drm/panel-edp: Add STA 116QHD024002
[drm/drm-misc.git] / fs / xfs / libxfs / xfs_ialloc.c
blobf3a840a425f5101982cba9fd902333143814b027
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_btree.h"
16 #include "xfs_ialloc.h"
17 #include "xfs_ialloc_btree.h"
18 #include "xfs_alloc.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
21 #include "xfs_bmap.h"
22 #include "xfs_trans.h"
23 #include "xfs_buf_item.h"
24 #include "xfs_icreate_item.h"
25 #include "xfs_icache.h"
26 #include "xfs_trace.h"
27 #include "xfs_log.h"
28 #include "xfs_rmap.h"
29 #include "xfs_ag.h"
30 #include "xfs_health.h"
33 * Lookup a record by ino in the btree given by cur.
35 int /* error */
36 xfs_inobt_lookup(
37 struct xfs_btree_cur *cur, /* btree cursor */
38 xfs_agino_t ino, /* starting inode of chunk */
39 xfs_lookup_t dir, /* <=, >=, == */
40 int *stat) /* success/failure */
42 cur->bc_rec.i.ir_startino = ino;
43 cur->bc_rec.i.ir_holemask = 0;
44 cur->bc_rec.i.ir_count = 0;
45 cur->bc_rec.i.ir_freecount = 0;
46 cur->bc_rec.i.ir_free = 0;
47 return xfs_btree_lookup(cur, dir, stat);
51 * Update the record referred to by cur to the value given.
52 * This either works (return 0) or gets an EFSCORRUPTED error.
54 STATIC int /* error */
55 xfs_inobt_update(
56 struct xfs_btree_cur *cur, /* btree cursor */
57 xfs_inobt_rec_incore_t *irec) /* btree record */
59 union xfs_btree_rec rec;
61 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
62 if (xfs_has_sparseinodes(cur->bc_mp)) {
63 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
64 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
65 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
66 } else {
67 /* ir_holemask/ir_count not supported on-disk */
68 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
70 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
71 return xfs_btree_update(cur, &rec);
74 /* Convert on-disk btree record to incore inobt record. */
75 void
76 xfs_inobt_btrec_to_irec(
77 struct xfs_mount *mp,
78 const union xfs_btree_rec *rec,
79 struct xfs_inobt_rec_incore *irec)
81 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
82 if (xfs_has_sparseinodes(mp)) {
83 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
84 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
85 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
86 } else {
88 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
89 * values for full inode chunks.
91 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
92 irec->ir_count = XFS_INODES_PER_CHUNK;
93 irec->ir_freecount =
94 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
96 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
99 /* Compute the freecount of an incore inode record. */
100 uint8_t
101 xfs_inobt_rec_freecount(
102 const struct xfs_inobt_rec_incore *irec)
104 uint64_t realfree = irec->ir_free;
106 if (xfs_inobt_issparse(irec->ir_holemask))
107 realfree &= xfs_inobt_irec_to_allocmask(irec);
108 return hweight64(realfree);
111 /* Simple checks for inode records. */
112 xfs_failaddr_t
113 xfs_inobt_check_irec(
114 struct xfs_perag *pag,
115 const struct xfs_inobt_rec_incore *irec)
117 /* Record has to be properly aligned within the AG. */
118 if (!xfs_verify_agino(pag, irec->ir_startino))
119 return __this_address;
120 if (!xfs_verify_agino(pag,
121 irec->ir_startino + XFS_INODES_PER_CHUNK - 1))
122 return __this_address;
123 if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
124 irec->ir_count > XFS_INODES_PER_CHUNK)
125 return __this_address;
126 if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
127 return __this_address;
129 if (xfs_inobt_rec_freecount(irec) != irec->ir_freecount)
130 return __this_address;
132 return NULL;
135 static inline int
136 xfs_inobt_complain_bad_rec(
137 struct xfs_btree_cur *cur,
138 xfs_failaddr_t fa,
139 const struct xfs_inobt_rec_incore *irec)
141 struct xfs_mount *mp = cur->bc_mp;
143 xfs_warn(mp,
144 "%sbt record corruption in AG %d detected at %pS!",
145 cur->bc_ops->name, cur->bc_group->xg_gno, fa);
146 xfs_warn(mp,
147 "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
148 irec->ir_startino, irec->ir_count, irec->ir_freecount,
149 irec->ir_free, irec->ir_holemask);
150 xfs_btree_mark_sick(cur);
151 return -EFSCORRUPTED;
155 * Get the data from the pointed-to record.
158 xfs_inobt_get_rec(
159 struct xfs_btree_cur *cur,
160 struct xfs_inobt_rec_incore *irec,
161 int *stat)
163 struct xfs_mount *mp = cur->bc_mp;
164 union xfs_btree_rec *rec;
165 xfs_failaddr_t fa;
166 int error;
168 error = xfs_btree_get_rec(cur, &rec, stat);
169 if (error || *stat == 0)
170 return error;
172 xfs_inobt_btrec_to_irec(mp, rec, irec);
173 fa = xfs_inobt_check_irec(to_perag(cur->bc_group), irec);
174 if (fa)
175 return xfs_inobt_complain_bad_rec(cur, fa, irec);
177 return 0;
181 * Insert a single inobt record. Cursor must already point to desired location.
184 xfs_inobt_insert_rec(
185 struct xfs_btree_cur *cur,
186 uint16_t holemask,
187 uint8_t count,
188 int32_t freecount,
189 xfs_inofree_t free,
190 int *stat)
192 cur->bc_rec.i.ir_holemask = holemask;
193 cur->bc_rec.i.ir_count = count;
194 cur->bc_rec.i.ir_freecount = freecount;
195 cur->bc_rec.i.ir_free = free;
196 return xfs_btree_insert(cur, stat);
200 * Insert records describing a newly allocated inode chunk into the inobt.
202 STATIC int
203 xfs_inobt_insert(
204 struct xfs_perag *pag,
205 struct xfs_trans *tp,
206 struct xfs_buf *agbp,
207 xfs_agino_t newino,
208 xfs_agino_t newlen,
209 bool is_finobt)
211 struct xfs_btree_cur *cur;
212 xfs_agino_t thisino;
213 int i;
214 int error;
216 if (is_finobt)
217 cur = xfs_finobt_init_cursor(pag, tp, agbp);
218 else
219 cur = xfs_inobt_init_cursor(pag, tp, agbp);
221 for (thisino = newino;
222 thisino < newino + newlen;
223 thisino += XFS_INODES_PER_CHUNK) {
224 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
225 if (error) {
226 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
227 return error;
229 ASSERT(i == 0);
231 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
232 XFS_INODES_PER_CHUNK,
233 XFS_INODES_PER_CHUNK,
234 XFS_INOBT_ALL_FREE, &i);
235 if (error) {
236 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
237 return error;
239 ASSERT(i == 1);
242 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
244 return 0;
248 * Verify that the number of free inodes in the AGI is correct.
250 #ifdef DEBUG
251 static int
252 xfs_check_agi_freecount(
253 struct xfs_btree_cur *cur)
255 if (cur->bc_nlevels == 1) {
256 xfs_inobt_rec_incore_t rec;
257 int freecount = 0;
258 int error;
259 int i;
261 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
262 if (error)
263 return error;
265 do {
266 error = xfs_inobt_get_rec(cur, &rec, &i);
267 if (error)
268 return error;
270 if (i) {
271 freecount += rec.ir_freecount;
272 error = xfs_btree_increment(cur, 0, &i);
273 if (error)
274 return error;
276 } while (i == 1);
278 if (!xfs_is_shutdown(cur->bc_mp)) {
279 ASSERT(freecount ==
280 to_perag(cur->bc_group)->pagi_freecount);
283 return 0;
285 #else
286 #define xfs_check_agi_freecount(cur) 0
287 #endif
290 * Initialise a new set of inodes. When called without a transaction context
291 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
292 * than logging them (which in a transaction context puts them into the AIL
293 * for writeback rather than the xfsbufd queue).
296 xfs_ialloc_inode_init(
297 struct xfs_mount *mp,
298 struct xfs_trans *tp,
299 struct list_head *buffer_list,
300 int icount,
301 xfs_agnumber_t agno,
302 xfs_agblock_t agbno,
303 xfs_agblock_t length,
304 unsigned int gen)
306 struct xfs_buf *fbuf;
307 struct xfs_dinode *free;
308 int nbufs;
309 int version;
310 int i, j;
311 xfs_daddr_t d;
312 xfs_ino_t ino = 0;
313 int error;
316 * Loop over the new block(s), filling in the inodes. For small block
317 * sizes, manipulate the inodes in buffers which are multiples of the
318 * blocks size.
320 nbufs = length / M_IGEO(mp)->blocks_per_cluster;
323 * Figure out what version number to use in the inodes we create. If
324 * the superblock version has caught up to the one that supports the new
325 * inode format, then use the new inode version. Otherwise use the old
326 * version so that old kernels will continue to be able to use the file
327 * system.
329 * For v3 inodes, we also need to write the inode number into the inode,
330 * so calculate the first inode number of the chunk here as
331 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
332 * across multiple filesystem blocks (such as a cluster) and so cannot
333 * be used in the cluster buffer loop below.
335 * Further, because we are writing the inode directly into the buffer
336 * and calculating a CRC on the entire inode, we have ot log the entire
337 * inode so that the entire range the CRC covers is present in the log.
338 * That means for v3 inode we log the entire buffer rather than just the
339 * inode cores.
341 if (xfs_has_v3inodes(mp)) {
342 version = 3;
343 ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
346 * log the initialisation that is about to take place as an
347 * logical operation. This means the transaction does not
348 * need to log the physical changes to the inode buffers as log
349 * recovery will know what initialisation is actually needed.
350 * Hence we only need to log the buffers as "ordered" buffers so
351 * they track in the AIL as if they were physically logged.
353 if (tp)
354 xfs_icreate_log(tp, agno, agbno, icount,
355 mp->m_sb.sb_inodesize, length, gen);
356 } else
357 version = 2;
359 for (j = 0; j < nbufs; j++) {
361 * Get the block.
363 d = XFS_AGB_TO_DADDR(mp, agno, agbno +
364 (j * M_IGEO(mp)->blocks_per_cluster));
365 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
366 mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
367 XBF_UNMAPPED, &fbuf);
368 if (error)
369 return error;
371 /* Initialize the inode buffers and log them appropriately. */
372 fbuf->b_ops = &xfs_inode_buf_ops;
373 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
374 for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
375 int ioffset = i << mp->m_sb.sb_inodelog;
377 free = xfs_make_iptr(mp, fbuf, i);
378 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
379 free->di_version = version;
380 free->di_gen = cpu_to_be32(gen);
381 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
383 if (version == 3) {
384 free->di_ino = cpu_to_be64(ino);
385 ino++;
386 uuid_copy(&free->di_uuid,
387 &mp->m_sb.sb_meta_uuid);
388 xfs_dinode_calc_crc(mp, free);
389 } else if (tp) {
390 /* just log the inode core */
391 xfs_trans_log_buf(tp, fbuf, ioffset,
392 ioffset + XFS_DINODE_SIZE(mp) - 1);
396 if (tp) {
398 * Mark the buffer as an inode allocation buffer so it
399 * sticks in AIL at the point of this allocation
400 * transaction. This ensures the they are on disk before
401 * the tail of the log can be moved past this
402 * transaction (i.e. by preventing relogging from moving
403 * it forward in the log).
