1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7 #include <linux/backing-dev.h>
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_trace.h"
17 #include "xfs_log_recover.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trans.h"
20 #include "xfs_buf_item.h"
21 #include "xfs_errortag.h"
22 #include "xfs_error.h"
24 #include "xfs_buf_mem.h"
26 struct kmem_cache
*xfs_buf_cache
;
33 * b_sema (caller holds)
37 * b_sema (caller holds)
46 * xfs_buftarg_drain_rele
48 * b_lock (trylock due to inversion)
52 * b_lock (trylock due to inversion)
55 static int __xfs_buf_submit(struct xfs_buf
*bp
, bool wait
);
61 return __xfs_buf_submit(bp
, !(bp
->b_flags
& XBF_ASYNC
));
64 static inline bool xfs_buf_is_uncached(struct xfs_buf
*bp
)
66 return bp
->b_rhash_key
== XFS_BUF_DADDR_NULL
;
74 * Return true if the buffer is vmapped.
76 * b_addr is null if the buffer is not mapped, but the code is clever
77 * enough to know it doesn't have to map a single page, so the check has
78 * to be both for b_addr and bp->b_page_count > 1.
80 return bp
->b_addr
&& bp
->b_page_count
> 1;
87 return (bp
->b_page_count
* PAGE_SIZE
);
91 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
92 * this buffer. The count is incremented once per buffer (per hold cycle)
93 * because the corresponding decrement is deferred to buffer release. Buffers
94 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
95 * tracking adds unnecessary overhead. This is used for sychronization purposes
96 * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
99 * Buffers that are never released (e.g., superblock, iclog buffers) must set
100 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
101 * never reaches zero and unmount hangs indefinitely.
107 if (bp
->b_flags
& XBF_NO_IOACCT
)
110 ASSERT(bp
->b_flags
& XBF_ASYNC
);
111 spin_lock(&bp
->b_lock
);
112 if (!(bp
->b_state
& XFS_BSTATE_IN_FLIGHT
)) {
113 bp
->b_state
|= XFS_BSTATE_IN_FLIGHT
;
114 percpu_counter_inc(&bp
->b_target
->bt_io_count
);
116 spin_unlock(&bp
->b_lock
);
120 * Clear the in-flight state on a buffer about to be released to the LRU or
121 * freed and unaccount from the buftarg.
124 __xfs_buf_ioacct_dec(
127 lockdep_assert_held(&bp
->b_lock
);
129 if (bp
->b_state
& XFS_BSTATE_IN_FLIGHT
) {
130 bp
->b_state
&= ~XFS_BSTATE_IN_FLIGHT
;
131 percpu_counter_dec(&bp
->b_target
->bt_io_count
);
139 spin_lock(&bp
->b_lock
);
140 __xfs_buf_ioacct_dec(bp
);
141 spin_unlock(&bp
->b_lock
);
145 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
146 * b_lru_ref count so that the buffer is freed immediately when the buffer
147 * reference count falls to zero. If the buffer is already on the LRU, we need
148 * to remove the reference that LRU holds on the buffer.
150 * This prevents build-up of stale buffers on the LRU.
156 ASSERT(xfs_buf_islocked(bp
));
158 bp
->b_flags
|= XBF_STALE
;
161 * Clear the delwri status so that a delwri queue walker will not
162 * flush this buffer to disk now that it is stale. The delwri queue has
163 * a reference to the buffer, so this is safe to do.
165 bp
->b_flags
&= ~_XBF_DELWRI_Q
;
168 * Once the buffer is marked stale and unlocked, a subsequent lookup
169 * could reset b_flags. There is no guarantee that the buffer is
170 * unaccounted (released to LRU) before that occurs. Drop in-flight
171 * status now to preserve accounting consistency.
173 spin_lock(&bp
->b_lock
);
174 __xfs_buf_ioacct_dec(bp
);
176 atomic_set(&bp
->b_lru_ref
, 0);
177 if (!(bp
->b_state
& XFS_BSTATE_DISPOSE
) &&
178 (list_lru_del_obj(&bp
->b_target
->bt_lru
, &bp
->b_lru
)))
179 atomic_dec(&bp
->b_hold
);
181 ASSERT(atomic_read(&bp
->b_hold
) >= 1);
182 spin_unlock(&bp
->b_lock
);
190 ASSERT(bp
->b_maps
== NULL
);
191 bp
->b_map_count
= map_count
;
193 if (map_count
== 1) {
194 bp
->b_maps
= &bp
->__b_map
;
198 bp
->b_maps
= kzalloc(map_count
* sizeof(struct xfs_buf_map
),
199 GFP_KERNEL
| __GFP_NOLOCKDEP
| __GFP_NOFAIL
);
206 * Frees b_pages if it was allocated.
212 if (bp
->b_maps
!= &bp
->__b_map
) {
220 struct xfs_buftarg
*target
,
221 struct xfs_buf_map
*map
,
223 xfs_buf_flags_t flags
,
224 struct xfs_buf
**bpp
)
231 bp
= kmem_cache_zalloc(xfs_buf_cache
,
232 GFP_KERNEL
| __GFP_NOLOCKDEP
| __GFP_NOFAIL
);
235 * We don't want certain flags to appear in b_flags unless they are
236 * specifically set by later operations on the buffer.
238 flags
&= ~(XBF_UNMAPPED
| XBF_TRYLOCK
| XBF_ASYNC
| XBF_READ_AHEAD
);
240 atomic_set(&bp
->b_hold
, 1);
241 atomic_set(&bp
->b_lru_ref
, 1);
242 init_completion(&bp
->b_iowait
);
243 INIT_LIST_HEAD(&bp
->b_lru
);
244 INIT_LIST_HEAD(&bp
->b_list
);
245 INIT_LIST_HEAD(&bp
->b_li_list
);
246 sema_init(&bp
->b_sema
, 0); /* held, no waiters */
247 spin_lock_init(&bp
->b_lock
);
248 bp
->b_target
= target
;
249 bp
->b_mount
= target
->bt_mount
;
253 * Set length and io_length to the same value initially.
254 * I/O routines should use io_length, which will be the same in
255 * most cases but may be reset (e.g. XFS recovery).
