1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * Copyright (c) 2016-2018 Christoph Hellwig.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_iomap.h"
16 #include "xfs_trace.h"
18 #include "xfs_bmap_util.h"
19 #include "xfs_reflink.h"
20 #include "xfs_errortag.h"
21 #include "xfs_error.h"
23 struct xfs_writepage_ctx
{
24 struct iomap_writepage_ctx ctx
;
25 unsigned int data_seq
;
29 static inline struct xfs_writepage_ctx
*
30 XFS_WPC(struct iomap_writepage_ctx
*ctx
)
32 return container_of(ctx
, struct xfs_writepage_ctx
, ctx
);
36 * Fast and loose check if this write could update the on-disk inode size.
38 static inline bool xfs_ioend_is_append(struct iomap_ioend
*ioend
)
40 return ioend
->io_offset
+ ioend
->io_size
>
41 XFS_I(ioend
->io_inode
)->i_disk_size
;
45 * Update on-disk file size now that data has been written to disk.
53 struct xfs_mount
*mp
= ip
->i_mount
;
58 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_fsyncts
, 0, 0, 0, &tp
);
62 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
63 isize
= xfs_new_eof(ip
, offset
+ size
);
65 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
70 trace_xfs_setfilesize(ip
, offset
, size
);
72 ip
->i_disk_size
= isize
;
73 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
74 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
76 return xfs_trans_commit(tp
);
80 * IO write completion.
84 struct iomap_ioend
*ioend
)
86 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
87 struct xfs_mount
*mp
= ip
->i_mount
;
88 xfs_off_t offset
= ioend
->io_offset
;
89 size_t size
= ioend
->io_size
;
90 unsigned int nofs_flag
;
94 * We can allocate memory here while doing writeback on behalf of
95 * memory reclaim. To avoid memory allocation deadlocks set the
96 * task-wide nofs context for the following operations.
98 nofs_flag
= memalloc_nofs_save();
101 * Just clean up the in-memory structures if the fs has been shut down.
103 if (xfs_is_shutdown(mp
)) {
109 * Clean up all COW blocks and underlying data fork delalloc blocks on
110 * I/O error. The delalloc punch is required because this ioend was
111 * mapped to blocks in the COW fork and the associated pages are no
112 * longer dirty. If we don't remove delalloc blocks here, they become
113 * stale and can corrupt free space accounting on unmount.
115 error
= blk_status_to_errno(ioend
->io_bio
.bi_status
);
116 if (unlikely(error
)) {
117 if (ioend
->io_flags
& IOMAP_F_SHARED
) {
118 xfs_reflink_cancel_cow_range(ip
, offset
, size
, true);
119 xfs_bmap_punch_delalloc_range(ip
, XFS_DATA_FORK
, offset
,
126 * Success: commit the COW or unwritten blocks if needed.
128 if (ioend
->io_flags
& IOMAP_F_SHARED
)
129 error
= xfs_reflink_end_cow(ip
, offset
, size
);
130 else if (ioend
->io_type
== IOMAP_UNWRITTEN
)
131 error
= xfs_iomap_write_unwritten(ip
, offset
, size
, false);
133 if (!error
&& xfs_ioend_is_append(ioend
))
134 error
= xfs_setfilesize(ip
, ioend
->io_offset
, ioend
->io_size
);
136 iomap_finish_ioends(ioend
, error
);
137 memalloc_nofs_restore(nofs_flag
);
141 * Finish all pending IO completions that require transactional modifications.
143 * We try to merge physical and logically contiguous ioends before completion to
144 * minimise the number of transactions we need to perform during IO completion.
145 * Both unwritten extent conversion and COW remapping need to iterate and modify
146 * one physical extent at a time, so we gain nothing by merging physically
147 * discontiguous extents here.
149 * The ioend chain length that we can be processing here is largely unbound in
150 * length and we may have to perform significant amounts of work on each ioend
151 * to complete it. Hence we have to be careful about holding the CPU for too
156 struct work_struct
*work
)
158 struct xfs_inode
*ip
=
159 container_of(work
, struct xfs_inode
, i_ioend_work
);
160 struct iomap_ioend
*ioend
;
161 struct list_head tmp
;
164 spin_lock_irqsave(&ip
->i_ioend_lock
, flags
);
165 list_replace_init(&ip
->i_ioend_list
, &tmp
);
166 spin_unlock_irqrestore(&ip
->i_ioend_lock
, flags
);
168 iomap_sort_ioends(&tmp
);
169 while ((ioend
= list_first_entry_or_null(&tmp
, struct iomap_ioend
,
171 list_del_init(&ioend
->io_list
);
172 iomap_ioend_try_merge(ioend
, &tmp
);
173 xfs_end_ioend(ioend
);
182 struct iomap_ioend
*ioend
= iomap_ioend_from_bio(bio
);
183 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
186 spin_lock_irqsave(&ip
->i_ioend_lock
, flags
);
187 if (list_empty(&ip
->i_ioend_list
))
188 WARN_ON_ONCE(!queue_work(ip
->i_mount
->m_unwritten_workqueue
,
190 list_add_tail(&ioend
->io_list
, &ip
->i_ioend_list
);
191 spin_unlock_irqrestore(&ip
->i_ioend_lock
, flags
);
195 * Fast revalidation of the cached writeback mapping. Return true if the current
196 * mapping is valid, false otherwise.
