drm/atomic-helper: document drm_atomic_helper_check() restrictions
[drm/drm-misc.git] / fs / xfs / scrub / scrub.c
blob950f5a58dcd967bc94023d736ecf0a6e83bc00b3
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2017-2023 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <djwong@kernel.org>
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans.h"
14 #include "xfs_inode.h"
15 #include "xfs_quota.h"
16 #include "xfs_qm.h"
17 #include "xfs_scrub.h"
18 #include "xfs_buf_mem.h"
19 #include "xfs_rmap.h"
20 #include "xfs_exchrange.h"
21 #include "xfs_exchmaps.h"
22 #include "xfs_dir2.h"
23 #include "xfs_parent.h"
24 #include "xfs_icache.h"
25 #include "scrub/scrub.h"
26 #include "scrub/common.h"
27 #include "scrub/trace.h"
28 #include "scrub/repair.h"
29 #include "scrub/health.h"
30 #include "scrub/stats.h"
31 #include "scrub/xfile.h"
32 #include "scrub/tempfile.h"
33 #include "scrub/orphanage.h"
36 * Online Scrub and Repair
38 * Traditionally, XFS (the kernel driver) did not know how to check or
39 * repair on-disk data structures. That task was left to the xfs_check
40 * and xfs_repair tools, both of which require taking the filesystem
41 * offline for a thorough but time consuming examination. Online
42 * scrub & repair, on the other hand, enables us to check the metadata
43 * for obvious errors while carefully stepping around the filesystem's
44 * ongoing operations, locking rules, etc.
46 * Given that most XFS metadata consist of records stored in a btree,
47 * most of the checking functions iterate the btree blocks themselves
48 * looking for irregularities. When a record block is encountered, each
49 * record can be checked for obviously bad values. Record values can
50 * also be cross-referenced against other btrees to look for potential
51 * misunderstandings between pieces of metadata.
53 * It is expected that the checkers responsible for per-AG metadata
54 * structures will lock the AG headers (AGI, AGF, AGFL), iterate the
55 * metadata structure, and perform any relevant cross-referencing before
56 * unlocking the AG and returning the results to userspace. These
57 * scrubbers must not keep an AG locked for too long to avoid tying up
58 * the block and inode allocators.
60 * Block maps and b-trees rooted in an inode present a special challenge
61 * because they can involve extents from any AG. The general scrubber
62 * structure of lock -> check -> xref -> unlock still holds, but AG
63 * locking order rules /must/ be obeyed to avoid deadlocks. The
64 * ordering rule, of course, is that we must lock in increasing AG
65 * order. Helper functions are provided to track which AG headers we've
66 * already locked. If we detect an imminent locking order violation, we
67 * can signal a potential deadlock, in which case the scrubber can jump
68 * out to the top level, lock all the AGs in order, and retry the scrub.
70 * For file data (directories, extended attributes, symlinks) scrub, we
71 * can simply lock the inode and walk the data. For btree data
72 * (directories and attributes) we follow the same btree-scrubbing
73 * strategy outlined previously to check the records.
75 * We use a bit of trickery with transactions to avoid buffer deadlocks
76 * if there is a cycle in the metadata. The basic problem is that
77 * travelling down a btree involves locking the current buffer at each
78 * tree level. If a pointer should somehow point back to a buffer that
79 * we've already examined, we will deadlock due to the second buffer
80 * locking attempt. Note however that grabbing a buffer in transaction
81 * context links the locked buffer to the transaction. If we try to
82 * re-grab the buffer in the context of the same transaction, we avoid
83 * the second lock attempt and continue. Between the verifier and the
84 * scrubber, something will notice that something is amiss and report
85 * the corruption. Therefore, each scrubber will allocate an empty
86 * transaction, attach buffers to it, and cancel the transaction at the
87 * end of the scrub run. Cancelling a non-dirty transaction simply
88 * unlocks the buffers.
90 * There are four pieces of data that scrub can communicate to
91 * userspace. The first is the error code (errno), which can be used to
92 * communicate operational errors in performing the scrub. There are
93 * also three flags that can be set in the scrub context. If the data
94 * structure itself is corrupt, the CORRUPT flag will be set. If
95 * the metadata is correct but otherwise suboptimal, the PREEN flag
96 * will be set.
98 * We perform secondary validation of filesystem metadata by
99 * cross-referencing every record with all other available metadata.
