drm/ssd130x: Set SPI .id_table to prevent an SPI core warning
[drm/drm-misc.git] / fs / xfs / libxfs / xfs_ialloc_btree.c
blob9b34896dd1a32f29ee9f75922e6f46e0a27d82b9
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_btree.h"
15 #include "xfs_btree_staging.h"
16 #include "xfs_ialloc.h"
17 #include "xfs_ialloc_btree.h"
18 #include "xfs_alloc.h"
19 #include "xfs_error.h"
20 #include "xfs_health.h"
21 #include "xfs_trace.h"
22 #include "xfs_trans.h"
23 #include "xfs_rmap.h"
24 #include "xfs_ag.h"
26 static struct kmem_cache *xfs_inobt_cur_cache;
28 STATIC int
29 xfs_inobt_get_minrecs(
30 struct xfs_btree_cur *cur,
31 int level)
33 return M_IGEO(cur->bc_mp)->inobt_mnr[level != 0];
36 STATIC struct xfs_btree_cur *
37 xfs_inobt_dup_cursor(
38 struct xfs_btree_cur *cur)
40 return xfs_inobt_init_cursor(to_perag(cur->bc_group), cur->bc_tp,
41 cur->bc_ag.agbp);
44 STATIC struct xfs_btree_cur *
45 xfs_finobt_dup_cursor(
46 struct xfs_btree_cur *cur)
48 return xfs_finobt_init_cursor(to_perag(cur->bc_group), cur->bc_tp,
49 cur->bc_ag.agbp);
52 STATIC void
53 xfs_inobt_set_root(
54 struct xfs_btree_cur *cur,
55 const union xfs_btree_ptr *nptr,
56 int inc) /* level change */
58 struct xfs_buf *agbp = cur->bc_ag.agbp;
59 struct xfs_agi *agi = agbp->b_addr;
61 agi->agi_root = nptr->s;
62 be32_add_cpu(&agi->agi_level, inc);
63 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
66 STATIC void
67 xfs_finobt_set_root(
68 struct xfs_btree_cur *cur,
69 const union xfs_btree_ptr *nptr,
70 int inc) /* level change */
72 struct xfs_buf *agbp = cur->bc_ag.agbp;
73 struct xfs_agi *agi = agbp->b_addr;
75 agi->agi_free_root = nptr->s;
76 be32_add_cpu(&agi->agi_free_level, inc);
77 xfs_ialloc_log_agi(cur->bc_tp, agbp,
78 XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
81 /* Update the inode btree block counter for this btree. */
82 static inline void
83 xfs_inobt_mod_blockcount(
84 struct xfs_btree_cur *cur,
85 int howmuch)
87 struct xfs_buf *agbp = cur->bc_ag.agbp;
88 struct xfs_agi *agi = agbp->b_addr;
90 if (!xfs_has_inobtcounts(cur->bc_mp))
91 return;
93 if (xfs_btree_is_fino(cur->bc_ops))
94 be32_add_cpu(&agi->agi_fblocks, howmuch);
95 else
96 be32_add_cpu(&agi->agi_iblocks, howmuch);
97 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_IBLOCKS);
100 STATIC int
101 __xfs_inobt_alloc_block(
102 struct xfs_btree_cur *cur,
103 const union xfs_btree_ptr *start,
104 union xfs_btree_ptr *new,
105 int *stat,
106 enum xfs_ag_resv_type resv)
108 xfs_alloc_arg_t args; /* block allocation args */
109 int error; /* error return value */
110 xfs_agblock_t sbno = be32_to_cpu(start->s);
112 memset(&args, 0, sizeof(args));
113 args.tp = cur->bc_tp;
114 args.mp = cur->bc_mp;
115 args.pag = to_perag(cur->bc_group);
116 args.oinfo = XFS_RMAP_OINFO_INOBT;
117 args.minlen = 1;
118 args.maxlen = 1;
119 args.prod = 1;
120 args.resv = resv;
122 error = xfs_alloc_vextent_near_bno(&args,
123 xfs_agbno_to_fsb(args.pag, sbno));
124 if (error)
125 return error;
127 if (args.fsbno == NULLFSBLOCK) {
128 *stat = 0;
129 return 0;
131 ASSERT(args.len == 1);
133 new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
134 *stat = 1;
135 xfs_inobt_mod_blockcount(cur, 1);
136 return 0;
139 STATIC int
140 xfs_inobt_alloc_block(
141 struct xfs_btree_cur *cur,
142 const union xfs_btree_ptr *start,
143 union xfs_btree_ptr *new,
144 int *stat)
146 return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE);
149 STATIC int
150 xfs_finobt_alloc_block(
151 struct xfs_btree_cur *cur,
152 const union xfs_btree_ptr *start,
153 union xfs_btree_ptr *new,
154 int *stat)
156 if (cur->bc_mp->m_finobt_nores)
