1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 #include <linux/swapops.h>
33 #include <linux/miscdevice.h>
34 #include <linux/uio.h>
36 static int sysctl_unprivileged_userfaultfd __read_mostly
;
39 static struct ctl_table vm_userfaultfd_table
[] = {
41 .procname
= "unprivileged_userfaultfd",
42 .data
= &sysctl_unprivileged_userfaultfd
,
43 .maxlen
= sizeof(sysctl_unprivileged_userfaultfd
),
45 .proc_handler
= proc_dointvec_minmax
,
46 .extra1
= SYSCTL_ZERO
,
52 static struct kmem_cache
*userfaultfd_ctx_cachep __ro_after_init
;
54 struct userfaultfd_fork_ctx
{
55 struct userfaultfd_ctx
*orig
;
56 struct userfaultfd_ctx
*new;
57 struct list_head list
;
60 struct userfaultfd_unmap_ctx
{
61 struct userfaultfd_ctx
*ctx
;
64 struct list_head list
;
67 struct userfaultfd_wait_queue
{
69 wait_queue_entry_t wq
;
70 struct userfaultfd_ctx
*ctx
;
74 struct userfaultfd_wake_range
{
79 /* internal indication that UFFD_API ioctl was successfully executed */
80 #define UFFD_FEATURE_INITIALIZED (1u << 31)
82 static bool userfaultfd_is_initialized(struct userfaultfd_ctx
*ctx
)
84 return ctx
->features
& UFFD_FEATURE_INITIALIZED
;
87 static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx
*ctx
)
89 return ctx
&& (ctx
->features
& UFFD_FEATURE_WP_ASYNC
);
93 * Whether WP_UNPOPULATED is enabled on the uffd context. It is only
94 * meaningful when userfaultfd_wp()==true on the vma and when it's
97 bool userfaultfd_wp_unpopulated(struct vm_area_struct
*vma
)
99 struct userfaultfd_ctx
*ctx
= vma
->vm_userfaultfd_ctx
.ctx
;
104 return ctx
->features
& UFFD_FEATURE_WP_UNPOPULATED
;
107 static int userfaultfd_wake_function(wait_queue_entry_t
*wq
, unsigned mode
,
108 int wake_flags
, void *key
)
110 struct userfaultfd_wake_range
*range
= key
;
112 struct userfaultfd_wait_queue
*uwq
;
113 unsigned long start
, len
;
115 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
117 /* len == 0 means wake all */
118 start
= range
->start
;
120 if (len
&& (start
> uwq
->msg
.arg
.pagefault
.address
||
121 start
+ len
<= uwq
->msg
.arg
.pagefault
.address
))
123 WRITE_ONCE(uwq
->waken
, true);
125 * The Program-Order guarantees provided by the scheduler
126 * ensure uwq->waken is visible before the task is woken.
128 ret
= wake_up_state(wq
->private, mode
);
131 * Wake only once, autoremove behavior.
133 * After the effect of list_del_init is visible to the other
134 * CPUs, the waitqueue may disappear from under us, see the
135 * !list_empty_careful() in handle_userfault().
137 * try_to_wake_up() has an implicit smp_mb(), and the
138 * wq->private is read before calling the extern function
139 * "wake_up_state" (which in turns calls try_to_wake_up).
141 list_del_init(&wq
->entry
);
148 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
150 * @ctx: [in] Pointer to the userfaultfd context.
152 static void userfaultfd_ctx_get(struct userfaultfd_ctx
*ctx
)
154 refcount_inc(&ctx
->refcount
);
158 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
160 * @ctx: [in] Pointer to userfaultfd context.
162 * The userfaultfd context reference must have been previously acquired either
163 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
165 static void userfaultfd_ctx_put(struct userfaultfd_ctx
*ctx
)
167 if (refcount_dec_and_test(&ctx
->refcount
)) {
168 VM_BUG_ON(spin_is_locked(&ctx
->fault_pending_wqh
.lock
));
169 VM_BUG_ON(waitqueue_active(&ctx
->fault_pending_wqh
));
170 VM_BUG_ON(spin_is_locked(&ctx
->fault_wqh
.lock
));
171 VM_BUG_ON(waitqueue_active(&ctx
->fault_wqh
));
172 VM_BUG_ON(spin_is_locked(&ctx
->event_wqh
.lock
));
173 VM_BUG_ON(waitqueue_active(&ctx
->event_wqh
));
174 VM_BUG_ON(spin_is_locked(&ctx
->fd_wqh
.lock
));
175 VM_BUG_ON(waitqueue_active(&ctx
->fd_wqh
));
177 kmem_cache_free(userfaultfd_ctx_cachep
, ctx
);
181 static inline void msg_init(struct uffd_msg
*msg
)
183 BUILD_BUG_ON(sizeof(struct uffd_msg
) != 32);
185 * Must use memset to zero out the paddings or kernel data is
186 * leaked to userland.
188 memset(msg
, 0, sizeof(struct uffd_msg
));
191 static inline struct uffd_msg
userfault_msg(unsigned long address
,
192 unsigned long real_address
,
194 unsigned long reason
,
195 unsigned int features
)
200 msg
.event
= UFFD_EVENT_PAGEFAULT
;
202 msg
.arg
.pagefault
.address
= (features
& UFFD_FEATURE_EXACT_ADDRESS
) ?
203 real_address
: address
;
206 * These flags indicate why the userfault occurred:
207 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
208 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
209 * - Neither of these flags being set indicates a MISSING fault.
211 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
212 * fault. Otherwise, it was a read fault.
214 if (flags
& FAULT_FLAG_WRITE
)
215 msg
.arg
.pagefault
.flags
|= UFFD_PAGEFAULT_FLAG_WRITE
;
216 if (reason
& VM_UFFD_WP
)
217 msg
.arg
.pagefault
.flags
|= UFFD_PAGEFAULT_FLAG_WP
;
218 if (reason
& VM_UFFD_MINOR
)
219 msg
.arg
.pagefault
.flags
|= UFFD_PAGEFAULT_FLAG_MINOR
;
220 if (features
& UFFD_FEATURE_THREAD_ID
)
221 msg
.arg
.pagefault
.feat
.ptid
= task_pid_vnr(current
);
225 #ifdef CONFIG_HUGETLB_PAGE
227 * Same functionality as userfaultfd_must_wait below with modifications for
230 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx
*ctx
,
231 struct vm_fault
*vmf
,
232 unsigned long reason
)
234 struct vm_area_struct
*vma
= vmf
->vma
;
238 assert_fault_locked(vmf
);
240 ptep
= hugetlb_walk(vma
, vmf
->address
, vma_mmu_pagesize(vma
));
245 pte
= huge_ptep_get(vma
->vm_mm
, vmf
->address
, ptep
);
248 * Lockless access: we're in a wait_event so it's ok if it
249 * changes under us. PTE markers should be handled the same as none
252 if (huge_pte_none_mostly(pte
))
254 if (!huge_pte_write(pte
) && (reason
& VM_UFFD_WP
))
260 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx
*ctx
,
261 struct vm_fault
*vmf
,
262 unsigned long reason
)
264 return false; /* should never get here */
266 #endif /* CONFIG_HUGETLB_PAGE */
269 * Verify the pagetables are still not ok after having reigstered into
270 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
271 * userfault that has already been resolved, if userfaultfd_read_iter and
272 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
275 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx
*ctx
,
276 struct vm_fault
*vmf
,
277 unsigned long reason
)
279 struct mm_struct
*mm
= ctx
->mm
;
280 unsigned long address
= vmf
->address
;
289 assert_fault_locked(vmf
);
291 pgd
= pgd_offset(mm
, address
);
292 if (!pgd_present(*pgd
))
294 p4d
= p4d_offset(pgd
, address
);
295 if (!p4d_present(*p4d
))
297 pud
= pud_offset(p4d
, address
);
298 if (!pud_present(*pud
))
300 pmd
= pmd_offset(pud
, address
);
302 _pmd
= pmdp_get_lockless(pmd
);
307 if (!pmd_present(_pmd
) || pmd_devmap(_pmd
))
310 if (pmd_trans_huge(_pmd
)) {
311 if (!pmd_write(_pmd
) && (reason
& VM_UFFD_WP
))
316 pte
= pte_offset_map(pmd
, address
);
322 * Lockless access: we're in a wait_event so it's ok if it
323 * changes under us. PTE markers should be handled the same as none
326 ptent
= ptep_get(pte
);
327 if (pte_none_mostly(ptent
))
329 if (!pte_write(ptent
) && (reason
& VM_UFFD_WP
))
337 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags
)
339 if (flags
& FAULT_FLAG_INTERRUPTIBLE
)
340 return TASK_INTERRUPTIBLE
;
342 if (flags
& FAULT_FLAG_KILLABLE
)
343 return TASK_KILLABLE
;
345 return TASK_UNINTERRUPTIBLE
;
349 * The locking rules involved in returning VM_FAULT_RETRY depending on
350 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
351 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
352 * recommendation in __lock_page_or_retry is not an understatement.