405 xfs_trans_inode_alloc_buf(tp, fbuf);
406 if (version == 3) {
408 * Mark the buffer as ordered so that they are
409 * not physically logged in the transaction but
410 * still tracked in the AIL as part of the
411 * transaction and pin the log appropriately.
413 xfs_trans_ordered_buf(tp, fbuf);
415 } else {
416 fbuf->b_flags |= XBF_DONE;
417 xfs_buf_delwri_queue(fbuf, buffer_list);
418 xfs_buf_relse(fbuf);
421 return 0;
425 * Align startino and allocmask for a recently allocated sparse chunk such that
426 * they are fit for insertion (or merge) into the on-disk inode btrees.
428 * Background:
430 * When enabled, sparse inode support increases the inode alignment from cluster
431 * size to inode chunk size. This means that the minimum range between two
432 * non-adjacent inode records in the inobt is large enough for a full inode
433 * record. This allows for cluster sized, cluster aligned block allocation
434 * without need to worry about whether the resulting inode record overlaps with
435 * another record in the tree. Without this basic rule, we would have to deal
436 * with the consequences of overlap by potentially undoing recent allocations in
437 * the inode allocation codepath.
439 * Because of this alignment rule (which is enforced on mount), there are two
440 * inobt possibilities for newly allocated sparse chunks. One is that the
441 * aligned inode record for the chunk covers a range of inodes not already
442 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
443 * other is that a record already exists at the aligned startino that considers
444 * the newly allocated range as sparse. In the latter case, record content is
445 * merged in hope that sparse inode chunks fill to full chunks over time.
447 STATIC void
448 xfs_align_sparse_ino(
449 struct xfs_mount *mp,
450 xfs_agino_t *startino,
451 uint16_t *allocmask)
453 xfs_agblock_t agbno;
454 xfs_agblock_t mod;
455 int offset;
457 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
458 mod = agbno % mp->m_sb.sb_inoalignmt;
459 if (!mod)
460 return;
462 /* calculate the inode offset and align startino */
463 offset = XFS_AGB_TO_AGINO(mp, mod);
464 *startino -= offset;
467 * Since startino has been aligned down, left shift allocmask such that
468 * it continues to represent the same physical inodes relative to the
469 * new startino.
471 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
475 * Determine whether the source inode record can merge into the target. Both
476 * records must be sparse, the inode ranges must match and there must be no
477 * allocation overlap between the records.
479 STATIC bool
480 __xfs_inobt_can_merge(
481 struct xfs_inobt_rec_incore *trec, /* tgt record */
482 struct xfs_inobt_rec_incore *srec) /* src record */
484 uint64_t talloc;
485 uint64_t salloc;
487 /* records must cover the same inode range */
488 if (trec->ir_startino != srec->ir_startino)
489 return false;
491 /* both records must be sparse */
492 if (!xfs_inobt_issparse(trec->ir_holemask) ||
493 !xfs_inobt_issparse(srec->ir_holemask))
494 return false;
496 /* both records must track some inodes */
497 if (!trec->ir_count || !srec->ir_count)
498 return false;
500 /* can't exceed capacity of a full record */
501 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
502 return false;
504 /* verify there is no allocation overlap */
505 talloc = xfs_inobt_irec_to_allocmask(trec);
506 salloc = xfs_inobt_irec_to_allocmask(srec);
507 if (talloc & salloc)
508 return false;
510 return true;
514 * Merge the source inode record into the target. The caller must call
515 * __xfs_inobt_can_merge() to ensure the merge is valid.
517 STATIC void
518 __xfs_inobt_rec_merge(
519 struct xfs_inobt_rec_incore *trec, /* target */
520 struct xfs_inobt_rec_incore *srec) /* src */
522 ASSERT(trec->ir_startino == srec->ir_startino);
524 /* combine the counts */
525 trec->ir_count += srec->ir_count;
526 trec->ir_freecount += srec->ir_freecount;
529 * Merge the holemask and free mask. For both fields, 0 bits refer to
530 * allocated inodes. We combine the allocated ranges with bitwise AND.
532 trec->ir_holemask &= srec->ir_holemask;
533 trec->ir_free &= srec->ir_free;
537 * Insert a new sparse inode chunk into the associated inode allocation btree.
538 * The inode record for the sparse chunk is pre-aligned to a startino that
539 * should match any pre-existing sparse inode record in the tree. This allows
540 * sparse chunks to fill over time.
542 * If no preexisting record exists, the provided record is inserted.
543 * If there is a preexisting record, the provided record is merged with the
544 * existing record and updated in place. The merged record is returned in nrec.
546 * It is considered corruption if a merge is requested and not possible. Given
547 * the sparse inode alignment constraints, this should never happen.
549 STATIC int
550 xfs_inobt_insert_sprec(
551 struct xfs_perag *pag,
552 struct xfs_trans *tp,
553 struct xfs_buf *agbp,
554 struct xfs_inobt_rec_incore *nrec) /* in/out: new/merged rec. */
556 struct xfs_mount *mp = pag_mount(pag);
557 struct xfs_btree_cur *cur;
558 int error;
559 int i;
560 struct xfs_inobt_rec_incore rec;
562 cur = xfs_inobt_init_cursor(pag, tp, agbp);
564 /* the new record is pre-aligned so we know where to look */
565 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
566 if (error)
567 goto error;
568 /* if nothing there, insert a new record and return */
569 if (i == 0) {
570 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
571 nrec->ir_count, nrec->ir_freecount,
572 nrec->ir_free, &i);
573 if (error)
574 goto error;
575 if (XFS_IS_CORRUPT(mp, i != 1)) {
576 xfs_btree_mark_sick(cur);
577 error = -EFSCORRUPTED;
578 goto error;
581 goto out;
585 * A record exists at this startino. Merge the records.
587 error = xfs_inobt_get_rec(cur, &rec, &i);
588 if (error)
589 goto error;
590 if (XFS_IS_CORRUPT(mp, i != 1)) {
591 xfs_btree_mark_sick(cur);
592 error = -EFSCORRUPTED;
593 goto error;
595 if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
596 xfs_btree_mark_sick(cur);
597 error = -EFSCORRUPTED;
598 goto error;
602 * This should never fail. If we have coexisting records that
603 * cannot merge, something is seriously wrong.
605 if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
606 xfs_btree_mark_sick(cur);
607 error = -EFSCORRUPTED;
608 goto error;
611 trace_xfs_irec_merge_pre(pag, &rec, nrec);
613 /* merge to nrec to output the updated record */
614 __xfs_inobt_rec_merge(nrec, &rec);
616 trace_xfs_irec_merge_post(pag, nrec);
618 error = xfs_inobt_rec_check_count(mp, nrec);
619 if (error)
620 goto error;
622 error = xfs_inobt_update(cur, nrec);
623 if (error)
624 goto error;
626 out:
627 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
628 return 0;
629 error:
630 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
631 return error;
635 * Insert a new sparse inode chunk into the free inode btree. The inode
636 * record for the sparse chunk is pre-aligned to a startino that should match
637 * any pre-existing sparse inode record in the tree. This allows sparse chunks
638 * to fill over time.
640 * The new record is always inserted, overwriting a pre-existing record if
641 * there is one.
643 STATIC int
644 xfs_finobt_insert_sprec(
645 struct xfs_perag *pag,
646 struct xfs_trans *tp,
647 struct xfs_buf *agbp,
648 struct xfs_inobt_rec_incore *nrec) /* in/out: new rec. */
650 struct xfs_mount *mp = pag_mount(pag);
651 struct xfs_btree_cur *cur;
652 int error;
653 int i;
655 cur = xfs_finobt_init_cursor(pag, tp, agbp);
657 /* the new record is pre-aligned so we know where to look */
658 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
659 if (error)
660 goto error;
661 /* if nothing there, insert a new record and return */
662 if (i == 0) {
663 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
664 nrec->ir_count, nrec->ir_freecount,
665 nrec->ir_free, &i);
666 if (error)
667 goto error;
668 if (XFS_IS_CORRUPT(mp, i != 1)) {
669 xfs_btree_mark_sick(cur);
670 error = -EFSCORRUPTED;
671 goto error;
673 } else {
674 error = xfs_inobt_update(cur, nrec);
675 if (error)
676 goto error;
679 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
680 return 0;
681 error:
682 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
683 return error;
688 * Allocate new inodes in the allocation group specified by agbp. Returns 0 if
689 * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
690 * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
691 * inode count threshold, or the usual negative error code for other errors.
693 STATIC int
694 xfs_ialloc_ag_alloc(
695 struct xfs_perag *pag,
696 struct xfs_trans *tp,
697 struct xfs_buf *agbp)
699 struct xfs_agi *agi;
700 struct xfs_alloc_arg args;
701 int error;
702 xfs_agino_t newino; /* new first inode's number */
703 xfs_agino_t newlen; /* new number of inodes */
704 int isaligned = 0; /* inode allocation at stripe */
705 /* unit boundary */
706 /* init. to full chunk */
707 struct xfs_inobt_rec_incore rec;
708 struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp);
709 uint16_t allocmask = (uint16_t) -1;
710 int do_sparse = 0;
712 memset(&args, 0, sizeof(args));
713 args.tp = tp;
714 args.mp = tp->t_mountp;
715 args.fsbno = NULLFSBLOCK;
716 args.oinfo = XFS_RMAP_OINFO_INODES;
717 args.pag = pag;
719 #ifdef DEBUG
720 /* randomly do sparse inode allocations */
721 if (xfs_has_sparseinodes(tp->t_mountp) &&
722 igeo->ialloc_min_blks < igeo->ialloc_blks)
723 do_sparse = get_random_u32_below(2);
724 #endif
727 * Locking will ensure that we don't have two callers in here
728 * at one time.
730 newlen = igeo->ialloc_inos;
731 if (igeo->maxicount &&
732 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
733 igeo->maxicount)
734 return -ENOSPC;
735 args.minlen = args.maxlen = igeo->ialloc_blks;
737 * First try to allocate inodes contiguous with the last-allocated
738 * chunk of inodes. If the filesystem is striped, this will fill
739 * an entire stripe unit with inodes.
741 agi = agbp->b_addr;
742 newino = be32_to_cpu(agi->agi_newino);
743 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
744 igeo->ialloc_blks;
745 if (do_sparse)
746 goto sparse_alloc;
747 if (likely(newino != NULLAGINO &&
748 (args.agbno < be32_to_cpu(agi->agi_length)))) {
749 args.prod = 1;
752 * We need to take into account alignment here to ensure that
753 * we don't modify the free list if we fail to have an exact
754 * block. If we don't have an exact match, and every oher
755 * attempt allocation attempt fails, we'll end up cancelling
756 * a dirty transaction and shutting down.
758 * For an exact allocation, alignment must be 1,
759 * however we need to take cluster alignment into account when
760 * fixing up the freelist. Use the minalignslop field to
761 * indicate that extra blocks might be required for alignment,
762 * but not to use them in the actual exact allocation.
764 args.alignment = 1;
765 args.minalignslop = igeo->cluster_align - 1;
767 /* Allow space for the inode btree to split. */
768 args.minleft = igeo->inobt_maxlevels;
769 error = xfs_alloc_vextent_exact_bno(&args,
770 xfs_agbno_to_fsb(pag, args.agbno));
771 if (error)
772 return error;
775 * This request might have dirtied the transaction if the AG can
776 * satisfy the request, but the exact block was not available.
777 * If the allocation did fail, subsequent requests will relax
778 * the exact agbno requirement and increase the alignment
779 * instead. It is critical that the total size of the request
780 * (len + alignment + slop) does not increase from this point
781 * on, so reset minalignslop to ensure it is not included in
782 * subsequent requests.