100 * For example, for block mapping extents, we verify that there are no
101 * records in the free space and inode btrees corresponding to that
102 * space extent and that there is a corresponding entry in the reverse
103 * mapping btree. Inconsistent metadata is noted by setting the
104 * XCORRUPT flag; btree query function errors are noted by setting the
105 * XFAIL flag and deleting the cursor to prevent further attempts to
106 * cross-reference with a defective btree.
108 * If a piece of metadata proves corrupt or suboptimal, the userspace
109 * program can ask the kernel to apply some tender loving care (TLC) to
110 * the metadata object by setting the REPAIR flag and re-calling the
111 * scrub ioctl. "Corruption" is defined by metadata violating the
112 * on-disk specification; operations cannot continue if the violation is
113 * left untreated. It is possible for XFS to continue if an object is
114 * "suboptimal", however performance may be degraded. Repairs are
115 * usually performed by rebuilding the metadata entirely out of
116 * redundant metadata. Optimizing, on the other hand, can sometimes be
117 * done without rebuilding entire structures.
119 * Generally speaking, the repair code has the following code structure:
120 * Lock -> scrub -> repair -> commit -> re-lock -> re-scrub -> unlock.
121 * The first check helps us figure out if we need to rebuild or simply
122 * optimize the structure so that the rebuild knows what to do. The
123 * second check evaluates the completeness of the repair; that is what
124 * is reported to userspace.
126 * A quick note on symbol prefixes:
127 * - "xfs_" are general XFS symbols.
128 * - "xchk_" are symbols related to metadata checking.
129 * - "xrep_" are symbols related to metadata repair.
130 * - "xfs_scrub_" are symbols that tie online fsck to the rest of XFS.
134 * Scrub probe -- userspace uses this to probe if we're willing to scrub
135 * or repair a given mountpoint. This will be used by xfs_scrub to
136 * probe the kernel's abilities to scrub (and repair) the metadata. We
137 * do this by validating the ioctl inputs from userspace, preparing the
138 * filesystem for a scrub (or a repair) operation, and immediately
139 * returning to userspace. Userspace can use the returned errno and
140 * structure state to decide (in broad terms) if scrub/repair are
141 * supported by the running kernel.
143 static int
144 xchk_probe(
145 struct xfs_scrub *sc)
147 int error = 0;
149 if (xchk_should_terminate(sc, &error))
150 return error;
152 return 0;
155 /* Scrub setup and teardown */
157 static inline void
158 xchk_fsgates_disable(
159 struct xfs_scrub *sc)
161 if (!(sc->flags & XCHK_FSGATES_ALL))
162 return;
164 trace_xchk_fsgates_disable(sc, sc->flags & XCHK_FSGATES_ALL);
166 if (sc->flags & XCHK_FSGATES_DRAIN)
167 xfs_drain_wait_disable();
169 if (sc->flags & XCHK_FSGATES_QUOTA)
170 xfs_dqtrx_hook_disable();
172 if (sc->flags & XCHK_FSGATES_DIRENTS)
173 xfs_dir_hook_disable();
175 if (sc->flags & XCHK_FSGATES_RMAP)
176 xfs_rmap_hook_disable();
178 sc->flags &= ~XCHK_FSGATES_ALL;
181 /* Free the resources associated with a scrub subtype. */
182 void
183 xchk_scrub_free_subord(
184 struct xfs_scrub_subord *sub)
186 struct xfs_scrub *sc = sub->parent_sc;
188 ASSERT(sc->ip == sub->sc.ip);
189 ASSERT(sc->orphanage == sub->sc.orphanage);