354 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
355 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
358 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
359 * set, VM_FAULT_RETRY can still be returned if and only if there are
360 * fatal_signal_pending()s, and the mmap_lock must be released before
363 vm_fault_t
handle_userfault(struct vm_fault
*vmf
, unsigned long reason
)
365 struct vm_area_struct
*vma
= vmf
->vma
;
366 struct mm_struct
*mm
= vma
->vm_mm
;
367 struct userfaultfd_ctx
*ctx
;
368 struct userfaultfd_wait_queue uwq
;
369 vm_fault_t ret
= VM_FAULT_SIGBUS
;
371 unsigned int blocking_state
;
374 * We don't do userfault handling for the final child pid update
375 * and when coredumping (faults triggered by get_dump_page()).
377 if (current
->flags
& (PF_EXITING
|PF_DUMPCORE
))
380 assert_fault_locked(vmf
);
382 ctx
= vma
->vm_userfaultfd_ctx
.ctx
;
386 BUG_ON(ctx
->mm
!= mm
);
388 /* Any unrecognized flag is a bug. */
389 VM_BUG_ON(reason
& ~__VM_UFFD_FLAGS
);
390 /* 0 or > 1 flags set is a bug; we expect exactly 1. */
391 VM_BUG_ON(!reason
|| (reason
& (reason
- 1)));
393 if (ctx
->features
& UFFD_FEATURE_SIGBUS
)
395 if (!(vmf
->flags
& FAULT_FLAG_USER
) && (ctx
->flags
& UFFD_USER_MODE_ONLY
))
399 * If it's already released don't get it. This avoids to loop
400 * in __get_user_pages if userfaultfd_release waits on the
401 * caller of handle_userfault to release the mmap_lock.
403 if (unlikely(READ_ONCE(ctx
->released
))) {
405 * Don't return VM_FAULT_SIGBUS in this case, so a non
406 * cooperative manager can close the uffd after the
407 * last UFFDIO_COPY, without risking to trigger an
408 * involuntary SIGBUS if the process was starting the
409 * userfaultfd while the userfaultfd was still armed
410 * (but after the last UFFDIO_COPY). If the uffd
411 * wasn't already closed when the userfault reached
412 * this point, that would normally be solved by
413 * userfaultfd_must_wait returning 'false'.
415 * If we were to return VM_FAULT_SIGBUS here, the non
416 * cooperative manager would be instead forced to
417 * always call UFFDIO_UNREGISTER before it can safely
420 ret
= VM_FAULT_NOPAGE
;
425 * Check that we can return VM_FAULT_RETRY.
427 * NOTE: it should become possible to return VM_FAULT_RETRY
428 * even if FAULT_FLAG_TRIED is set without leading to gup()
429 * -EBUSY failures, if the userfaultfd is to be extended for
430 * VM_UFFD_WP tracking and we intend to arm the userfault
431 * without first stopping userland access to the memory. For
432 * VM_UFFD_MISSING userfaults this is enough for now.
434 if (unlikely(!(vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
))) {
436 * Validate the invariant that nowait must allow retry
437 * to be sure not to return SIGBUS erroneously on
438 * nowait invocations.
440 BUG_ON(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
);
441 #ifdef CONFIG_DEBUG_VM
442 if (printk_ratelimit()) {
444 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
453 * Handle nowait, not much to do other than tell it to retry
456 ret
= VM_FAULT_RETRY
;
457 if (vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)
460 /* take the reference before dropping the mmap_lock */
461 userfaultfd_ctx_get(ctx
);
463 init_waitqueue_func_entry(&uwq
.wq
, userfaultfd_wake_function
);
464 uwq
.wq
.private = current
;
465 uwq
.msg
= userfault_msg(vmf
->address
, vmf
->real_address
, vmf
->flags
,
466 reason
, ctx
->features
);
470 blocking_state
= userfaultfd_get_blocking_state(vmf
->flags
);
473 * Take the vma lock now, in order to safely call
474 * userfaultfd_huge_must_wait() later. Since acquiring the
475 * (sleepable) vma lock can modify the current task state, that
476 * must be before explicitly calling set_current_state().
478 if (is_vm_hugetlb_page(vma
))
479 hugetlb_vma_lock_read(vma
);
481 spin_lock_irq(&ctx
->fault_pending_wqh
.lock
);
483 * After the __add_wait_queue the uwq is visible to userland
484 * through poll/read().
486 __add_wait_queue(&ctx
->fault_pending_wqh
, &uwq
.wq
);
488 * The smp_mb() after __set_current_state prevents the reads
489 * following the spin_unlock to happen before the list_add in
492 set_current_state(blocking_state
);
493 spin_unlock_irq(&ctx
->fault_pending_wqh
.lock
);
495 if (!is_vm_hugetlb_page(vma
))
496 must_wait
= userfaultfd_must_wait(ctx
, vmf
, reason
);
498 must_wait
= userfaultfd_huge_must_wait(ctx
, vmf
, reason
);
499 if (is_vm_hugetlb_page(vma
))
500 hugetlb_vma_unlock_read(vma
);
501 release_fault_lock(vmf
);
503 if (likely(must_wait
&& !READ_ONCE(ctx
->released
))) {
504 wake_up_poll(&ctx
->fd_wqh
, EPOLLIN
);
508 __set_current_state(TASK_RUNNING
);
511 * Here we race with the list_del; list_add in
512 * userfaultfd_ctx_read(), however because we don't ever run
513 * list_del_init() to refile across the two lists, the prev
514 * and next pointers will never point to self. list_add also
515 * would never let any of the two pointers to point to
516 * self. So list_empty_careful won't risk to see both pointers
517 * pointing to self at any time during the list refile. The
518 * only case where list_del_init() is called is the full
519 * removal in the wake function and there we don't re-list_add
520 * and it's fine not to block on the spinlock. The uwq on this
521 * kernel stack can be released after the list_del_init.
523 if (!list_empty_careful(&uwq
.wq
.entry
)) {
524 spin_lock_irq(&ctx
->fault_pending_wqh
.lock
);
526 * No need of list_del_init(), the uwq on the stack
527 * will be freed shortly anyway.
529 list_del(&uwq
.wq
.entry
);
530 spin_unlock_irq(&ctx
->fault_pending_wqh
.lock
);
534 * ctx may go away after this if the userfault pseudo fd is
537 userfaultfd_ctx_put(ctx
);
543 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx
*ctx
,
544 struct userfaultfd_wait_queue
*ewq
)
546 struct userfaultfd_ctx
*release_new_ctx
;
548 if (WARN_ON_ONCE(current
->flags
& PF_EXITING
))
552 init_waitqueue_entry(&ewq
->wq
, current
);
553 release_new_ctx
= NULL
;
555 spin_lock_irq(&ctx
->event_wqh
.lock
);
557 * After the __add_wait_queue the uwq is visible to userland
558 * through poll/read().
