs2_resv_discard(&osb
->osb_la_resmap
,
474 &OCFS2_I(inode
)->ip_la_data_resv
);
477 * The inode lock forced other nodes to sync and drop their
478 * pages, which (correctly) happens even if we have a truncate
479 * without allocation change - ocfs2 cluster sizes can be much
480 * greater than page size, so we have to truncate them
484 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
485 unmap_mapping_range(inode
->i_mapping
,
486 new_i_size
+ PAGE_SIZE
- 1, 0, 1);
487 truncate_inode_pages(inode
->i_mapping
, new_i_size
);
488 status
= ocfs2_truncate_inline(inode
, di_bh
, new_i_size
,
489 i_size_read(inode
), 1);
493 goto bail_unlock_sem
;
496 /* alright, we're going to need to do a full blown alloc size
497 * change. Orphan the inode so that recovery can complete the
498 * truncate if necessary. This does the task of marking
500 status
= ocfs2_orphan_for_truncate(osb
, inode
, di_bh
, new_i_size
);
503 goto bail_unlock_sem
;
506 unmap_mapping_range(inode
->i_mapping
, new_i_size
+ PAGE_SIZE
- 1, 0, 1);
507 truncate_inode_pages(inode
->i_mapping
, new_i_size
);
509 status
= ocfs2_commit_truncate(osb
, inode
, di_bh
);
512 goto bail_unlock_sem
;
515 /* TODO: orphan dir cleanup here. */
517 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
520 if (!status
&& OCFS2_I(inode
)->ip_clusters
== 0)
521 status
= ocfs2_try_remove_refcount_tree(inode
, di_bh
);
527 * extend file allocation only here.
528 * we'll update all the disk stuff, and oip->alloc_size
530 * expect stuff to be locked, a transaction started and enough data /
531 * metadata reservations in the contexts.
533 * Will return -EAGAIN, and a reason if a restart is needed.
534 * If passed in, *reason will always be set, even in error.
536 int ocfs2_add_inode_data(struct ocfs2_super
*osb
,
541 struct buffer_head
*fe_bh
,
543 struct ocfs2_alloc_context
*data_ac
,
544 struct ocfs2_alloc_context
*meta_ac
,
545 enum ocfs2_alloc_restarted
*reason_ret
)
547 struct ocfs2_extent_tree et
;
549 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), fe_bh
);
550 return ocfs2_add_clusters_in_btree(handle
, &et
, logical_offset
,
551 clusters_to_add
, mark_unwritten
,
552 data_ac
, meta_ac
, reason_ret
);
555 static int ocfs2_extend_allocation(struct inode
*inode
, u32 logical_start
,
556 u32 clusters_to_add
, int mark_unwritten
)
559 int restart_func
= 0;
562 struct buffer_head
*bh
= NULL
;
563 struct ocfs2_dinode
*fe
= NULL
;
564 handle_t
*handle
= NULL
;
565 struct ocfs2_alloc_context
*data_ac
= NULL
;
566 struct ocfs2_alloc_context
*meta_ac
= NULL
;
567 enum ocfs2_alloc_restarted why
= RESTART_NONE
;
568 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
569 struct ocfs2_extent_tree et
;
573 * Unwritten extent only exists for file systems which
576 BUG_ON(mark_unwritten
&& !ocfs2_sparse_alloc(osb
));
578 status
= ocfs2_read_inode_block(inode
, &bh
);
583 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
586 BUG_ON(le32_to_cpu(fe
->i_clusters
) != OCFS2_I(inode
)->ip_clusters
);
588 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), bh
);
589 status
= ocfs2_lock_allocators(inode
, &et
, clusters_to_add
, 0,
596 credits
= ocfs2_calc_extend_credits(osb
->sb
, &fe
->id2
.i_list
);
597 handle
= ocfs2_start_trans(osb
, credits
);
598 if (IS_ERR(handle
)) {
599 status
= PTR_ERR(handle
);
605 restarted_transaction
:
606 trace_ocfs2_extend_allocation(
607 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
608 (unsigned long long)i_size_read(inode
),
609 le32_to_cpu(fe
->i_clusters
), clusters_to_add
,
612 status
= dquot_alloc_space_nodirty(inode
,
613 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_add
));
618 /* reserve a write to the file entry early on - that we if we
619 * run out of credits in the allocation path, we can still
621 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), bh
,
622 OCFS2_JOURNAL_ACCESS_WRITE
);
628 prev_clusters
= OCFS2_I(inode
)->ip_clusters
;
630 status
= ocfs2_add_inode_data(osb
,
640 if ((status
< 0) && (status
!= -EAGAIN
)) {
641 if (status
!= -ENOSPC
)
645 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
646 ocfs2_journal_dirty(handle
, bh
);
648 spin_lock(&OCFS2_I(inode
)->ip_lock
);
649 clusters_to_add
-= (OCFS2_I(inode
)->ip_clusters
- prev_clusters
);
650 spin_unlock(&OCFS2_I(inode
)->ip_lock
);
651 /* Release unused quota reservation */
652 dquot_free_space(inode
,
653 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_add
));
656 if (why
!= RESTART_NONE
&& clusters_to_add
) {
657 if (why
== RESTART_META
) {
661 BUG_ON(why
!= RESTART_TRANS
);
663 status
= ocfs2_allocate_extend_trans(handle
, 1);
665 /* handle still has to be committed at
671 goto restarted_transaction
;
675 trace_ocfs2_extend_allocation_end(OCFS2_I(inode
)->ip_blkno
,
676 le32_to_cpu(fe
->i_clusters
),
677 (unsigned long long)le64_to_cpu(fe
->i_size
),
678 OCFS2_I(inode
)->ip_clusters
,
679 (unsigned long long)i_size_read(inode
));
682 if (status
< 0 && did_quota
)
683 dquot_free_space(inode
,
684 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_add
));
686 ocfs2_commit_trans(osb
, handle
);
690 ocfs2_free_alloc_context(data_ac
);
694 ocfs2_free_alloc_context(meta_ac
);
697 if ((!status
) && restart_func
) {
708 * While a write will already be ordering the data, a truncate will not.
709 * Thus, we need to explicitly order the zeroed pages.
711 static handle_t
*ocfs2_zero_start_ordered_transaction(struct inode
*inode
,
712 struct buffer_head
*di_bh
,
716 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
717 handle_t
*handle
= NULL
;
720 if (!ocfs2_should_order_data(inode
))
723 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
724 if (IS_ERR(handle
)) {
730 ret
= ocfs2_jbd2_inode_add_write(handle
, inode
, start_byte
, length
);
736 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), di_bh
,
737 OCFS2_JOURNAL_ACCESS_WRITE
);
740 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
745 ocfs2_commit_trans(osb
, handle
);
746 handle
= ERR_PTR(ret
);
751 /* Some parts of this taken from generic_cont_expand, which turned out
752 * to be too fragile to do exactly what we need without us having to
753 * worry about recursive locking in ->write_begin() and ->write_end(). */
754 static int ocfs2_write_zero_page(struct inode
*inode
, u64 abs_from
,
755 u64 abs_to
, struct buffer_head
*di_bh
)
757 struct address_space
*mapping
= inode
->i_mapping
;
759 unsigned long index
= abs_from
>> PAGE_SHIFT
;
762 unsigned zero_from
, zero_to
, block_start
, block_end
;
763 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
765 BUG_ON(abs_from
>= abs_to
);
766 BUG_ON(abs_to
> (((u64
)index
+ 1) << PAGE_SHIFT
));
767 BUG_ON(abs_from
& (inode
->i_blkbits
- 1));
769 handle
= ocfs2_zero_start_ordered_transaction(inode
, di_bh
,
772 if (IS_ERR(handle
)) {
773 ret
= PTR_ERR(handle
);
777 folio
= __filemap_get_folio(mapping
, index
,
778 FGP_LOCK
| FGP_ACCESSED
| FGP_CREAT
, GFP_NOFS
);
780 ret
= PTR_ERR(folio
);
782 goto out_commit_trans
;
785 /* Get the offsets within the page that we want to zero */
786 zero_from
= abs_from
& (PAGE_SIZE
- 1);
787 zero_to
= abs_to
& (PAGE_SIZE
- 1);
791 trace_ocfs2_write_zero_page(
792 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
793 (unsigned long long)abs_from
,
794 (unsigned long long)abs_to
,
795 index
, zero_from
, zero_to
);
797 /* We know that zero_from is block aligned */
798 for (block_start
= zero_from
; block_start
< zero_to
;
799 block_start
= block_end
) {
800 block_end
= block_start
+ i_blocksize(inode
);
803 * block_start is block-aligned. Bump it by one to force
804 * __block_write_begin and block_commit_write to zero the
807 ret
= __block_write_begin(folio
, block_start
+ 1, 0,
815 /* must not update i_size! */
816 block_commit_write(&folio
->page
, block_start
+ 1, block_start
+ 1);
820 * fs-writeback will release the dirty pages without page lock
821 * whose offset are over inode size, the release happens at
822 * block_write_full_folio().