190 ASSERT(sc->tempip == sub->sc.tempip);
192 sc->sm->sm_type = sub->old_smtype;
193 sc->sm->sm_flags = sub->old_smflags |
194 (sc->sm->sm_flags & XFS_SCRUB_FLAGS_OUT);
195 sc->tp = sub->sc.tp;
197 if (sub->sc.buf) {
198 if (sub->sc.buf_cleanup)
199 sub->sc.buf_cleanup(sub->sc.buf);
200 kvfree(sub->sc.buf);
202 if (sub->sc.xmbtp)
203 xmbuf_free(sub->sc.xmbtp);
204 if (sub->sc.xfile)
205 xfile_destroy(sub->sc.xfile);
207 sc->ilock_flags = sub->sc.ilock_flags;
208 sc->orphanage_ilock_flags = sub->sc.orphanage_ilock_flags;
209 sc->temp_ilock_flags = sub->sc.temp_ilock_flags;
211 kfree(sub);
214 /* Free all the resources and finish the transactions. */
215 STATIC int
216 xchk_teardown(
217 struct xfs_scrub *sc,
218 int error)
220 xchk_ag_free(sc, &sc->sa);
221 if (sc->tp) {
222 if (error == 0 && (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
223 error = xfs_trans_commit(sc->tp);
224 else
225 xfs_trans_cancel(sc->tp);
226 sc->tp = NULL;
228 if (sc->sr.rtg)
229 xchk_rtgroup_free(sc, &sc->sr);
230 if (sc->ip) {
231 if (sc->ilock_flags)
232 xchk_iunlock(sc, sc->ilock_flags);
233 xchk_irele(sc, sc->ip);
234 sc->ip = NULL;
236 if (sc->flags & XCHK_HAVE_FREEZE_PROT) {
237 sc->flags &= ~XCHK_HAVE_FREEZE_PROT;
238 mnt_drop_write_file(sc->file);
240 if (sc->xmbtp) {
241 xmbuf_free(sc->xmbtp);
242 sc->xmbtp = NULL;
244 if (sc->xfile) {
245 xfile_destroy(sc->xfile);
246 sc->xfile = NULL;
248 if (sc->buf) {
249 if (sc->buf_cleanup)
250 sc->buf_cleanup(sc->buf);
251 kvfree(sc->buf);
252 sc->buf_cleanup = NULL;
253 sc->buf = NULL;
256 xrep_tempfile_rele(sc);
257 xrep_orphanage_rele(sc);
258 xchk_fsgates_disable(sc);
259 return error;
262 /* Scrubbing dispatch. */
264 static const struct xchk_meta_ops meta_scrub_ops[] = {
265 [XFS_SCRUB_TYPE_PROBE] = { /* ioctl presence test */
266 .type = ST_NONE,
267 .setup = xchk_setup_fs,
268 .scrub = xchk_probe,
269 .repair = xrep_probe,
271 [XFS_SCRUB_TYPE_SB] = { /* superblock */
272 .type = ST_PERAG,
273 .setup = xchk_setup_agheader,
274 .scrub = xchk_superblock,
275 .repair = xrep_superblock,
277 [XFS_SCRUB_TYPE_AGF] = { /* agf */
278 .type = ST_PERAG,
279 .setup = xchk_setup_agheader,
280 .scrub = xchk_agf,
281 .repair = xrep_agf,
283 [XFS_SCRUB_TYPE_AGFL]= { /* agfl */
284 .type = ST_PERAG,
285 .setup = xchk_setup_agheader,
286 .scrub = xchk_agfl,
287 .repair = xrep_agfl,
289 [XFS_SCRUB_TYPE_AGI] = { /* agi */
290 .type = ST_PERAG,
291 .setup = xchk_setup_agheader,
292 .scrub = xchk_agi,
293 .repair = xrep_agi,
295 [XFS_SCRUB_TYPE_BNOBT] = { /* bnobt */
296 .type = ST_PERAG,
297 .setup = xchk_setup_ag_allocbt,
298 .scrub = xchk_allocbt,
299 .repair = xrep_allocbt,
300 .repair_eval = xrep_revalidate_allocbt,
302 [XFS_SCRUB_TYPE_CNTBT] = { /* cntbt */
303 .type = ST_PERAG,
304 .setup = xchk_setup_ag_allocbt,
305 .scrub = xchk_allocbt,
306 .repair = xrep_allocbt,
307 .repair_eval = xrep_revalidate_allocbt,
309 [XFS_SCRUB_TYPE_INOBT] = { /* inobt */
310 .type = ST_PERAG,
311 .setup = xchk_setup_ag_iallocbt,
312 .scrub = xchk_iallocbt,
313 .repair = xrep_iallocbt,
314 .repair_eval = xrep_revalidate_iallocbt,
316 [XFS_SCRUB_TYPE_FINOBT] = { /* finobt */
317 .type = ST_PERAG,
318 .setup = xchk_setup_ag_iallocbt,
319 .scrub = xchk_iallocbt,
320 .has = xfs_has_finobt,
321 .repair = xrep_iallocbt,
322 .repair_eval = xrep_revalidate_iallocbt,
324 [XFS_SCRUB_TYPE_RMAPBT] = { /* rmapbt */