784 args.minalignslop = 0;
787 if (unlikely(args.fsbno == NULLFSBLOCK)) {
789 * Set the alignment for the allocation.
790 * If stripe alignment is turned on then align at stripe unit
791 * boundary.
792 * If the cluster size is smaller than a filesystem block
793 * then we're doing I/O for inodes in filesystem block size
794 * pieces, so don't need alignment anyway.
796 isaligned = 0;
797 if (igeo->ialloc_align) {
798 ASSERT(!xfs_has_noalign(args.mp));
799 args.alignment = args.mp->m_dalign;
800 isaligned = 1;
801 } else
802 args.alignment = igeo->cluster_align;
804 * Allocate a fixed-size extent of inodes.
806 args.prod = 1;
808 * Allow space for the inode btree to split.
810 args.minleft = igeo->inobt_maxlevels;
811 error = xfs_alloc_vextent_near_bno(&args,
812 xfs_agbno_to_fsb(pag,
813 be32_to_cpu(agi->agi_root)));
814 if (error)
815 return error;
819 * If stripe alignment is turned on, then try again with cluster
820 * alignment.
822 if (isaligned && args.fsbno == NULLFSBLOCK) {
823 args.alignment = igeo->cluster_align;
824 error = xfs_alloc_vextent_near_bno(&args,
825 xfs_agbno_to_fsb(pag,
826 be32_to_cpu(agi->agi_root)));
827 if (error)
828 return error;
832 * Finally, try a sparse allocation if the filesystem supports it and
833 * the sparse allocation length is smaller than a full chunk.
835 if (xfs_has_sparseinodes(args.mp) &&
836 igeo->ialloc_min_blks < igeo->ialloc_blks &&
837 args.fsbno == NULLFSBLOCK) {
838 sparse_alloc:
839 args.alignment = args.mp->m_sb.sb_spino_align;
840 args.prod = 1;
842 args.minlen = igeo->ialloc_min_blks;
843 args.maxlen = args.minlen;
846 * The inode record will be aligned to full chunk size. We must
847 * prevent sparse allocation from AG boundaries that result in
848 * invalid inode records, such as records that start at agbno 0
849 * or extend beyond the AG.
851 * Set min agbno to the first aligned, non-zero agbno and max to
852 * the last aligned agbno that is at least one full chunk from
853 * the end of the AG.
855 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
856 args.max_agbno = round_down(xfs_ag_block_count(args.mp,
857 pag_agno(pag)),
858 args.mp->m_sb.sb_inoalignmt) -
859 igeo->ialloc_blks;
861 error = xfs_alloc_vextent_near_bno(&args,
862 xfs_agbno_to_fsb(pag,
863 be32_to_cpu(agi->agi_root)));
864 if (error)
865 return error;
867 newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
868 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
869 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
872 if (args.fsbno == NULLFSBLOCK)
873 return -EAGAIN;
875 ASSERT(args.len == args.minlen);
878 * Stamp and write the inode buffers.
880 * Seed the new inode cluster with a random generation number. This
881 * prevents short-term reuse of generation numbers if a chunk is
882 * freed and then immediately reallocated. We use random numbers
883 * rather than a linear progression to prevent the next generation
884 * number from being easily guessable.
886 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag_agno(pag),
887 args.agbno, args.len, get_random_u32());
889 if (error)
890 return error;
892 * Convert the results.
894 newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
896 if (xfs_inobt_issparse(~allocmask)) {
898 * We've allocated a sparse chunk. Align the startino and mask.
900 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
902 rec.ir_startino = newino;
903 rec.ir_holemask = ~allocmask;
904 rec.ir_count = newlen;
905 rec.ir_freecount = newlen;
906 rec.ir_free = XFS_INOBT_ALL_FREE;
909 * Insert the sparse record into the inobt and allow for a merge
910 * if necessary. If a merge does occur, rec is updated to the
911 * merged record.
913 error = xfs_inobt_insert_sprec(pag, tp, agbp, &rec);
914 if (error == -EFSCORRUPTED) {
915 xfs_alert(args.mp,
916 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
917 xfs_agino_to_ino(pag, rec.ir_startino),
918 rec.ir_holemask, rec.ir_count);
919 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
921 if (error)
922 return error;
925 * We can't merge the part we've just allocated as for the inobt
926 * due to finobt semantics. The original record may or may not
927 * exist independent of whether physical inodes exist in this
928 * sparse chunk.
930 * We must update the finobt record based on the inobt record.
931 * rec contains the fully merged and up to date inobt record
932 * from the previous call. Set merge false to replace any
933 * existing record with this one.
935 if (xfs_has_finobt(args.mp)) {
936 error = xfs_finobt_insert_sprec(pag, tp, agbp, &rec);
937 if (error)
938 return error;
940 } else {
941 /* full chunk - insert new records to both btrees */
942 error = xfs_inobt_insert(pag, tp, agbp, newino, newlen, false);
943 if (error)
944 return error;
946 if (xfs_has_finobt(args.mp)) {
947 error = xfs_inobt_insert(pag, tp, agbp, newino,
948 newlen, true);
949 if (error)
950 return error;
955 * Update AGI counts and newino.
957 be32_add_cpu(&agi->agi_count, newlen);
958 be32_add_cpu(&agi->agi_freecount, newlen);
959 pag->pagi_freecount += newlen;
960 pag->pagi_count += newlen;
961 agi->agi_newino = cpu_to_be32(newino);
964 * Log allocation group header fields
966 xfs_ialloc_log_agi(tp, agbp,
967 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
969 * Modify/log superblock values for inode count and inode free count.
971 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
972 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
973 return 0;
977 * Try to retrieve the next record to the left/right from the current one.
979 STATIC int
980 xfs_ialloc_next_rec(
981 struct xfs_btree_cur *cur,
982 xfs_inobt_rec_incore_t *rec,
983 int *done,
984 int left)
986 int error;
987 int i;
989 if (left)
990 error = xfs_btree_decrement(cur, 0, &i);
991 else
992 error = xfs_btree_increment(cur, 0, &i);
994 if (error)
995 return error;
996 *done = !i;
997 if (i) {
998 error = xfs_inobt_get_rec(cur, rec, &i);
999 if (error)
1000 return error;
1001 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1002 xfs_btree_mark_sick(cur);
1003 return -EFSCORRUPTED;
1007 return 0;
1010 STATIC int
1011 xfs_ialloc_get_rec(
1012 struct xfs_btree_cur *cur,
1013 xfs_agino_t agino,
1014 xfs_inobt_rec_incore_t *rec,
1015 int *done)
1017 int error;
1018 int i;
1020 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1021 if (error)
1022 return error;
1023 *done = !i;
1024 if (i) {
1025 error = xfs_inobt_get_rec(cur, rec, &i);
1026 if (error)
1027 return error;
1028 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1029 xfs_btree_mark_sick(cur);
1030 return -EFSCORRUPTED;
1034 return 0;
1038 * Return the offset of the first free inode in the record. If the inode chunk
1039 * is sparsely allocated, we convert the record holemask to inode granularity
1040 * and mask off the unallocated regions from the inode free mask.
1042 STATIC int
1043 xfs_inobt_first_free_inode(
1044 struct xfs_inobt_rec_incore *rec)
1046 xfs_inofree_t realfree;
1048 /* if there are no holes, return the first available offset */
1049 if (!xfs_inobt_issparse(rec->ir_holemask))
1050 return xfs_lowbit64(rec->ir_free);
1052 realfree = xfs_inobt_irec_to_allocmask(rec);
1053 realfree &= rec->ir_free;
1055 return xfs_lowbit64(realfree);
1059 * If this AG has corrupt inodes, check if allocating this inode would fail
1060 * with corruption errors. Returns 0 if we're clear, or EAGAIN to try again
1061 * somewhere else.
1063 static int
1064 xfs_dialloc_check_ino(
1065 struct xfs_perag *pag,
1066 struct xfs_trans *tp,
1067 xfs_ino_t ino)
1069 struct xfs_imap imap;
1070 struct xfs_buf *bp;
1071 int error;
1073 error = xfs_imap(pag, tp, ino, &imap, 0);
1074 if (error)
1075 return -EAGAIN;
1077 error = xfs_imap_to_bp(pag_mount(pag), tp, &imap, &bp);
1078 if (error)
1079 return -EAGAIN;
1081 xfs_trans_brelse(tp, bp);
1082 return 0;
1086 * Allocate an inode using the inobt-only algorithm.
1088 STATIC int
1089 xfs_dialloc_ag_inobt(
1090 struct xfs_perag *pag,
1091 struct xfs_trans *tp,
1092 struct xfs_buf *agbp,
1093 xfs_ino_t parent,
1094 xfs_ino_t *inop)
1096 struct xfs_mount *mp = tp->t_mountp;
1097 struct xfs_agi *agi = agbp->b_addr;
1098 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1099 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1100 struct xfs_btree_cur *cur, *tcur;
1101 struct xfs_inobt_rec_incore rec, trec;
1102 xfs_ino_t ino;
1103 int error;
1104 int offset;
1105 int i, j;
1106 int searchdistance = 10;
1108 ASSERT(xfs_perag_initialised_agi(pag));
1109 ASSERT(xfs_perag_allows_inodes(pag));
1110 ASSERT(pag->pagi_freecount > 0);
1112 restart_pagno:
1113 cur = xfs_inobt_init_cursor(pag, tp, agbp);
1115 * If pagino is 0 (this is the root inode allocation) use newino.
1116 * This must work because we've just allocated some.
1118 if (!pagino)
1119 pagino = be32_to_cpu(agi->agi_newino);
1121 error = xfs_check_agi_freecount(cur);
1122 if (error)
1123 goto error0;
1126 * If in the same AG as the parent, try to get near the parent.
1128 if (pagno == pag_agno(pag)) {
1129 int doneleft; /* done, to the left */
1130 int doneright; /* done, to the right */
1132 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1133 if (error)
1134 goto error0;
1135 if (XFS_IS_CORRUPT(mp, i != 1)) {
1136 xfs_btree_mark_sick(cur);
1137 error = -EFSCORRUPTED;
1138 goto error0;
1141 error = xfs_inobt_get_rec(cur, &rec, &j);
1142 if (error)
1143 goto error0;
1144 if (XFS_IS_CORRUPT(mp, j != 1)) {
1145 xfs_btree_mark_sick(cur);
1146 error = -EFSCORRUPTED;
1147 goto error0;
1150 if (rec.ir_freecount > 0) {
1152 * Found a free inode in the same chunk
1153 * as the parent, done.
1155 goto alloc_inode;
1160 * In the same AG as parent, but parent's chunk is full.
1163 /* duplicate the cursor, search left & right simultaneously */
1164 error = xfs_btree_dup_cursor(cur, &tcur);
1165 if (error)
1166 goto error0;
1169 * Skip to last blocks looked up if same parent inode.
1171 if (pagino != NULLAGINO &&
1172 pag->pagl_pagino == pagino &&
1173 pag->pagl_leftrec != NULLAGINO &&
1174 pag->pagl_rightrec != NULLAGINO) {
1175 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1176 &trec, &doneleft);
1177 if (error)
1178 goto error1;
1180 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1181 &rec, &doneright);
1182 if (error)
1183 goto error1;
1184 } else {
1185 /* search left with tcur, back up 1 record */
1186 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1187 if (error)
1188 goto error1;
1190 /* search right with cur, go forward 1 record. */
1191 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1192 if (error)
1193 goto error1;
1197 * Loop until we find an inode chunk with a free inode.