824 i_size_write(inode
, abs_to
);
825 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
826 di
->i_size
= cpu_to_le64((u64
)i_size_read(inode
));
827 inode_set_mtime_to_ts(inode
, inode_set_ctime_current(inode
));
828 di
->i_mtime
= di
->i_ctime
= cpu_to_le64(inode_get_mtime_sec(inode
));
829 di
->i_ctime_nsec
= cpu_to_le32(inode_get_mtime_nsec(inode
));
830 di
->i_mtime_nsec
= di
->i_ctime_nsec
;
832 ocfs2_journal_dirty(handle
, di_bh
);
833 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
841 ocfs2_commit_trans(OCFS2_SB(inode
->i_sb
), handle
);
847 * Find the next range to zero. We do this in terms of bytes because
848 * that's what ocfs2_zero_extend() wants, and it is dealing with the
849 * pagecache. We may return multiple extents.
851 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
852 * needs to be zeroed. range_start and range_end return the next zeroing
853 * range. A subsequent call should pass the previous range_end as its
854 * zero_start. If range_end is 0, there's nothing to do.
856 * Unwritten extents are skipped over. Refcounted extents are CoWd.
858 static int ocfs2_zero_extend_get_range(struct inode
*inode
,
859 struct buffer_head
*di_bh
,
860 u64 zero_start
, u64 zero_end
,
861 u64
*range_start
, u64
*range_end
)
863 int rc
= 0, needs_cow
= 0;
864 u32 p_cpos
, zero_clusters
= 0;
866 zero_start
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
867 u32 last_cpos
= ocfs2_clusters_for_bytes(inode
->i_sb
, zero_end
);
868 unsigned int num_clusters
= 0;
869 unsigned int ext_flags
= 0;
871 while (zero_cpos
< last_cpos
) {
872 rc
= ocfs2_get_clusters(inode
, zero_cpos
, &p_cpos
,
873 &num_clusters
, &ext_flags
);
879 if (p_cpos
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
)) {
880 zero_clusters
= num_clusters
;
881 if (ext_flags
& OCFS2_EXT_REFCOUNTED
)
886 zero_cpos
+= num_clusters
;
888 if (!zero_clusters
) {
893 while ((zero_cpos
+ zero_clusters
) < last_cpos
) {
894 rc
= ocfs2_get_clusters(inode
, zero_cpos
+ zero_clusters
,
895 &p_cpos
, &num_clusters
,
902 if (!p_cpos
|| (ext_flags
& OCFS2_EXT_UNWRITTEN
))
904 if (ext_flags
& OCFS2_EXT_REFCOUNTED
)
906 zero_clusters
+= num_clusters
;
908 if ((zero_cpos
+ zero_clusters
) > last_cpos
)
909 zero_clusters
= last_cpos
- zero_cpos
;
912 rc
= ocfs2_refcount_cow(inode
, di_bh
, zero_cpos
,
913 zero_clusters
, UINT_MAX
);
920 *range_start
= ocfs2_clusters_to_bytes(inode
->i_sb
, zero_cpos
);
921 *range_end
= ocfs2_clusters_to_bytes(inode
->i_sb
,
922 zero_cpos
+ zero_clusters
);
929 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller
930 * has made sure that the entire range needs zeroing.
932 static int ocfs2_zero_extend_range(struct inode
*inode
, u64 range_start
,
933 u64 range_end
, struct buffer_head
*di_bh
)
937 u64 zero_pos
= range_start
;
939 trace_ocfs2_zero_extend_range(
940 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
941 (unsigned long long)range_start
,
942 (unsigned long long)range_end
);
943 BUG_ON(range_start
>= range_end
);
945 while (zero_pos
< range_end
) {
946 next_pos
= (zero_pos
& PAGE_MASK
) + PAGE_SIZE
;
947 if (next_pos
> range_end
)
948 next_pos
= range_end
;
949 rc
= ocfs2_write_zero_page(inode
, zero_pos
, next_pos
, di_bh
);
957 * Very large extends have the potential to lock up
958 * the cpu for extended periods of time.
966 int ocfs2_zero_extend(struct inode
*inode
, struct buffer_head
*di_bh
,
970 u64 zero_start
, range_start
= 0, range_end
= 0;
971 struct super_block
*sb
= inode
->i_sb
;
973 zero_start
= ocfs2_align_bytes_to_blocks(sb
, i_size_read(inode
));
974 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
975 (unsigned long long)zero_start
,
976 (unsigned long long)i_size_read(inode
));
977 while (zero_start
< zero_to_size
) {
978 ret
= ocfs2_zero_extend_get_range(inode
, di_bh
, zero_start
,
989 if (range_start
< zero_start
)
990 range_start
= zero_start
;
991 if (range_end
> zero_to_size
)
992 range_end
= zero_to_size
;
994 ret
= ocfs2_zero_extend_range(inode
, range_start
,
1000 zero_start
= range_end
;
1006 int ocfs2_extend_no_holes(struct inode
*inode
, struct buffer_head
*di_bh
,
1007 u64 new_i_size
, u64 zero_to
)
1010 u32 clusters_to_add
;
1011 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1014 * Only quota files call this without a bh, and they can't be
1017 BUG_ON(!di_bh
&& ocfs2_is_refcount_inode(inode
));
1018 BUG_ON(!di_bh
&& !(oi
->ip_flags
& OCFS2_INODE_SYSTEM_FILE
));
1020 clusters_to_add
= ocfs2_clusters_for_bytes(inode
->i_sb
, new_i_size
);
1021 if (clusters_to_add
< oi
->ip_clusters
)
1022 clusters_to_add
= 0;
1024 clusters_to_add
-= oi
->ip_clusters
;
1026 if (clusters_to_add
) {
1027 ret
= ocfs2_extend_allocation(inode
, oi
->ip_clusters
,
1028 clusters_to_add
, 0);
1036 * Call this even if we don't add any clusters to the tree. We
1037 * still need to zero the area between the old i_size and the
1040 ret
= ocfs2_zero_extend(inode
, di_bh
, zero_to
);
1048 static int ocfs2_extend_file(struct inode
*inode
,
1049 struct buffer_head
*di_bh
,
1053 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1057 /* setattr sometimes calls us like this. */
1058 if (new_i_size
== 0)
1061 if (i_size_read(inode
) == new_i_size
)
1063 BUG_ON(new_i_size
< i_size_read(inode
));
1066 * The alloc sem blocks people in read/write from reading our
1067 * allocation until we're done changing it. We depend on
1068 * i_rwsem to block other extend/truncate calls while we're
1069 * here. We even have to hold it for sparse files because there
1070 * might be some tail zeroing.