325 .type = ST_PERAG,
326 .setup = xchk_setup_ag_rmapbt,
327 .scrub = xchk_rmapbt,
328 .has = xfs_has_rmapbt,
329 .repair = xrep_rmapbt,
331 [XFS_SCRUB_TYPE_REFCNTBT] = { /* refcountbt */
332 .type = ST_PERAG,
333 .setup = xchk_setup_ag_refcountbt,
334 .scrub = xchk_refcountbt,
335 .has = xfs_has_reflink,
336 .repair = xrep_refcountbt,
338 [XFS_SCRUB_TYPE_INODE] = { /* inode record */
339 .type = ST_INODE,
340 .setup = xchk_setup_inode,
341 .scrub = xchk_inode,
342 .repair = xrep_inode,
344 [XFS_SCRUB_TYPE_BMBTD] = { /* inode data fork */
345 .type = ST_INODE,
346 .setup = xchk_setup_inode_bmap,
347 .scrub = xchk_bmap_data,
348 .repair = xrep_bmap_data,
350 [XFS_SCRUB_TYPE_BMBTA] = { /* inode attr fork */
351 .type = ST_INODE,
352 .setup = xchk_setup_inode_bmap,
353 .scrub = xchk_bmap_attr,
354 .repair = xrep_bmap_attr,
356 [XFS_SCRUB_TYPE_BMBTC] = { /* inode CoW fork */
357 .type = ST_INODE,
358 .setup = xchk_setup_inode_bmap,
359 .scrub = xchk_bmap_cow,
360 .repair = xrep_bmap_cow,
362 [XFS_SCRUB_TYPE_DIR] = { /* directory */
363 .type = ST_INODE,
364 .setup = xchk_setup_directory,
365 .scrub = xchk_directory,
366 .repair = xrep_directory,
368 [XFS_SCRUB_TYPE_XATTR] = { /* extended attributes */
369 .type = ST_INODE,
370 .setup = xchk_setup_xattr,
371 .scrub = xchk_xattr,
372 .repair = xrep_xattr,
374 [XFS_SCRUB_TYPE_SYMLINK] = { /* symbolic link */
375 .type = ST_INODE,
376 .setup = xchk_setup_symlink,
377 .scrub = xchk_symlink,
378 .repair = xrep_symlink,
380 [XFS_SCRUB_TYPE_PARENT] = { /* parent pointers */
381 .type = ST_INODE,
382 .setup = xchk_setup_parent,
383 .scrub = xchk_parent,
384 .repair = xrep_parent,
386 [XFS_SCRUB_TYPE_RTBITMAP] = { /* realtime bitmap */
387 .type = ST_RTGROUP,
388 .setup = xchk_setup_rtbitmap,
389 .scrub = xchk_rtbitmap,
390 .repair = xrep_rtbitmap,
392 [XFS_SCRUB_TYPE_RTSUM] = { /* realtime summary */
393 .type = ST_RTGROUP,
394 .setup = xchk_setup_rtsummary,
395 .scrub = xchk_rtsummary,
396 .repair = xrep_rtsummary,
398 [XFS_SCRUB_TYPE_UQUOTA] = { /* user quota */
399 .type = ST_FS,
400 .setup = xchk_setup_quota,
401 .scrub = xchk_quota,
402 .repair = xrep_quota,
404 [XFS_SCRUB_TYPE_GQUOTA] = { /* group quota */
405 .type = ST_FS,
406 .setup = xchk_setup_quota,
407 .scrub = xchk_quota,
408 .repair = xrep_quota,
410 [XFS_SCRUB_TYPE_PQUOTA] = { /* project quota */
411 .type = ST_FS,
412 .setup = xchk_setup_quota,
413 .scrub = xchk_quota,
414 .repair = xrep_quota,
416 [XFS_SCRUB_TYPE_FSCOUNTERS] = { /* fs summary counters */
417 .type = ST_FS,
418 .setup = xchk_setup_fscounters,
419 .scrub = xchk_fscounters,
420 .repair = xrep_fscounters,
422 [XFS_SCRUB_TYPE_QUOTACHECK] = { /* quota counters */
423 .type = ST_FS,
424 .setup = xchk_setup_quotacheck,
425 .scrub = xchk_quotacheck,
426 .repair = xrep_quotacheck,
428 [XFS_SCRUB_TYPE_NLINKS] = { /* inode link counts */
429 .type = ST_FS,
430 .setup = xchk_setup_nlinks,
431 .scrub = xchk_nlinks,
432 .repair = xrep_nlinks,
434 [XFS_SCRUB_TYPE_HEALTHY] = { /* fs healthy; clean all reminders */
435 .type = ST_FS,
436 .setup = xchk_setup_fs,
437 .scrub = xchk_health_record,
438 .repair = xrep_notsupported,
440 [XFS_SCRUB_TYPE_DIRTREE] = { /* directory tree structure */
441 .type = ST_INODE,
442 .setup = xchk_setup_dirtree,
443 .scrub = xchk_dirtree,
444 .has = xfs_has_parent,
445 .repair = xrep_dirtree,