257 error
= xfs_buf_get_maps(bp
, nmaps
);
259 kmem_cache_free(xfs_buf_cache
, bp
);
263 bp
->b_rhash_key
= map
[0].bm_bn
;
265 for (i
= 0; i
< nmaps
; i
++) {
266 bp
->b_maps
[i
].bm_bn
= map
[i
].bm_bn
;
267 bp
->b_maps
[i
].bm_len
= map
[i
].bm_len
;
268 bp
->b_length
+= map
[i
].bm_len
;
271 atomic_set(&bp
->b_pin_count
, 0);
272 init_waitqueue_head(&bp
->b_waiters
);
274 XFS_STATS_INC(bp
->b_mount
, xb_create
);
275 trace_xfs_buf_init(bp
, _RET_IP_
);
287 ASSERT(bp
->b_flags
& _XBF_PAGES
);
289 if (xfs_buf_is_vmapped(bp
))
290 vm_unmap_ram(bp
->b_addr
, bp
->b_page_count
);
292 for (i
= 0; i
< bp
->b_page_count
; i
++) {
294 __free_page(bp
->b_pages
[i
]);
296 mm_account_reclaimed_pages(bp
->b_page_count
);
298 if (bp
->b_pages
!= bp
->b_page_array
)
301 bp
->b_flags
&= ~_XBF_PAGES
;
305 xfs_buf_free_callback(
306 struct callback_head
*cb
)
308 struct xfs_buf
*bp
= container_of(cb
, struct xfs_buf
, b_rcu
);
310 xfs_buf_free_maps(bp
);
311 kmem_cache_free(xfs_buf_cache
, bp
);
318 trace_xfs_buf_free(bp
, _RET_IP_
);
320 ASSERT(list_empty(&bp
->b_lru
));
322 if (xfs_buftarg_is_mem(bp
->b_target
))
323 xmbuf_unmap_page(bp
);
324 else if (bp
->b_flags
& _XBF_PAGES
)
325 xfs_buf_free_pages(bp
);
326 else if (bp
->b_flags
& _XBF_KMEM
)
329 call_rcu(&bp
->b_rcu
, xfs_buf_free_callback
);
335 xfs_buf_flags_t flags
)
337 gfp_t gfp_mask
= GFP_KERNEL
| __GFP_NOLOCKDEP
| __GFP_NOFAIL
;
338 size_t size
= BBTOB(bp
->b_length
);
340 /* Assure zeroed buffer for non-read cases. */
341 if (!(flags
& XBF_READ
))
342 gfp_mask
|= __GFP_ZERO
;
344 bp
->b_addr
= kmalloc(size
, gfp_mask
);
348 if (((unsigned long)(bp
->b_addr
+ size
- 1) & PAGE_MASK
) !=
349 ((unsigned long)bp
->b_addr
& PAGE_MASK
)) {
350 /* b_addr spans two pages - use alloc_page instead */
355 bp
->b_offset
= offset_in_page(bp
->b_addr
);
356 bp
->b_pages
= bp
->b_page_array
;
357 bp
->b_pages
[0] = kmem_to_page(bp
->b_addr
);
358 bp
->b_page_count
= 1;
359 bp
->b_flags
|= _XBF_KMEM
;
366 xfs_buf_flags_t flags
)
368 gfp_t gfp_mask
= GFP_KERNEL
| __GFP_NOLOCKDEP
| __GFP_NOWARN
;
371 if (flags
& XBF_READ_AHEAD
)
372 gfp_mask
|= __GFP_NORETRY
;
374 /* Make sure that we have a page list */
375 bp
->b_page_count
= DIV_ROUND_UP(BBTOB(bp
->b_length
), PAGE_SIZE
);
376 if (bp
->b_page_count
<= XB_PAGES
) {
377 bp
->b_pages
= bp
->b_page_array
;
379 bp
->b_pages
= kzalloc(sizeof(struct page
*) * bp
->b_page_count
,
384 bp
->b_flags
|= _XBF_PAGES
;
386 /* Assure zeroed buffer for non-read cases. */
387 if (!(flags
& XBF_READ
))
388 gfp_mask
|= __GFP_ZERO
;
391 * Bulk filling of pages can take multiple calls. Not filling the entire
392 * array is not an allocation failure, so don't back off if we get at
393 * least one extra page.
398 filled
= alloc_pages_bulk_array(gfp_mask
, bp
->b_page_count
,
400 if (filled
== bp
->b_page_count
) {
401 XFS_STATS_INC(bp
->b_mount
, xb_page_found
);
408 if (flags
& XBF_READ_AHEAD
) {
409 xfs_buf_free_pages(bp
);
413 XFS_STATS_INC(bp
->b_mount
, xb_page_retries
);
414 memalloc_retry_wait(gfp_mask
);
420 * Map buffer into kernel address-space if necessary.
425 xfs_buf_flags_t flags
)
427 ASSERT(bp
->b_flags
& _XBF_PAGES
);
428 if (bp
->b_page_count
== 1) {
429 /* A single page buffer is always mappable */
430 bp
->b_addr
= page_address(bp
->b_pages
[0]);
431 } else if (flags
& XBF_UNMAPPED
) {
438 * vm_map_ram() will allocate auxiliary structures (e.g.
439 * pagetables) with GFP_KERNEL, yet we often under a scoped nofs
440 * context here. Mixing GFP_KERNEL with GFP_NOFS allocations
441 * from the same call site that can be run from both above and
442 * below memory reclaim causes lockdep false positives. Hence we
443 * always need to force this allocation to nofs context because
444 * we can't pass __GFP_NOLOCKDEP down to auxillary structures to
445 * prevent false positive lockdep reports.
447 * XXX(dgc): I think dquot reclaim is the only place we can get
448 * to this function from memory reclaim context now. If we fix
449 * that like we've fixed inode reclaim to avoid writeback from
450 * reclaim, this nofs wrapping can go away.
452 nofs_flag
= memalloc_nofs_save();
454 bp
->b_addr
= vm_map_ram(bp
->b_pages
, bp
->b_page_count
,
459 } while (retried
++ <= 1);
460 memalloc_nofs_restore(nofs_flag
);
470 * Finding and Reading Buffers
474 struct rhashtable_compare_arg
*arg
,
477 const struct xfs_buf_map
*map
= arg
->key
;
478 const struct xfs_buf
*bp
= obj
;
481 * The key hashing in the lookup path depends on the key being the
482 * first element of the compare_arg, make sure to assert this.