1072 down_write(&oi
->ip_alloc_sem
);
1074 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1076 * We can optimize small extends by keeping the inodes
1079 if (ocfs2_size_fits_inline_data(di_bh
, new_i_size
)) {
1080 up_write(&oi
->ip_alloc_sem
);
1081 goto out_update_size
;
1084 ret
= ocfs2_convert_inline_data_to_extents(inode
, di_bh
);
1086 up_write(&oi
->ip_alloc_sem
);
1092 if (ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
1093 ret
= ocfs2_zero_extend(inode
, di_bh
, new_i_size
);
1095 ret
= ocfs2_extend_no_holes(inode
, di_bh
, new_i_size
,
1098 up_write(&oi
->ip_alloc_sem
);
1106 ret
= ocfs2_simple_size_update(inode
, di_bh
, new_i_size
);
1114 int ocfs2_setattr(struct mnt_idmap
*idmap
, struct dentry
*dentry
,
1117 int status
= 0, size_change
;
1118 int inode_locked
= 0;
1119 struct inode
*inode
= d_inode(dentry
);
1120 struct super_block
*sb
= inode
->i_sb
;
1121 struct ocfs2_super
*osb
= OCFS2_SB(sb
);
1122 struct buffer_head
*bh
= NULL
;
1123 handle_t
*handle
= NULL
;
1124 struct dquot
*transfer_to
[MAXQUOTAS
] = { };
1127 struct ocfs2_lock_holder oh
;
1129 trace_ocfs2_setattr(inode
, dentry
,
1130 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1131 dentry
->d_name
.len
, dentry
->d_name
.name
,
1133 attr
->ia_valid
& ATTR_MODE
? attr
->ia_mode
: 0,
1134 attr
->ia_valid
& ATTR_UID
?
1135 from_kuid(&init_user_ns
, attr
->ia_uid
) : 0,
1136 attr
->ia_valid
& ATTR_GID
?
1137 from_kgid(&init_user_ns
, attr
->ia_gid
) : 0);
1139 /* ensuring we don't even attempt to truncate a symlink */
1140 if (S_ISLNK(inode
->i_mode
))
1141 attr
->ia_valid
&= ~ATTR_SIZE
;
1143 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1144 | ATTR_GID | ATTR_UID | ATTR_MODE)
1145 if (!(attr
->ia_valid
& OCFS2_VALID_ATTRS
))
1148 status
= setattr_prepare(&nop_mnt_idmap
, dentry
, attr
);
1152 if (is_quota_modification(&nop_mnt_idmap
, inode
, attr
)) {
1153 status
= dquot_initialize(inode
);
1157 size_change
= S_ISREG(inode
->i_mode
) && attr
->ia_valid
& ATTR_SIZE
;
1160 * Here we should wait dio to finish before inode lock
1161 * to avoid a deadlock between ocfs2_setattr() and
1162 * ocfs2_dio_end_io_write()
1164 inode_dio_wait(inode
);
1166 status
= ocfs2_rw_lock(inode
, 1);
1173 had_lock
= ocfs2_inode_lock_tracker(inode
, &bh
, 1, &oh
);
1176 goto bail_unlock_rw
;
1177 } else if (had_lock
) {
1179 * As far as we know, ocfs2_setattr() could only be the first
1180 * VFS entry point in the call chain of recursive cluster
1188 * ocfs2_iop_get_acl()
1190 * But, we're not 100% sure if it's always true, because the
1191 * ordering of the VFS entry points in the call chain is out
1192 * of our control. So, we'd better dump the stack here to
1193 * catch the other cases of recursive locking.
1195 mlog(ML_ERROR
, "Another case of recursive locking:\n");
1201 status
= inode_newsize_ok(inode
, attr
->ia_size
);
1205 if (i_size_read(inode
) >= attr
->ia_size
) {
1206 if (ocfs2_should_order_data(inode
)) {
1207 status
= ocfs2_begin_ordered_truncate(inode
,
1212 status
= ocfs2_truncate_file(inode
, bh
, attr
->ia_size
);
1214 status
= ocfs2_extend_file(inode
, bh
, attr
->ia_size
);
1216 if (status
!= -ENOSPC
)
1223 if ((attr
->ia_valid
& ATTR_UID
&& !uid_eq(attr
->ia_uid
, inode
->i_uid
)) ||
1224 (attr
->ia_valid
& ATTR_GID
&& !gid_eq(attr
->ia_gid
, inode
->i_gid
))) {
1226 * Gather pointers to quota structures so that allocation /
1227 * freeing of quota structures happens here and not inside
1228 * dquot_transfer() where we have problems with lock ordering
1230 if (attr
->ia_valid
& ATTR_UID
&& !uid_eq(attr
->ia_uid
, inode
->i_uid
)
1231 && OCFS2_HAS_RO_COMPAT_FEATURE(sb
,
1232 OCFS2_FEATURE_RO_COMPAT_USRQUOTA
)) {
1233 transfer_to
[USRQUOTA
] = dqget(sb
, make_kqid_uid(attr
->ia_uid
));
1234 if (IS_ERR(transfer_to
[USRQUOTA
])) {
1235 status
= PTR_ERR(transfer_to
[USRQUOTA
]);
1236 transfer_to
[USRQUOTA
] = NULL
;
1240 if (attr
->ia_valid
& ATTR_GID
&& !gid_eq(attr
->ia_gid
, inode
->i_gid
)
1241 && OCFS2_HAS_RO_COMPAT_FEATURE(sb
,
1242 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA
)) {
1243 transfer_to
[GRPQUOTA
] = dqget(sb
, make_kqid_gid(attr
->ia_gid
));
1244 if (IS_ERR(transfer_to
[GRPQUOTA
])) {
1245 status
= PTR_ERR(transfer_to
[GRPQUOTA
]);
1246 transfer_to
[GRPQUOTA
] = NULL
;
1250 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1251 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
+
1252 2 * ocfs2_quota_trans_credits(sb
));
1253 if (IS_ERR(handle
)) {
1254 status
= PTR_ERR(handle
);
1256 goto bail_unlock_alloc
;
1258 status
= __dquot_transfer(inode
, transfer_to
);
1262 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1263 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1264 if (IS_ERR(handle
)) {
1265 status
= PTR_ERR(handle
);
1267 goto bail_unlock_alloc
;
1271 setattr_copy(&nop_mnt_idmap
, inode
, attr
);
1272 mark_inode_dirty(inode
);
1274 status
= ocfs2_mark_inode_dirty(handle
, inode
, bh
);
1279 ocfs2_commit_trans(osb
, handle
);
1281 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1283 if (status
&& inode_locked
) {
1284 ocfs2_inode_unlock_tracker(inode
, 1, &oh
, had_lock
);
1289 ocfs2_rw_unlock(inode
, 1);
1292 /* Release quota pointers in case we acquired them */
1293 for (qtype
= 0; qtype
< OCFS2_MAXQUOTAS
; qtype
++)
1294 dqput(transfer_to
[qtype
]);
1296 if (!status
&& attr
->ia_valid
& ATTR_MODE
) {
1297 status
= ocfs2_acl_chmod(inode
, bh
);
1302 ocfs2_inode_unlock_tracker(inode
, 1, &oh
, had_lock
);
1308 int ocfs2_getattr(struct mnt_idmap
*idmap
, const struct path
*path
,
1309 struct kstat
*stat
, u32 request_mask
, unsigned int flags
)
1311 struct inode
*inode
= d_inode(path
->dentry
);
1312 struct super_block
*sb
= path
->dentry
->d_sb
;
1313 struct ocfs2_super
*osb
= sb
->s_fs_info
;
1316 err
= ocfs2_inode_revalidate(path
->dentry
);
1323 generic_fillattr(&nop_mnt_idmap
, request_mask
, inode
, stat
);
1325 * If there is inline data in the inode, the inode will normally not
1326 * have data blocks allocated (it may have an external xattr block).
1327 * Report at least one sector for such files, so tools like tar, rsync,
1328 * others don't incorrectly think the file is completely sparse.
1330 if (unlikely(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
1331 stat
->blocks
+= (stat
->size
+ 511)>>9;
1333 /* We set the blksize from the cluster size for performance */
1334 stat
->blksize
= osb
->s_clustersize
;
1340 int ocfs2_permission(struct mnt_idmap
*idmap
, struct inode
*inode
,
1344 struct ocfs2_lock_holder oh
;
1346 if (mask
& MAY_NOT_BLOCK
)
1349 had_lock
= ocfs2_inode_lock_tracker(inode
, NULL
, 0, &oh
);
1353 } else if (had_lock
) {
1354 /* See comments in ocfs2_setattr() for details.