447 [XFS_SCRUB_TYPE_METAPATH] = { /* metadata directory tree path */
448 .type = ST_GENERIC,
449 .setup = xchk_setup_metapath,
450 .scrub = xchk_metapath,
451 .has = xfs_has_metadir,
452 .repair = xrep_metapath,
454 [XFS_SCRUB_TYPE_RGSUPER] = { /* realtime group superblock */
455 .type = ST_RTGROUP,
456 .setup = xchk_setup_rgsuperblock,
457 .scrub = xchk_rgsuperblock,
458 .has = xfs_has_rtsb,
459 .repair = xrep_rgsuperblock,
463 static int
464 xchk_validate_inputs(
465 struct xfs_mount *mp,
466 struct xfs_scrub_metadata *sm)
468 int error;
469 const struct xchk_meta_ops *ops;
471 error = -EINVAL;
472 /* Check our inputs. */
473 sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
474 if (sm->sm_flags & ~XFS_SCRUB_FLAGS_IN)
475 goto out;
476 /* sm_reserved[] must be zero */
477 if (memchr_inv(sm->sm_reserved, 0, sizeof(sm->sm_reserved)))
478 goto out;
480 error = -ENOENT;
481 /* Do we know about this type of metadata? */
482 if (sm->sm_type >= XFS_SCRUB_TYPE_NR)
483 goto out;
484 ops = &meta_scrub_ops[sm->sm_type];
485 if (ops->setup == NULL || ops->scrub == NULL)
486 goto out;
487 /* Does this fs even support this type of metadata? */
488 if (ops->has && !ops->has(mp))
489 goto out;
491 error = -EINVAL;
492 /* restricting fields must be appropriate for type */
493 switch (ops->type) {
494 case ST_NONE:
495 case ST_FS:
496 if (sm->sm_ino || sm->sm_gen || sm->sm_agno)
497 goto out;
498 break;
499 case ST_PERAG:
500 if (sm->sm_ino || sm->sm_gen ||
501 sm->sm_agno >= mp->m_sb.sb_agcount)
502 goto out;
503 break;
504 case ST_INODE:
505 if (sm->sm_agno || (sm->sm_gen && !sm->sm_ino))
506 goto out;
507 break;
508 case ST_GENERIC:
509 break;
510 case ST_RTGROUP:
511 if (sm->sm_ino || sm->sm_gen)
512 goto out;
513 if (xfs_has_rtgroups(mp)) {
515 * On a rtgroups filesystem, there won't be an rtbitmap
516 * or rtsummary file for group 0 unless there's
517 * actually a realtime volume attached. However, older
518 * xfs_scrub always calls the rtbitmap/rtsummary
519 * scrubbers with sm_agno==0 so transform the error
520 * code to ENOENT.
522 if (sm->sm_agno >= mp->m_sb.sb_rgcount) {
523 if (sm->sm_agno == 0)
524 error = -ENOENT;
525 goto out;
527 } else {
529 * Prior to rtgroups, the rtbitmap/rtsummary scrubbers
530 * accepted sm_agno==0, so we still accept that for
531 * scrubbing pre-rtgroups filesystems.
533 if (sm->sm_agno != 0)
534 goto out;
536 break;
537 default:
538 goto out;
541 /* No rebuild without repair. */
542 if ((sm->sm_flags & XFS_SCRUB_IFLAG_FORCE_REBUILD) &&
543 !(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
544 return -EINVAL;
547 * We only want to repair read-write v5+ filesystems. Defer the check
548 * for ops->repair until after our scrub confirms that we need to
549 * perform repairs so that we avoid failing due to not supporting
550 * repairing an object that doesn't need repairs.
552 if (sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) {
553 error = -EOPNOTSUPP;
554 if (!xfs_has_crc(mp))
555 goto out;
557 error = -EROFS;
558 if (xfs_is_readonly(mp))
559 goto out;
562 error = 0;
563 out:
564 return error;
567 #ifdef CONFIG_XFS_ONLINE_REPAIR
568 static inline void xchk_postmortem(struct xfs_scrub *sc)
571 * Userspace asked us to repair something, we repaired it, rescanned
572 * it, and the rescan says it's still broken. Scream about this in
573 * the system logs.