560 __add_wait_queue(&ctx
->event_wqh
, &ewq
->wq
);
562 set_current_state(TASK_KILLABLE
);
563 if (ewq
->msg
.event
== 0)
565 if (READ_ONCE(ctx
->released
) ||
566 fatal_signal_pending(current
)) {
568 * &ewq->wq may be queued in fork_event, but
569 * __remove_wait_queue ignores the head
570 * parameter. It would be a problem if it
573 __remove_wait_queue(&ctx
->event_wqh
, &ewq
->wq
);
574 if (ewq
->msg
.event
== UFFD_EVENT_FORK
) {
575 struct userfaultfd_ctx
*new;
577 new = (struct userfaultfd_ctx
*)
579 ewq
->msg
.arg
.reserved
.reserved1
;
580 release_new_ctx
= new;
585 spin_unlock_irq(&ctx
->event_wqh
.lock
);
587 wake_up_poll(&ctx
->fd_wqh
, EPOLLIN
);
590 spin_lock_irq(&ctx
->event_wqh
.lock
);
592 __set_current_state(TASK_RUNNING
);
593 spin_unlock_irq(&ctx
->event_wqh
.lock
);
595 if (release_new_ctx
) {
596 userfaultfd_release_new(release_new_ctx
);
597 userfaultfd_ctx_put(release_new_ctx
);
601 * ctx may go away after this if the userfault pseudo fd is
605 atomic_dec(&ctx
->mmap_changing
);
606 VM_BUG_ON(atomic_read(&ctx
->mmap_changing
) < 0);
607 userfaultfd_ctx_put(ctx
);
610 static void userfaultfd_event_complete(struct userfaultfd_ctx
*ctx
,
611 struct userfaultfd_wait_queue
*ewq
)
614 wake_up_locked(&ctx
->event_wqh
);
615 __remove_wait_queue(&ctx
->event_wqh
, &ewq
->wq
);
618 int dup_userfaultfd(struct vm_area_struct
*vma
, struct list_head
*fcs
)
620 struct userfaultfd_ctx
*ctx
= NULL
, *octx
;
621 struct userfaultfd_fork_ctx
*fctx
;
623 octx
= vma
->vm_userfaultfd_ctx
.ctx
;
627 if (!(octx
->features
& UFFD_FEATURE_EVENT_FORK
)) {
628 userfaultfd_reset_ctx(vma
);
632 list_for_each_entry(fctx
, fcs
, list
)
633 if (fctx
->orig
== octx
) {
639 fctx
= kmalloc(sizeof(*fctx
), GFP_KERNEL
);
643 ctx
= kmem_cache_alloc(userfaultfd_ctx_cachep
, GFP_KERNEL
);
649 refcount_set(&ctx
->refcount
, 1);
650 ctx
->flags
= octx
->flags
;
651 ctx
->features
= octx
->features
;
652 ctx
->released
= false;
653 init_rwsem(&ctx
->map_changing_lock
);
654 atomic_set(&ctx
->mmap_changing
, 0);
655 ctx
->mm
= vma
->vm_mm
;
658 userfaultfd_ctx_get(octx
);
659 down_write(&octx
->map_changing_lock
);
660 atomic_inc(&octx
->mmap_changing
);
661 up_write(&octx
->map_changing_lock
);
664 list_add_tail(&fctx
->list
, fcs
);
667 vma
->vm_userfaultfd_ctx
.ctx
= ctx
;
671 static void dup_fctx(struct userfaultfd_fork_ctx
*fctx
)
673 struct userfaultfd_ctx
*ctx
= fctx
->orig
;
674 struct userfaultfd_wait_queue ewq
;
678 ewq
.msg
.event
= UFFD_EVENT_FORK
;
679 ewq
.msg
.arg
.reserved
.reserved1
= (unsigned long)fctx
->new;
681 userfaultfd_event_wait_completion(ctx
, &ewq
);
684 void dup_userfaultfd_complete(struct list_head
*fcs
)
686 struct userfaultfd_fork_ctx
*fctx
, *n
;
688 list_for_each_entry_safe(fctx
, n
, fcs
, list
) {
690 list_del(&fctx
->list
);
695 void dup_userfaultfd_fail(struct list_head
*fcs
)
697 struct userfaultfd_fork_ctx
*fctx
, *n
;
700 * An error has occurred on fork, we will tear memory down, but have
701 * allocated memory for fctx's and raised reference counts for both the
702 * original and child contexts (and on the mm for each as a result).
704 * These would ordinarily be taken care of by a user handling the event,
705 * but we are no longer doing so, so manually clean up here.
707 * mm tear down will take care of cleaning up VMA contexts.
709 list_for_each_entry_safe(fctx
, n
, fcs
, list
) {
710 struct userfaultfd_ctx
*octx
= fctx
->orig
;
711 struct userfaultfd_ctx
*ctx
= fctx
->new;
713 atomic_dec(&octx
->mmap_changing
);
714 VM_BUG_ON(atomic_read(&octx
->mmap_changing
) < 0);
715 userfaultfd_ctx_put(octx
);
716 userfaultfd_ctx_put(ctx
);
718 list_del(&fctx
->list
);
723 void mremap_userfaultfd_prep(struct vm_area_struct
*vma
,
724 struct vm_userfaultfd_ctx
*vm_ctx
)
726 struct userfaultfd_ctx
*ctx
;
728 ctx
= vma
->vm_userfaultfd_ctx
.ctx
;
733 if (ctx
->features
& UFFD_FEATURE_EVENT_REMAP
) {
735 userfaultfd_ctx_get(ctx
);
736 down_write(&ctx
->map_changing_lock
);
737 atomic_inc(&ctx
->mmap_changing
);
738 up_write(&ctx
->map_changing_lock
);
740 /* Drop uffd context if remap feature not enabled */
741 userfaultfd_reset_ctx(vma
);
745 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx
*vm_ctx
,
746 unsigned long from
, unsigned long to
,
749 struct userfaultfd_ctx
*ctx
= vm_ctx
->ctx
;
750 struct userfaultfd_wait_queue ewq
;
755 if (to
& ~PAGE_MASK
) {
756 userfaultfd_ctx_put(ctx
);
762 ewq
.msg
.event
= UFFD_EVENT_REMAP
;
763 ewq
.msg
.arg
.remap
.from
= from
;
764 ewq
.msg
.arg
.remap
.to
= to
;
765 ewq
.msg
.arg
.remap
.len
= len
;
767 userfaultfd_event_wait_completion(ctx
, &ewq
);
770 bool userfaultfd_remove(struct vm_area_struct
*vma
,
771 unsigned long start
, unsigned long end
)
773 struct mm_struct
*mm
= vma
->vm_mm
;
774 struct userfaultfd_ctx
*ctx
;
775 struct userfaultfd_wait_queue ewq
;
777 ctx
= vma
->vm_userfaultfd_ctx
.ctx
;
778 if (!ctx
|| !(ctx
->features
& UFFD_FEATURE_EVENT_REMOVE
))
781 userfaultfd_ctx_get(ctx
);
782 down_write(&ctx
->map_changing_lock
);
783 atomic_inc(&ctx
->mmap_changing
);
784 up_write(&ctx
->map_changing_lock
);
785 mmap_read_unlock(mm
);
789 ewq
.msg
.event
= UFFD_EVENT_REMOVE
;
790 ewq
.msg
.arg
.remove
.start
= start
;
791 ewq
.msg
.arg
.remove
.end
= end
;
793 userfaultfd_event_wait_completion(ctx
, &ewq
);
798 static bool has_unmap_ctx(struct userfaultfd_ctx
*ctx
, struct list_head
*unmaps
,
799 unsigned long start
, unsigned long end
)
801 struct userfaultfd_unmap_ctx
*unmap_ctx
;
803 list_for_each_entry(unmap_ctx
, unmaps
, list
)
804 if (unmap_ctx
->ctx
== ctx
&& unmap_ctx
->start
== start
&&
805 unmap_ctx
->end
== end
)
811 int userfaultfd_unmap_prep(struct vm_area_struct
*vma
, unsigned long start
,
812 unsigned long end
, struct list_head
*unmaps
)
814 struct userfaultfd_unmap_ctx
*unmap_ctx
;
815 struct userfaultfd_ctx
*ctx
= vma
->vm_userfaultfd_ctx
.ctx
;
817 if (!ctx
|| !(ctx
->features
& UFFD_FEATURE_EVENT_UNMAP
) ||
818 has_unmap_ctx(ctx
, unmaps
, start
, end
))
821 unmap_ctx
= kzalloc(sizeof(*unmap_ctx
), GFP_KERNEL
);
825 userfaultfd_ctx_get(ctx
);
826 down_write(&ctx
->map_changing_lock
);
827 atomic_inc(&ctx
->mmap_changing
);
828 up_write(&ctx
->map_changing_lock
);
829 unmap_ctx
->ctx
= ctx
;
830 unmap_ctx
->start
= start
;
831 unmap_ctx
->end
= end
;
832 list_add_tail(&unmap_ctx
->list
, unmaps
);
837 void userfaultfd_unmap_complete(struct mm_struct
*mm
, struct list_head
*uf
)
839 struct userfaultfd_unmap_ctx
*ctx
, *n
;
840 struct userfaultfd_wait_queue ewq
;
842 list_for_each_entry_safe(ctx
, n
, uf
, list
) {
845 ewq
.msg
.event
= UFFD_EVENT_UNMAP
;
846 ewq
.msg
.arg
.remove
.start
= ctx
->start
;
847 ewq
.msg
.arg
.remove
.end
= ctx
->end
;
849 userfaultfd_event_wait_completion(ctx
->ctx
, &ewq
);