1355 * The call chain of this case could be:
1358 * inode_permission()
1359 * ocfs2_permission()
1360 * ocfs2_iop_get_acl()
1362 mlog(ML_ERROR
, "Another case of recursive locking:\n");
1366 ret
= generic_permission(&nop_mnt_idmap
, inode
, mask
);
1368 ocfs2_inode_unlock_tracker(inode
, 0, &oh
, had_lock
);
1373 static int __ocfs2_write_remove_suid(struct inode
*inode
,
1374 struct buffer_head
*bh
)
1378 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1379 struct ocfs2_dinode
*di
;
1381 trace_ocfs2_write_remove_suid(
1382 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1385 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1386 if (IS_ERR(handle
)) {
1387 ret
= PTR_ERR(handle
);
1392 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), bh
,
1393 OCFS2_JOURNAL_ACCESS_WRITE
);
1399 inode
->i_mode
&= ~S_ISUID
;
1400 if ((inode
->i_mode
& S_ISGID
) && (inode
->i_mode
& S_IXGRP
))
1401 inode
->i_mode
&= ~S_ISGID
;
1403 di
= (struct ocfs2_dinode
*) bh
->b_data
;
1404 di
->i_mode
= cpu_to_le16(inode
->i_mode
);
1405 ocfs2_update_inode_fsync_trans(handle
, inode
, 0);
1407 ocfs2_journal_dirty(handle
, bh
);
1410 ocfs2_commit_trans(osb
, handle
);
1415 static int ocfs2_write_remove_suid(struct inode
*inode
)
1418 struct buffer_head
*bh
= NULL
;
1420 ret
= ocfs2_read_inode_block(inode
, &bh
);
1426 ret
= __ocfs2_write_remove_suid(inode
, bh
);
1433 * Allocate enough extents to cover the region starting at byte offset
1434 * start for len bytes. Existing extents are skipped, any extents
1435 * added are marked as "unwritten".
1437 static int ocfs2_allocate_unwritten_extents(struct inode
*inode
,
1441 u32 cpos
, phys_cpos
, clusters
, alloc_size
;
1442 u64 end
= start
+ len
;
1443 struct buffer_head
*di_bh
= NULL
;
1445 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1446 ret
= ocfs2_read_inode_block(inode
, &di_bh
);
1453 * Nothing to do if the requested reservation range
1454 * fits within the inode.
1456 if (ocfs2_size_fits_inline_data(di_bh
, end
))
1459 ret
= ocfs2_convert_inline_data_to_extents(inode
, di_bh
);
1467 * We consider both start and len to be inclusive.
1469 cpos
= start
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
1470 clusters
= ocfs2_clusters_for_bytes(inode
->i_sb
, start
+ len
);
1474 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
,
1482 * Hole or existing extent len can be arbitrary, so
1483 * cap it to our own allocation request.
1485 if (alloc_size
> clusters
)
1486 alloc_size
= clusters
;
1490 * We already have an allocation at this
1491 * region so we can safely skip it.
1496 ret
= ocfs2_extend_allocation(inode
, cpos
, alloc_size
, 1);
1505 clusters
-= alloc_size
;
1516 * Truncate a byte range, avoiding pages within partial clusters. This
1517 * preserves those pages for the zeroing code to write to.
1519 static void ocfs2_truncate_cluster_pages(struct inode
*inode
, u64 byte_start
,
1522 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1524 struct address_space
*mapping
= inode
->i_mapping
;
1526 start
= (loff_t
)ocfs2_align_bytes_to_clusters(inode
->i_sb
, byte_start
);
1527 end
= byte_start
+ byte_len
;
1528 end
= end
& ~(osb
->s_clustersize
- 1);
1531 unmap_mapping_range(mapping
, start
, end
- start
, 0);
1532 truncate_inode_pages_range(mapping
, start
, end
- 1);
1537 * zero out partial blocks of one cluster.
1539 * start: file offset where zero starts, will be made upper block aligned.
1540 * len: it will be trimmed to the end of current cluster if "start + len"
1541 * is bigger than it.
1543 static int ocfs2_zeroout_partial_cluster(struct inode
*inode
,
1547 u64 start_block
, end_block
, nr_blocks
;
1548 u64 p_block
, offset
;
1549 u32 cluster
, p_cluster
, nr_clusters
;
1550 struct super_block
*sb
= inode
->i_sb
;
1551 u64 end
= ocfs2_align_bytes_to_clusters(sb
, start
);
1553 if (start
+ len
< end
)
1556 start_block
= ocfs2_blocks_for_bytes(sb
, start
);
1557 end_block
= ocfs2_blocks_for_bytes(sb
, end
);
1558 nr_blocks
= end_block
- start_block
;
1562 cluster
= ocfs2_bytes_to_clusters(sb
, start
);
1563 ret
= ocfs2_get_clusters(inode
, cluster
, &p_cluster
,
1564 &nr_clusters
, NULL
);
1570 offset
= start_block
- ocfs2_clusters_to_blocks(sb
, cluster
);
1571 p_block
= ocfs2_clusters_to_blocks(sb
, p_cluster
) + offset
;
1572 return sb_issue_zeroout(sb
, p_block
, nr_blocks
, GFP_NOFS
);
1575 static int ocfs2_zero_partial_clusters(struct inode
*inode
,
1580 u64 end
= start
+ len
;
1581 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1582 unsigned int csize
= osb
->s_clustersize
;
1584 loff_t isize
= i_size_read(inode
);
1587 * The "start" and "end" values are NOT necessarily part of
1588 * the range whose allocation is being deleted. Rather, this
1589 * is what the user passed in with the request. We must zero
1590 * partial clusters here. There's no need to worry about
1591 * physical allocation - the zeroing code knows to skip holes.
1593 trace_ocfs2_zero_partial_clusters(
1594 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1595 (unsigned long long)start
, (unsigned long long)end
);
1598 * If both edges are on a cluster boundary then there's no
1599 * zeroing required as the region is part of the allocation to
1602 if ((start
& (csize
- 1)) == 0 && (end
& (csize
- 1)) == 0)
1605 /* No page cache for EOF blocks, issue zero out to disk. */
1608 * zeroout eof blocks in last cluster starting from
1609 * "isize" even "start" > "isize" because it is
1610 * complicated to zeroout just at "start" as "start"
1611 * may be not aligned with block size, buffer write
1612 * would be required to do that, but out of eof buffer
1613 * write is not supported.
1615 ret
= ocfs2_zeroout_partial_cluster(inode
, isize
,
1625 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1626 if (IS_ERR(handle
)) {
1627 ret
= PTR_ERR(handle
);
1633 * If start is on a cluster boundary and end is somewhere in another
1634 * cluster, we have not COWed the cluster starting at start, unless
1635 * end is also within the same cluster. So, in this case, we skip this
1636 * first call to ocfs2_zero_range_for_truncate() truncate and move on
1639 if ((start
& (csize
- 1)) != 0) {
1641 * We want to get the byte offset of the end of the 1st
1644 tmpend
= (u64
)osb
->s_clustersize
+
1645 (start
& ~(osb
->s_clustersize
- 1));
1649 trace_ocfs2_zero_partial_clusters_range1(
1650 (unsigned long long)start
,
1651 (unsigned long long)tmpend
);
1653 ret
= ocfs2_zero_range_for_truncate(inode
, handle
, start
,
1661 * This may make start and end equal, but the zeroing
1662 * code will skip any work in that case so there's no
1663 * need to catch it up here.