575 if ((sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
576 (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
577 XFS_SCRUB_OFLAG_XCORRUPT)))
578 xrep_failure(sc->mp);
580 #else
581 static inline void xchk_postmortem(struct xfs_scrub *sc)
584 * Userspace asked us to scrub something, it's broken, and we have no
585 * way of fixing it. Scream in the logs.
587 if (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
588 XFS_SCRUB_OFLAG_XCORRUPT))
589 xfs_alert_ratelimited(sc->mp,
590 "Corruption detected during scrub.");
592 #endif /* CONFIG_XFS_ONLINE_REPAIR */
595 * Create a new scrub context from an existing one, but with a different scrub
596 * type.
598 struct xfs_scrub_subord *
599 xchk_scrub_create_subord(
600 struct xfs_scrub *sc,
601 unsigned int subtype)
603 struct xfs_scrub_subord *sub;
605 sub = kzalloc(sizeof(*sub), XCHK_GFP_FLAGS);
606 if (!sub)
607 return ERR_PTR(-ENOMEM);
609 sub->old_smtype = sc->sm->sm_type;
610 sub->old_smflags = sc->sm->sm_flags;
611 sub->parent_sc = sc;
612 memcpy(&sub->sc, sc, sizeof(struct xfs_scrub));
613 sub->sc.ops = &meta_scrub_ops[subtype];
614 sub->sc.sm->sm_type = subtype;
615 sub->sc.sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
616 sub->sc.buf = NULL;
617 sub->sc.buf_cleanup = NULL;
618 sub->sc.xfile = NULL;
619 sub->sc.xmbtp = NULL;
621 return sub;
624 /* Dispatch metadata scrubbing. */
625 STATIC int
626 xfs_scrub_metadata(
627 struct file *file,
628 struct xfs_scrub_metadata *sm)
630 struct xchk_stats_run run = { };
631 struct xfs_scrub *sc;
632 struct xfs_mount *mp = XFS_I(file_inode(file))->i_mount;
633 u64 check_start;
634 int error = 0;
636 BUILD_BUG_ON(sizeof(meta_scrub_ops) !=
637 (sizeof(struct xchk_meta_ops) * XFS_SCRUB_TYPE_NR));
639 trace_xchk_start(XFS_I(file_inode(file)), sm, error);
641 /* Forbidden if we are shut down or mounted norecovery. */
642 error = -ESHUTDOWN;
643 if (xfs_is_shutdown(mp))
644 goto out;
645 error = -ENOTRECOVERABLE;
646 if (xfs_has_norecovery(mp))
647 goto out;
649 error = xchk_validate_inputs(mp, sm);
650 if (error)
651 goto out;
653 xfs_warn_experimental(mp, XFS_EXPERIMENTAL_SCRUB);
655 sc = kzalloc(sizeof(struct xfs_scrub), XCHK_GFP_FLAGS);
656 if (!sc) {
657 error = -ENOMEM;
658 goto out;
661 sc->mp = mp;
662 sc->file = file;
663 sc->sm = sm;
664 sc->ops = &meta_scrub_ops[sm->sm_type];
665 sc->sick_mask = xchk_health_mask_for_scrub_type(sm->sm_type);
666 sc->relax = INIT_XCHK_RELAX;
667 retry_op:
669 * When repairs are allowed, prevent freezing or readonly remount while
670 * scrub is running with a real transaction.
672 if (sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) {
673 error = mnt_want_write_file(sc->file);
674 if (error)
675 goto out_sc;
677 sc->flags |= XCHK_HAVE_FREEZE_PROT;
680 /* Set up for the operation. */
681 error = sc->ops->setup(sc);
682 if (error == -EDEADLOCK && !(sc->flags & XCHK_TRY_HARDER))
683 goto try_harder;
684 if (error == -ECHRNG && !(sc->flags & XCHK_NEED_DRAIN))
685 goto need_drain;
686 if (error)
687 goto out_teardown;
689 /* Scrub for errors. */
690 check_start = xchk_stats_now();
691 if ((sc->flags & XREP_ALREADY_FIXED) && sc->ops->repair_eval != NULL)
692 error = sc->ops->repair_eval(sc);
693 else
694 error = sc->ops->scrub(sc);
695 run.scrub_ns += xchk_stats_elapsed_ns(check_start);
696 if (error == -EDEADLOCK && !(sc->flags & XCHK_TRY_HARDER))
697 goto try_harder;
698 if (error == -ECHRNG && !(sc->flags & XCHK_NEED_DRAIN))
699 goto need_drain;
700 if (error || (sm->sm_flags & XFS_SCRUB_OFLAG_INCOMPLETE))
701 goto out_teardown;
703 xchk_update_health(sc);
705 if (xchk_could_repair(sc)) {
707 * If userspace asked for a repair but it wasn't necessary,
708 * report that back to userspace.