851 list_del(&ctx
->list
);
856 static int userfaultfd_release(struct inode
*inode
, struct file
*file
)
858 struct userfaultfd_ctx
*ctx
= file
->private_data
;
859 struct mm_struct
*mm
= ctx
->mm
;
860 /* len == 0 means wake all */
861 struct userfaultfd_wake_range range
= { .len
= 0, };
863 WRITE_ONCE(ctx
->released
, true);
865 userfaultfd_release_all(mm
, ctx
);
868 * After no new page faults can wait on this fault_*wqh, flush
869 * the last page faults that may have been already waiting on
872 spin_lock_irq(&ctx
->fault_pending_wqh
.lock
);
873 __wake_up_locked_key(&ctx
->fault_pending_wqh
, TASK_NORMAL
, &range
);
874 __wake_up(&ctx
->fault_wqh
, TASK_NORMAL
, 1, &range
);
875 spin_unlock_irq(&ctx
->fault_pending_wqh
.lock
);
877 /* Flush pending events that may still wait on event_wqh */
878 wake_up_all(&ctx
->event_wqh
);
880 wake_up_poll(&ctx
->fd_wqh
, EPOLLHUP
);
881 userfaultfd_ctx_put(ctx
);
885 /* fault_pending_wqh.lock must be hold by the caller */
886 static inline struct userfaultfd_wait_queue
*find_userfault_in(
887 wait_queue_head_t
*wqh
)
889 wait_queue_entry_t
*wq
;
890 struct userfaultfd_wait_queue
*uwq
;
892 lockdep_assert_held(&wqh
->lock
);
895 if (!waitqueue_active(wqh
))
897 /* walk in reverse to provide FIFO behavior to read userfaults */
898 wq
= list_last_entry(&wqh
->head
, typeof(*wq
), entry
);
899 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
904 static inline struct userfaultfd_wait_queue
*find_userfault(
905 struct userfaultfd_ctx
*ctx
)
907 return find_userfault_in(&ctx
->fault_pending_wqh
);
910 static inline struct userfaultfd_wait_queue
*find_userfault_evt(
911 struct userfaultfd_ctx
*ctx
)
913 return find_userfault_in(&ctx
->event_wqh
);
916 static __poll_t
userfaultfd_poll(struct file
*file
, poll_table
*wait
)
918 struct userfaultfd_ctx
*ctx
= file
->private_data
;
921 poll_wait(file
, &ctx
->fd_wqh
, wait
);
923 if (!userfaultfd_is_initialized(ctx
))
927 * poll() never guarantees that read won't block.
928 * userfaults can be waken before they're read().
930 if (unlikely(!(file
->f_flags
& O_NONBLOCK
)))
933 * lockless access to see if there are pending faults
934 * __pollwait last action is the add_wait_queue but
935 * the spin_unlock would allow the waitqueue_active to
936 * pass above the actual list_add inside
937 * add_wait_queue critical section. So use a full
938 * memory barrier to serialize the list_add write of
939 * add_wait_queue() with the waitqueue_active read
944 if (waitqueue_active(&ctx
->fault_pending_wqh
))
946 else if (waitqueue_active(&ctx
->event_wqh
))
952 static const struct file_operations userfaultfd_fops
;
954 static int resolve_userfault_fork(struct userfaultfd_ctx
*new,
956 struct uffd_msg
*msg
)
960 fd
= anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops
, new,
961 O_RDONLY
| (new->flags
& UFFD_SHARED_FCNTL_FLAGS
), inode
);
965 msg
->arg
.reserved
.reserved1
= 0;
966 msg
->arg
.fork
.ufd
= fd
;
970 static ssize_t
userfaultfd_ctx_read(struct userfaultfd_ctx
*ctx
, int no_wait
,
971 struct uffd_msg
*msg
, struct inode
*inode
)
974 DECLARE_WAITQUEUE(wait
, current
);
975 struct userfaultfd_wait_queue
*uwq
;
977 * Handling fork event requires sleeping operations, so
978 * we drop the event_wqh lock, then do these ops, then
979 * lock it back and wake up the waiter. While the lock is
980 * dropped the ewq may go away so we keep track of it
983 LIST_HEAD(fork_event
);
984 struct userfaultfd_ctx
*fork_nctx
= NULL
;
986 /* always take the fd_wqh lock before the fault_pending_wqh lock */
987 spin_lock_irq(&ctx
->fd_wqh
.lock
);
988 __add_wait_queue(&ctx
->fd_wqh
, &wait
);
990 set_current_state(TASK_INTERRUPTIBLE
);
991 spin_lock(&ctx
->fault_pending_wqh
.lock
);
992 uwq
= find_userfault(ctx
);
995 * Use a seqcount to repeat the lockless check
996 * in wake_userfault() to avoid missing
997 * wakeups because during the refile both
998 * waitqueue could become empty if this is the
1001 write_seqcount_begin(&ctx
->refile_seq
);
1004 * The fault_pending_wqh.lock prevents the uwq
1005 * to disappear from under us.
1007 * Refile this userfault from
1008 * fault_pending_wqh to fault_wqh, it's not
1009 * pending anymore after we read it.
1011 * Use list_del() by hand (as
1012 * userfaultfd_wake_function also uses
1013 * list_del_init() by hand) to be sure nobody
1014 * changes __remove_wait_queue() to use
1015 * list_del_init() in turn breaking the
1016 * !list_empty_careful() check in
1017 * handle_userfault(). The uwq->wq.head list
1018 * must never be empty at any time during the
1019 * refile, or the waitqueue could disappear
1020 * from under us. The "wait_queue_head_t"
1021 * parameter of __remove_wait_queue() is unused
1024 list_del(&uwq
->wq
.entry
);
1025 add_wait_queue(&ctx
->fault_wqh
, &uwq
->wq
);
1027 write_seqcount_end(&ctx
->refile_seq
);
1029 /* careful to always initialize msg if ret == 0 */
1031 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1035 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1037 spin_lock(&ctx
->event_wqh
.lock
);
1038 uwq
= find_userfault_evt(ctx
);
1042 if (uwq
->msg
.event
== UFFD_EVENT_FORK
) {
1043 fork_nctx
= (struct userfaultfd_ctx
*)
1045 uwq
->msg
.arg
.reserved
.reserved1
;
1046 list_move(&uwq
->wq
.entry
, &fork_event
);
1048 * fork_nctx can be freed as soon as
1049 * we drop the lock, unless we take a
1052 userfaultfd_ctx_get(fork_nctx
);
1053 spin_unlock(&ctx
->event_wqh
.lock
);
1058 userfaultfd_event_complete(ctx
, uwq
);
1059 spin_unlock(&ctx
->event_wqh
.lock
);
1063 spin_unlock(&ctx
->event_wqh
.lock
);
1065 if (signal_pending(current
)) {
1073 spin_unlock_irq(&ctx
->fd_wqh
.lock
);
1075 spin_lock_irq(&ctx
->fd_wqh
.lock
);
1077 __remove_wait_queue(&ctx
->fd_wqh
, &wait
);
1078 __set_current_state(TASK_RUNNING
);
1079 spin_unlock_irq(&ctx
->fd_wqh
.lock
);
1081 if (!ret
&& msg
->event
== UFFD_EVENT_FORK
) {
1082 ret
= resolve_userfault_fork(fork_nctx
, inode
, msg
);
1083 spin_lock_irq(&ctx
->event_wqh
.lock
);
1084 if (!list_empty(&fork_event
)) {
1086 * The fork thread didn't abort, so we can
1087 * drop the temporary refcount.
1089 userfaultfd_ctx_put(fork_nctx
);
1091 uwq
= list_first_entry(&fork_event
,
1095 * If fork_event list wasn't empty and in turn
1096 * the event wasn't already released by fork
1097 * (the event is allocated on fork kernel
1098 * stack), put the event back to its place in
1099 * the event_wq. fork_event head will be freed
1100 * as soon as we return so the event cannot
1101 * stay queued there no matter the current
1104 list_del(&uwq
->wq
.entry
);
1105 __add_wait_queue(&ctx
->event_wqh
, &uwq
->wq
);
1108 * Leave the event in the waitqueue and report
1109 * error to userland if we failed to resolve
1110 * the userfault fork.