1665 start
= end
& ~(osb
->s_clustersize
- 1);
1667 trace_ocfs2_zero_partial_clusters_range2(
1668 (unsigned long long)start
, (unsigned long long)end
);
1670 ret
= ocfs2_zero_range_for_truncate(inode
, handle
, start
, end
);
1674 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
1676 ocfs2_commit_trans(osb
, handle
);
1681 static int ocfs2_find_rec(struct ocfs2_extent_list
*el
, u32 pos
)
1684 struct ocfs2_extent_rec
*rec
= NULL
;
1686 for (i
= le16_to_cpu(el
->l_next_free_rec
) - 1; i
>= 0; i
--) {
1688 rec
= &el
->l_recs
[i
];
1690 if (le32_to_cpu(rec
->e_cpos
) < pos
)
1698 * Helper to calculate the punching pos and length in one run, we handle the
1699 * following three cases in order:
1701 * - remove the entire record
1702 * - remove a partial record
1703 * - no record needs to be removed (hole-punching completed)
1705 static void ocfs2_calc_trunc_pos(struct inode
*inode
,
1706 struct ocfs2_extent_list
*el
,
1707 struct ocfs2_extent_rec
*rec
,
1708 u32 trunc_start
, u32
*trunc_cpos
,
1709 u32
*trunc_len
, u32
*trunc_end
,
1710 u64
*blkno
, int *done
)
1715 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
1717 if (le32_to_cpu(rec
->e_cpos
) >= trunc_start
) {
1719 * remove an entire extent record.
1721 *trunc_cpos
= le32_to_cpu(rec
->e_cpos
);
1723 * Skip holes if any.
1725 if (range
< *trunc_end
)
1727 *trunc_len
= *trunc_end
- le32_to_cpu(rec
->e_cpos
);
1728 *blkno
= le64_to_cpu(rec
->e_blkno
);
1729 *trunc_end
= le32_to_cpu(rec
->e_cpos
);
1730 } else if (range
> trunc_start
) {
1732 * remove a partial extent record, which means we're
1733 * removing the last extent record.
1735 *trunc_cpos
= trunc_start
;
1739 if (range
< *trunc_end
)
1741 *trunc_len
= *trunc_end
- trunc_start
;
1742 coff
= trunc_start
- le32_to_cpu(rec
->e_cpos
);
1743 *blkno
= le64_to_cpu(rec
->e_blkno
) +
1744 ocfs2_clusters_to_blocks(inode
->i_sb
, coff
);
1745 *trunc_end
= trunc_start
;
1748 * It may have two following possibilities:
1750 * - last record has been removed
1751 * - trunc_start was within a hole
1753 * both two cases mean the completion of hole punching.
1761 int ocfs2_remove_inode_range(struct inode
*inode
,
1762 struct buffer_head
*di_bh
, u64 byte_start
,
1765 int ret
= 0, flags
= 0, done
= 0, i
;
1766 u32 trunc_start
, trunc_len
, trunc_end
, trunc_cpos
, phys_cpos
;
1768 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1769 struct ocfs2_cached_dealloc_ctxt dealloc
;
1770 struct address_space
*mapping
= inode
->i_mapping
;
1771 struct ocfs2_extent_tree et
;
1772 struct ocfs2_path
*path
= NULL
;
1773 struct ocfs2_extent_list
*el
= NULL
;
1774 struct ocfs2_extent_rec
*rec
= NULL
;
1775 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1776 u64 blkno
, refcount_loc
= le64_to_cpu(di
->i_refcount_loc
);
1778 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
1779 ocfs2_init_dealloc_ctxt(&dealloc
);
1781 trace_ocfs2_remove_inode_range(
1782 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1783 (unsigned long long)byte_start
,
1784 (unsigned long long)byte_len
);
1789 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1790 int id_count
= ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
);
1792 if (byte_start
> id_count
|| byte_start
+ byte_len
> id_count
) {
1798 ret
= ocfs2_truncate_inline(inode
, di_bh
, byte_start
,
1799 byte_start
+ byte_len
, 0);
1805 * There's no need to get fancy with the page cache
1806 * truncate of an inline-data inode. We're talking
1807 * about less than a page here, which will be cached
1808 * in the dinode buffer anyway.
1810 unmap_mapping_range(mapping
, 0, 0, 0);
1811 truncate_inode_pages(mapping
, 0);
1816 * For reflinks, we may need to CoW 2 clusters which might be
1817 * partially zero'd later, if hole's start and end offset were
1818 * within one cluster(means is not exactly aligned to clustersize).
1821 if (ocfs2_is_refcount_inode(inode
)) {
1822 ret
= ocfs2_cow_file_pos(inode
, di_bh
, byte_start
);
1828 ret
= ocfs2_cow_file_pos(inode
, di_bh
, byte_start
+ byte_len
);
1835 trunc_start
= ocfs2_clusters_for_bytes(osb
->sb
, byte_start
);
1836 trunc_end
= (byte_start
+ byte_len
) >> osb
->s_clustersize_bits
;
1837 cluster_in_el
= trunc_end
;
1839 ret
= ocfs2_zero_partial_clusters(inode
, byte_start
, byte_len
);
1845 path
= ocfs2_new_path_from_et(&et
);
1852 while (trunc_end
> trunc_start
) {
1854 ret
= ocfs2_find_path(INODE_CACHE(inode
), path
,
1861 el
= path_leaf_el(path
);
1863 i
= ocfs2_find_rec(el
, trunc_end
);
1865 * Need to go to previous extent block.
1868 if (path
->p_tree_depth
== 0)
1871 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
,
1880 * We've reached the leftmost extent block,
1881 * it's safe to leave.
1883 if (cluster_in_el
== 0)
1887 * The 'pos' searched for previous extent block is
1888 * always one cluster less than actual trunc_end.
1890 trunc_end
= cluster_in_el
+ 1;
1892 ocfs2_reinit_path(path
, 1);
1897 rec
= &el
->l_recs
[i
];
1899 ocfs2_calc_trunc_pos(inode
, el
, rec
, trunc_start
, &trunc_cpos
,
1900 &trunc_len
, &trunc_end
, &blkno
, &done
);
1904 flags
= rec
->e_flags
;
1905 phys_cpos
= ocfs2_blocks_to_clusters(inode
->i_sb
, blkno
);
1907 ret
= ocfs2_remove_btree_range(inode
, &et
, trunc_cpos
,
1908 phys_cpos
, trunc_len
, flags
,
1909 &dealloc
, refcount_loc
, false);
1915 cluster_in_el
= trunc_end
;
1917 ocfs2_reinit_path(path
, 1);
1920 ocfs2_truncate_cluster_pages(inode
, byte_start
, byte_len
);
1923 ocfs2_free_path(path
);
1924 ocfs2_schedule_truncate_log_flush(osb
, 1);
1925 ocfs2_run_deallocs(osb
, &dealloc
);
1931 * Parts of this function taken from xfs_change_file_space()
1933 static int __ocfs2_change_file_space(struct file
*file
, struct inode
*inode
,
1934 loff_t f_pos
, unsigned int cmd
,
1935 struct ocfs2_space_resv
*sr
,
1940 loff_t size
, orig_isize
;
1941 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1942 struct buffer_head
*di_bh
= NULL
;
1944 unsigned long long max_off
= inode
->i_sb
->s_maxbytes
;
1946 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
1951 /* Wait all existing dio workers, newcomers will block on i_rwsem */
1952 inode_dio_wait(inode
);
1954 * This prevents concurrent writes on other nodes
1956 ret
= ocfs2_rw_lock(inode
, 1);
1962 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
1968 if (inode
->i_flags
& (S_IMMUTABLE
|S_APPEND
)) {
1970 goto out_inode_unlock
;
1973 switch (sr
->l_whence
) {
1974 case 0: /*SEEK_SET*/
1976 case 1: /*SEEK_CUR*/
1977 sr
->l_start
+= f_pos
;
1979 case 2: /*SEEK_END*/
1980 sr
->l_start
+= i_size_read(inode
);
1984 goto out_inode_unlock
;
1988 llen
= sr
->l_len
> 0 ? sr
->l_len
- 1 : sr
->l_len
;
1991 || sr
->l_start
> max_off
1992 || (sr
->l_start
+ llen
) < 0
1993 || (sr
->l_start
+ llen
) > max_off
) {
1995 goto out_inode_unlock
;
1997 size
= sr
->l_start
+ sr
->l_len
;
1999 if (cmd
== OCFS2_IOC_RESVSP
|| cmd
== OCFS2_IOC_RESVSP64
||
2000 cmd
== OCFS2_IOC_UNRESVSP
|| cmd
== OCFS2_IOC_UNRESVSP64
) {
2001 if (sr
->l_len
<= 0) {
2003 goto out_inode_unlock
;
2007 if (file
&& setattr_should_drop_suidgid(&nop_mnt_idmap
, file_inode(file
))) {
2008 ret
= __ocfs2_write_remove_suid(inode
, di_bh
);
2011 goto out_inode_unlock
;
2015 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
2017 case OCFS2_IOC_RESVSP
:
2018 case OCFS2_IOC_RESVSP64
:
2020 * This takes unsigned offsets, but the signed ones we
2021 * pass have been checked against overflow above.