484 BUILD_BUG_ON(offsetof(struct xfs_buf_map
, bm_bn
) != 0);
486 if (bp
->b_rhash_key
!= map
->bm_bn
)
489 if (unlikely(bp
->b_length
!= map
->bm_len
)) {
491 * found a block number match. If the range doesn't
492 * match, the only way this is allowed is if the buffer
493 * in the cache is stale and the transaction that made
494 * it stale has not yet committed. i.e. we are
495 * reallocating a busy extent. Skip this buffer and
496 * continue searching for an exact match.
498 * Note: If we're scanning for incore buffers to stale, don't
499 * complain if we find non-stale buffers.
501 if (!(map
->bm_flags
& XBM_LIVESCAN
))
502 ASSERT(bp
->b_flags
& XBF_STALE
);
508 static const struct rhashtable_params xfs_buf_hash_params
= {
509 .min_size
= 32, /* empty AGs have minimal footprint */
511 .key_len
= sizeof(xfs_daddr_t
),
512 .key_offset
= offsetof(struct xfs_buf
, b_rhash_key
),
513 .head_offset
= offsetof(struct xfs_buf
, b_rhash_head
),
514 .automatic_shrinking
= true,
515 .obj_cmpfn
= _xfs_buf_obj_cmp
,
520 struct xfs_buf_cache
*bch
)
522 spin_lock_init(&bch
->bc_lock
);
523 return rhashtable_init(&bch
->bc_hash
, &xfs_buf_hash_params
);
527 xfs_buf_cache_destroy(
528 struct xfs_buf_cache
*bch
)
530 rhashtable_destroy(&bch
->bc_hash
);
535 struct xfs_buftarg
*btp
,
536 struct xfs_buf_map
*map
)
540 /* Check for IOs smaller than the sector size / not sector aligned */
541 ASSERT(!(BBTOB(map
->bm_len
) < btp
->bt_meta_sectorsize
));
542 ASSERT(!(BBTOB(map
->bm_bn
) & (xfs_off_t
)btp
->bt_meta_sectormask
));
545 * Corrupted block numbers can get through to here, unfortunately, so we
546 * have to check that the buffer falls within the filesystem bounds.
548 eofs
= XFS_FSB_TO_BB(btp
->bt_mount
, btp
->bt_mount
->m_sb
.sb_dblocks
);
549 if (map
->bm_bn
< 0 || map
->bm_bn
>= eofs
) {
550 xfs_alert(btp
->bt_mount
,
551 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
552 __func__
, map
->bm_bn
, eofs
);
554 return -EFSCORRUPTED
;
562 xfs_buf_flags_t flags
)
564 if (flags
& XBF_TRYLOCK
) {
565 if (!xfs_buf_trylock(bp
)) {
566 XFS_STATS_INC(bp
->b_mount
, xb_busy_locked
);
571 XFS_STATS_INC(bp
->b_mount
, xb_get_locked_waited
);
575 * if the buffer is stale, clear all the external state associated with
576 * it. We need to keep flags such as how we allocated the buffer memory
579 if (bp
->b_flags
& XBF_STALE
) {
580 if (flags
& XBF_LIVESCAN
) {
584 ASSERT((bp
->b_flags
& _XBF_DELWRI_Q
) == 0);
585 bp
->b_flags
&= _XBF_KMEM
| _XBF_PAGES
;
593 struct xfs_buf_cache
*bch
,
594 struct xfs_buf_map
*map
,
595 xfs_buf_flags_t flags
,
596 struct xfs_buf
**bpp
)
602 bp
= rhashtable_lookup(&bch
->bc_hash
, map
, xfs_buf_hash_params
);
603 if (!bp
|| !atomic_inc_not_zero(&bp
->b_hold
)) {
609 error
= xfs_buf_find_lock(bp
, flags
);
615 trace_xfs_buf_find(bp
, flags
, _RET_IP_
);
621 * Insert the new_bp into the hash table. This consumes the perag reference
622 * taken for the lookup regardless of the result of the insert.
626 struct xfs_buftarg
*btp
,
627 struct xfs_buf_cache
*bch
,
628 struct xfs_perag
*pag
,
629 struct xfs_buf_map
*cmap
,
630 struct xfs_buf_map
*map
,
632 xfs_buf_flags_t flags
,
633 struct xfs_buf
**bpp
)
635 struct xfs_buf
*new_bp
;
639 error
= _xfs_buf_alloc(btp
, map
, nmaps
, flags
, &new_bp
);
643 if (xfs_buftarg_is_mem(new_bp
->b_target
)) {
644 error
= xmbuf_map_page(new_bp
);
645 } else if (BBTOB(new_bp
->b_length
) >= PAGE_SIZE
||
646 xfs_buf_alloc_kmem(new_bp
, flags
) < 0) {
648 * For buffers that fit entirely within a single page, first
649 * attempt to allocate the memory from the heap to minimise
650 * memory usage. If we can't get heap memory for these small
651 * buffers, we fall back to using the page allocator.
653 error
= xfs_buf_alloc_pages(new_bp
, flags
);
658 spin_lock(&bch
->bc_lock
);
659 bp
= rhashtable_lookup_get_insert_fast(&bch
->bc_hash
,
660 &new_bp
->b_rhash_head
, xfs_buf_hash_params
);
663 spin_unlock(&bch
->bc_lock
);
667 /* found an existing buffer */
668 atomic_inc(&bp
->b_hold
);
669 spin_unlock(&bch
->bc_lock
);
670 error
= xfs_buf_find_lock(bp
, flags
);
678 /* The new buffer keeps the perag reference until it is freed. */
680 spin_unlock(&bch
->bc_lock
);
685 xfs_buf_free(new_bp
);
692 static inline struct xfs_perag
*
694 struct xfs_buftarg
*btp
,
695 const struct xfs_buf_map
*map
)
697 struct xfs_mount
*mp
= btp
->bt_mount
;
699 if (xfs_buftarg_is_mem(btp
))
701 return xfs_perag_get(mp
, xfs_daddr_to_agno(mp
, map
->bm_bn
));
704 static inline struct xfs_buf_cache
*
705 xfs_buftarg_buf_cache(
706 struct xfs_buftarg
*btp
,
707 struct xfs_perag
*pag
)
710 return &pag
->pag_bcache
;
711 return btp
->bt_cache
;
715 * Assembles a buffer covering the specified range. The code is optimised for
716 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
717 * more hits than misses.