1113 userfaultfd_event_complete(ctx
, uwq
);
1116 * Here the fork thread aborted and the
1117 * refcount from the fork thread on fork_nctx
1118 * has already been released. We still hold
1119 * the reference we took before releasing the
1120 * lock above. If resolve_userfault_fork
1121 * failed we've to drop it because the
1122 * fork_nctx has to be freed in such case. If
1123 * it succeeded we'll hold it because the new
1124 * uffd references it.
1127 userfaultfd_ctx_put(fork_nctx
);
1129 spin_unlock_irq(&ctx
->event_wqh
.lock
);
1135 static ssize_t
userfaultfd_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
1137 struct file
*file
= iocb
->ki_filp
;
1138 struct userfaultfd_ctx
*ctx
= file
->private_data
;
1139 ssize_t _ret
, ret
= 0;
1140 struct uffd_msg msg
;
1141 struct inode
*inode
= file_inode(file
);
1144 if (!userfaultfd_is_initialized(ctx
))
1147 no_wait
= file
->f_flags
& O_NONBLOCK
|| iocb
->ki_flags
& IOCB_NOWAIT
;
1149 if (iov_iter_count(to
) < sizeof(msg
))
1150 return ret
? ret
: -EINVAL
;
1151 _ret
= userfaultfd_ctx_read(ctx
, no_wait
, &msg
, inode
);
1153 return ret
? ret
: _ret
;
1154 _ret
= !copy_to_iter_full(&msg
, sizeof(msg
), to
);
1156 return ret
? ret
: -EFAULT
;
1159 * Allow to read more than one fault at time but only
1160 * block if waiting for the very first one.
1166 static void __wake_userfault(struct userfaultfd_ctx
*ctx
,
1167 struct userfaultfd_wake_range
*range
)
1169 spin_lock_irq(&ctx
->fault_pending_wqh
.lock
);
1170 /* wake all in the range and autoremove */
1171 if (waitqueue_active(&ctx
->fault_pending_wqh
))
1172 __wake_up_locked_key(&ctx
->fault_pending_wqh
, TASK_NORMAL
,
1174 if (waitqueue_active(&ctx
->fault_wqh
))
1175 __wake_up(&ctx
->fault_wqh
, TASK_NORMAL
, 1, range
);
1176 spin_unlock_irq(&ctx
->fault_pending_wqh
.lock
);
1179 static __always_inline
void wake_userfault(struct userfaultfd_ctx
*ctx
,
1180 struct userfaultfd_wake_range
*range
)
1186 * To be sure waitqueue_active() is not reordered by the CPU
1187 * before the pagetable update, use an explicit SMP memory
1188 * barrier here. PT lock release or mmap_read_unlock(mm) still
1189 * have release semantics that can allow the
1190 * waitqueue_active() to be reordered before the pte update.
1195 * Use waitqueue_active because it's very frequent to
1196 * change the address space atomically even if there are no
1197 * userfaults yet. So we take the spinlock only when we're
1198 * sure we've userfaults to wake.
1201 seq
= read_seqcount_begin(&ctx
->refile_seq
);
1202 need_wakeup
= waitqueue_active(&ctx
->fault_pending_wqh
) ||
1203 waitqueue_active(&ctx
->fault_wqh
);
1205 } while (read_seqcount_retry(&ctx
->refile_seq
, seq
));
1207 __wake_userfault(ctx
, range
);
1210 static __always_inline
int validate_unaligned_range(
1211 struct mm_struct
*mm
, __u64 start
, __u64 len
)
1213 __u64 task_size
= mm
->task_size
;
1215 if (len
& ~PAGE_MASK
)
1219 if (start
< mmap_min_addr
)
1221 if (start
>= task_size
)
1223 if (len
> task_size
- start
)
1225 if (start
+ len
<= start
)
1230 static __always_inline
int validate_range(struct mm_struct
*mm
,
1231 __u64 start
, __u64 len
)
1233 if (start
& ~PAGE_MASK
)
1236 return validate_unaligned_range(mm
, start
, len
);
1239 static int userfaultfd_register(struct userfaultfd_ctx
*ctx
,
1242 struct mm_struct
*mm
= ctx
->mm
;
1243 struct vm_area_struct
*vma
, *cur
;
1245 struct uffdio_register uffdio_register
;
1246 struct uffdio_register __user
*user_uffdio_register
;
1247 unsigned long vm_flags
;
1250 unsigned long start
, end
;
1251 struct vma_iterator vmi
;
1252 bool wp_async
= userfaultfd_wp_async_ctx(ctx
);
1254 user_uffdio_register
= (struct uffdio_register __user
*) arg
;
1257 if (copy_from_user(&uffdio_register
, user_uffdio_register
,
1258 sizeof(uffdio_register
)-sizeof(__u64
)))
1262 if (!uffdio_register
.mode
)
1264 if (uffdio_register
.mode
& ~UFFD_API_REGISTER_MODES
)
1267 if (uffdio_register
.mode
& UFFDIO_REGISTER_MODE_MISSING
)
1268 vm_flags
|= VM_UFFD_MISSING
;
1269 if (uffdio_register
.mode
& UFFDIO_REGISTER_MODE_WP
) {
1270 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1273 vm_flags
|= VM_UFFD_WP
;
1275 if (uffdio_register
.mode
& UFFDIO_REGISTER_MODE_MINOR
) {
1276 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1279 vm_flags
|= VM_UFFD_MINOR
;
1282 ret
= validate_range(mm
, uffdio_register
.range
.start
,
1283 uffdio_register
.range
.len
);
1287 start
= uffdio_register
.range
.start
;
1288 end
= start
+ uffdio_register
.range
.len
;
1291 if (!mmget_not_zero(mm
))
1295 mmap_write_lock(mm
);
1296 vma_iter_init(&vmi
, mm
, start
);
1297 vma
= vma_find(&vmi
, end
);
1302 * If the first vma contains huge pages, make sure start address
1303 * is aligned to huge page size.
1305 if (is_vm_hugetlb_page(vma
)) {
1306 unsigned long vma_hpagesize
= vma_kernel_pagesize(vma
);
1308 if (start
& (vma_hpagesize
- 1))
1313 * Search for not compatible vmas.
1316 basic_ioctls
= false;
1321 BUG_ON(!!cur
->vm_userfaultfd_ctx
.ctx
^
1322 !!(cur
->vm_flags
& __VM_UFFD_FLAGS
));
1324 /* check not compatible vmas */
1326 if (!vma_can_userfault(cur
, vm_flags
, wp_async
))
1330 * UFFDIO_COPY will fill file holes even without
1331 * PROT_WRITE. This check enforces that if this is a
1332 * MAP_SHARED, the process has write permission to the backing
1333 * file. If VM_MAYWRITE is set it also enforces that on a
1334 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1335 * F_WRITE_SEAL can be taken until the vma is destroyed.
1338 if (unlikely(!(cur
->vm_flags
& VM_MAYWRITE
)))
1342 * If this vma contains ending address, and huge pages
1345 if (is_vm_hugetlb_page(cur
) && end
<= cur
->vm_end
&&
1346 end
> cur
->vm_start
) {
1347 unsigned long vma_hpagesize
= vma_kernel_pagesize(cur
);
1351 if (end
& (vma_hpagesize
- 1))
1354 if ((vm_flags
& VM_UFFD_WP
) && !(cur
->vm_flags
& VM_MAYWRITE
))
1358 * Check that this vma isn't already owned by a
1359 * different userfaultfd. We can't allow more than one
1360 * userfaultfd to own a single vma simultaneously or we
1361 * wouldn't know which one to deliver the userfaults to.