2023 ret
= ocfs2_allocate_unwritten_extents(inode
, sr
->l_start
,
2026 case OCFS2_IOC_UNRESVSP
:
2027 case OCFS2_IOC_UNRESVSP64
:
2028 ret
= ocfs2_remove_inode_range(inode
, di_bh
, sr
->l_start
,
2035 orig_isize
= i_size_read(inode
);
2036 /* zeroout eof blocks in the cluster. */
2037 if (!ret
&& change_size
&& orig_isize
< size
) {
2038 ret
= ocfs2_zeroout_partial_cluster(inode
, orig_isize
,
2041 i_size_write(inode
, size
);
2043 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
2046 goto out_inode_unlock
;
2050 * We update c/mtime for these changes
2052 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
2053 if (IS_ERR(handle
)) {
2054 ret
= PTR_ERR(handle
);
2056 goto out_inode_unlock
;
2059 inode_set_mtime_to_ts(inode
, inode_set_ctime_current(inode
));
2060 ret
= ocfs2_mark_inode_dirty(handle
, inode
, di_bh
);
2064 if (file
&& (file
->f_flags
& O_SYNC
))
2067 ocfs2_commit_trans(osb
, handle
);
2071 ocfs2_inode_unlock(inode
, 1);
2073 ocfs2_rw_unlock(inode
, 1);
2076 inode_unlock(inode
);
2080 int ocfs2_change_file_space(struct file
*file
, unsigned int cmd
,
2081 struct ocfs2_space_resv
*sr
)
2083 struct inode
*inode
= file_inode(file
);
2084 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2087 if ((cmd
== OCFS2_IOC_RESVSP
|| cmd
== OCFS2_IOC_RESVSP64
) &&
2088 !ocfs2_writes_unwritten_extents(osb
))
2090 else if ((cmd
== OCFS2_IOC_UNRESVSP
|| cmd
== OCFS2_IOC_UNRESVSP64
) &&
2091 !ocfs2_sparse_alloc(osb
))
2094 if (!S_ISREG(inode
->i_mode
))
2097 if (!(file
->f_mode
& FMODE_WRITE
))
2100 ret
= mnt_want_write_file(file
);
2103 ret
= __ocfs2_change_file_space(file
, inode
, file
->f_pos
, cmd
, sr
, 0);
2104 mnt_drop_write_file(file
);
2108 static long ocfs2_fallocate(struct file
*file
, int mode
, loff_t offset
,
2111 struct inode
*inode
= file_inode(file
);
2112 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2113 struct ocfs2_space_resv sr
;
2114 int change_size
= 1;
2115 int cmd
= OCFS2_IOC_RESVSP64
;
2118 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2120 if (!ocfs2_writes_unwritten_extents(osb
))
2123 if (mode
& FALLOC_FL_KEEP_SIZE
) {
2126 ret
= inode_newsize_ok(inode
, offset
+ len
);
2131 if (mode
& FALLOC_FL_PUNCH_HOLE
)
2132 cmd
= OCFS2_IOC_UNRESVSP64
;
2135 sr
.l_start
= (s64
)offset
;
2136 sr
.l_len
= (s64
)len
;
2138 return __ocfs2_change_file_space(NULL
, inode
, offset
, cmd
, &sr
,
2142 int ocfs2_check_range_for_refcount(struct inode
*inode
, loff_t pos
,
2146 unsigned int extent_flags
;
2147 u32 cpos
, clusters
, extent_len
, phys_cpos
;
2148 struct super_block
*sb
= inode
->i_sb
;
2150 if (!ocfs2_refcount_tree(OCFS2_SB(inode
->i_sb
)) ||
2151 !ocfs2_is_refcount_inode(inode
) ||
2152 OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
2155 cpos
= pos
>> OCFS2_SB(sb
)->s_clustersize_bits
;
2156 clusters
= ocfs2_clusters_for_bytes(sb
, pos
+ count
) - cpos
;
2159 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
, &extent_len
,
2166 if (phys_cpos
&& (extent_flags
& OCFS2_EXT_REFCOUNTED
)) {
2171 if (extent_len
> clusters
)
2172 extent_len
= clusters
;
2174 clusters
-= extent_len
;
2181 static int ocfs2_is_io_unaligned(struct inode
*inode
, size_t count
, loff_t pos
)
2183 int blockmask
= inode
->i_sb
->s_blocksize
- 1;
2184 loff_t final_size
= pos
+ count
;
2186 if ((pos
& blockmask
) || (final_size
& blockmask
))
2191 static int ocfs2_inode_lock_for_extent_tree(struct inode
*inode
,
2192 struct buffer_head
**di_bh
,
2200 ret
= ocfs2_inode_lock(inode
, di_bh
, meta_level
);
2202 ret
= ocfs2_try_inode_lock(inode
, di_bh
, meta_level
);
2208 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
2210 down_read(&OCFS2_I(inode
)->ip_alloc_sem
);
2213 ret
= down_write_trylock(&OCFS2_I(inode
)->ip_alloc_sem
);
2215 ret
= down_read_trylock(&OCFS2_I(inode
)->ip_alloc_sem
);
2228 ocfs2_inode_unlock(inode
, meta_level
);
2233 static void ocfs2_inode_unlock_for_extent_tree(struct inode
*inode
,
2234 struct buffer_head
**di_bh
,
2239 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
2241 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
2246 if (meta_level
>= 0)
2247 ocfs2_inode_unlock(inode
, meta_level
);
2250 static int ocfs2_prepare_inode_for_write(struct file
*file
,
2251 loff_t pos
, size_t count
, int wait
)
2253 int ret
= 0, meta_level
= 0, overwrite_io
= 0;
2255 struct dentry
*dentry
= file
->f_path
.dentry
;
2256 struct inode
*inode
= d_inode(dentry
);
2257 struct buffer_head
*di_bh
= NULL
;
2262 * We start with a read level meta lock and only jump to an ex
2263 * if we need to make modifications here.
2266 ret
= ocfs2_inode_lock_for_extent_tree(inode
,
2278 * Check if IO will overwrite allocated blocks in case
2279 * IOCB_NOWAIT flag is set.
2281 if (!wait
&& !overwrite_io
) {
2284 ret
= ocfs2_overwrite_io(inode
, di_bh
, pos
, count
);
2292 /* Clear suid / sgid if necessary. We do this here
2293 * instead of later in the write path because
2294 * remove_suid() calls ->setattr without any hint that
2295 * we may have already done our cluster locking. Since
2296 * ocfs2_setattr() *must* take cluster locks to
2297 * proceed, this will lead us to recursively lock the
2298 * inode. There's also the dinode i_size state which
2299 * can be lost via setattr during extending writes (we
2300 * set inode->i_size at the end of a write. */
2301 if (setattr_should_drop_suidgid(&nop_mnt_idmap
, inode
)) {
2302 if (meta_level
== 0) {
2303 ocfs2_inode_unlock_for_extent_tree(inode
,
2311 ret
= ocfs2_write_remove_suid(inode
);
2318 ret
= ocfs2_check_range_for_refcount(inode
, pos
, count
);
2320 ocfs2_inode_unlock_for_extent_tree(inode
,
2326 ret
= ocfs2_inode_lock_for_extent_tree(inode
,
2337 cpos
= pos
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
2339 ocfs2_clusters_for_bytes(inode
->i_sb
, pos
+ count
) - cpos
;
2340 ret
= ocfs2_refcount_cow(inode
, di_bh
, cpos
, clusters
, UINT_MAX
);
2353 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode
)->ip_blkno
,
2356 ocfs2_inode_unlock_for_extent_tree(inode
,
2365 static ssize_t
ocfs2_file_write_iter(struct kiocb
*iocb
,
2366 struct iov_iter
*from
)
2369 ssize_t written
= 0;
2371 size_t count
= iov_iter_count(from
);
2372 struct file
*file
= iocb
->ki_filp
;
2373 struct inode
*inode
= file_inode(file
);
2374 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2375 int full_coherency
= !(osb
->s_mount_opt
&
2376 OCFS2_MOUNT_COHERENCY_BUFFERED
);
2377 void *saved_ki_complete
= NULL
;
2378 int append_write
= ((iocb
->ki_pos
+ count
) >=
2379 i_size_read(inode
) ? 1 : 0);
2380 int direct_io
= iocb
->ki_flags
& IOCB_DIRECT
? 1 : 0;
2381 int nowait
= iocb
->ki_flags
& IOCB_NOWAIT
? 1 : 0;
2383 trace_ocfs2_file_write_iter(inode
, file
, file
->f_path
.dentry
,
2384 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2385 file
->f_path
.dentry
->d_name
.len
,
2386 file
->f_path
.dentry
->d_name
.name
,
2387 (unsigned int)from
->nr_segs
); /* GRRRRR */
2389 if (!direct_io
&& nowait
)
2396 if (!inode_trylock(inode
))
2401 ocfs2_iocb_init_rw_locked(iocb
);
2404 * Concurrent O_DIRECT writes are allowed with
2405 * mount_option "coherency=buffered".