710 if (!xrep_will_attempt(sc)) {
711 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_NO_REPAIR_NEEDED;
712 goto out_nofix;
716 * If it's broken, userspace wants us to fix it, and we haven't
717 * already tried to fix it, then attempt a repair.
719 error = xrep_attempt(sc, &run);
720 if (error == -EAGAIN) {
722 * Either the repair function succeeded or it couldn't
723 * get all the resources it needs; either way, we go
724 * back to the beginning and call the scrub function.
726 error = xchk_teardown(sc, 0);
727 if (error) {
728 xrep_failure(mp);
729 goto out_sc;
731 goto retry_op;
735 out_nofix:
736 xchk_postmortem(sc);
737 out_teardown:
738 error = xchk_teardown(sc, error);
739 out_sc:
740 if (error != -ENOENT)
741 xchk_stats_merge(mp, sm, &run);
742 kfree(sc);
743 out:
744 trace_xchk_done(XFS_I(file_inode(file)), sm, error);
745 if (error == -EFSCORRUPTED || error == -EFSBADCRC) {
746 sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
747 error = 0;
749 return error;
750 need_drain:
751 error = xchk_teardown(sc, 0);
752 if (error)
753 goto out_sc;
754 sc->flags |= XCHK_NEED_DRAIN;
755 run.retries++;
756 goto retry_op;
757 try_harder:
759 * Scrubbers return -EDEADLOCK to mean 'try harder'. Tear down
760 * everything we hold, then set up again with preparation for
761 * worst-case scenarios.
763 error = xchk_teardown(sc, 0);
764 if (error)
765 goto out_sc;
766 sc->flags |= XCHK_TRY_HARDER;
767 run.retries++;
768 goto retry_op;
771 /* Scrub one aspect of one piece of metadata. */
773 xfs_ioc_scrub_metadata(
774 struct file *file,
775 void __user *arg)
777 struct xfs_scrub_metadata scrub;
778 int error;
780 if (!capable(CAP_SYS_ADMIN))
781 return -EPERM;
783 if (copy_from_user(&scrub, arg, sizeof(scrub)))
784 return -EFAULT;
786 error = xfs_scrub_metadata(file, &scrub);
787 if (error)
788 return error;
790 if (copy_to_user(arg, &scrub, sizeof(scrub)))
791 return -EFAULT;
793 return 0;
796 /* Decide if there have been any scrub failures up to this point. */
797 static inline int
798 xfs_scrubv_check_barrier(
799 struct xfs_mount *mp,
800 const struct xfs_scrub_vec *vectors,
801 const struct xfs_scrub_vec *stop_vec)
803 const struct xfs_scrub_vec *v;
804 __u32 failmask;
806 failmask = stop_vec->sv_flags & XFS_SCRUB_FLAGS_OUT;
808 for (v = vectors; v < stop_vec; v++) {
809 if (v->sv_type == XFS_SCRUB_TYPE_BARRIER)
810 continue;
813 * Runtime errors count as a previous failure, except the ones
814 * used to ask userspace to retry.
816 switch (v->sv_ret) {
817 case -EBUSY:
818 case -ENOENT:
819 case -EUSERS:
820 case 0:
821 break;
822 default:
823 return -ECANCELED;
827 * If any of the out-flags on the scrub vector match the mask
828 * that was set on the barrier vector, that's a previous fail.
830 if (v->sv_flags & failmask)
831 return -ECANCELED;
834 return 0;
838 * If the caller provided us with a nonzero inode number that isn't the ioctl
839 * file, try to grab a reference to it to eliminate all further untrusted inode
840 * lookups. If we can't get the inode, let each scrub function try again.