1364 if (cur
->vm_userfaultfd_ctx
.ctx
&&
1365 cur
->vm_userfaultfd_ctx
.ctx
!= ctx
)
1369 * Note vmas containing huge pages
1371 if (is_vm_hugetlb_page(cur
))
1372 basic_ioctls
= true;
1375 } for_each_vma_range(vmi
, cur
, end
);
1378 ret
= userfaultfd_register_range(ctx
, vma
, vm_flags
, start
, end
,
1382 mmap_write_unlock(mm
);
1387 ioctls_out
= basic_ioctls
? UFFD_API_RANGE_IOCTLS_BASIC
:
1388 UFFD_API_RANGE_IOCTLS
;
1391 * Declare the WP ioctl only if the WP mode is
1392 * specified and all checks passed with the range
1394 if (!(uffdio_register
.mode
& UFFDIO_REGISTER_MODE_WP
))
1395 ioctls_out
&= ~((__u64
)1 << _UFFDIO_WRITEPROTECT
);
1397 /* CONTINUE ioctl is only supported for MINOR ranges. */
1398 if (!(uffdio_register
.mode
& UFFDIO_REGISTER_MODE_MINOR
))
1399 ioctls_out
&= ~((__u64
)1 << _UFFDIO_CONTINUE
);
1402 * Now that we scanned all vmas we can already tell
1403 * userland which ioctls methods are guaranteed to
1404 * succeed on this range.
1406 if (put_user(ioctls_out
, &user_uffdio_register
->ioctls
))
1413 static int userfaultfd_unregister(struct userfaultfd_ctx
*ctx
,
1416 struct mm_struct
*mm
= ctx
->mm
;
1417 struct vm_area_struct
*vma
, *prev
, *cur
;
1419 struct uffdio_range uffdio_unregister
;
1421 unsigned long start
, end
, vma_end
;
1422 const void __user
*buf
= (void __user
*)arg
;
1423 struct vma_iterator vmi
;
1424 bool wp_async
= userfaultfd_wp_async_ctx(ctx
);
1427 if (copy_from_user(&uffdio_unregister
, buf
, sizeof(uffdio_unregister
)))
1430 ret
= validate_range(mm
, uffdio_unregister
.start
,
1431 uffdio_unregister
.len
);
1435 start
= uffdio_unregister
.start
;
1436 end
= start
+ uffdio_unregister
.len
;
1439 if (!mmget_not_zero(mm
))
1442 mmap_write_lock(mm
);
1444 vma_iter_init(&vmi
, mm
, start
);
1445 vma
= vma_find(&vmi
, end
);
1450 * If the first vma contains huge pages, make sure start address
1451 * is aligned to huge page size.
1453 if (is_vm_hugetlb_page(vma
)) {
1454 unsigned long vma_hpagesize
= vma_kernel_pagesize(vma
);
1456 if (start
& (vma_hpagesize
- 1))
1461 * Search for not compatible vmas.
1468 BUG_ON(!!cur
->vm_userfaultfd_ctx
.ctx
^
1469 !!(cur
->vm_flags
& __VM_UFFD_FLAGS
));
1472 * Check not compatible vmas, not strictly required
1473 * here as not compatible vmas cannot have an
1474 * userfaultfd_ctx registered on them, but this
1475 * provides for more strict behavior to notice
1476 * unregistration errors.
1478 if (!vma_can_userfault(cur
, cur
->vm_flags
, wp_async
))
1482 } for_each_vma_range(vmi
, cur
, end
);
1485 vma_iter_set(&vmi
, start
);
1486 prev
= vma_prev(&vmi
);
1487 if (vma
->vm_start
< start
)
1491 for_each_vma_range(vmi
, vma
, end
) {
1494 BUG_ON(!vma_can_userfault(vma
, vma
->vm_flags
, wp_async
));
1497 * Nothing to do: this vma is already registered into this
1498 * userfaultfd and with the right tracking mode too.
1500 if (!vma
->vm_userfaultfd_ctx
.ctx
)
1503 WARN_ON(!(vma
->vm_flags
& VM_MAYWRITE
));
1505 if (vma
->vm_start
> start
)
1506 start
= vma
->vm_start
;
1507 vma_end
= min(end
, vma
->vm_end
);
1509 if (userfaultfd_missing(vma
)) {
1511 * Wake any concurrent pending userfault while
1512 * we unregister, so they will not hang
1513 * permanently and it avoids userland to call
1514 * UFFDIO_WAKE explicitly.
1516 struct userfaultfd_wake_range range
;
1517 range
.start
= start
;
1518 range
.len
= vma_end
- start
;
1519 wake_userfault(vma
->vm_userfaultfd_ctx
.ctx
, &range
);
1522 vma
= userfaultfd_clear_vma(&vmi
, prev
, vma
,
1531 start
= vma
->vm_end
;
1535 mmap_write_unlock(mm
);
1542 * userfaultfd_wake may be used in combination with the
1543 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1545 static int userfaultfd_wake(struct userfaultfd_ctx
*ctx
,
1549 struct uffdio_range uffdio_wake
;
1550 struct userfaultfd_wake_range range
;
1551 const void __user
*buf
= (void __user
*)arg
;
1554 if (copy_from_user(&uffdio_wake
, buf
, sizeof(uffdio_wake
)))
1557 ret
= validate_range(ctx
->mm
, uffdio_wake
.start
, uffdio_wake
.len
);
1561 range
.start
= uffdio_wake
.start
;
1562 range
.len
= uffdio_wake
.len
;
1565 * len == 0 means wake all and we don't want to wake all here,
1566 * so check it again to be sure.
1568 VM_BUG_ON(!range
.len
);
1570 wake_userfault(ctx
, &range
);
1577 static int userfaultfd_copy(struct userfaultfd_ctx
*ctx
,
1581 struct uffdio_copy uffdio_copy
;
1582 struct uffdio_copy __user
*user_uffdio_copy
;
1583 struct userfaultfd_wake_range range
;
1584 uffd_flags_t flags
= 0;
1586 user_uffdio_copy
= (struct uffdio_copy __user
*) arg
;
1589 if (atomic_read(&ctx
->mmap_changing
))
1593 if (copy_from_user(&uffdio_copy
, user_uffdio_copy
,
1594 /* don't copy "copy" last field */
1595 sizeof(uffdio_copy
)-sizeof(__s64
)))
1598 ret
= validate_unaligned_range(ctx
->mm
, uffdio_copy
.src
,
1602 ret
= validate_range(ctx
->mm
, uffdio_copy
.dst
, uffdio_copy
.len
);
1607 if (uffdio_copy
.mode
& ~(UFFDIO_COPY_MODE_DONTWAKE
|UFFDIO_COPY_MODE_WP
))
1609 if (uffdio_copy
.mode
& UFFDIO_COPY_MODE_WP
)
1610 flags
|= MFILL_ATOMIC_WP
;
1611 if (mmget_not_zero(ctx
->mm
)) {
1612 ret
= mfill_atomic_copy(ctx
, uffdio_copy
.dst
, uffdio_copy
.src
,
1613 uffdio_copy
.len
, flags
);
1618 if (unlikely(put_user(ret
, &user_uffdio_copy
->copy
)))
1623 /* len == 0 would wake all */
1625 if (!(uffdio_copy
.mode
& UFFDIO_COPY_MODE_DONTWAKE
)) {
1626 range
.start
= uffdio_copy
.dst
;
1627 wake_userfault(ctx
, &range
);
1629 ret
= range
.len
== uffdio_copy
.len
? 0 : -EAGAIN
;
1634 static int userfaultfd_zeropage(struct userfaultfd_ctx
*ctx
,
1638 struct uffdio_zeropage uffdio_zeropage
;
1639 struct uffdio_zeropage __user
*user_uffdio_zeropage
;
1640 struct userfaultfd_wake_range range
;
1642 user_uffdio_zeropage
= (struct uffdio_zeropage __user
*) arg
;
1645 if (atomic_read(&ctx
->mmap_changing
))
1649 if (copy_from_user(&uffdio_zeropage
, user_uffdio_zeropage
,
1650 /* don't copy "zeropage" last field */
1651 sizeof(uffdio_zeropage
)-sizeof(__s64
)))
1654 ret
= validate_range(ctx
->mm
, uffdio_zeropage