721 struct xfs_buftarg
*btp
,
722 struct xfs_buf_map
*map
,
724 xfs_buf_flags_t flags
,
725 struct xfs_buf
**bpp
)
727 struct xfs_buf_cache
*bch
;
728 struct xfs_perag
*pag
;
729 struct xfs_buf
*bp
= NULL
;
730 struct xfs_buf_map cmap
= { .bm_bn
= map
[0].bm_bn
};
734 if (flags
& XBF_LIVESCAN
)
735 cmap
.bm_flags
|= XBM_LIVESCAN
;
736 for (i
= 0; i
< nmaps
; i
++)
737 cmap
.bm_len
+= map
[i
].bm_len
;
739 error
= xfs_buf_map_verify(btp
, &cmap
);
743 pag
= xfs_buftarg_get_pag(btp
, &cmap
);
744 bch
= xfs_buftarg_buf_cache(btp
, pag
);
746 error
= xfs_buf_lookup(bch
, &cmap
, flags
, &bp
);
747 if (error
&& error
!= -ENOENT
)
750 /* cache hits always outnumber misses by at least 10:1 */
752 XFS_STATS_INC(btp
->bt_mount
, xb_miss_locked
);
754 if (flags
& XBF_INCORE
)
757 /* xfs_buf_find_insert() consumes the perag reference. */
758 error
= xfs_buf_find_insert(btp
, bch
, pag
, &cmap
, map
, nmaps
,
763 XFS_STATS_INC(btp
->bt_mount
, xb_get_locked
);
768 /* We do not hold a perag reference anymore. */
770 error
= _xfs_buf_map_pages(bp
, flags
);
771 if (unlikely(error
)) {
772 xfs_warn_ratelimited(btp
->bt_mount
,
773 "%s: failed to map %u pages", __func__
,
781 * Clear b_error if this is a lookup from a caller that doesn't expect
782 * valid data to be found in the buffer.
784 if (!(flags
& XBF_READ
))
785 xfs_buf_ioerror(bp
, 0);
787 XFS_STATS_INC(btp
->bt_mount
, xb_get
);
788 trace_xfs_buf_get(bp
, flags
, _RET_IP_
);
801 xfs_buf_flags_t flags
)
803 ASSERT(!(flags
& XBF_WRITE
));
804 ASSERT(bp
->b_maps
[0].bm_bn
!= XFS_BUF_DADDR_NULL
);
806 bp
->b_flags
&= ~(XBF_WRITE
| XBF_ASYNC
| XBF_READ_AHEAD
| XBF_DONE
);
807 bp
->b_flags
|= flags
& (XBF_READ
| XBF_ASYNC
| XBF_READ_AHEAD
);
809 return xfs_buf_submit(bp
);
813 * Reverify a buffer found in cache without an attached ->b_ops.
815 * If the caller passed an ops structure and the buffer doesn't have ops
816 * assigned, set the ops and use it to verify the contents. If verification
817 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
818 * already in XBF_DONE state on entry.
820 * Under normal operations, every in-core buffer is verified on read I/O
821 * completion. There are two scenarios that can lead to in-core buffers without
822 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
823 * filesystem, though these buffers are purged at the end of recovery. The
824 * other is online repair, which intentionally reads with a NULL buffer ops to
825 * run several verifiers across an in-core buffer in order to establish buffer
826 * type. If repair can't establish that, the buffer will be left in memory
827 * with NULL buffer ops.
832 const struct xfs_buf_ops
*ops
)
834 ASSERT(bp
->b_flags
& XBF_DONE
);
835 ASSERT(bp
->b_error
== 0);
837 if (!ops
|| bp
->b_ops
)
841 bp
->b_ops
->verify_read(bp
);
843 bp
->b_flags
&= ~XBF_DONE
;
849 struct xfs_buftarg
*target
,
850 struct xfs_buf_map
*map
,
852 xfs_buf_flags_t flags
,
853 struct xfs_buf
**bpp
,
854 const struct xfs_buf_ops
*ops
,
863 error
= xfs_buf_get_map(target
, map
, nmaps
, flags
, &bp
);
867 trace_xfs_buf_read(bp
, flags
, _RET_IP_
);
869 if (!(bp
->b_flags
& XBF_DONE
)) {
870 /* Initiate the buffer read and wait. */
871 XFS_STATS_INC(target
->bt_mount
, xb_get_read
);
873 error
= _xfs_buf_read(bp
, flags
);
875 /* Readahead iodone already dropped the buffer, so exit. */
876 if (flags
& XBF_ASYNC
)
879 /* Buffer already read; all we need to do is check it. */
880 error
= xfs_buf_reverify(bp
, ops
);
882 /* Readahead already finished; drop the buffer and exit. */
883 if (flags
& XBF_ASYNC
) {
888 /* We do not want read in the flags */
889 bp
->b_flags
&= ~XBF_READ
;
890 ASSERT(bp
->b_ops
!= NULL
|| ops
== NULL
);
894 * If we've had a read error, then the contents of the buffer are
895 * invalid and should not be used. To ensure that a followup read tries
896 * to pull the buffer from disk again, we clear the XBF_DONE flag and
897 * mark the buffer stale. This ensures that anyone who has a current
898 * reference to the buffer will interpret it's contents correctly and
899 * future cache lookups will also treat it as an empty, uninitialised
904 * Check against log shutdown for error reporting because
905 * metadata writeback may require a read first and we need to
906 * report errors in metadata writeback until the log is shut
907 * down. High level transaction read functions already check
908 * against mount shutdown, anyway, so we only need to be
909 * concerned about low level IO interactions here.