1199 while (--searchdistance > 0 && (!doneleft || !doneright)) {
1200 int useleft; /* using left inode chunk this time */
1202 /* figure out the closer block if both are valid. */
1203 if (!doneleft && !doneright) {
1204 useleft = pagino -
1205 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1206 rec.ir_startino - pagino;
1207 } else {
1208 useleft = !doneleft;
1211 /* free inodes to the left? */
1212 if (useleft && trec.ir_freecount) {
1213 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1214 cur = tcur;
1216 pag->pagl_leftrec = trec.ir_startino;
1217 pag->pagl_rightrec = rec.ir_startino;
1218 pag->pagl_pagino = pagino;
1219 rec = trec;
1220 goto alloc_inode;
1223 /* free inodes to the right? */
1224 if (!useleft && rec.ir_freecount) {
1225 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1227 pag->pagl_leftrec = trec.ir_startino;
1228 pag->pagl_rightrec = rec.ir_startino;
1229 pag->pagl_pagino = pagino;
1230 goto alloc_inode;
1233 /* get next record to check */
1234 if (useleft) {
1235 error = xfs_ialloc_next_rec(tcur, &trec,
1236 &doneleft, 1);
1237 } else {
1238 error = xfs_ialloc_next_rec(cur, &rec,
1239 &doneright, 0);
1241 if (error)
1242 goto error1;
1245 if (searchdistance <= 0) {
1247 * Not in range - save last search
1248 * location and allocate a new inode
1250 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1251 pag->pagl_leftrec = trec.ir_startino;
1252 pag->pagl_rightrec = rec.ir_startino;
1253 pag->pagl_pagino = pagino;
1255 } else {
1257 * We've reached the end of the btree. because
1258 * we are only searching a small chunk of the
1259 * btree each search, there is obviously free
1260 * inodes closer to the parent inode than we
1261 * are now. restart the search again.
1263 pag->pagl_pagino = NULLAGINO;
1264 pag->pagl_leftrec = NULLAGINO;
1265 pag->pagl_rightrec = NULLAGINO;
1266 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1267 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1268 goto restart_pagno;
1273 * In a different AG from the parent.
1274 * See if the most recently allocated block has any free.
1276 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1277 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1278 XFS_LOOKUP_EQ, &i);
1279 if (error)
1280 goto error0;
1282 if (i == 1) {
1283 error = xfs_inobt_get_rec(cur, &rec, &j);
1284 if (error)
1285 goto error0;
1287 if (j == 1 && rec.ir_freecount > 0) {
1289 * The last chunk allocated in the group
1290 * still has a free inode.
1292 goto alloc_inode;
1298 * None left in the last group, search the whole AG
1300 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1301 if (error)
1302 goto error0;
1303 if (XFS_IS_CORRUPT(mp, i != 1)) {
1304 xfs_btree_mark_sick(cur);
1305 error = -EFSCORRUPTED;
1306 goto error0;
1309 for (;;) {
1310 error = xfs_inobt_get_rec(cur, &rec, &i);
1311 if (error)
1312 goto error0;
1313 if (XFS_IS_CORRUPT(mp, i != 1)) {
1314 xfs_btree_mark_sick(cur);
1315 error = -EFSCORRUPTED;
1316 goto error0;
1318 if (rec.ir_freecount > 0)
1319 break;
1320 error = xfs_btree_increment(cur, 0, &i);
1321 if (error)
1322 goto error0;
1323 if (XFS_IS_CORRUPT(mp, i != 1)) {
1324 xfs_btree_mark_sick(cur);
1325 error = -EFSCORRUPTED;
1326 goto error0;
1330 alloc_inode:
1331 offset = xfs_inobt_first_free_inode(&rec);
1332 ASSERT(offset >= 0);
1333 ASSERT(offset < XFS_INODES_PER_CHUNK);
1334 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1335 XFS_INODES_PER_CHUNK) == 0);
1336 ino = xfs_agino_to_ino(pag, rec.ir_startino + offset);
1338 if (xfs_ag_has_sickness(pag, XFS_SICK_AG_INODES)) {
1339 error = xfs_dialloc_check_ino(pag, tp, ino);
1340 if (error)
1341 goto error0;
1344 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1345 rec.ir_freecount--;
1346 error = xfs_inobt_update(cur, &rec);
1347 if (error)
1348 goto error0;
1349 be32_add_cpu(&agi->agi_freecount, -1);
1350 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1351 pag->pagi_freecount--;
1353 error = xfs_check_agi_freecount(cur);
1354 if (error)
1355 goto error0;
1357 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1358 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1359 *inop = ino;
1360 return 0;
1361 error1:
1362 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1363 error0:
1364 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1365 return error;
1369 * Use the free inode btree to allocate an inode based on distance from the
1370 * parent. Note that the provided cursor may be deleted and replaced.
1372 STATIC int
1373 xfs_dialloc_ag_finobt_near(
1374 xfs_agino_t pagino,
1375 struct xfs_btree_cur **ocur,
1376 struct xfs_inobt_rec_incore *rec)
1378 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1379 struct xfs_btree_cur *rcur; /* right search cursor */
1380 struct xfs_inobt_rec_incore rrec;
1381 int error;
1382 int i, j;
1384 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1385 if (error)
1386 return error;
1388 if (i == 1) {
1389 error = xfs_inobt_get_rec(lcur, rec, &i);
1390 if (error)
1391 return error;
1392 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1)) {
1393 xfs_btree_mark_sick(lcur);
1394 return -EFSCORRUPTED;
1398 * See if we've landed in the parent inode record. The finobt
1399 * only tracks chunks with at least one free inode, so record
1400 * existence is enough.
1402 if (pagino >= rec->ir_startino &&
1403 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1404 return 0;
1407 error = xfs_btree_dup_cursor(lcur, &rcur);
1408 if (error)
1409 return error;
1411 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1412 if (error)
1413 goto error_rcur;
1414 if (j == 1) {
1415 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1416 if (error)
1417 goto error_rcur;
1418 if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1419 xfs_btree_mark_sick(lcur);
1420 error = -EFSCORRUPTED;
1421 goto error_rcur;
1425 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1426 xfs_btree_mark_sick(lcur);
1427 error = -EFSCORRUPTED;
1428 goto error_rcur;
1430 if (i == 1 && j == 1) {
1432 * Both the left and right records are valid. Choose the closer
1433 * inode chunk to the target.
1435 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1436 (rrec.ir_startino - pagino)) {
1437 *rec = rrec;
1438 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1439 *ocur = rcur;
1440 } else {
1441 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1443 } else if (j == 1) {
1444 /* only the right record is valid */
1445 *rec = rrec;
1446 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1447 *ocur = rcur;
1448 } else if (i == 1) {
1449 /* only the left record is valid */
1450 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1453 return 0;
1455 error_rcur:
1456 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1457 return error;
1461 * Use the free inode btree to find a free inode based on a newino hint. If
1462 * the hint is NULL, find the first free inode in the AG.
1464 STATIC int
1465 xfs_dialloc_ag_finobt_newino(
1466 struct xfs_agi *agi,
1467 struct xfs_btree_cur *cur,
1468 struct xfs_inobt_rec_incore *rec)
1470 int error;
1471 int i;
1473 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1474 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1475 XFS_LOOKUP_EQ, &i);
1476 if (error)
1477 return error;
1478 if (i == 1) {
1479 error = xfs_inobt_get_rec(cur, rec, &i);
1480 if (error)
1481 return error;
1482 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1483 xfs_btree_mark_sick(cur);
1484 return -EFSCORRUPTED;
1486 return 0;
1491 * Find the first inode available in the AG.
1493 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1494 if (error)
1495 return error;
1496 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1497 xfs_btree_mark_sick(cur);
1498 return -EFSCORRUPTED;
1501 error = xfs_inobt_get_rec(cur, rec, &i);
1502 if (error)
1503 return error;
1504 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1505 xfs_btree_mark_sick(cur);
1506 return -EFSCORRUPTED;
1509 return 0;
1513 * Update the inobt based on a modification made to the finobt. Also ensure that
1514 * the records from both trees are equivalent post-modification.
1516 STATIC int
1517 xfs_dialloc_ag_update_inobt(
1518 struct xfs_btree_cur *cur, /* inobt cursor */
1519 struct xfs_inobt_rec_incore *frec, /* finobt record */
1520 int offset) /* inode offset */
1522 struct xfs_inobt_rec_incore rec;
1523 int error;
1524 int i;
1526 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1527 if (error)
1528 return error;
1529 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1530 xfs_btree_mark_sick(cur);
1531 return -EFSCORRUPTED;
1534 error = xfs_inobt_get_rec(cur, &rec, &i);
1535 if (error)
1536 return error;
1537 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1538 xfs_btree_mark_sick(cur);
1539 return -EFSCORRUPTED;
1541 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1542 XFS_INODES_PER_CHUNK) == 0);
1544 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1545 rec.ir_freecount--;
1547 if (XFS_IS_CORRUPT(cur->bc_mp,
1548 rec.ir_free != frec->ir_free ||
1549 rec.ir_freecount != frec->ir_freecount)) {
1550 xfs_btree_mark_sick(cur);
1551 return -EFSCORRUPTED;
1554 return xfs_inobt_update(cur, &rec);
1558 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1559 * back to the inobt search algorithm.
1561 * The caller selected an AG for us, and made sure that free inodes are
1562 * available.
1564 static int
1565 xfs_dialloc_ag(
1566 struct xfs_perag *pag,
1567 struct xfs_trans *tp,
1568 struct xfs_buf *agbp,
1569 xfs_ino_t parent,
1570 xfs_ino_t *inop)
1572 struct xfs_mount *mp = tp->t_mountp;
1573 struct xfs_agi *agi = agbp->b_addr;
1574 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1575 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1576 struct xfs_btree_cur *cur; /* finobt cursor */
1577 struct xfs_btree_cur *icur; /* inobt cursor */
1578 struct xfs_inobt_rec_incore rec;
1579 xfs_ino_t ino;
1580 int error;
1581 int offset;
1582 int i;
1584 if (!xfs_has_finobt(mp))
1585 return xfs_dialloc_ag_inobt(pag, tp, agbp, parent, inop);
1588 * If pagino is 0 (this is the root inode allocation) use newino.
1589 * This must work because we've just allocated some.
1591 if (!pagino)
1592 pagino = be32_to_cpu(agi->agi_newino);
1594 cur = xfs_finobt_init_cursor(pag, tp, agbp);
1596 error = xfs_check_agi_freecount(cur);
1597 if (error)
1598 goto error_cur;
1601 * The search algorithm depends on whether we're in the same AG as the
1602 * parent. If so, find the closest available inode to the parent. If
1603 * not, consider the agi hint or find the first free inode in the AG.
1605 if (pag_agno(pag) == pagno)
1606 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1607 else
1608 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1609 if (error)
1610 goto error_cur;
1612 offset = xfs_inobt_first_free_inode(&rec);
1613 ASSERT(offset >= 0);
1614 ASSERT(offset < XFS_INODES_PER_CHUNK);
1615 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1616 XFS_INODES_PER_CHUNK) == 0);
1617 ino = xfs_agino_to_ino(pag, rec.ir_startino + offset);
1619 if (xfs_ag_has_sickness(pag, XFS_SICK_AG_INODES)) {
1620 error = xfs_dialloc_check_ino(pag, tp, ino);
1621 if (error)
1622 goto error_cur;
1626 * Modify or remove the finobt record.