200 struct iomap_writepage_ctx
*wpc
,
201 struct xfs_inode
*ip
,
204 if (offset
< wpc
->iomap
.offset
||
205 offset
>= wpc
->iomap
.offset
+ wpc
->iomap
.length
)
208 * If this is a COW mapping, it is sufficient to check that the mapping
209 * covers the offset. Be careful to check this first because the caller
210 * can revalidate a COW mapping without updating the data seqno.
212 if (wpc
->iomap
.flags
& IOMAP_F_SHARED
)
216 * This is not a COW mapping. Check the sequence number of the data fork
217 * because concurrent changes could have invalidated the extent. Check
218 * the COW fork because concurrent changes since the last time we
219 * checked (and found nothing at this offset) could have added
220 * overlapping blocks.
222 if (XFS_WPC(wpc
)->data_seq
!= READ_ONCE(ip
->i_df
.if_seq
)) {
223 trace_xfs_wb_data_iomap_invalid(ip
, &wpc
->iomap
,
224 XFS_WPC(wpc
)->data_seq
, XFS_DATA_FORK
);
227 if (xfs_inode_has_cow_data(ip
) &&
228 XFS_WPC(wpc
)->cow_seq
!= READ_ONCE(ip
->i_cowfp
->if_seq
)) {
229 trace_xfs_wb_cow_iomap_invalid(ip
, &wpc
->iomap
,
230 XFS_WPC(wpc
)->cow_seq
, XFS_COW_FORK
);
238 struct iomap_writepage_ctx
*wpc
,
243 struct xfs_inode
*ip
= XFS_I(inode
);
244 struct xfs_mount
*mp
= ip
->i_mount
;
245 ssize_t count
= i_blocksize(inode
);
246 xfs_fileoff_t offset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
247 xfs_fileoff_t end_fsb
= XFS_B_TO_FSB(mp
, offset
+ count
);
248 xfs_fileoff_t cow_fsb
;
250 struct xfs_bmbt_irec imap
;
251 struct xfs_iext_cursor icur
;
256 if (xfs_is_shutdown(mp
))
259 XFS_ERRORTAG_DELAY(mp
, XFS_ERRTAG_WB_DELAY_MS
);
262 * COW fork blocks can overlap data fork blocks even if the blocks
263 * aren't shared. COW I/O always takes precedent, so we must always
264 * check for overlap on reflink inodes unless the mapping is already a
265 * COW one, or the COW fork hasn't changed from the last time we looked
268 * It's safe to check the COW fork if_seq here without the ILOCK because
269 * we've indirectly protected against concurrent updates: writeback has
270 * the page locked, which prevents concurrent invalidations by reflink
271 * and directio and prevents concurrent buffered writes to the same
272 * page. Changes to if_seq always happen under i_lock, which protects
273 * against concurrent updates and provides a memory barrier on the way
274 * out that ensures that we always see the current value.
276 if (xfs_imap_valid(wpc
, ip
, offset
))
280 * If we don't have a valid map, now it's time to get a new one for this
281 * offset. This will convert delayed allocations (including COW ones)
282 * into real extents. If we return without a valid map, it means we
283 * landed in a hole and we skip the block.
286 cow_fsb
= NULLFILEOFF
;
287 whichfork
= XFS_DATA_FORK
;
288 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
289 ASSERT(!xfs_need_iread_extents(&ip
->i_df
));
292 * Check if this is offset is covered by a COW extents, and if yes use
293 * it directly instead of looking up anything in the data fork.
295 if (xfs_inode_has_cow_data(ip
) &&
296 xfs_iext_lookup_extent(ip
, ip
->i_cowfp
, offset_fsb
, &icur
, &imap
))
297 cow_fsb
= imap
.br_startoff
;
298 if (cow_fsb
!= NULLFILEOFF
&& cow_fsb
<= offset_fsb
) {
299 XFS_WPC(wpc
)->cow_seq
= READ_ONCE(ip
->i_cowfp
->if_seq
);
300 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
302 whichfork
= XFS_COW_FORK
;
303 goto allocate_blocks
;
307 * No COW extent overlap. Revalidate now that we may have updated
308 * ->cow_seq. If the data mapping is still valid, we're done.