2406 * For append write, we must take rw EX.
2408 rw_level
= (!direct_io
|| full_coherency
|| append_write
);
2411 ret
= ocfs2_try_rw_lock(inode
, rw_level
);
2413 ret
= ocfs2_rw_lock(inode
, rw_level
);
2421 * O_DIRECT writes with "coherency=full" need to take EX cluster
2422 * inode_lock to guarantee coherency.
2424 if (direct_io
&& full_coherency
) {
2426 * We need to take and drop the inode lock to force
2427 * other nodes to drop their caches. Buffered I/O
2428 * already does this in write_begin().
2431 ret
= ocfs2_try_inode_lock(inode
, NULL
, 1);
2433 ret
= ocfs2_inode_lock(inode
, NULL
, 1);
2440 ocfs2_inode_unlock(inode
, 1);
2443 ret
= generic_write_checks(iocb
, from
);
2451 ret
= ocfs2_prepare_inode_for_write(file
, iocb
->ki_pos
, count
, !nowait
);
2458 if (direct_io
&& !is_sync_kiocb(iocb
) &&
2459 ocfs2_is_io_unaligned(inode
, count
, iocb
->ki_pos
)) {
2461 * Make it a sync io if it's an unaligned aio.
2463 saved_ki_complete
= xchg(&iocb
->ki_complete
, NULL
);
2466 /* communicate with ocfs2_dio_end_io */
2467 ocfs2_iocb_set_rw_locked(iocb
, rw_level
);
2469 written
= __generic_file_write_iter(iocb
, from
);
2470 /* buffered aio wouldn't have proper lock coverage today */
2471 BUG_ON(written
== -EIOCBQUEUED
&& !direct_io
);
2474 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2475 * function pointer which is called when o_direct io completes so that
2476 * it can unlock our rw lock.
2477 * Unfortunately there are error cases which call end_io and others
2478 * that don't. so we don't have to unlock the rw_lock if either an
2479 * async dio is going to do it in the future or an end_io after an
2480 * error has already done it.
2482 if ((written
== -EIOCBQUEUED
) || (!ocfs2_iocb_is_rw_locked(iocb
))) {
2486 if (unlikely(written
<= 0))
2489 if (((file
->f_flags
& O_DSYNC
) && !direct_io
) ||
2491 ret
= filemap_fdatawrite_range(file
->f_mapping
,
2492 iocb
->ki_pos
- written
,
2498 ret
= jbd2_journal_force_commit(osb
->journal
->j_journal
);
2504 ret
= filemap_fdatawait_range(file
->f_mapping
,
2505 iocb
->ki_pos
- written
,
2510 if (saved_ki_complete
)
2511 xchg(&iocb
->ki_complete
, saved_ki_complete
);
2514 ocfs2_rw_unlock(inode
, rw_level
);
2517 inode_unlock(inode
);
2524 static ssize_t
ocfs2_file_read_iter(struct kiocb
*iocb
,
2525 struct iov_iter
*to
)
2527 int ret
= 0, rw_level
= -1, lock_level
= 0;
2528 struct file
*filp
= iocb
->ki_filp
;
2529 struct inode
*inode
= file_inode(filp
);
2530 int direct_io
= iocb
->ki_flags
& IOCB_DIRECT
? 1 : 0;
2531 int nowait
= iocb
->ki_flags
& IOCB_NOWAIT
? 1 : 0;
2533 trace_ocfs2_file_read_iter(inode
, filp
, filp
->f_path
.dentry
,
2534 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2535 filp
->f_path
.dentry
->d_name
.len
,
2536 filp
->f_path
.dentry
->d_name
.name
,
2537 to
->nr_segs
); /* GRRRRR */
2546 if (!direct_io
&& nowait
)
2549 ocfs2_iocb_init_rw_locked(iocb
);
2552 * buffered reads protect themselves in ->read_folio(). O_DIRECT reads
2553 * need locks to protect pending reads from racing with truncate.
2557 ret
= ocfs2_try_rw_lock(inode
, 0);
2559 ret
= ocfs2_rw_lock(inode
, 0);
2567 /* communicate with ocfs2_dio_end_io */
2568 ocfs2_iocb_set_rw_locked(iocb
, rw_level
);
2572 * We're fine letting folks race truncates and extending
2573 * writes with read across the cluster, just like they can
2574 * locally. Hence no rw_lock during read.
2576 * Take and drop the meta data lock to update inode fields
2577 * like i_size. This allows the checks down below
2578 * copy_splice_read() a chance of actually working.
2580 ret
= ocfs2_inode_lock_atime(inode
, filp
->f_path
.mnt
, &lock_level
,
2587 ocfs2_inode_unlock(inode
, lock_level
);
2589 ret
= generic_file_read_iter(iocb
, to
);
2590 trace_generic_file_read_iter_ret(ret
);
2592 /* buffered aio wouldn't have proper lock coverage today */
2593 BUG_ON(ret
== -EIOCBQUEUED
&& !direct_io
);
2595 /* see ocfs2_file_write_iter */
2596 if (ret
== -EIOCBQUEUED
|| !ocfs2_iocb_is_rw_locked(iocb
)) {
2602 ocfs2_rw_unlock(inode
, rw_level
);
2607 static ssize_t
ocfs2_file_splice_read(struct file
*in
, loff_t
*ppos
,
2608 struct pipe_inode_info
*pipe
,
2609 size_t len
, unsigned int flags
)
2611 struct inode
*inode
= file_inode(in
);
2615 trace_ocfs2_file_splice_read(inode
, in
, in
->f_path
.dentry
,
2616 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2617 in
->f_path
.dentry
->d_name
.len
,
2618 in
->f_path
.dentry
->d_name
.name
,
2622 * We're fine letting folks race truncates and extending writes with
2623 * read across the cluster, just like they can locally. Hence no
2624 * rw_lock during read.
2626 * Take and drop the meta data lock to update inode fields like i_size.
2627 * This allows the checks down below filemap_splice_read() a chance of
2630 ret
= ocfs2_inode_lock_atime(inode
, in
->f_path
.mnt
, &lock_level
, 1);
2636 ocfs2_inode_unlock(inode
, lock_level
);
2638 ret
= filemap_splice_read(in
, ppos
, pipe
, len
, flags
);
2639 trace_filemap_splice_read_ret(ret
);
2644 /* Refer generic_file_llseek_unlocked() */
2645 static loff_t
ocfs2_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2647 struct inode
*inode
= file
->f_mapping
->host
;
2656 /* SEEK_END requires the OCFS2 inode lock for the file
2657 * because it references the file's size.