1628 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1629 rec.ir_freecount--;
1630 if (rec.ir_freecount)
1631 error = xfs_inobt_update(cur, &rec);
1632 else
1633 error = xfs_btree_delete(cur, &i);
1634 if (error)
1635 goto error_cur;
1638 * The finobt has now been updated appropriately. We haven't updated the
1639 * agi and superblock yet, so we can create an inobt cursor and validate
1640 * the original freecount. If all is well, make the equivalent update to
1641 * the inobt using the finobt record and offset information.
1643 icur = xfs_inobt_init_cursor(pag, tp, agbp);
1645 error = xfs_check_agi_freecount(icur);
1646 if (error)
1647 goto error_icur;
1649 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1650 if (error)
1651 goto error_icur;
1654 * Both trees have now been updated. We must update the perag and
1655 * superblock before we can check the freecount for each btree.
1657 be32_add_cpu(&agi->agi_freecount, -1);
1658 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1659 pag->pagi_freecount--;
1661 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1663 error = xfs_check_agi_freecount(icur);
1664 if (error)
1665 goto error_icur;
1666 error = xfs_check_agi_freecount(cur);
1667 if (error)
1668 goto error_icur;
1670 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1671 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1672 *inop = ino;
1673 return 0;
1675 error_icur:
1676 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1677 error_cur:
1678 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1679 return error;
1682 static int
1683 xfs_dialloc_roll(
1684 struct xfs_trans **tpp,
1685 struct xfs_buf *agibp)
1687 struct xfs_trans *tp = *tpp;
1688 struct xfs_dquot_acct *dqinfo;
1689 int error;
1692 * Hold to on to the agibp across the commit so no other allocation can
1693 * come in and take the free inodes we just allocated for our caller.
1695 xfs_trans_bhold(tp, agibp);
1698 * We want the quota changes to be associated with the next transaction,
1699 * NOT this one. So, detach the dqinfo from this and attach it to the
1700 * next transaction.
1702 dqinfo = tp->t_dqinfo;
1703 tp->t_dqinfo = NULL;
1705 error = xfs_trans_roll(&tp);
1707 /* Re-attach the quota info that we detached from prev trx. */
1708 tp->t_dqinfo = dqinfo;
1711 * Join the buffer even on commit error so that the buffer is released
1712 * when the caller cancels the transaction and doesn't have to handle
1713 * this error case specially.
1715 xfs_trans_bjoin(tp, agibp);
1716 *tpp = tp;
1717 return error;
1720 static bool
1721 xfs_dialloc_good_ag(
1722 struct xfs_perag *pag,
1723 struct xfs_trans *tp,
1724 umode_t mode,
1725 int flags,
1726 bool ok_alloc)
1728 struct xfs_mount *mp = tp->t_mountp;
1729 xfs_extlen_t ineed;
1730 xfs_extlen_t longest = 0;
1731 int needspace;
1732 int error;
1734 if (!pag)
1735 return false;
1736 if (!xfs_perag_allows_inodes(pag))
1737 return false;
1739 if (!xfs_perag_initialised_agi(pag)) {
1740 error = xfs_ialloc_read_agi(pag, tp, 0, NULL);
1741 if (error)
1742 return false;
1745 if (pag->pagi_freecount)
1746 return true;
1747 if (!ok_alloc)
1748 return false;
1750 if (!xfs_perag_initialised_agf(pag)) {
1751 error = xfs_alloc_read_agf(pag, tp, flags, NULL);
1752 if (error)
1753 return false;
1757 * Check that there is enough free space for the file plus a chunk of
1758 * inodes if we need to allocate some. If this is the first pass across
1759 * the AGs, take into account the potential space needed for alignment
1760 * of inode chunks when checking the longest contiguous free space in
1761 * the AG - this prevents us from getting ENOSPC because we have free
1762 * space larger than ialloc_blks but alignment constraints prevent us
1763 * from using it.
1765 * If we can't find an AG with space for full alignment slack to be
1766 * taken into account, we must be near ENOSPC in all AGs. Hence we
1767 * don't include alignment for the second pass and so if we fail
1768 * allocation due to alignment issues then it is most likely a real
1769 * ENOSPC condition.
1771 * XXX(dgc): this calculation is now bogus thanks to the per-ag
1772 * reservations that xfs_alloc_fix_freelist() now does via
1773 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
1774 * be more than large enough for the check below to succeed, but
1775 * xfs_alloc_space_available() will fail because of the non-zero
1776 * metadata reservation and hence we won't actually be able to allocate
1777 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
1778 * because of this.
1780 ineed = M_IGEO(mp)->ialloc_min_blks;
1781 if (flags && ineed > 1)
1782 ineed += M_IGEO(mp)->cluster_align;
1783 longest = pag->pagf_longest;
1784 if (!longest)
1785 longest = pag->pagf_flcount > 0;
1786 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
1788 if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
1789 return false;
1790 return true;
1793 static int
1794 xfs_dialloc_try_ag(
1795 struct xfs_perag *pag,
1796 struct xfs_trans **tpp,
1797 xfs_ino_t parent,
1798 xfs_ino_t *new_ino,
1799 bool ok_alloc)
1801 struct xfs_buf *agbp;
1802 xfs_ino_t ino;
1803 int error;
1806 * Then read in the AGI buffer and recheck with the AGI buffer
1807 * lock held.
1809 error = xfs_ialloc_read_agi(pag, *tpp, 0, &agbp);
1810 if (error)
1811 return error;
1813 if (!pag->pagi_freecount) {
1814 if (!ok_alloc) {
1815 error = -EAGAIN;
1816 goto out_release;
1819 error = xfs_ialloc_ag_alloc(pag, *tpp, agbp);
1820 if (error < 0)
1821 goto out_release;
1824 * We successfully allocated space for an inode cluster in this
1825 * AG. Roll the transaction so that we can allocate one of the
1826 * new inodes.
1828 ASSERT(pag->pagi_freecount > 0);
1829 error = xfs_dialloc_roll(tpp, agbp);
1830 if (error)
1831 goto out_release;
1834 /* Allocate an inode in the found AG */
1835 error = xfs_dialloc_ag(pag, *tpp, agbp, parent, &ino);
1836 if (!error)
1837 *new_ino = ino;
1838 return error;
1840 out_release:
1841 xfs_trans_brelse(*tpp, agbp);
1842 return error;
1846 * Pick an AG for the new inode.
1848 * Directories, symlinks, and regular files frequently allocate at least one
1849 * block, so factor that potential expansion when we examine whether an AG has
1850 * enough space for file creation. Try to keep metadata files all in the same
1851 * AG.
1853 static inline xfs_agnumber_t
1854 xfs_dialloc_pick_ag(
1855 struct xfs_mount *mp,
1856 struct xfs_inode *dp,
1857 umode_t mode)
1859 xfs_agnumber_t start_agno;
1861 if (!dp)
1862 return 0;
1863 if (xfs_is_metadir_inode(dp)) {
1864 if (mp->m_sb.sb_logstart)
1865 return XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart);
1866 return 0;
1869 if (S_ISDIR(mode))
1870 return (atomic_inc_return(&mp->m_agirotor) - 1) % mp->m_maxagi;
1872 start_agno = XFS_INO_TO_AGNO(mp, dp->i_ino);
1873 if (start_agno >= mp->m_maxagi)
1874 start_agno = 0;
1876 return start_agno;
1880 * Allocate an on-disk inode.
1882 * Mode is used to tell whether the new inode is a directory and hence where to
1883 * locate it. The on-disk inode that is allocated will be returned in @new_ino
1884 * on success, otherwise an error will be set to indicate the failure (e.g.
1885 * -ENOSPC).
1888 xfs_dialloc(
1889 struct xfs_trans **tpp,
1890 const struct xfs_icreate_args *args,
1891 xfs_ino_t *new_ino)
1893 struct xfs_mount *mp = (*tpp)->t_mountp;
1894 struct xfs_perag *pag;
1895 struct xfs_ino_geometry *igeo = M_IGEO(mp);
1896 xfs_ino_t ino = NULLFSINO;
1897 xfs_ino_t parent = args->pip ? args->pip->i_ino : 0;
1898 xfs_agnumber_t agno;
1899 xfs_agnumber_t start_agno;
1900 umode_t mode = args->mode & S_IFMT;
1901 bool ok_alloc = true;
1902 bool low_space = false;
1903 int flags;
1904 int error = 0;
1906 start_agno = xfs_dialloc_pick_ag(mp, args->pip, mode);
1909 * If we have already hit the ceiling of inode blocks then clear
1910 * ok_alloc so we scan all available agi structures for a free
1911 * inode.
1913 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1914 * which will sacrifice the preciseness but improve the performance.
1916 if (igeo->maxicount &&
1917 percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1918 > igeo->maxicount) {
1919 ok_alloc = false;
1923 * If we are near to ENOSPC, we want to prefer allocation from AGs that
1924 * have free inodes in them rather than use up free space allocating new
1925 * inode chunks. Hence we turn off allocation for the first non-blocking
1926 * pass through the AGs if we are near ENOSPC to consume free inodes
1927 * that we can immediately allocate, but then we allow allocation on the
1928 * second pass if we fail to find an AG with free inodes in it.
1930 if (percpu_counter_read_positive(&mp->m_fdblocks) <
1931 mp->m_low_space[XFS_LOWSP_1_PCNT]) {
1932 ok_alloc = false;
1933 low_space = true;
1937 * Loop until we find an allocation group that either has free inodes
1938 * or in which we can allocate some inodes. Iterate through the
1939 * allocation groups upward, wrapping at the end.
1941 flags = XFS_ALLOC_FLAG_TRYLOCK;
1942 retry:
1943 for_each_perag_wrap_at(mp, start_agno, mp->m_maxagi, agno, pag) {
1944 if (xfs_dialloc_good_ag(pag, *tpp, mode, flags, ok_alloc)) {
1945 error = xfs_dialloc_try_ag(pag, tpp, parent,
1946 &ino, ok_alloc);
1947 if (error != -EAGAIN)
1948 break;
1949 error = 0;
1952 if (xfs_is_shutdown(mp)) {
1953 error = -EFSCORRUPTED;
1954 break;
1957 if (pag)
1958 xfs_perag_rele(pag);
1959 if (error)
1960 return error;
1961 if (ino == NULLFSINO) {
1962 if (flags) {
1963 flags = 0;
1964 if (low_space)
1965 ok_alloc = true;
1966 goto retry;
1968 return -ENOSPC;
1972 * Protect against obviously corrupt allocation btree records. Later
1973 * xfs_iget checks will catch re-allocation of other active in-memory
1974 * and on-disk inodes. If we don't catch reallocating the parent inode
1975 * here we will deadlock in xfs_iget() so we have to do these checks
1976 * first.
1978 if (ino == parent || !xfs_verify_dir_ino(mp, ino)) {
1979 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
1980 xfs_agno_mark_sick(mp, XFS_INO_TO_AGNO(mp, ino),
1981 XFS_SICK_AG_INOBT);
1982 return -EFSCORRUPTED;
1985 *new_ino = ino;
1986 return 0;
1990 * Free the blocks of an inode chunk. We must consider that the inode chunk
1991 * might be sparse and only free the regions that are allocated as part of the
1992 * chunk.