.range
.start
,
1655 uffdio_zeropage
.range
.len
);
1659 if (uffdio_zeropage
.mode
& ~UFFDIO_ZEROPAGE_MODE_DONTWAKE
)
1662 if (mmget_not_zero(ctx
->mm
)) {
1663 ret
= mfill_atomic_zeropage(ctx
, uffdio_zeropage
.range
.start
,
1664 uffdio_zeropage
.range
.len
);
1669 if (unlikely(put_user(ret
, &user_uffdio_zeropage
->zeropage
)))
1673 /* len == 0 would wake all */
1676 if (!(uffdio_zeropage
.mode
& UFFDIO_ZEROPAGE_MODE_DONTWAKE
)) {
1677 range
.start
= uffdio_zeropage
.range
.start
;
1678 wake_userfault(ctx
, &range
);
1680 ret
= range
.len
== uffdio_zeropage
.range
.len
? 0 : -EAGAIN
;
1685 static int userfaultfd_writeprotect(struct userfaultfd_ctx
*ctx
,
1689 struct uffdio_writeprotect uffdio_wp
;
1690 struct uffdio_writeprotect __user
*user_uffdio_wp
;
1691 struct userfaultfd_wake_range range
;
1692 bool mode_wp
, mode_dontwake
;
1694 if (atomic_read(&ctx
->mmap_changing
))
1697 user_uffdio_wp
= (struct uffdio_writeprotect __user
*) arg
;
1699 if (copy_from_user(&uffdio_wp
, user_uffdio_wp
,
1700 sizeof(struct uffdio_writeprotect
)))
1703 ret
= validate_range(ctx
->mm
, uffdio_wp
.range
.start
,
1704 uffdio_wp
.range
.len
);
1708 if (uffdio_wp
.mode
& ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE
|
1709 UFFDIO_WRITEPROTECT_MODE_WP
))
1712 mode_wp
= uffdio_wp
.mode
& UFFDIO_WRITEPROTECT_MODE_WP
;
1713 mode_dontwake
= uffdio_wp
.mode
& UFFDIO_WRITEPROTECT_MODE_DONTWAKE
;
1715 if (mode_wp
&& mode_dontwake
)
1718 if (mmget_not_zero(ctx
->mm
)) {
1719 ret
= mwriteprotect_range(ctx
, uffdio_wp
.range
.start
,
1720 uffdio_wp
.range
.len
, mode_wp
);
1729 if (!mode_wp
&& !mode_dontwake
) {
1730 range
.start
= uffdio_wp
.range
.start
;
1731 range
.len
= uffdio_wp
.range
.len
;
1732 wake_userfault(ctx
, &range
);
1737 static int userfaultfd_continue(struct userfaultfd_ctx
*ctx
, unsigned long arg
)
1740 struct uffdio_continue uffdio_continue
;
1741 struct uffdio_continue __user
*user_uffdio_continue
;
1742 struct userfaultfd_wake_range range
;
1743 uffd_flags_t flags
= 0;
1745 user_uffdio_continue
= (struct uffdio_continue __user
*)arg
;
1748 if (atomic_read(&ctx
->mmap_changing
))
1752 if (copy_from_user(&uffdio_continue
, user_uffdio_continue
,
1753 /* don't copy the output fields */
1754 sizeof(uffdio_continue
) - (sizeof(__s64
))))
1757 ret
= validate_range(ctx
->mm
, uffdio_continue
.range
.start
,
1758 uffdio_continue
.range
.len
);
1763 if (uffdio_continue
.mode
& ~(UFFDIO_CONTINUE_MODE_DONTWAKE
|
1764 UFFDIO_CONTINUE_MODE_WP
))
1766 if (uffdio_continue
.mode
& UFFDIO_CONTINUE_MODE_WP
)
1767 flags
|= MFILL_ATOMIC_WP
;
1769 if (mmget_not_zero(ctx
->mm
)) {
1770 ret
= mfill_atomic_continue(ctx
, uffdio_continue
.range
.start
,
1771 uffdio_continue
.range
.len
, flags
);
1777 if (unlikely(put_user(ret
, &user_uffdio_continue
->mapped
)))
1782 /* len == 0 would wake all */
1785 if (!(uffdio_continue
.mode
& UFFDIO_CONTINUE_MODE_DONTWAKE
)) {
1786 range
.start
= uffdio_continue
.range
.start
;
1787 wake_userfault(ctx
, &range
);
1789 ret
= range
.len
== uffdio_continue
.range
.len
? 0 : -EAGAIN
;
1795 static inline int userfaultfd_poison(struct userfaultfd_ctx
*ctx
, unsigned long arg
)
1798 struct uffdio_poison uffdio_poison
;
1799 struct uffdio_poison __user
*user_uffdio_poison
;
1800 struct userfaultfd_wake_range range
;
1802 user_uffdio_poison
= (struct uffdio_poison __user
*)arg
;
1805 if (atomic_read(&ctx
->mmap_changing
))
1809 if (copy_from_user(&uffdio_poison
, user_uffdio_poison
,
1810 /* don't copy the output fields */
1811 sizeof(uffdio_poison
) - (sizeof(__s64
))))
1814 ret
= validate_range(ctx
->mm
, uffdio_poison
.range
.start
,
1815 uffdio_poison
.range
.len
);
1820 if (uffdio_poison
.mode
& ~UFFDIO_POISON_MODE_DONTWAKE
)
1823 if (mmget_not_zero(ctx
->mm
)) {
1824 ret
= mfill_atomic_poison(ctx
, uffdio_poison
.range
.start
,
1825 uffdio_poison
.range
.len
, 0);
1831 if (unlikely(put_user(ret
, &user_uffdio_poison
->updated
)))
1836 /* len == 0 would wake all */
1839 if (!(uffdio_poison
.mode
& UFFDIO_POISON_MODE_DONTWAKE
)) {
1840 range
.start
= uffdio_poison
.range
.start
;
1841 wake_userfault(ctx
, &range
);
1843 ret
= range
.len
== uffdio_poison
.range
.len
? 0 : -EAGAIN
;
1849 bool userfaultfd_wp_async(struct vm_area_struct
*vma
)
1851 return userfaultfd_wp_async_ctx(vma
->vm_userfaultfd_ctx
.ctx
);
1854 static inline unsigned int uffd_ctx_features(__u64 user_features
)
1857 * For the current set of features the bits just coincide. Set
1858 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1860 return (unsigned int)user_features
| UFFD_FEATURE_INITIALIZED
;
1863 static int userfaultfd_move(struct userfaultfd_ctx
*ctx
,
1867 struct uffdio_move uffdio_move
;
1868 struct uffdio_move __user
*user_uffdio_move
;
1869 struct userfaultfd_wake_range range
;
1870 struct mm_struct
*mm
= ctx
->mm
;
1872 user_uffdio_move
= (struct uffdio_move __user
*) arg
;
1874 if (atomic_read(&ctx
->mmap_changing
))
1877 if (copy_from_user(&uffdio_move
, user_uffdio_move
,
1878 /* don't copy "move" last field */
1879 sizeof(uffdio_move
)-sizeof(__s64
)))
1882 /* Do not allow cross-mm moves. */
1883 if (mm
!= current
->mm
)
1886 ret
= validate_range(mm
, uffdio_move
.dst
, uffdio_move
.len
);
1890 ret
= validate_range(mm
, uffdio_move
.src
, uffdio_move
.len
);
1894 if (uffdio_move
.mode
& ~(UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES
|
1895 UFFDIO_MOVE_MODE_DONTWAKE
))
1898 if (mmget_not_zero(mm
)) {
1899 ret
= move_pages(ctx
, uffdio_move
.dst
, uffdio_move
.src
,
1900 uffdio_move
.len
, uffdio_move
.mode
);
1906 if (unlikely(put_user(ret
, &user_uffdio_move
->move
)))
1911 /* len == 0 would wake all */
1914 if (!(uffdio_move
.mode
& UFFDIO_MOVE_MODE_DONTWAKE
)) {
1915 range
.start
= uffdio_move
.dst
;
1916 wake_userfault(ctx
, &range
);
1918 ret
= range
.len
== uffdio_move
.len
? 0 : -EAGAIN
;
1925 * userland asks for a certain API version and we return which bits
1926 * and ioctl commands are implemented in this kernel for such API
1927 * version or -EINVAL if unknown.