157 return xfs_inobt_alloc_block(cur, start, new, stat);
158 return __xfs_inobt_alloc_block(cur, start, new, stat,
159 XFS_AG_RESV_METADATA);
162 STATIC int
163 __xfs_inobt_free_block(
164 struct xfs_btree_cur *cur,
165 struct xfs_buf *bp,
166 enum xfs_ag_resv_type resv)
168 xfs_fsblock_t fsbno;
170 xfs_inobt_mod_blockcount(cur, -1);
171 fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp));
172 return xfs_free_extent_later(cur->bc_tp, fsbno, 1,
173 &XFS_RMAP_OINFO_INOBT, resv, 0);
176 STATIC int
177 xfs_inobt_free_block(
178 struct xfs_btree_cur *cur,
179 struct xfs_buf *bp)
181 return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_NONE);
184 STATIC int
185 xfs_finobt_free_block(
186 struct xfs_btree_cur *cur,
187 struct xfs_buf *bp)
189 if (cur->bc_mp->m_finobt_nores)
190 return xfs_inobt_free_block(cur, bp);
191 return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_METADATA);
194 STATIC int
195 xfs_inobt_get_maxrecs(
196 struct xfs_btree_cur *cur,
197 int level)
199 return M_IGEO(cur->bc_mp)->inobt_mxr[level != 0];
202 STATIC void
203 xfs_inobt_init_key_from_rec(
204 union xfs_btree_key *key,
205 const union xfs_btree_rec *rec)
207 key->inobt.ir_startino = rec->inobt.ir_startino;
210 STATIC void
211 xfs_inobt_init_high_key_from_rec(
212 union xfs_btree_key *key,
213 const union xfs_btree_rec *rec)
215 __u32 x;
217 x = be32_to_cpu(rec->inobt.ir_startino);
218 x += XFS_INODES_PER_CHUNK - 1;
219 key->inobt.ir_startino = cpu_to_be32(x);
222 STATIC void
223 xfs_inobt_init_rec_from_cur(
224 struct xfs_btree_cur *cur,
225 union xfs_btree_rec *rec)
227 rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
228 if (xfs_has_sparseinodes(cur->bc_mp)) {
229 rec->inobt.ir_u.sp.ir_holemask =
230 cpu_to_be16(cur->bc_rec.i.ir_holemask);
231 rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
232 rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
233 } else {
234 /* ir_holemask/ir_count not supported on-disk */
235 rec->inobt.ir_u.f.ir_freecount =
236 cpu_to_be32(cur->bc_rec.i.ir_freecount);
238 rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
242 * initial value of ptr for lookup
244 STATIC void
245 xfs_inobt_init_ptr_from_cur(
246 struct xfs_btree_cur *cur,
247 union xfs_btree_ptr *ptr)
249 struct xfs_agi *agi = cur->bc_ag.agbp->b_addr;
251 ASSERT(cur->bc_group->xg_gno == be32_to_cpu(agi->agi_seqno));
253 ptr->s = agi->agi_root;
256 STATIC void
257 xfs_finobt_init_ptr_from_cur(
258 struct xfs_btree_cur *cur,
259 union xfs_btree_ptr *ptr)
261 struct xfs_agi *agi = cur->bc_ag.agbp->b_addr;
263 ASSERT(cur->bc_group->xg_gno == be32_to_cpu(agi->agi_seqno));
265 ptr->s = agi->agi_free_root;
268 STATIC int64_t
269 xfs_inobt_key_diff(
270 struct xfs_btree_cur *cur,
271 const union xfs_btree_key *key)
273 return (int64_t)be32_to_cpu(key->inobt.ir_startino) -
274 cur->bc_rec.i.ir_startino;
277 STATIC int64_t
278 xfs_inobt_diff_two_keys(
279 struct xfs_btree_cur *cur,
280 const union xfs_btree_key *k1,
281 const union xfs_btree_key *k2,
282 const union xfs_btree_key *mask)
284 ASSERT(!mask || mask->inobt.ir_startino);
286 return (int64_t)be32_to_cpu(k1->inobt.ir_startino) -
287 be32_to_cpu(k2->inobt.ir_startino);
290 static xfs_failaddr_t
291 xfs_inobt_verify(
292 struct xfs_buf *bp)
294 struct xfs_mount *mp = bp->b_mount;
295 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
296 xfs_failaddr_t fa;
297 unsigned int level;
299 if (!xfs_verify_magic(bp, block->bb_magic))
300 return __this_address;
303 * During growfs operations, we can't verify the exact owner as the
304 * perag is not fully initialised and hence not attached to the buffer.