911 if (!xlog_is_shutdown(target
->bt_mount
->m_log
))
912 xfs_buf_ioerror_alert(bp
, fa
);
914 bp
->b_flags
&= ~XBF_DONE
;
918 /* bad CRC means corrupted metadata */
919 if (error
== -EFSBADCRC
)
920 error
= -EFSCORRUPTED
;
929 * If we are not low on memory then do the readahead in a deadlock
933 xfs_buf_readahead_map(
934 struct xfs_buftarg
*target
,
935 struct xfs_buf_map
*map
,
937 const struct xfs_buf_ops
*ops
)
942 * Currently we don't have a good means or justification for performing
943 * xmbuf_map_page asynchronously, so we don't do readahead.
945 if (xfs_buftarg_is_mem(target
))
948 xfs_buf_read_map(target
, map
, nmaps
,
949 XBF_TRYLOCK
| XBF_ASYNC
| XBF_READ_AHEAD
, &bp
, ops
,
954 * Read an uncached buffer from disk. Allocates and returns a locked
955 * buffer containing the disk contents or nothing. Uncached buffers always have
956 * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer
957 * is cached or uncached during fault diagnosis.
960 xfs_buf_read_uncached(
961 struct xfs_buftarg
*target
,
964 xfs_buf_flags_t flags
,
965 struct xfs_buf
**bpp
,
966 const struct xfs_buf_ops
*ops
)
973 error
= xfs_buf_get_uncached(target
, numblks
, flags
, &bp
);
977 /* set up the buffer for a read IO */
978 ASSERT(bp
->b_map_count
== 1);
979 bp
->b_rhash_key
= XFS_BUF_DADDR_NULL
;
980 bp
->b_maps
[0].bm_bn
= daddr
;
981 bp
->b_flags
|= XBF_READ
;
996 xfs_buf_get_uncached(
997 struct xfs_buftarg
*target
,
999 xfs_buf_flags_t flags
,
1000 struct xfs_buf
**bpp
)
1004 DEFINE_SINGLE_BUF_MAP(map
, XFS_BUF_DADDR_NULL
, numblks
);
1008 /* flags might contain irrelevant bits, pass only what we care about */
1009 error
= _xfs_buf_alloc(target
, &map
, 1, flags
& XBF_NO_IOACCT
, &bp
);
1013 if (xfs_buftarg_is_mem(bp
->b_target
))
1014 error
= xmbuf_map_page(bp
);
1016 error
= xfs_buf_alloc_pages(bp
, flags
);
1020 error
= _xfs_buf_map_pages(bp
, 0);
1021 if (unlikely(error
)) {
1022 xfs_warn(target
->bt_mount
,
1023 "%s: failed to map pages", __func__
);
1027 trace_xfs_buf_get_uncached(bp
, _RET_IP_
);
1037 * Increment reference count on buffer, to hold the buffer concurrently
1038 * with another thread which may release (free) the buffer asynchronously.
1039 * Must hold the buffer already to call this function.
1045 trace_xfs_buf_hold(bp
, _RET_IP_
);
1046 atomic_inc(&bp
->b_hold
);
1050 xfs_buf_rele_uncached(
1053 ASSERT(list_empty(&bp
->b_lru
));
1054 if (atomic_dec_and_test(&bp
->b_hold
)) {
1055 xfs_buf_ioacct_dec(bp
);
1061 xfs_buf_rele_cached(
1064 struct xfs_buftarg
*btp
= bp
->b_target
;
1065 struct xfs_perag
*pag
= bp
->b_pag
;
1066 struct xfs_buf_cache
*bch
= xfs_buftarg_buf_cache(btp
, pag
);
1068 bool freebuf
= false;
1070 trace_xfs_buf_rele(bp
, _RET_IP_
);
1072 ASSERT(atomic_read(&bp
->b_hold
) > 0);
1075 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1076 * calls. The pag_buf_lock being taken on the last reference only
1077 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1078 * to last reference we drop here is not serialised against the last
1079 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1080 * first, the last "release" reference can win the race to the lock and
1081 * free the buffer before the second-to-last reference is processed,
1082 * leading to a use-after-free scenario.
1084 spin_lock(&bp
->b_lock
);
1085 release
= atomic_dec_and_lock(&bp
->b_hold
, &bch
->bc_lock
);
1088 * Drop the in-flight state if the buffer is already on the LRU
1089 * and it holds the only reference. This is racy because we
1090 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1091 * ensures the decrement occurs only once per-buf.
1093 if ((atomic_read(&bp
->b_hold
) == 1) && !list_empty(&bp
->b_lru
))
1094 __xfs_buf_ioacct_dec(bp
);
1098 /* the last reference has been dropped ... */
1099 __xfs_buf_ioacct_dec(bp
);
1100 if (!(bp
->b_flags
& XBF_STALE
) && atomic_read(&bp
->b_lru_ref
)) {
1102 * If the buffer is added to the LRU take a new reference to the
1103 * buffer for the LRU and clear the (now stale) dispose list
1106 if (list_lru_add_obj(&btp
->bt_lru
, &bp
->b_lru
)) {
1107 bp
->b_state
&= ~XFS_BSTATE_DISPOSE
;
1108 atomic_inc(&bp
->b_hold
);
1110 spin_unlock(&bch
->bc_lock
);
1113 * most of the time buffers will already be removed from the
1114 * LRU, so optimise that case by checking for the
1115 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1116 * was on was the disposal list
1118 if (!(bp
->b_state
& XFS_BSTATE_DISPOSE
)) {
1119 list_lru_del_obj(&btp
->bt_lru
, &bp
->b_lru
);
1121 ASSERT(list_empty(&bp
->b_lru
));
1124 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
1125 rhashtable_remove_fast(&bch
->bc_hash
, &bp
->b_rhash_head
,
1126 xfs_buf_hash_params
);
1127 spin_unlock(&bch
->bc_lock
);
1134 spin_unlock(&bp
->b_lock
);
1141 * Release a hold on the specified buffer.
1147 trace_xfs_buf_rele(bp
, _RET_IP_
);
1148 if (xfs_buf_is_uncached(bp
))
1149 xfs_buf_rele_uncached(bp
);
1151 xfs_buf_rele_cached(bp
);
1155 * Lock a buffer object, if it is not already locked.
1157 * If we come across a stale, pinned, locked buffer, we know that we are
1158 * being asked to lock a buffer that has been reallocated. Because it is
1159 * pinned, we know that the log has not been pushed to disk and hence it
1160 * will still be locked. Rather than continuing to have trylock attempts
1161 * fail until someone else pushes the log, push it ourselves before
1162 * returning. This means that the xfsaild will not get stuck trying
1163 * to push on stale inode buffers.