1929 static int userfaultfd_api(struct userfaultfd_ctx
*ctx
,
1932 struct uffdio_api uffdio_api
;
1933 void __user
*buf
= (void __user
*)arg
;
1934 unsigned int ctx_features
;
1939 if (copy_from_user(&uffdio_api
, buf
, sizeof(uffdio_api
)))
1941 features
= uffdio_api
.features
;
1943 if (uffdio_api
.api
!= UFFD_API
)
1946 if ((features
& UFFD_FEATURE_EVENT_FORK
) && !capable(CAP_SYS_PTRACE
))
1949 /* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */
1950 if (features
& UFFD_FEATURE_WP_ASYNC
)
1951 features
|= UFFD_FEATURE_WP_UNPOPULATED
;
1953 /* report all available features and ioctls to userland */
1954 uffdio_api
.features
= UFFD_API_FEATURES
;
1955 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1956 uffdio_api
.features
&=
1957 ~(UFFD_FEATURE_MINOR_HUGETLBFS
| UFFD_FEATURE_MINOR_SHMEM
);
1959 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1960 uffdio_api
.features
&= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP
;
1962 #ifndef CONFIG_PTE_MARKER_UFFD_WP
1963 uffdio_api
.features
&= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM
;
1964 uffdio_api
.features
&= ~UFFD_FEATURE_WP_UNPOPULATED
;
1965 uffdio_api
.features
&= ~UFFD_FEATURE_WP_ASYNC
;
1969 if (features
& ~uffdio_api
.features
)
1972 uffdio_api
.ioctls
= UFFD_API_IOCTLS
;
1974 if (copy_to_user(buf
, &uffdio_api
, sizeof(uffdio_api
)))
1977 /* only enable the requested features for this uffd context */
1978 ctx_features
= uffd_ctx_features(features
);
1980 if (cmpxchg(&ctx
->features
, 0, ctx_features
) != 0)
1987 memset(&uffdio_api
, 0, sizeof(uffdio_api
));
1988 if (copy_to_user(buf
, &uffdio_api
, sizeof(uffdio_api
)))
1993 static long userfaultfd_ioctl(struct file
*file
, unsigned cmd
,
1997 struct userfaultfd_ctx
*ctx
= file
->private_data
;
1999 if (cmd
!= UFFDIO_API
&& !userfaultfd_is_initialized(ctx
))
2004 ret
= userfaultfd_api(ctx
, arg
);
2006 case UFFDIO_REGISTER
:
2007 ret
= userfaultfd_register(ctx
, arg
);
2009 case UFFDIO_UNREGISTER
:
2010 ret
= userfaultfd_unregister(ctx
, arg
);
2013 ret
= userfaultfd_wake(ctx
, arg
);
2016 ret
= userfaultfd_copy(ctx
, arg
);
2018 case UFFDIO_ZEROPAGE
:
2019 ret
= userfaultfd_zeropage(ctx
, arg
);
2022 ret
= userfaultfd_move(ctx
, arg
);
2024 case UFFDIO_WRITEPROTECT
:
2025 ret
= userfaultfd_writeprotect(ctx
, arg
);
2027 case UFFDIO_CONTINUE
:
2028 ret
= userfaultfd_continue(ctx
, arg
);
2031 ret
= userfaultfd_poison(ctx
, arg
);
2037 #ifdef CONFIG_PROC_FS
2038 static void userfaultfd_show_fdinfo(struct seq_file
*m
, struct file
*f
)
2040 struct userfaultfd_ctx
*ctx
= f
->private_data
;
2041 wait_queue_entry_t
*wq
;
2042 unsigned long pending
= 0, total
= 0;
2044 spin_lock_irq(&ctx
->fault_pending_wqh
.lock
);
2045 list_for_each_entry(wq
, &ctx
->fault_pending_wqh
.head
, entry
) {
2049 list_for_each_entry(wq
, &ctx
->fault_wqh
.head
, entry
) {
2052 spin_unlock_irq(&ctx
->fault_pending_wqh
.lock
);
2055 * If more protocols will be added, there will be all shown
2056 * separated by a space. Like this:
2057 * protocols: aa:... bb:...
2059 seq_printf(m
, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2060 pending
, total
, UFFD_API
, ctx
->features
,
2061 UFFD_API_IOCTLS
|UFFD_API_RANGE_IOCTLS
);
2065 static const struct file_operations userfaultfd_fops
= {
2066 #ifdef CONFIG_PROC_FS
2067 .show_fdinfo
= userfaultfd_show_fdinfo
,
2069 .release
= userfaultfd_release
,
2070 .poll
= userfaultfd_poll
,
2071 .read_iter
= userfaultfd_read_iter
,
2072 .unlocked_ioctl
= userfaultfd_ioctl
,
2073 .compat_ioctl
= compat_ptr_ioctl
,
2074 .llseek
= noop_llseek
,
2077 static void init_once_userfaultfd_ctx(void *mem
)
2079 struct userfaultfd_ctx
*ctx
= (struct userfaultfd_ctx
*) mem
;
2081 init_waitqueue_head(&ctx
->fault_pending_wqh
);
2082 init_waitqueue_head(&ctx
->fault_wqh
);
2083 init_waitqueue_head(&ctx
->event_wqh
);
2084 init_waitqueue_head(&ctx
->fd_wqh
);
2085 seqcount_spinlock_init(&ctx
->refile_seq
, &ctx
->fault_pending_wqh
.lock
);
2088 static int new_userfaultfd(int flags
)
2090 struct userfaultfd_ctx
*ctx
;
2094 BUG_ON(!current
->mm
);
2096 /* Check the UFFD_* constants for consistency. */
2097 BUILD_BUG_ON(UFFD_USER_MODE_ONLY
& UFFD_SHARED_FCNTL_FLAGS
);
2098 BUILD_BUG_ON(UFFD_CLOEXEC
!= O_CLOEXEC
);
2099 BUILD_BUG_ON(UFFD_NONBLOCK
!= O_NONBLOCK
);
2101 if (flags
& ~(UFFD_SHARED_FCNTL_FLAGS
| UFFD_USER_MODE_ONLY
))
2104 ctx
= kmem_cache_alloc(userfaultfd_ctx_cachep
, GFP_KERNEL
);
2108 refcount_set(&ctx
->refcount
, 1);
2111 ctx
->released
= false;
2112 init_rwsem(&ctx
->map_changing_lock
);
2113 atomic_set(&ctx
->mmap_changing
, 0);
2114 ctx
->mm
= current
->mm
;
2116 fd
= get_unused_fd_flags(flags
& UFFD_SHARED_FCNTL_FLAGS
);
2120 /* Create a new inode so that the LSM can block the creation. */
2121 file
= anon_inode_create_getfile("[userfaultfd]", &userfaultfd_fops
, ctx
,
2122 O_RDONLY
| (flags
& UFFD_SHARED_FCNTL_FLAGS
), NULL
);
2128 /* prevent the mm struct to be freed */
2130 file
->f_mode
|= FMODE_NOWAIT
;
2131 fd_install(fd
, file
);
2134 kmem_cache_free(userfaultfd_ctx_cachep
, ctx
);
2138 static inline bool userfaultfd_syscall_allowed(int flags
)
2140 /* Userspace-only page faults are always allowed */
2141 if (flags
& UFFD_USER_MODE_ONLY
)
2145 * The user is requesting a userfaultfd which can handle kernel faults.
2146 * Privileged users are always allowed to do this.
2148 if (capable(CAP_SYS_PTRACE
))
2151 /* Otherwise, access to kernel fault handling is sysctl controlled. */
2152 return sysctl_unprivileged_userfaultfd
;
2155 SYSCALL_DEFINE1(userfaultfd
, int, flags
)
2157 if (!userfaultfd_syscall_allowed(flags
))
2160 return new_userfaultfd(flags
);
2163 static long userfaultfd_dev_ioctl(struct file
*file
, unsigned int cmd
, unsigned long flags
)
2165 if (cmd
!= USERFAULTFD_IOC_NEW
)
2168 return new_userfaultfd(flags
);
2171 static const struct file_operations userfaultfd_dev_fops
= {
2172 .unlocked_ioctl
= userfaultfd_dev_ioctl
,
2173 .compat_ioctl
= userfaultfd_dev_ioctl
,
2174 .owner
= THIS_MODULE
,
2175 .llseek
= noop_llseek
,
2178 static struct miscdevice userfaultfd_misc
= {
2179 .minor
= MISC_DYNAMIC_MINOR
,
2180 .name
= "userfaultfd",
2181 .fops
= &userfaultfd_dev_fops
2184 static int __init
userfaultfd_init(void)
2188 ret
= misc_register(&userfaultfd_misc
);
2192 userfaultfd_ctx_cachep
= kmem_cache_create("userfaultfd_ctx_cache",
2193 sizeof(struct userfaultfd_ctx
),
2195 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
2196 init_once_userfaultfd_ctx
);
2197 #ifdef CONFIG_SYSCTL
2198 register_sysctl_init("vm", vm_userfaultfd_table
);
2202 __initcall(userfaultfd_init
);