306 * Similarly, during log recovery we will have a perag structure
307 * attached, but the agi information will not yet have been initialised
308 * from the on disk AGI. We don't currently use any of this information,
309 * but beware of the landmine (i.e. need to check
310 * xfs_perag_initialised_agi(pag)) if we ever do.
312 if (xfs_has_crc(mp)) {
313 fa = xfs_btree_agblock_v5hdr_verify(bp);
314 if (fa)
315 return fa;
318 /* level verification */
319 level = be16_to_cpu(block->bb_level);
320 if (level >= M_IGEO(mp)->inobt_maxlevels)
321 return __this_address;
323 return xfs_btree_agblock_verify(bp,
324 M_IGEO(mp)->inobt_mxr[level != 0]);
327 static void
328 xfs_inobt_read_verify(
329 struct xfs_buf *bp)
331 xfs_failaddr_t fa;
333 if (!xfs_btree_agblock_verify_crc(bp))
334 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
335 else {
336 fa = xfs_inobt_verify(bp);
337 if (fa)
338 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
341 if (bp->b_error)
342 trace_xfs_btree_corrupt(bp, _RET_IP_);
345 static void
346 xfs_inobt_write_verify(
347 struct xfs_buf *bp)
349 xfs_failaddr_t fa;
351 fa = xfs_inobt_verify(bp);
352 if (fa) {
353 trace_xfs_btree_corrupt(bp, _RET_IP_);
354 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
355 return;
357 xfs_btree_agblock_calc_crc(bp);
361 const struct xfs_buf_ops xfs_inobt_buf_ops = {
362 .name = "xfs_inobt",
363 .magic = { cpu_to_be32(XFS_IBT_MAGIC), cpu_to_be32(XFS_IBT_CRC_MAGIC) },
364 .verify_read = xfs_inobt_read_verify,
365 .verify_write = xfs_inobt_write_verify,
366 .verify_struct = xfs_inobt_verify,
369 const struct xfs_buf_ops xfs_finobt_buf_ops = {
370 .name = "xfs_finobt",
371 .magic = { cpu_to_be32(XFS_FIBT_MAGIC),
372 cpu_to_be32(XFS_FIBT_CRC_MAGIC) },
373 .verify_read = xfs_inobt_read_verify,
374 .verify_write = xfs_inobt_write_verify,
375 .verify_struct = xfs_inobt_verify,
378 STATIC int
379 xfs_inobt_keys_inorder(
380 struct xfs_btree_cur *cur,
381 const union xfs_btree_key *k1,
382 const union xfs_btree_key *k2)
384 return be32_to_cpu(k1->inobt.ir_startino) <
385 be32_to_cpu(k2->inobt.ir_startino);
388 STATIC int
389 xfs_inobt_recs_inorder(
390 struct xfs_btree_cur *cur,
391 const union xfs_btree_rec *r1,
392 const union xfs_btree_rec *r2)
394 return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
395 be32_to_cpu(r2->inobt.ir_startino);
398 STATIC enum xbtree_key_contig
399 xfs_inobt_keys_contiguous(
400 struct xfs_btree_cur *cur,
401 const union xfs_btree_key *key1,
402 const union xfs_btree_key *key2,
403 const union xfs_btree_key *mask)
405 ASSERT(!mask || mask->inobt.ir_startino);
407 return xbtree_key_contig(be32_to_cpu(key1->inobt.ir_startino),
408 be32_to_cpu(key2->inobt.ir_startino));
411 const struct xfs_btree_ops xfs_inobt_ops = {
412 .name = "ino",
413 .type = XFS_BTREE_TYPE_AG,
415 .rec_len = sizeof(xfs_inobt_rec_t),
416 .key_len = sizeof(xfs_inobt_key_t),
417 .ptr_len = XFS_BTREE_SHORT_PTR_LEN,
419 .lru_refs = XFS_INO_BTREE_REF,
420 .statoff = XFS_STATS_CALC_INDEX(xs_ibt_2),
421 .sick_mask = XFS_SICK_AG_INOBT,
423 .dup_cursor = xfs_inobt_dup_cursor,