310 if (xfs_imap_valid(wpc
, ip
, offset
)) {
311 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
316 * If we don't have a valid map, now it's time to get a new one for this
317 * offset. This will convert delayed allocations (including COW ones)
320 if (!xfs_iext_lookup_extent(ip
, &ip
->i_df
, offset_fsb
, &icur
, &imap
))
321 imap
.br_startoff
= end_fsb
; /* fake a hole past EOF */
322 XFS_WPC(wpc
)->data_seq
= READ_ONCE(ip
->i_df
.if_seq
);
323 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
325 /* landed in a hole or beyond EOF? */
326 if (imap
.br_startoff
> offset_fsb
) {
327 imap
.br_blockcount
= imap
.br_startoff
- offset_fsb
;
328 imap
.br_startoff
= offset_fsb
;
329 imap
.br_startblock
= HOLESTARTBLOCK
;
330 imap
.br_state
= XFS_EXT_NORM
;
334 * Truncate to the next COW extent if there is one. This is the only
335 * opportunity to do this because we can skip COW fork lookups for the
336 * subsequent blocks in the mapping; however, the requirement to treat
337 * the COW range separately remains.
339 if (cow_fsb
!= NULLFILEOFF
&&
340 cow_fsb
< imap
.br_startoff
+ imap
.br_blockcount
)
341 imap
.br_blockcount
= cow_fsb
- imap
.br_startoff
;
343 /* got a delalloc extent? */
344 if (imap
.br_startblock
!= HOLESTARTBLOCK
&&
345 isnullstartblock(imap
.br_startblock
))
346 goto allocate_blocks
;
348 xfs_bmbt_to_iomap(ip
, &wpc
->iomap
, &imap
, 0, 0, XFS_WPC(wpc
)->data_seq
);
349 trace_xfs_map_blocks_found(ip
, offset
, count
, whichfork
, &imap
);
353 * Convert a dellalloc extent to a real one. The current page is held
354 * locked so nothing could have removed the block backing offset_fsb,
355 * although it could have moved from the COW to the data fork by another
358 if (whichfork
== XFS_COW_FORK
)
359 seq
= &XFS_WPC(wpc
)->cow_seq
;
361 seq
= &XFS_WPC(wpc
)->data_seq
;
363 error
= xfs_bmapi_convert_delalloc(ip
, whichfork
, offset
,
367 * If we failed to find the extent in the COW fork we might have
368 * raced with a COW to data fork conversion or truncate.
369 * Restart the lookup to catch the extent in the data fork for
370 * the former case, but prevent additional retries to avoid
371 * looping forever for the latter case.
373 if (error
== -EAGAIN
&& whichfork
== XFS_COW_FORK
&& !retries
++)
375 ASSERT(error
!= -EAGAIN
);
380 * Due to merging the return real extent might be larger than the
381 * original delalloc one. Trim the return extent to the next COW
382 * boundary again to force a re-lookup.
384 if (whichfork
!= XFS_COW_FORK
&& cow_fsb
!= NULLFILEOFF
) {
385 loff_t cow_offset
= XFS_FSB_TO_B(mp
, cow_fsb
);
387 if (cow_offset
< wpc
->iomap
.offset
+ wpc
->iomap
.length
)
388 wpc
->iomap
.length
= cow_offset
- wpc
->iomap
.offset
;
391 ASSERT(wpc
->iomap
.offset
<= offset
);
392 ASSERT(wpc
->iomap
.offset
+ wpc
->iomap
.length
> offset
);
393 trace_xfs_map_blocks_alloc(ip
, offset
, count
, whichfork
, &imap
);
399 struct iomap_ioend
*ioend
,
402 unsigned int nofs_flag
;
405 * We can allocate memory here while doing writeback on behalf of
406 * memory reclaim. To avoid memory allocation deadlocks set the
407 * task-wide nofs context for the following operations.
409 nofs_flag
= memalloc_nofs_save();
411 /* Convert CoW extents to regular */
412 if (!status
&& (ioend
->io_flags
& IOMAP_F_SHARED
)) {
413 status
= xfs_reflink_convert_cow(XFS_I(ioend
->io_inode
),
414 ioend
->io_offset
, ioend
->io_size
);
417 memalloc_nofs_restore(nofs_flag
);
419 /* send ioends that might require a transaction to the completion wq */
420 if (xfs_ioend_is_append(ioend
) || ioend
->io_type
== IOMAP_UNWRITTEN
||
421 (ioend
->io_flags
& IOMAP_F_SHARED
))
422 ioend
->io_bio
.bi_end_io
= xfs_end_bio
;
427 * If the folio has delalloc blocks on it, the caller is asking us to punch them
428 * out. If we don't, we can leave a stale delalloc mapping covered by a clean
429 * page that needs to be dirtied again before the delalloc mapping can be
430 * converted. This stale delalloc mapping can trip up a later direct I/O read
431 * operation on the same region.