1171 locked
= down_trylock(&bp
->b_sema
) == 0;
1173 trace_xfs_buf_trylock(bp
, _RET_IP_
);
1175 trace_xfs_buf_trylock_fail(bp
, _RET_IP_
);
1180 * Lock a buffer object.
1182 * If we come across a stale, pinned, locked buffer, we know that we
1183 * are being asked to lock a buffer that has been reallocated. Because
1184 * it is pinned, we know that the log has not been pushed to disk and
1185 * hence it will still be locked. Rather than sleeping until someone
1186 * else pushes the log, push it ourselves before trying to get the lock.
1192 trace_xfs_buf_lock(bp
, _RET_IP_
);
1194 if (atomic_read(&bp
->b_pin_count
) && (bp
->b_flags
& XBF_STALE
))
1195 xfs_log_force(bp
->b_mount
, 0);
1198 trace_xfs_buf_lock_done(bp
, _RET_IP_
);
1205 ASSERT(xfs_buf_islocked(bp
));
1208 trace_xfs_buf_unlock(bp
, _RET_IP_
);
1215 DECLARE_WAITQUEUE (wait
, current
);
1217 if (atomic_read(&bp
->b_pin_count
) == 0)
1220 add_wait_queue(&bp
->b_waiters
, &wait
);
1222 set_current_state(TASK_UNINTERRUPTIBLE
);
1223 if (atomic_read(&bp
->b_pin_count
) == 0)
1227 remove_wait_queue(&bp
->b_waiters
, &wait
);
1228 set_current_state(TASK_RUNNING
);
1232 xfs_buf_ioerror_alert_ratelimited(
1235 static unsigned long lasttime
;
1236 static struct xfs_buftarg
*lasttarg
;
1238 if (bp
->b_target
!= lasttarg
||
1239 time_after(jiffies
, (lasttime
+ 5*HZ
))) {
1241 xfs_buf_ioerror_alert(bp
, __this_address
);
1243 lasttarg
= bp
->b_target
;
1247 * Account for this latest trip around the retry handler, and decide if
1248 * we've failed enough times to constitute a permanent failure.
1251 xfs_buf_ioerror_permanent(
1253 struct xfs_error_cfg
*cfg
)
1255 struct xfs_mount
*mp
= bp
->b_mount
;
1257 if (cfg
->max_retries
!= XFS_ERR_RETRY_FOREVER
&&
1258 ++bp
->b_retries
> cfg
->max_retries
)
1260 if (cfg
->retry_timeout
!= XFS_ERR_RETRY_FOREVER
&&
1261 time_after(jiffies
, cfg
->retry_timeout
+ bp
->b_first_retry_time
))
1264 /* At unmount we may treat errors differently */
1265 if (xfs_is_unmounting(mp
) && mp
->m_fail_unmount
)
1272 * On a sync write or shutdown we just want to stale the buffer and let the
1273 * caller handle the error in bp->b_error appropriately.
1275 * If the write was asynchronous then no one will be looking for the error. If
1276 * this is the first failure of this type, clear the error state and write the
1277 * buffer out again. This means we always retry an async write failure at least
1278 * once, but we also need to set the buffer up to behave correctly now for
1279 * repeated failures.
1281 * If we get repeated async write failures, then we take action according to the
1282 * error configuration we have been set up to use.
1284 * Returns true if this function took care of error handling and the caller must
1285 * not touch the buffer again. Return false if the caller should proceed with
1286 * normal I/O completion handling.
1289 xfs_buf_ioend_handle_error(
1292 struct xfs_mount
*mp
= bp
->b_mount
;
1293 struct xfs_error_cfg
*cfg
;
1296 * If we've already shutdown the journal because of I/O errors, there's
1297 * no point in giving this a retry.
1299 if (xlog_is_shutdown(mp
->m_log
))
1302 xfs_buf_ioerror_alert_ratelimited(bp
);
1305 * We're not going to bother about retrying this during recovery.
1308 if (bp
->b_flags
& _XBF_LOGRECOVERY
) {
1309 xfs_force_shutdown(mp
, SHUTDOWN_META_IO_ERROR
);
1314 * Synchronous writes will have callers process the error.
1316 if (!(bp
->b_flags
& XBF_ASYNC
))
1319 trace_xfs_buf_iodone_async(bp
, _RET_IP_
);
1321 cfg
= xfs_error_get_cfg(mp
, XFS_ERR_METADATA
, bp
->b_error
);
1322 if (bp
->b_last_error
!= bp
->b_error
||
1323 !(bp
->b_flags
& (XBF_STALE
| XBF_WRITE_FAIL
))) {
1324 bp
->b_last_error
= bp
->b_error
;
1325 if (cfg
->retry_timeout
!= XFS_ERR_RETRY_FOREVER
&&
1326 !bp
->b_first_retry_time
)
1327 bp
->b_first_retry_time
= jiffies
;
1332 * Permanent error - we need to trigger a shutdown if we haven't already
1333 * to indicate that inconsistency will result from this action.
1335 if (xfs_buf_ioerror_permanent(bp
, cfg
)) {
1336 xfs_force_shutdown(mp
, SHUTDOWN_META_IO_ERROR
);
1340 /* Still considered a transient error. Caller will schedule retries. */
1341 if (bp
->b_flags
& _XBF_INODES
)
1342 xfs_buf_inode_io_fail(bp
);
1343 else if (bp
->b_flags
& _XBF_DQUOTS
)
1344 xfs_buf_dquot_io_fail(bp
);
1346 ASSERT(list_empty(&bp
->b_li_list
));
1347 xfs_buf_ioerror(bp
, 0);
1352 xfs_buf_ioerror(bp
, 0);
1353 bp
->b_flags
|= (XBF_DONE
| XBF_WRITE_FAIL
);
1358 bp
->b_flags
|= XBF_DONE
;
1359 bp
->b_flags
&= ~XBF_WRITE
;
1360 trace_xfs_buf_error_relse(bp
, _RET_IP_
);
1368 trace_xfs_buf_iodone(bp
, _RET_IP_
);
1371 * Pull in IO completion errors now. We are guaranteed to be running
1372 * single threaded, so we don't need the lock to read b_io_error.