424 .set_root = xfs_inobt_set_root,
425 .alloc_block = xfs_inobt_alloc_block,
426 .free_block = xfs_inobt_free_block,
427 .get_minrecs = xfs_inobt_get_minrecs,
428 .get_maxrecs = xfs_inobt_get_maxrecs,
429 .init_key_from_rec = xfs_inobt_init_key_from_rec,
430 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
431 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
432 .init_ptr_from_cur = xfs_inobt_init_ptr_from_cur,
433 .key_diff = xfs_inobt_key_diff,
434 .buf_ops = &xfs_inobt_buf_ops,
435 .diff_two_keys = xfs_inobt_diff_two_keys,
436 .keys_inorder = xfs_inobt_keys_inorder,
437 .recs_inorder = xfs_inobt_recs_inorder,
438 .keys_contiguous = xfs_inobt_keys_contiguous,
441 const struct xfs_btree_ops xfs_finobt_ops = {
442 .name = "fino",
443 .type = XFS_BTREE_TYPE_AG,
445 .rec_len = sizeof(xfs_inobt_rec_t),
446 .key_len = sizeof(xfs_inobt_key_t),
447 .ptr_len = XFS_BTREE_SHORT_PTR_LEN,
449 .lru_refs = XFS_INO_BTREE_REF,
450 .statoff = XFS_STATS_CALC_INDEX(xs_fibt_2),
451 .sick_mask = XFS_SICK_AG_FINOBT,
453 .dup_cursor = xfs_finobt_dup_cursor,
454 .set_root = xfs_finobt_set_root,
455 .alloc_block = xfs_finobt_alloc_block,
456 .free_block = xfs_finobt_free_block,
457 .get_minrecs = xfs_inobt_get_minrecs,
458 .get_maxrecs = xfs_inobt_get_maxrecs,
459 .init_key_from_rec = xfs_inobt_init_key_from_rec,
460 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
461 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
462 .init_ptr_from_cur = xfs_finobt_init_ptr_from_cur,
463 .key_diff = xfs_inobt_key_diff,
464 .buf_ops = &xfs_finobt_buf_ops,
465 .diff_two_keys = xfs_inobt_diff_two_keys,
466 .keys_inorder = xfs_inobt_keys_inorder,
467 .recs_inorder = xfs_inobt_recs_inorder,
468 .keys_contiguous = xfs_inobt_keys_contiguous,
472 * Create an inode btree cursor.
474 * For staging cursors tp and agbp are NULL.
476 struct xfs_btree_cur *
477 xfs_inobt_init_cursor(
478 struct xfs_perag *pag,
479 struct xfs_trans *tp,
480 struct xfs_buf *agbp)
482 struct xfs_mount *mp = pag_mount(pag);
483 struct xfs_btree_cur *cur;
485 cur = xfs_btree_alloc_cursor(mp, tp, &xfs_inobt_ops,
486 M_IGEO(mp)->inobt_maxlevels, xfs_inobt_cur_cache);
487 cur->bc_group = xfs_group_hold(pag_group(pag));
488 cur->bc_ag.agbp = agbp;
489 if (agbp) {
490 struct xfs_agi *agi = agbp->b_addr;
492 cur->bc_nlevels = be32_to_cpu(agi->agi_level);
494 return cur;
498 * Create a free inode btree cursor.
500 * For staging cursors tp and agbp are NULL.
502 struct xfs_btree_cur *
503 xfs_finobt_init_cursor(
504 struct xfs_perag *pag,
505 struct xfs_trans *tp,
506 struct xfs_buf *agbp)
508 struct xfs_mount *mp = pag_mount(pag);
509 struct xfs_btree_cur *cur;
511 cur = xfs_btree_alloc_cursor(mp, tp, &xfs_finobt_ops,
512 M_IGEO(mp)->inobt_maxlevels, xfs_inobt_cur_cache);
513 cur->bc_group = xfs_group_hold(pag_group(pag));
514 cur->bc_ag.agbp = agbp;
515 if (agbp) {
516 struct xfs_agi *agi = agbp->b_addr;
518 cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
520 return cur;
524 * Install a new inobt btree root. Caller is responsible for invalidating
525 * and freeing the old btree blocks.