842 STATIC struct xfs_inode *
843 xchk_scrubv_open_by_handle(
844 struct xfs_mount *mp,
845 const struct xfs_scrub_vec_head *head)
847 struct xfs_trans *tp;
848 struct xfs_inode *ip;
849 int error;
851 error = xfs_trans_alloc_empty(mp, &tp);
852 if (error)
853 return NULL;
855 error = xfs_iget(mp, tp, head->svh_ino, XCHK_IGET_FLAGS, 0, &ip);
856 xfs_trans_cancel(tp);
857 if (error)
858 return NULL;
860 if (VFS_I(ip)->i_generation != head->svh_gen) {
861 xfs_irele(ip);
862 return NULL;
865 return ip;
868 /* Vectored scrub implementation to reduce ioctl calls. */
870 xfs_ioc_scrubv_metadata(
871 struct file *file,
872 void __user *arg)
874 struct xfs_scrub_vec_head head;
875 struct xfs_scrub_vec_head __user *uhead = arg;
876 struct xfs_scrub_vec *vectors;
877 struct xfs_scrub_vec __user *uvectors;
878 struct xfs_inode *ip_in = XFS_I(file_inode(file));
879 struct xfs_mount *mp = ip_in->i_mount;
880 struct xfs_inode *handle_ip = NULL;
881 struct xfs_scrub_vec *v;
882 size_t vec_bytes;
883 unsigned int i;
884 int error = 0;
886 if (!capable(CAP_SYS_ADMIN))
887 return -EPERM;
889 if (copy_from_user(&head, uhead, sizeof(head)))
890 return -EFAULT;
892 if (head.svh_reserved)
893 return -EINVAL;
894 if (head.svh_flags & ~XFS_SCRUB_VEC_FLAGS_ALL)
895 return -EINVAL;
896 if (head.svh_nr == 0)
897 return 0;
899 vec_bytes = array_size(head.svh_nr, sizeof(struct xfs_scrub_vec));
900 if (vec_bytes > PAGE_SIZE)
901 return -ENOMEM;
903 uvectors = u64_to_user_ptr(head.svh_vectors);
904 vectors = memdup_user(uvectors, vec_bytes);
905 if (IS_ERR(vectors))
906 return PTR_ERR(vectors);
908 trace_xchk_scrubv_start(ip_in, &head);
910 for (i = 0, v = vectors; i < head.svh_nr; i++, v++) {
911 if (v->sv_reserved) {
912 error = -EINVAL;
913 goto out_free;
916 if (v->sv_type == XFS_SCRUB_TYPE_BARRIER &&
917 (v->sv_flags & ~XFS_SCRUB_FLAGS_OUT)) {
918 error = -EINVAL;
919 goto out_free;
922 trace_xchk_scrubv_item(mp, &head, i, v);
926 * If the caller wants us to do a scrub-by-handle and the file used to
927 * call the ioctl is not the same file, load the incore inode and pin
928 * it across all the scrubv actions to avoid repeated UNTRUSTED
929 * lookups. The reference is not passed to deeper layers of scrub
930 * because each scrubber gets to decide its own strategy and return
931 * values for getting an inode.
933 if (head.svh_ino && head.svh_ino != ip_in->i_ino)
934 handle_ip = xchk_scrubv_open_by_handle(mp, &head);
936 /* Run all the scrubbers. */
937 for (i = 0, v = vectors; i < head.svh_nr; i++, v++) {
938 struct xfs_scrub_metadata sm = {
939 .sm_type = v->sv_type,
940 .sm_flags = v->sv_flags,
941 .sm_ino = head.svh_ino,
942 .sm_gen = head.svh_gen,
943 .sm_agno = head.svh_agno,
946 if (v->sv_type == XFS_SCRUB_TYPE_BARRIER) {
947 v->sv_ret = xfs_scrubv_check_barrier(mp, vectors, v);
948 if (v->sv_ret) {
949 trace_xchk_scrubv_barrier_fail(mp, &head, i, v);
950 break;
953 continue;
956 v->sv_ret = xfs_scrub_metadata(file, &sm);
957 v->sv_flags = sm.sm_flags;
959 trace_xchk_scrubv_outcome(mp, &head, i, v);
961 if (head.svh_rest_us) {
962 ktime_t expires;
964 expires = ktime_add_ns(ktime_get(),
965 head.svh_rest_us * 1000);
966 set_current_state(TASK_KILLABLE);
967 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
970 if (fatal_signal_pending(current)) {
971 error = -EINTR;
972 goto out_free;
976 if (copy_to_user(uvectors, vectors, vec_bytes) ||
977 copy_to_user(uhead, &head, sizeof(head))) {
978 error = -EFAULT;
979 goto out_free;
982 out_free:
983 if (handle_ip)
984 xfs_irele(handle_ip);
985 kfree(vectors);
986 return error;