1374 if (!bp
->b_error
&& bp
->b_io_error
)
1375 xfs_buf_ioerror(bp
, bp
->b_io_error
);
1377 if (bp
->b_flags
& XBF_READ
) {
1378 if (!bp
->b_error
&& bp
->b_ops
)
1379 bp
->b_ops
->verify_read(bp
);
1381 bp
->b_flags
|= XBF_DONE
;
1384 bp
->b_flags
&= ~XBF_WRITE_FAIL
;
1385 bp
->b_flags
|= XBF_DONE
;
1388 if (unlikely(bp
->b_error
) && xfs_buf_ioend_handle_error(bp
))
1391 /* clear the retry state */
1392 bp
->b_last_error
= 0;
1394 bp
->b_first_retry_time
= 0;
1397 * Note that for things like remote attribute buffers, there may
1398 * not be a buffer log item here, so processing the buffer log
1399 * item must remain optional.
1402 xfs_buf_item_done(bp
);
1404 if (bp
->b_flags
& _XBF_INODES
)
1405 xfs_buf_inode_iodone(bp
);
1406 else if (bp
->b_flags
& _XBF_DQUOTS
)
1407 xfs_buf_dquot_iodone(bp
);
1411 bp
->b_flags
&= ~(XBF_READ
| XBF_WRITE
| XBF_READ_AHEAD
|
1414 if (bp
->b_flags
& XBF_ASYNC
)
1417 complete(&bp
->b_iowait
);
1422 struct work_struct
*work
)
1424 struct xfs_buf
*bp
=
1425 container_of(work
, struct xfs_buf
, b_ioend_work
);
1431 xfs_buf_ioend_async(
1434 INIT_WORK(&bp
->b_ioend_work
, xfs_buf_ioend_work
);
1435 queue_work(bp
->b_mount
->m_buf_workqueue
, &bp
->b_ioend_work
);
1442 xfs_failaddr_t failaddr
)
1444 ASSERT(error
<= 0 && error
>= -1000);
1445 bp
->b_error
= error
;
1446 trace_xfs_buf_ioerror(bp
, error
, failaddr
);
1450 xfs_buf_ioerror_alert(
1452 xfs_failaddr_t func
)
1454 xfs_buf_alert_ratelimited(bp
, "XFS: metadata IO error",
1455 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1456 func
, (uint64_t)xfs_buf_daddr(bp
),
1457 bp
->b_length
, -bp
->b_error
);
1461 * To simulate an I/O failure, the buffer must be locked and held with at least
1462 * three references. The LRU reference is dropped by the stale call. The buf
1463 * item reference is dropped via ioend processing. The third reference is owned
1464 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1470 bp
->b_flags
&= ~XBF_DONE
;
1472 xfs_buf_ioerror(bp
, -EIO
);
1482 ASSERT(xfs_buf_islocked(bp
));
1484 bp
->b_flags
|= XBF_WRITE
;
1485 bp
->b_flags
&= ~(XBF_ASYNC
| XBF_READ
| _XBF_DELWRI_Q
|
1488 error
= xfs_buf_submit(bp
);
1490 xfs_force_shutdown(bp
->b_mount
, SHUTDOWN_META_IO_ERROR
);
1498 struct xfs_buf
*bp
= (struct xfs_buf
*)bio
->bi_private
;
1500 if (!bio
->bi_status
&&
1501 (bp
->b_flags
& XBF_WRITE
) && (bp
->b_flags
& XBF_ASYNC
) &&
1502 XFS_TEST_ERROR(false, bp
->b_mount
, XFS_ERRTAG_BUF_IOERROR
))
1503 bio
->bi_status
= BLK_STS_IOERR
;
1506 * don't overwrite existing errors - otherwise we can lose errors on
1507 * buffers that require multiple bios to complete.
1509 if (bio
->bi_status
) {
1510 int error
= blk_status_to_errno(bio
->bi_status
);
1512 cmpxchg(&bp
->b_io_error
, 0, error
);
1515 if (!bp
->b_error
&& xfs_buf_is_vmapped(bp
) && (bp
->b_flags
& XBF_READ
))
1516 invalidate_kernel_vmap_range(bp
->b_addr
, xfs_buf_vmap_len(bp
));
1518 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1)
1519 xfs_buf_ioend_async(bp
);
1524 xfs_buf_ioapply_map(
1532 unsigned int total_nr_pages
= bp
->b_page_count
;
1535 sector_t sector
= bp
->b_maps
[map
].bm_bn
;
1539 /* skip the pages in the buffer before the start offset */
1541 offset
= *buf_offset
;
1542 while (offset
>= PAGE_SIZE
) {
1544 offset
-= PAGE_SIZE
;
1548 * Limit the IO size to the length of the current vector, and update the
1549 * remaining IO count for the next time around.
1551 size
= min_t(int, BBTOB(bp
->b_maps
[map
].bm_len
), *count
);
1553 *buf_offset
+= size
;
1556 atomic_inc(&bp
->b_io_remaining
);
1557 nr_pages
= bio_max_segs(total_nr_pages
);
1559 bio
= bio_alloc(bp
->b_target
->bt_bdev
, nr_pages
, op
, GFP_NOIO
);
1560 bio
->bi_iter
.bi_sector
= sector
;
1561 bio
->bi_end_io
= xfs_buf_bio_end_io
;
1562 bio
->bi_private
= bp
;
1564 for (; size
&& nr_pages
; nr_pages
--, page_index
++) {
1565 int rbytes
, nbytes
= PAGE_SIZE
- offset
;
1570 rbytes
= bio_add_page(bio
, bp
->b_pages
[page_index
], nbytes
,
1572 if (rbytes
< nbytes
)
1576 sector
+= BTOBB(nbytes
);
1581 if (likely(bio
->bi_iter
.bi_size
)) {
1582 if (xfs_buf_is_vmapped(bp
)) {
1583 flush_kernel_vmap_range(bp
->b_addr
,
1584 xfs_buf_vmap_len(bp
));
1591 * This is guaranteed not to be the last io reference count
1592 * because the caller (xfs_buf_submit) holds a count itself.