1994 static int
1995 xfs_difree_inode_chunk(
1996 struct xfs_trans *tp,
1997 struct xfs_perag *pag,
1998 struct xfs_inobt_rec_incore *rec)
2000 struct xfs_mount *mp = tp->t_mountp;
2001 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp,
2002 rec->ir_startino);
2003 int startidx, endidx;
2004 int nextbit;
2005 xfs_agblock_t agbno;
2006 int contigblk;
2007 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
2009 if (!xfs_inobt_issparse(rec->ir_holemask)) {
2010 /* not sparse, calculate extent info directly */
2011 return xfs_free_extent_later(tp, xfs_agbno_to_fsb(pag, sagbno),
2012 M_IGEO(mp)->ialloc_blks, &XFS_RMAP_OINFO_INODES,
2013 XFS_AG_RESV_NONE, 0);
2016 /* holemask is only 16-bits (fits in an unsigned long) */
2017 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
2018 holemask[0] = rec->ir_holemask;
2021 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
2022 * holemask and convert the start/end index of each range to an extent.
2023 * We start with the start and end index both pointing at the first 0 in
2024 * the mask.
2026 startidx = endidx = find_first_zero_bit(holemask,
2027 XFS_INOBT_HOLEMASK_BITS);
2028 nextbit = startidx + 1;
2029 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
2030 int error;
2032 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
2033 nextbit);
2035 * If the next zero bit is contiguous, update the end index of
2036 * the current range and continue.
2038 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
2039 nextbit == endidx + 1) {
2040 endidx = nextbit;
2041 goto next;
2045 * nextbit is not contiguous with the current end index. Convert
2046 * the current start/end to an extent and add it to the free
2047 * list.
2049 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
2050 mp->m_sb.sb_inopblock;
2051 contigblk = ((endidx - startidx + 1) *
2052 XFS_INODES_PER_HOLEMASK_BIT) /
2053 mp->m_sb.sb_inopblock;
2055 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
2056 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
2057 error = xfs_free_extent_later(tp, xfs_agbno_to_fsb(pag, agbno),
2058 contigblk, &XFS_RMAP_OINFO_INODES,
2059 XFS_AG_RESV_NONE, 0);
2060 if (error)
2061 return error;
2063 /* reset range to current bit and carry on... */
2064 startidx = endidx = nextbit;
2066 next:
2067 nextbit++;
2069 return 0;
2072 STATIC int
2073 xfs_difree_inobt(
2074 struct xfs_perag *pag,
2075 struct xfs_trans *tp,
2076 struct xfs_buf *agbp,
2077 xfs_agino_t agino,
2078 struct xfs_icluster *xic,
2079 struct xfs_inobt_rec_incore *orec)
2081 struct xfs_mount *mp = pag_mount(pag);
2082 struct xfs_agi *agi = agbp->b_addr;
2083 struct xfs_btree_cur *cur;
2084 struct xfs_inobt_rec_incore rec;
2085 int ilen;
2086 int error;
2087 int i;
2088 int off;
2090 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2091 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
2094 * Initialize the cursor.
2096 cur = xfs_inobt_init_cursor(pag, tp, agbp);
2098 error = xfs_check_agi_freecount(cur);
2099 if (error)
2100 goto error0;
2103 * Look for the entry describing this inode.
2105 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
2106 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
2107 __func__, error);
2108 goto error0;
2110 if (XFS_IS_CORRUPT(mp, i != 1)) {
2111 xfs_btree_mark_sick(cur);
2112 error = -EFSCORRUPTED;
2113 goto error0;
2115 error = xfs_inobt_get_rec(cur, &rec, &i);
2116 if (error) {
2117 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
2118 __func__, error);
2119 goto error0;
2121 if (XFS_IS_CORRUPT(mp, i != 1)) {
2122 xfs_btree_mark_sick(cur);
2123 error = -EFSCORRUPTED;
2124 goto error0;
2127 * Get the offset in the inode chunk.
2129 off = agino - rec.ir_startino;
2130 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
2131 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
2133 * Mark the inode free & increment the count.
2135 rec.ir_free |= XFS_INOBT_MASK(off);
2136 rec.ir_freecount++;
2139 * When an inode chunk is free, it becomes eligible for removal. Don't
2140 * remove the chunk if the block size is large enough for multiple inode
2141 * chunks (that might not be free).
2143 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2144 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2145 xic->deleted = true;
2146 xic->first_ino = xfs_agino_to_ino(pag, rec.ir_startino);
2147 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
2150 * Remove the inode cluster from the AGI B+Tree, adjust the
2151 * AGI and Superblock inode counts, and mark the disk space
2152 * to be freed when the transaction is committed.
2154 ilen = rec.ir_freecount;
2155 be32_add_cpu(&agi->agi_count, -ilen);
2156 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
2157 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
2158 pag->pagi_freecount -= ilen - 1;
2159 pag->pagi_count -= ilen;
2160 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
2161 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
2163 if ((error = xfs_btree_delete(cur, &i))) {
2164 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
2165 __func__, error);
2166 goto error0;
2169 error = xfs_difree_inode_chunk(tp, pag, &rec);
2170 if (error)
2171 goto error0;
2172 } else {
2173 xic->deleted = false;
2175 error = xfs_inobt_update(cur, &rec);
2176 if (error) {
2177 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2178 __func__, error);
2179 goto error0;
2183 * Change the inode free counts and log the ag/sb changes.
2185 be32_add_cpu(&agi->agi_freecount, 1);
2186 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2187 pag->pagi_freecount++;
2188 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2191 error = xfs_check_agi_freecount(cur);
2192 if (error)
2193 goto error0;
2195 *orec = rec;
2196 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2197 return 0;
2199 error0:
2200 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2201 return error;
2205 * Free an inode in the free inode btree.
2207 STATIC int
2208 xfs_difree_finobt(
2209 struct xfs_perag *pag,
2210 struct xfs_trans *tp,
2211 struct xfs_buf *agbp,
2212 xfs_agino_t agino,
2213 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2215 struct xfs_mount *mp = pag_mount(pag);
2216 struct xfs_btree_cur *cur;
2217 struct xfs_inobt_rec_incore rec;
2218 int offset = agino - ibtrec->ir_startino;
2219 int error;
2220 int i;
2222 cur = xfs_finobt_init_cursor(pag, tp, agbp);
2224 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2225 if (error)
2226 goto error;
2227 if (i == 0) {
2229 * If the record does not exist in the finobt, we must have just
2230 * freed an inode in a previously fully allocated chunk. If not,
2231 * something is out of sync.
2233 if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2234 xfs_btree_mark_sick(cur);
2235 error = -EFSCORRUPTED;
2236 goto error;
2239 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2240 ibtrec->ir_count,
2241 ibtrec->ir_freecount,
2242 ibtrec->ir_free, &i);
2243 if (error)
2244 goto error;
2245 ASSERT(i == 1);
2247 goto out;
2251 * Read and update the existing record. We could just copy the ibtrec
2252 * across here, but that would defeat the purpose of having redundant
2253 * metadata. By making the modifications independently, we can catch
2254 * corruptions that we wouldn't see if we just copied from one record
2255 * to another.
2257 error = xfs_inobt_get_rec(cur, &rec, &i);
2258 if (error)
2259 goto error;
2260 if (XFS_IS_CORRUPT(mp, i != 1)) {
2261 xfs_btree_mark_sick(cur);
2262 error = -EFSCORRUPTED;
2263 goto error;
2266 rec.ir_free |= XFS_INOBT_MASK(offset);
2267 rec.ir_freecount++;
2269 if (XFS_IS_CORRUPT(mp,
2270 rec.ir_free != ibtrec->ir_free ||
2271 rec.ir_freecount != ibtrec->ir_freecount)) {
2272 xfs_btree_mark_sick(cur);
2273 error = -EFSCORRUPTED;
2274 goto error;
2278 * The content of inobt records should always match between the inobt
2279 * and finobt. The lifecycle of records in the finobt is different from
2280 * the inobt in that the finobt only tracks records with at least one
2281 * free inode. Hence, if all of the inodes are free and we aren't
2282 * keeping inode chunks permanently on disk, remove the record.
2283 * Otherwise, update the record with the new information.
2285 * Note that we currently can't free chunks when the block size is large
2286 * enough for multiple chunks. Leave the finobt record to remain in sync
2287 * with the inobt.
2289 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2290 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2291 error = xfs_btree_delete(cur, &i);
2292 if (error)
2293 goto error;
2294 ASSERT(i == 1);
2295 } else {
2296 error = xfs_inobt_update(cur, &rec);
2297 if (error)
2298 goto error;
2301 out:
2302 error = xfs_check_agi_freecount(cur);
2303 if (error)
2304 goto error;
2306 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2307 return 0;
2309 error:
2310 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2311 return error;
2315 * Free disk inode. Carefully avoids touching the incore inode, all
2316 * manipulations incore are the caller's responsibility.
2317 * The on-disk inode is not changed by this operation, only the
2318 * btree (free inode mask) is changed.
2321 xfs_difree(
2322 struct xfs_trans *tp,
2323 struct xfs_perag *pag,
2324 xfs_ino_t inode,
2325 struct xfs_icluster *xic)
2327 /* REFERENCED */
2328 xfs_agblock_t agbno; /* block number containing inode */
2329 struct xfs_buf *agbp; /* buffer for allocation group header */
2330 xfs_agino_t agino; /* allocation group inode number */
2331 int error; /* error return value */
2332 struct xfs_mount *mp = tp->t_mountp;
2333 struct xfs_inobt_rec_incore rec;/* btree record */
2336 * Break up inode number into its components.
2338 if (pag_agno(pag) != XFS_INO_TO_AGNO(mp, inode)) {
2339 xfs_warn(mp, "%s: agno != pag_agno(pag) (%d != %d).",
2340 __func__, XFS_INO_TO_AGNO(mp, inode), pag_agno(pag));
2341 ASSERT(0);
2342 return -EINVAL;
2344 agino = XFS_INO_TO_AGINO(mp, inode);
2345 if (inode != xfs_agino_to_ino(pag, agino)) {
2346 xfs_warn(mp, "%s: inode != xfs_agino_to_ino() (%llu != %llu).",
2347 __func__, (unsigned long long)inode,
2348 (unsigned long long)xfs_agino_to_ino(pag, agino));
2349 ASSERT(0);
2350 return -EINVAL;
2352 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2353 if (agbno >= xfs_ag_block_count(mp, pag_agno(pag))) {
2354 xfs_warn(mp, "%s: agbno >= xfs_ag_block_count (%d >= %d).",
2355 __func__, agbno, xfs_ag_block_count(mp, pag_agno(pag)));
2356 ASSERT(0);
2357 return -EINVAL;
2360 * Get the allocation group header.
2362 error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
2363 if (error) {
2364 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2365 __func__, error);
2366 return error;
2370 * Fix up the inode allocation btree.
2372 error = xfs_difree_inobt(pag, tp, agbp, agino, xic, &rec);
2373 if (error)
2374 goto error0;
2377 * Fix up the free inode btree.
2379 if (xfs_has_finobt(mp)) {
2380 error = xfs_difree_finobt(pag, tp, agbp, agino, &rec);
2381 if (error)
2382 goto error0;
2385 return 0;
2387 error0:
2388 return error;
2391 STATIC int
2392 xfs_imap_lookup(
2393 struct xfs_perag *pag,
2394 struct xfs_trans *tp,
2395 xfs_agino_t agino,
2396 xfs_agblock_t agbno,
2397 xfs_agblock_t *chunk_agbno,
2398 xfs_agblock_t *offset_agbno,
2399 int flags)
2401 struct xfs_mount *mp = pag_mount(pag);
2402 struct xfs_inobt_rec_incore rec;
2403 struct xfs_btree_cur *cur;
2404 struct xfs_buf *agbp;
2405 int error;
2406 int i;
2408 error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
2409 if (error) {
2410 xfs_alert(mp,
2411 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2412 __func__, error, pag_agno(pag));
2413 return error;
2417 * Lookup the inode record for the given agino. If the record cannot be
2418 * found, then it's an invalid inode number and we should abort. Once
2419 * we have a record, we need to ensure it contains the inode number
2420 * we are looking up.