433 * We prevent this by truncating away the delalloc regions on the folio. Because
434 * they are delalloc, we can do this without needing a transaction. Indeed - if
435 * we get ENOSPC errors, we have to be able to do this truncation without a
436 * transaction as there is no space left for block reservation (typically why
437 * we see a ENOSPC in writeback).
444 struct xfs_inode
*ip
= XFS_I(folio
->mapping
->host
);
445 struct xfs_mount
*mp
= ip
->i_mount
;
447 if (xfs_is_shutdown(mp
))
450 xfs_alert_ratelimited(mp
,
451 "page discard on page "PTR_FMT
", inode 0x%llx, pos %llu.",
452 folio
, ip
->i_ino
, pos
);
455 * The end of the punch range is always the offset of the first
456 * byte of the next folio. Hence the end offset is only dependent on the
457 * folio itself and not the start offset that is passed in.
459 xfs_bmap_punch_delalloc_range(ip
, XFS_DATA_FORK
, pos
,
460 folio_pos(folio
) + folio_size(folio
));
463 static const struct iomap_writeback_ops xfs_writeback_ops
= {
464 .map_blocks
= xfs_map_blocks
,
465 .prepare_ioend
= xfs_prepare_ioend
,
466 .discard_folio
= xfs_discard_folio
,
471 struct address_space
*mapping
,
472 struct writeback_control
*wbc
)
474 struct xfs_writepage_ctx wpc
= { };
476 xfs_iflags_clear(XFS_I(mapping
->host
), XFS_ITRUNCATED
);
477 return iomap_writepages(mapping
, wbc
, &wpc
.ctx
, &xfs_writeback_ops
);
482 struct address_space
*mapping
,
483 struct writeback_control
*wbc
)
485 struct xfs_inode
*ip
= XFS_I(mapping
->host
);
487 xfs_iflags_clear(ip
, XFS_ITRUNCATED
);
488 return dax_writeback_mapping_range(mapping
,
489 xfs_inode_buftarg(ip
)->bt_daxdev
, wbc
);
494 struct address_space
*mapping
,
497 struct xfs_inode
*ip
= XFS_I(mapping
->host
);
499 trace_xfs_vm_bmap(ip
);
502 * The swap code (ab-)uses ->bmap to get a block mapping and then
503 * bypasses the file system for actual I/O. We really can't allow
504 * that on reflinks inodes, so we have to skip out here. And yes,
505 * 0 is the magic code for a bmap error.
507 * Since we don't pass back blockdev info, we can't return bmap
508 * information for rt files either.
510 if (xfs_is_cow_inode(ip
) || XFS_IS_REALTIME_INODE(ip
))
512 return iomap_bmap(mapping
, block
, &xfs_read_iomap_ops
);
520 return iomap_read_folio(folio
, &xfs_read_iomap_ops
);
525 struct readahead_control
*rac
)
527 iomap_readahead(rac
, &xfs_read_iomap_ops
);
531 xfs_iomap_swapfile_activate(
532 struct swap_info_struct
*sis
,
533 struct file
*swap_file
,
536 sis
->bdev
= xfs_inode_buftarg(XFS_I(file_inode(swap_file
)))->bt_bdev
;
537 return iomap_swapfile_activate(sis
, swap_file
, span
,
538 &xfs_read_iomap_ops
);
541 const struct address_space_operations xfs_address_space_operations
= {
542 .read_folio
= xfs_vm_read_folio
,
543 .readahead
= xfs_vm_readahead
,
544 .writepages
= xfs_vm_writepages
,
545 .dirty_folio
= iomap_dirty_folio
,
546 .release_folio
= iomap_release_folio
,
547 .invalidate_folio
= iomap_invalidate_folio
,
549 .migrate_folio
= filemap_migrate_folio
,
550 .is_partially_uptodate
= iomap_is_partially_uptodate
,
551 .error_remove_folio
= generic_error_remove_folio
,
552 .swap_activate
= xfs_iomap_swapfile_activate
,
555 const struct address_space_operations xfs_dax_aops
= {
556 .writepages
= xfs_dax_writepages
,
557 .dirty_folio
= noop_dirty_folio
,
558 .swap_activate
= xfs_iomap_swapfile_activate
,