527 void
528 xfs_inobt_commit_staged_btree(
529 struct xfs_btree_cur *cur,
530 struct xfs_trans *tp,
531 struct xfs_buf *agbp)
533 struct xfs_agi *agi = agbp->b_addr;
534 struct xbtree_afakeroot *afake = cur->bc_ag.afake;
535 int fields;
537 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
539 if (xfs_btree_is_ino(cur->bc_ops)) {
540 fields = XFS_AGI_ROOT | XFS_AGI_LEVEL;
541 agi->agi_root = cpu_to_be32(afake->af_root);
542 agi->agi_level = cpu_to_be32(afake->af_levels);
543 if (xfs_has_inobtcounts(cur->bc_mp)) {
544 agi->agi_iblocks = cpu_to_be32(afake->af_blocks);
545 fields |= XFS_AGI_IBLOCKS;
547 xfs_ialloc_log_agi(tp, agbp, fields);
548 xfs_btree_commit_afakeroot(cur, tp, agbp);
549 } else {
550 fields = XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL;
551 agi->agi_free_root = cpu_to_be32(afake->af_root);
552 agi->agi_free_level = cpu_to_be32(afake->af_levels);
553 if (xfs_has_inobtcounts(cur->bc_mp)) {
554 agi->agi_fblocks = cpu_to_be32(afake->af_blocks);
555 fields |= XFS_AGI_IBLOCKS;
557 xfs_ialloc_log_agi(tp, agbp, fields);
558 xfs_btree_commit_afakeroot(cur, tp, agbp);
562 /* Calculate number of records in an inode btree block. */
563 static inline unsigned int
564 xfs_inobt_block_maxrecs(
565 unsigned int blocklen,
566 bool leaf)
568 if (leaf)
569 return blocklen / sizeof(xfs_inobt_rec_t);
570 return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
574 * Calculate number of records in an inobt btree block.
576 unsigned int
577 xfs_inobt_maxrecs(
578 struct xfs_mount *mp,
579 unsigned int blocklen,
580 bool leaf)
582 blocklen -= XFS_INOBT_BLOCK_LEN(mp);
583 return xfs_inobt_block_maxrecs(blocklen, leaf);
587 * Maximum number of inode btree records per AG. Pretend that we can fill an
588 * entire AG completely full of inodes except for the AG headers.
590 #define XFS_MAX_INODE_RECORDS \
591 ((XFS_MAX_AG_BYTES - (4 * BBSIZE)) / XFS_DINODE_MIN_SIZE) / \
592 XFS_INODES_PER_CHUNK
594 /* Compute the max possible height for the inode btree. */
595 static inline unsigned int
596 xfs_inobt_maxlevels_ondisk(void)
598 unsigned int minrecs[2];
599 unsigned int blocklen;
601 blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
602 XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
604 minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
605 minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
607 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
610 /* Compute the max possible height for the free inode btree. */
611 static inline unsigned int
612 xfs_finobt_maxlevels_ondisk(void)
614 unsigned int minrecs[2];
615 unsigned int blocklen;
617 blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
619 minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
620 minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
622 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
625 /* Compute the max possible height for either inode btree. */
626 unsigned int
627 xfs_iallocbt_maxlevels_ondisk(void)
629 return max(xfs_inobt_maxlevels_ondisk(),
630 xfs_finobt_maxlevels_ondisk());
634 * Convert the inode record holemask to an inode allocation bitmap. The inode
635 * allocation bitmap is inode granularity and specifies whether an inode is
636 * physically allocated on disk (not whether the inode is considered allocated
637 * or free by the fs).
639 * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
641 uint64_t
642 xfs_inobt_irec_to_allocmask(
643 const struct xfs_inobt_rec_incore *rec)
645 uint64_t bitmap = 0;
646 uint64_t inodespbit;
647 int nextbit;
648 uint allocbitmap;
651 * The holemask has 16-bits for a 64 inode record. Therefore each
652 * holemask bit represents multiple inodes. Create a mask of bits to set
653 * in the allocmask for each holemask bit.
655 inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
658 * Allocated inodes are represented by 0 bits in holemask. Invert the 0
659 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
660 * anything beyond the 16 holemask bits since this casts to a larger
661 * type.
663 allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
666 * allocbitmap is the inverted holemask so every set bit represents
667 * allocated inodes. To expand from 16-bit holemask granularity to
668 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
669 * bitmap for every holemask bit.