2422 cur = xfs_inobt_init_cursor(pag, tp, agbp);
2423 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2424 if (!error) {
2425 if (i)
2426 error = xfs_inobt_get_rec(cur, &rec, &i);
2427 if (!error && i == 0)
2428 error = -EINVAL;
2431 xfs_trans_brelse(tp, agbp);
2432 xfs_btree_del_cursor(cur, error);
2433 if (error)
2434 return error;
2436 /* check that the returned record contains the required inode */
2437 if (rec.ir_startino > agino ||
2438 rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2439 return -EINVAL;
2441 /* for untrusted inodes check it is allocated first */
2442 if ((flags & XFS_IGET_UNTRUSTED) &&
2443 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2444 return -EINVAL;
2446 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2447 *offset_agbno = agbno - *chunk_agbno;
2448 return 0;
2452 * Return the location of the inode in imap, for mapping it into a buffer.
2455 xfs_imap(
2456 struct xfs_perag *pag,
2457 struct xfs_trans *tp,
2458 xfs_ino_t ino, /* inode to locate */
2459 struct xfs_imap *imap, /* location map structure */
2460 uint flags) /* flags for inode btree lookup */
2462 struct xfs_mount *mp = pag_mount(pag);
2463 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2464 xfs_agino_t agino; /* inode number within alloc group */
2465 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2466 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2467 int error; /* error code */
2468 int offset; /* index of inode in its buffer */
2469 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2471 ASSERT(ino != NULLFSINO);
2474 * Split up the inode number into its parts.
2476 agino = XFS_INO_TO_AGINO(mp, ino);
2477 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2478 if (agbno >= xfs_ag_block_count(mp, pag_agno(pag)) ||
2479 ino != xfs_agino_to_ino(pag, agino)) {
2480 error = -EINVAL;
2481 #ifdef DEBUG
2483 * Don't output diagnostic information for untrusted inodes
2484 * as they can be invalid without implying corruption.
2486 if (flags & XFS_IGET_UNTRUSTED)
2487 return error;
2488 if (agbno >= xfs_ag_block_count(mp, pag_agno(pag))) {
2489 xfs_alert(mp,
2490 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2491 __func__, (unsigned long long)agbno,
2492 (unsigned long)xfs_ag_block_count(mp,
2493 pag_agno(pag)));
2495 if (ino != xfs_agino_to_ino(pag, agino)) {
2496 xfs_alert(mp,
2497 "%s: ino (0x%llx) != xfs_agino_to_ino() (0x%llx)",
2498 __func__, ino,
2499 xfs_agino_to_ino(pag, agino));
2501 xfs_stack_trace();
2502 #endif /* DEBUG */
2503 return error;
2507 * For bulkstat and handle lookups, we have an untrusted inode number
2508 * that we have to verify is valid. We cannot do this just by reading
2509 * the inode buffer as it may have been unlinked and removed leaving
2510 * inodes in stale state on disk. Hence we have to do a btree lookup
2511 * in all cases where an untrusted inode number is passed.
2513 if (flags & XFS_IGET_UNTRUSTED) {
2514 error = xfs_imap_lookup(pag, tp, agino, agbno,
2515 &chunk_agbno, &offset_agbno, flags);
2516 if (error)
2517 return error;
2518 goto out_map;
2522 * If the inode cluster size is the same as the blocksize or
2523 * smaller we get to the buffer by simple arithmetics.
2525 if (M_IGEO(mp)->blocks_per_cluster == 1) {
2526 offset = XFS_INO_TO_OFFSET(mp, ino);
2527 ASSERT(offset < mp->m_sb.sb_inopblock);
2529 imap->im_blkno = xfs_agbno_to_daddr(pag, agbno);
2530 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2531 imap->im_boffset = (unsigned short)(offset <<
2532 mp->m_sb.sb_inodelog);
2533 return 0;
2537 * If the inode chunks are aligned then use simple maths to
2538 * find the location. Otherwise we have to do a btree
2539 * lookup to find the location.
2541 if (M_IGEO(mp)->inoalign_mask) {
2542 offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2543 chunk_agbno = agbno - offset_agbno;
2544 } else {
2545 error = xfs_imap_lookup(pag, tp, agino, agbno,
2546 &chunk_agbno, &offset_agbno, flags);
2547 if (error)
2548 return error;
2551 out_map:
2552 ASSERT(agbno >= chunk_agbno);
2553 cluster_agbno = chunk_agbno +
2554 ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2555 M_IGEO(mp)->blocks_per_cluster);
2556 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2557 XFS_INO_TO_OFFSET(mp, ino);
2559 imap->im_blkno = xfs_agbno_to_daddr(pag, cluster_agbno);
2560 imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2561 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2564 * If the inode number maps to a block outside the bounds
2565 * of the file system then return NULL rather than calling
2566 * read_buf and panicing when we get an error from the
2567 * driver.
2569 if ((imap->im_blkno + imap->im_len) >
2570 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2571 xfs_alert(mp,
2572 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2573 __func__, (unsigned long long) imap->im_blkno,
2574 (unsigned long long) imap->im_len,
2575 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2576 return -EINVAL;
2578 return 0;
2582 * Log specified fields for the ag hdr (inode section). The growth of the agi
2583 * structure over time requires that we interpret the buffer as two logical
2584 * regions delineated by the end of the unlinked list. This is due to the size
2585 * of the hash table and its location in the middle of the agi.
2587 * For example, a request to log a field before agi_unlinked and a field after
2588 * agi_unlinked could cause us to log the entire hash table and use an excessive
2589 * amount of log space. To avoid this behavior, log the region up through
2590 * agi_unlinked in one call and the region after agi_unlinked through the end of
2591 * the structure in another.
2593 void
2594 xfs_ialloc_log_agi(
2595 struct xfs_trans *tp,
2596 struct xfs_buf *bp,
2597 uint32_t fields)
2599 int first; /* first byte number */
2600 int last; /* last byte number */
2601 static const short offsets[] = { /* field starting offsets */
2602 /* keep in sync with bit definitions */
2603 offsetof(xfs_agi_t, agi_magicnum),
2604 offsetof(xfs_agi_t, agi_versionnum),
2605 offsetof(xfs_agi_t, agi_seqno),
2606 offsetof(xfs_agi_t, agi_length),
2607 offsetof(xfs_agi_t, agi_count),
2608 offsetof(xfs_agi_t, agi_root),
2609 offsetof(xfs_agi_t, agi_level),
2610 offsetof(xfs_agi_t, agi_freecount),
2611 offsetof(xfs_agi_t, agi_newino),
2612 offsetof(xfs_agi_t, agi_dirino),
2613 offsetof(xfs_agi_t, agi_unlinked),
2614 offsetof(xfs_agi_t, agi_free_root),
2615 offsetof(xfs_agi_t, agi_free_level),
2616 offsetof(xfs_agi_t, agi_iblocks),
2617 sizeof(xfs_agi_t)
2619 #ifdef DEBUG
2620 struct xfs_agi *agi = bp->b_addr;
2622 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2623 #endif
2626 * Compute byte offsets for the first and last fields in the first
2627 * region and log the agi buffer. This only logs up through
2628 * agi_unlinked.
2630 if (fields & XFS_AGI_ALL_BITS_R1) {
2631 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2632 &first, &last);
2633 xfs_trans_log_buf(tp, bp, first, last);
2637 * Mask off the bits in the first region and calculate the first and
2638 * last field offsets for any bits in the second region.
2640 fields &= ~XFS_AGI_ALL_BITS_R1;
2641 if (fields) {
2642 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2643 &first, &last);
2644 xfs_trans_log_buf(tp, bp, first, last);
2648 static xfs_failaddr_t
2649 xfs_agi_verify(
2650 struct xfs_buf *bp)
2652 struct xfs_mount *mp = bp->b_mount;
2653 struct xfs_agi *agi = bp->b_addr;
2654 xfs_failaddr_t fa;
2655 uint32_t agi_seqno = be32_to_cpu(agi->agi_seqno);
2656 uint32_t agi_length = be32_to_cpu(agi->agi_length);
2657 int i;
2659 if (xfs_has_crc(mp)) {
2660 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2661 return __this_address;
2662 if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2663 return __this_address;
2667 * Validate the magic number of the agi block.
2669 if (!xfs_verify_magic(bp, agi->agi_magicnum))
2670 return __this_address;
2671 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2672 return __this_address;
2674 fa = xfs_validate_ag_length(bp, agi_seqno, agi_length);
2675 if (fa)
2676 return fa;
2678 if (be32_to_cpu(agi->agi_level) < 1 ||
2679 be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2680 return __this_address;
2682 if (xfs_has_finobt(mp) &&
2683 (be32_to_cpu(agi->agi_free_level) < 1 ||
2684 be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2685 return __this_address;
2687 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2688 if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2689 continue;
2690 if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2691 return __this_address;
2694 return NULL;
2697 static void
2698 xfs_agi_read_verify(
2699 struct xfs_buf *bp)
2701 struct xfs_mount *mp = bp->b_mount;
2702 xfs_failaddr_t fa;
2704 if (xfs_has_crc(mp) &&
2705 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2706 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2707 else {
2708 fa = xfs_agi_verify(bp);
2709 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2710 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2714 static void
2715 xfs_agi_write_verify(
2716 struct xfs_buf *bp)
2718 struct xfs_mount *mp = bp->b_mount;
2719 struct xfs_buf_log_item *bip = bp->b_log_item;
2720 struct xfs_agi *agi = bp->b_addr;
2721 xfs_failaddr_t fa;
2723 fa = xfs_agi_verify(bp);
2724 if (fa) {
2725 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2726 return;
2729 if (!xfs_has_crc(mp))
2730 return;
2732 if (bip)
2733 agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2734 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2737 const struct xfs_buf_ops xfs_agi_buf_ops = {
2738 .name = "xfs_agi",
2739 .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2740 .verify_read = xfs_agi_read_verify,
2741 .verify_write = xfs_agi_write_verify,
2742 .verify_struct = xfs_agi_verify,
2746 * Read in the allocation group header (inode allocation section)
2749 xfs_read_agi(
2750 struct xfs_perag *pag,
2751 struct xfs_trans *tp,
2752 xfs_buf_flags_t flags,
2753 struct xfs_buf **agibpp)
2755 struct xfs_mount *mp = pag_mount(pag);
2756 int error;
2758 trace_xfs_read_agi(pag);
2760 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2761 XFS_AG_DADDR(mp, pag_agno(pag), XFS_AGI_DADDR(mp)),
2762 XFS_FSS_TO_BB(mp, 1), flags, agibpp, &xfs_agi_buf_ops);
2763 if (xfs_metadata_is_sick(error))
2764 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2765 if (error)
2766 return error;
2767 if (tp)
2768 xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF);
2770 xfs_buf_set_ref(*agibpp, XFS_AGI_REF);
2771 return 0;
2775 * Read in the agi and initialise the per-ag data. If the caller supplies a
2776 * @agibpp, return the locked AGI buffer to them, otherwise release it.
2779 xfs_ialloc_read_agi(
2780 struct xfs_perag *pag,
2781 struct xfs_trans *tp,
2782 int flags,
2783 struct xfs_buf **agibpp)
2785 struct xfs_buf *agibp;
2786 struct xfs_agi *agi;
2787 int error;
2789 trace_xfs_ialloc_read_agi(pag);
2791 error = xfs_read_agi(pag, tp,
2792 (flags & XFS_IALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
2793 &agibp);
2794 if (error)
2795 return error;
2797 agi = agibp->b_addr;
2798 if (!xfs_perag_initialised_agi(pag)) {
2799 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2800 pag->pagi_count = be32_to_cpu(agi->agi_count);
2801 set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
2805 * It's possible for these to be out of sync if
2806 * we are in the middle of a forced shutdown.