2659 ret
= ocfs2_inode_lock(inode
, NULL
, 0);
2664 offset
+= i_size_read(inode
);
2665 ocfs2_inode_unlock(inode
, 0);
2669 offset
= file
->f_pos
;
2672 offset
+= file
->f_pos
;
2676 ret
= ocfs2_seek_data_hole_offset(file
, &offset
, whence
);
2685 offset
= vfs_setpos(file
, offset
, inode
->i_sb
->s_maxbytes
);
2688 inode_unlock(inode
);
2694 static loff_t
ocfs2_remap_file_range(struct file
*file_in
, loff_t pos_in
,
2695 struct file
*file_out
, loff_t pos_out
,
2696 loff_t len
, unsigned int remap_flags
)
2698 struct inode
*inode_in
= file_inode(file_in
);
2699 struct inode
*inode_out
= file_inode(file_out
);
2700 struct ocfs2_super
*osb
= OCFS2_SB(inode_in
->i_sb
);
2701 struct buffer_head
*in_bh
= NULL
, *out_bh
= NULL
;
2702 bool same_inode
= (inode_in
== inode_out
);
2703 loff_t remapped
= 0;
2706 if (remap_flags
& ~(REMAP_FILE_DEDUP
| REMAP_FILE_ADVISORY
))
2708 if (!ocfs2_refcount_tree(osb
))
2710 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
2713 /* Lock both files against IO */
2714 ret
= ocfs2_reflink_inodes_lock(inode_in
, &in_bh
, inode_out
, &out_bh
);
2718 /* Check file eligibility and prepare for block sharing. */
2720 if ((OCFS2_I(inode_in
)->ip_flags
& OCFS2_INODE_SYSTEM_FILE
) ||
2721 (OCFS2_I(inode_out
)->ip_flags
& OCFS2_INODE_SYSTEM_FILE
))
2724 ret
= generic_remap_file_range_prep(file_in
, pos_in
, file_out
, pos_out
,
2726 if (ret
< 0 || len
== 0)
2729 /* Lock out changes to the allocation maps and remap. */
2730 down_write(&OCFS2_I(inode_in
)->ip_alloc_sem
);
2732 down_write_nested(&OCFS2_I(inode_out
)->ip_alloc_sem
,
2733 SINGLE_DEPTH_NESTING
);
2735 /* Zap any page cache for the destination file's range. */
2736 truncate_inode_pages_range(&inode_out
->i_data
,
2737 round_down(pos_out
, PAGE_SIZE
),
2738 round_up(pos_out
+ len
, PAGE_SIZE
) - 1);
2740 remapped
= ocfs2_reflink_remap_blocks(inode_in
, in_bh
, pos_in
,
2741 inode_out
, out_bh
, pos_out
, len
);
2742 up_write(&OCFS2_I(inode_in
)->ip_alloc_sem
);
2744 up_write(&OCFS2_I(inode_out
)->ip_alloc_sem
);
2752 * Empty the extent map so that we may get the right extent
2753 * record from the disk.
2755 ocfs2_extent_map_trunc(inode_in
, 0);
2756 ocfs2_extent_map_trunc(inode_out
, 0);
2758 ret
= ocfs2_reflink_update_dest(inode_out
, out_bh
, pos_out
+ len
);
2765 ocfs2_reflink_inodes_unlock(inode_in
, in_bh
, inode_out
, out_bh
);
2766 return remapped
> 0 ? remapped
: ret
;
2769 static loff_t
ocfs2_dir_llseek(struct file
*file
, loff_t offset
, int whence
)
2771 struct ocfs2_file_private
*fp
= file
->private_data
;
2773 return generic_llseek_cookie(file
, offset
, whence
, &fp
->cookie
);
2776 const struct inode_operations ocfs2_file_iops
= {
2777 .setattr
= ocfs2_setattr
,
2778 .getattr
= ocfs2_getattr
,
2779 .permission
= ocfs2_permission
,
2780 .listxattr
= ocfs2_listxattr
,
2781 .fiemap
= ocfs2_fiemap
,
2782 .get_inode_acl
= ocfs2_iop_get_acl
,
2783 .set_acl
= ocfs2_iop_set_acl
,
2784 .fileattr_get
= ocfs2_fileattr_get
,
2785 .fileattr_set
= ocfs2_fileattr_set
,
2788 const struct inode_operations ocfs2_special_file_iops
= {
2789 .setattr
= ocfs2_setattr
,
2790 .getattr
= ocfs2_getattr
,
2791 .listxattr
= ocfs2_listxattr
,
2792 .permission
= ocfs2_permission
,
2793 .get_inode_acl
= ocfs2_iop_get_acl
,
2794 .set_acl
= ocfs2_iop_set_acl
,
2798 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2799 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2801 const struct file_operations ocfs2_fops
= {
2802 .llseek
= ocfs2_file_llseek
,
2804 .fsync
= ocfs2_sync_file
,
2805 .release
= ocfs2_file_release
,
2806 .open
= ocfs2_file_open
,
2807 .read_iter
= ocfs2_file_read_iter
,
2808 .write_iter
= ocfs2_file_write_iter
,
2809 .unlocked_ioctl
= ocfs2_ioctl
,
2810 #ifdef CONFIG_COMPAT
2811 .compat_ioctl
= ocfs2_compat_ioctl
,
2814 .flock
= ocfs2_flock
,
2815 .splice_read
= ocfs2_file_splice_read
,
2816 .splice_write
= iter_file_splice_write
,
2817 .fallocate
= ocfs2_fallocate
,
2818 .remap_file_range
= ocfs2_remap_file_range
,
2819 .fop_flags
= FOP_ASYNC_LOCK
,
2822 WRAP_DIR_ITER(ocfs2_readdir
) // FIXME!
2823 const struct file_operations ocfs2_dops
= {
2824 .llseek
= ocfs2_dir_llseek
,
2825 .read
= generic_read_dir
,
2826 .iterate_shared
= shared_ocfs2_readdir
,
2827 .fsync
= ocfs2_sync_file
,
2828 .release
= ocfs2_dir_release
,
2829 .open
= ocfs2_dir_open
,
2830 .unlocked_ioctl
= ocfs2_ioctl
,
2831 #ifdef CONFIG_COMPAT
2832 .compat_ioctl
= ocfs2_compat_ioctl
,
2835 .flock
= ocfs2_flock
,
2836 .fop_flags
= FOP_ASYNC_LOCK
,
2840 * POSIX-lockless variants of our file_operations.
2842 * These will be used if the underlying cluster stack does not support
2843 * posix file locking, if the user passes the "localflocks" mount
2844 * option, or if we have a local-only fs.
2846 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2847 * so we still want it in the case of no stack support for
2848 * plocks. Internally, it will do the right thing when asked to ignore
2851 const struct file_operations ocfs2_fops_no_plocks
= {
2852 .llseek
= ocfs2_file_llseek
,
2854 .fsync
= ocfs2_sync_file
,
2855 .release
= ocfs2_file_release
,
2856 .open
= ocfs2_file_open
,
2857 .read_iter
= ocfs2_file_read_iter
,
2858 .write_iter
= ocfs2_file_write_iter
,
2859 .unlocked_ioctl
= ocfs2_ioctl
,
2860 #ifdef CONFIG_COMPAT
2861 .compat_ioctl
= ocfs2_compat_ioctl
,
2863 .flock
= ocfs2_flock
,
2864 .splice_read
= filemap_splice_read
,
2865 .splice_write
= iter_file_splice_write
,
2866 .fallocate
= ocfs2_fallocate
,
2867 .remap_file_range
= ocfs2_remap_file_range
,
2870 const struct file_operations ocfs2_dops_no_plocks
= {
2871 .llseek
= ocfs2_dir_llseek
,
2872 .read
= generic_read_dir
,
2873 .iterate_shared
= shared_ocfs2_readdir
,
2874 .fsync
= ocfs2_sync_file
,
2875 .release
= ocfs2_dir_release
,
2876 .open
= ocfs2_dir_open
,
2877 .unlocked_ioctl
= ocfs2_ioctl
,
2878 #ifdef CONFIG_COMPAT
2879 .compat_ioctl
= ocfs2_compat_ioctl
,
2881 .flock
= ocfs2_flock
,