671 nextbit = xfs_next_bit(&allocbitmap, 1, 0);
672 while (nextbit != -1) {
673 ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
675 bitmap |= (inodespbit <<
676 (nextbit * XFS_INODES_PER_HOLEMASK_BIT));
678 nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
681 return bitmap;
684 #if defined(DEBUG) || defined(XFS_WARN)
686 * Verify that an in-core inode record has a valid inode count.
689 xfs_inobt_rec_check_count(
690 struct xfs_mount *mp,
691 struct xfs_inobt_rec_incore *rec)
693 int inocount = 0;
694 int nextbit = 0;
695 uint64_t allocbmap;
696 int wordsz;
698 wordsz = sizeof(allocbmap) / sizeof(unsigned int);
699 allocbmap = xfs_inobt_irec_to_allocmask(rec);
701 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
702 while (nextbit != -1) {
703 inocount++;
704 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
705 nextbit + 1);
708 if (inocount != rec->ir_count)
709 return -EFSCORRUPTED;
711 return 0;
713 #endif /* DEBUG */
715 static xfs_extlen_t
716 xfs_inobt_max_size(
717 struct xfs_perag *pag)
719 struct xfs_mount *mp = pag_mount(pag);
720 xfs_agblock_t agblocks = pag_group(pag)->xg_block_count;
722 /* Bail out if we're uninitialized, which can happen in mkfs. */
723 if (M_IGEO(mp)->inobt_mxr[0] == 0)
724 return 0;
727 * The log is permanently allocated, so the space it occupies will
728 * never be available for the kinds of things that would require btree
729 * expansion. We therefore can pretend the space isn't there.
731 if (xfs_ag_contains_log(mp, pag_agno(pag)))
732 agblocks -= mp->m_sb.sb_logblocks;
734 return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr,
735 (uint64_t)agblocks * mp->m_sb.sb_inopblock /
736 XFS_INODES_PER_CHUNK);
739 static int
740 xfs_finobt_count_blocks(
741 struct xfs_perag *pag,
742 struct xfs_trans *tp,
743 xfs_extlen_t *tree_blocks)
745 struct xfs_buf *agbp = NULL;
746 struct xfs_btree_cur *cur;
747 int error;
749 error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
750 if (error)
751 return error;
753 cur = xfs_finobt_init_cursor(pag, tp, agbp);
754 error = xfs_btree_count_blocks(cur, tree_blocks);
755 xfs_btree_del_cursor(cur, error);
756 xfs_trans_brelse(tp, agbp);
758 return error;
761 /* Read finobt block count from AGI header. */
762 static int
763 xfs_finobt_read_blocks(
764 struct xfs_perag *pag,
765 struct xfs_trans *tp,
766 xfs_extlen_t *tree_blocks)
768 struct xfs_buf *agbp;
769 struct xfs_agi *agi;
770 int error;
772 error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
773 if (error)
774 return error;
776 agi = agbp->b_addr;
777 *tree_blocks = be32_to_cpu(agi->agi_fblocks);
778 xfs_trans_brelse(tp, agbp);
779 return 0;
783 * Figure out how many blocks to reserve and how many are used by this btree.
786 xfs_finobt_calc_reserves(
787 struct xfs_perag *pag,
788 struct xfs_trans *tp,
789 xfs_extlen_t *ask,
790 xfs_extlen_t *used)
792 xfs_extlen_t tree_len = 0;
793 int error;
795 if (!xfs_has_finobt(pag_mount(pag)))
796 return 0;
798 if (xfs_has_inobtcounts(pag_mount(pag)))
799 error = xfs_finobt_read_blocks(pag, tp, &tree_len);
800 else
801 error = xfs_finobt_count_blocks(pag, tp, &tree_len);
802 if (error)
803 return error;
805 *ask += xfs_inobt_max_size(pag);
806 *used += tree_len;
807 return 0;
810 /* Calculate the inobt btree size for some records. */
811 xfs_extlen_t
812 xfs_iallocbt_calc_size(
813 struct xfs_mount *mp,
814 unsigned long long len)
816 return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr, len);
819 int __init
820 xfs_inobt_init_cur_cache(void)
822 xfs_inobt_cur_cache = kmem_cache_create("xfs_inobt_cur",
823 xfs_btree_cur_sizeof(xfs_inobt_maxlevels_ondisk()),
824 0, 0, NULL);
826 if (!xfs_inobt_cur_cache)
827 return -ENOMEM;
828 return 0;
831 void
832 xfs_inobt_destroy_cur_cache(void)
834 kmem_cache_destroy(xfs_inobt_cur_cache);
835 xfs_inobt_cur_cache = NULL;