2808 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2809 xfs_is_shutdown(pag_mount(pag)));
2810 if (agibpp)
2811 *agibpp = agibp;
2812 else
2813 xfs_trans_brelse(tp, agibp);
2814 return 0;
2817 /* How many inodes are backed by inode clusters ondisk? */
2818 STATIC int
2819 xfs_ialloc_count_ondisk(
2820 struct xfs_btree_cur *cur,
2821 xfs_agino_t low,
2822 xfs_agino_t high,
2823 unsigned int *allocated)
2825 struct xfs_inobt_rec_incore irec;
2826 unsigned int ret = 0;
2827 int has_record;
2828 int error;
2830 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2831 if (error)
2832 return error;
2834 while (has_record) {
2835 unsigned int i, hole_idx;
2837 error = xfs_inobt_get_rec(cur, &irec, &has_record);
2838 if (error)
2839 return error;
2840 if (irec.ir_startino > high)
2841 break;
2843 for (i = 0; i < XFS_INODES_PER_CHUNK; i++) {
2844 if (irec.ir_startino + i < low)
2845 continue;
2846 if (irec.ir_startino + i > high)
2847 break;
2849 hole_idx = i / XFS_INODES_PER_HOLEMASK_BIT;
2850 if (!(irec.ir_holemask & (1U << hole_idx)))
2851 ret++;
2854 error = xfs_btree_increment(cur, 0, &has_record);
2855 if (error)
2856 return error;
2859 *allocated = ret;
2860 return 0;
2863 /* Is there an inode record covering a given extent? */
2865 xfs_ialloc_has_inodes_at_extent(
2866 struct xfs_btree_cur *cur,
2867 xfs_agblock_t bno,
2868 xfs_extlen_t len,
2869 enum xbtree_recpacking *outcome)
2871 xfs_agino_t agino;
2872 xfs_agino_t last_agino;
2873 unsigned int allocated;
2874 int error;
2876 agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2877 last_agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2879 error = xfs_ialloc_count_ondisk(cur, agino, last_agino, &allocated);
2880 if (error)
2881 return error;
2883 if (allocated == 0)
2884 *outcome = XBTREE_RECPACKING_EMPTY;
2885 else if (allocated == last_agino - agino + 1)
2886 *outcome = XBTREE_RECPACKING_FULL;
2887 else
2888 *outcome = XBTREE_RECPACKING_SPARSE;
2889 return 0;
2892 struct xfs_ialloc_count_inodes {
2893 xfs_agino_t count;
2894 xfs_agino_t freecount;
2897 /* Record inode counts across all inobt records. */
2898 STATIC int
2899 xfs_ialloc_count_inodes_rec(
2900 struct xfs_btree_cur *cur,
2901 const union xfs_btree_rec *rec,
2902 void *priv)
2904 struct xfs_inobt_rec_incore irec;
2905 struct xfs_ialloc_count_inodes *ci = priv;
2906 xfs_failaddr_t fa;
2908 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2909 fa = xfs_inobt_check_irec(to_perag(cur->bc_group), &irec);
2910 if (fa)
2911 return xfs_inobt_complain_bad_rec(cur, fa, &irec);
2913 ci->count += irec.ir_count;
2914 ci->freecount += irec.ir_freecount;
2916 return 0;
2919 /* Count allocated and free inodes under an inobt. */
2921 xfs_ialloc_count_inodes(
2922 struct xfs_btree_cur *cur,
2923 xfs_agino_t *count,
2924 xfs_agino_t *freecount)
2926 struct xfs_ialloc_count_inodes ci = {0};
2927 int error;
2929 ASSERT(xfs_btree_is_ino(cur->bc_ops));
2930 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2931 if (error)
2932 return error;
2934 *count = ci.count;
2935 *freecount = ci.freecount;
2936 return 0;
2940 * Initialize inode-related geometry information.
2942 * Compute the inode btree min and max levels and set maxicount.
2944 * Set the inode cluster size. This may still be overridden by the file
2945 * system block size if it is larger than the chosen cluster size.
2947 * For v5 filesystems, scale the cluster size with the inode size to keep a
2948 * constant ratio of inode per cluster buffer, but only if mkfs has set the
2949 * inode alignment value appropriately for larger cluster sizes.
2951 * Then compute the inode cluster alignment information.
2953 void
2954 xfs_ialloc_setup_geometry(
2955 struct xfs_mount *mp)
2957 struct xfs_sb *sbp = &mp->m_sb;
2958 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2959 uint64_t icount;
2960 uint inodes;
2962 igeo->new_diflags2 = 0;
2963 if (xfs_has_bigtime(mp))
2964 igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2965 if (xfs_has_large_extent_counts(mp))
2966 igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64;
2968 /* Compute inode btree geometry. */
2969 igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2970 igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, true);
2971 igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, false);
2972 igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2973 igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2975 igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2976 sbp->sb_inopblock);
2977 igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2979 if (sbp->sb_spino_align)
2980 igeo->ialloc_min_blks = sbp->sb_spino_align;
2981 else
2982 igeo->ialloc_min_blks = igeo->ialloc_blks;
2984 /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2985 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2986 igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2987 inodes);
2988 ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk());
2991 * Set the maximum inode count for this filesystem, being careful not
2992 * to use obviously garbage sb_inopblog/sb_inopblock values. Regular
2993 * users should never get here due to failing sb verification, but
2994 * certain users (xfs_db) need to be usable even with corrupt metadata.
2996 if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2998 * Make sure the maximum inode count is a multiple
2999 * of the units we allocate inodes in.
3001 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
3002 do_div(icount, 100);
3003 do_div(icount, igeo->ialloc_blks);
3004 igeo->maxicount = XFS_FSB_TO_INO(mp,
3005 icount * igeo->ialloc_blks);
3006 } else {
3007 igeo->maxicount = 0;
3011 * Compute the desired size of an inode cluster buffer size, which
3012 * starts at 8K and (on v5 filesystems) scales up with larger inode
3013 * sizes.
3015 * Preserve the desired inode cluster size because the sparse inodes
3016 * feature uses that desired size (not the actual size) to compute the
3017 * sparse inode alignment. The mount code validates this value, so we
3018 * cannot change the behavior.
3020 igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
3021 if (xfs_has_v3inodes(mp)) {
3022 int new_size = igeo->inode_cluster_size_raw;
3024 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
3025 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
3026 igeo->inode_cluster_size_raw = new_size;
3029 /* Calculate inode cluster ratios. */
3030 if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
3031 igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
3032 igeo->inode_cluster_size_raw);
3033 else
3034 igeo->blocks_per_cluster = 1;
3035 igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
3036 igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
3038 /* Calculate inode cluster alignment. */
3039 if (xfs_has_align(mp) &&
3040 mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
3041 igeo->cluster_align = mp->m_sb.sb_inoalignmt;
3042 else
3043 igeo->cluster_align = 1;
3044 igeo->inoalign_mask = igeo->cluster_align - 1;
3045 igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
3048 * If we are using stripe alignment, check whether
3049 * the stripe unit is a multiple of the inode alignment
3051 if (mp->m_dalign && igeo->inoalign_mask &&
3052 !(mp->m_dalign & igeo->inoalign_mask))
3053 igeo->ialloc_align = mp->m_dalign;
3054 else
3055 igeo->ialloc_align = 0;
3057 if (mp->m_sb.sb_blocksize > PAGE_SIZE)
3058 igeo->min_folio_order = mp->m_sb.sb_blocklog - PAGE_SHIFT;
3059 else
3060 igeo->min_folio_order = 0;
3063 /* Compute the location of the root directory inode that is laid out by mkfs. */
3064 xfs_ino_t
3065 xfs_ialloc_calc_rootino(
3066 struct xfs_mount *mp,
3067 int sunit)
3069 struct xfs_ino_geometry *igeo = M_IGEO(mp);
3070 xfs_agblock_t first_bno;
3073 * Pre-calculate the geometry of AG 0. We know what it looks like
3074 * because libxfs knows how to create allocation groups now.
3076 * first_bno is the first block in which mkfs could possibly have
3077 * allocated the root directory inode, once we factor in the metadata
3078 * that mkfs formats before it. Namely, the four AG headers...
3080 first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
3082 /* ...the two free space btree roots... */
3083 first_bno += 2;
3085 /* ...the inode btree root... */
3086 first_bno += 1;
3088 /* ...the initial AGFL... */
3089 first_bno += xfs_alloc_min_freelist(mp, NULL);
3091 /* ...the free inode btree root... */
3092 if (xfs_has_finobt(mp))
3093 first_bno++;
3095 /* ...the reverse mapping btree root... */
3096 if (xfs_has_rmapbt(mp))
3097 first_bno++;
3099 /* ...the reference count btree... */
3100 if (xfs_has_reflink(mp))
3101 first_bno++;
3104 * ...and the log, if it is allocated in the first allocation group.
3106 * This can happen with filesystems that only have a single
3107 * allocation group, or very odd geometries created by old mkfs
3108 * versions on very small filesystems.
3110 if (xfs_ag_contains_log(mp, 0))
3111 first_bno += mp->m_sb.sb_logblocks;
3114 * Now round first_bno up to whatever allocation alignment is given
3115 * by the filesystem or was passed in.
3117 if (xfs_has_dalign(mp) && igeo->ialloc_align > 0)
3118 first_bno = roundup(first_bno, sunit);
3119 else if (xfs_has_align(mp) &&
3120 mp->m_sb.sb_inoalignmt > 1)
3121 first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
3123 return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
3127 * Ensure there are not sparse inode clusters that cross the new EOAG.
3129 * This is a no-op for non-spinode filesystems since clusters are always fully
3130 * allocated and checking the bnobt suffices. However, a spinode filesystem
3131 * could have a record where the upper inodes are free blocks. If those blocks
3132 * were removed from the filesystem, the inode record would extend beyond EOAG,
3133 * which will be flagged as corruption.
3136 xfs_ialloc_check_shrink(
3137 struct xfs_perag *pag,
3138 struct xfs_trans *tp,
3139 struct xfs_buf *agibp,
3140 xfs_agblock_t new_length)
3142 struct xfs_inobt_rec_incore rec;
3143 struct xfs_btree_cur *cur;
3144 xfs_agino_t agino;
3145 int has;
3146 int error;
3148 if (!xfs_has_sparseinodes(pag_mount(pag)))
3149 return 0;
3151 cur = xfs_inobt_init_cursor(pag, tp, agibp);
3153 /* Look up the inobt record that would correspond to the new EOFS. */
3154 agino = XFS_AGB_TO_AGINO(pag_mount(pag), new_length);
3155 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
3156 if (error || !has)
3157 goto out;
3159 error = xfs_inobt_get_rec(cur, &rec, &has);
3160 if (error)
3161 goto out;
3163 if (!has) {
3164 xfs_ag_mark_sick(pag, XFS_SICK_AG_INOBT);
3165 error = -EFSCORRUPTED;
3166 goto out;
3169 /* If the record covers inodes that would be beyond EOFS, bail out. */
3170 if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
3171 error = -ENOSPC;
3172 goto out;
3174 out:
3175 xfs_btree_del_cursor(cur, error);
3176 return error;