1594 atomic_dec(&bp
->b_io_remaining
);
1595 xfs_buf_ioerror(bp
, -EIO
);
1605 struct blk_plug plug
;
1612 * Make sure we capture only current IO errors rather than stale errors
1613 * left over from previous use of the buffer (e.g. failed readahead).
1617 if (bp
->b_flags
& XBF_WRITE
) {
1621 * Run the write verifier callback function if it exists. If
1622 * this function fails it will mark the buffer with an error and
1623 * the IO should not be dispatched.
1626 bp
->b_ops
->verify_write(bp
);
1628 xfs_force_shutdown(bp
->b_mount
,
1629 SHUTDOWN_CORRUPT_INCORE
);
1632 } else if (bp
->b_rhash_key
!= XFS_BUF_DADDR_NULL
) {
1633 struct xfs_mount
*mp
= bp
->b_mount
;
1636 * non-crc filesystems don't attach verifiers during
1637 * log recovery, so don't warn for such filesystems.
1639 if (xfs_has_crc(mp
)) {
1641 "%s: no buf ops on daddr 0x%llx len %d",
1642 __func__
, xfs_buf_daddr(bp
),
1644 xfs_hex_dump(bp
->b_addr
,
1645 XFS_CORRUPTION_DUMP_LEN
);
1651 if (bp
->b_flags
& XBF_READ_AHEAD
)
1655 /* we only use the buffer cache for meta-data */
1658 /* in-memory targets are directly mapped, no IO required. */
1659 if (xfs_buftarg_is_mem(bp
->b_target
)) {
1665 * Walk all the vectors issuing IO on them. Set up the initial offset
1666 * into the buffer and the desired IO size before we start -
1667 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1670 offset
= bp
->b_offset
;
1671 size
= BBTOB(bp
->b_length
);
1672 blk_start_plug(&plug
);
1673 for (i
= 0; i
< bp
->b_map_count
; i
++) {
1674 xfs_buf_ioapply_map(bp
, i
, &offset
, &size
, op
);
1678 break; /* all done */
1680 blk_finish_plug(&plug
);
1684 * Wait for I/O completion of a sync buffer and return the I/O error code.
1690 ASSERT(!(bp
->b_flags
& XBF_ASYNC
));
1692 trace_xfs_buf_iowait(bp
, _RET_IP_
);
1693 wait_for_completion(&bp
->b_iowait
);
1694 trace_xfs_buf_iowait_done(bp
, _RET_IP_
);
1700 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1701 * the buffer lock ownership and the current reference to the IO. It is not
1702 * safe to reference the buffer after a call to this function unless the caller
1703 * holds an additional reference itself.
1712 trace_xfs_buf_submit(bp
, _RET_IP_
);
1714 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
1717 * On log shutdown we stale and complete the buffer immediately. We can
1718 * be called to read the superblock before the log has been set up, so
1719 * be careful checking the log state.
1721 * Checking the mount shutdown state here can result in the log tail
1722 * moving inappropriately on disk as the log may not yet be shut down.
1723 * i.e. failing this buffer on mount shutdown can remove it from the AIL
1724 * and move the tail of the log forwards without having written this
1725 * buffer to disk. This corrupts the log tail state in memory, and
1726 * because the log may not be shut down yet, it can then be propagated
1727 * to disk before the log is shutdown. Hence we check log shutdown
1728 * state here rather than mount state to avoid corrupting the log tail
1731 if (bp
->b_mount
->m_log
&&
1732 xlog_is_shutdown(bp
->b_mount
->m_log
)) {
1733 xfs_buf_ioend_fail(bp
);
1738 * Grab a reference so the buffer does not go away underneath us. For
1739 * async buffers, I/O completion drops the callers reference, which
1740 * could occur before submission returns.
1744 if (bp
->b_flags
& XBF_WRITE
)
1745 xfs_buf_wait_unpin(bp
);
1747 /* clear the internal error state to avoid spurious errors */
1751 * Set the count to 1 initially, this will stop an I/O completion
1752 * callout which happens before we have started all the I/O from calling
1753 * xfs_buf_ioend too early.
1755 atomic_set(&bp
->b_io_remaining
, 1);
1756 if (bp
->b_flags
& XBF_ASYNC
)
1757 xfs_buf_ioacct_inc(bp
);
1758 _xfs_buf_ioapply(bp
);
1761 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1762 * reference we took above. If we drop it to zero, run completion so
1763 * that we don't return to the caller with completion still pending.
1765 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1) {
1766 if (bp
->b_error
|| !(bp
->b_flags
& XBF_ASYNC
))
1769 xfs_buf_ioend_async(bp
);
1773 error
= xfs_buf_iowait(bp
);
1776 * Release the hold that keeps the buffer referenced for the entire
1777 * I/O. Note that if the buffer is async, it is not safe to reference
1778 * after this release.
1792 return bp
->b_addr
+ offset
;
1794 page
= bp
->b_pages
[offset
>> PAGE_SHIFT
];
1795 return page_address(page
) + (offset
& (PAGE_SIZE
-1));
1806 bend
= boff
+ bsize
;
1807 while (boff
< bend
) {
1809 int page_index
, page_offset
, csize
;
1811 page_index
= (boff
+ bp
->b_offset
) >> PAGE_SHIFT
;
1812 page_offset
= (boff
+ bp
->b_offset
) & ~PAGE_MASK
;
1813 page
= bp
->b_pages
[page_index
];
1814 csize
= min_t(size_t, PAGE_SIZE
- page_offset
,
1815 BBTOB(bp
->b_length
) - boff
);
1817 ASSERT((csize
+ page_offset
) <= PAGE_SIZE
);
1819 memset(page_address(page
) + page_offset
, 0, csize
);
1826 * Log a message about and stale a buffer that a caller has decided is corrupt.
1828 * This function should be called for the kinds of metadata corruption that
1829 * cannot be detect from a verifier, such as incorrect inter-block relationship
1830 * data. Do /not/ call this function from a verifier function.
1832 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will
1833 * be marked stale, but b_error will not be set. The caller is responsible for
1834 * releasing the buffer or fixing it.
1837 __xfs_buf_mark_corrupt(
1841 ASSERT(bp
->b_flags
& XBF_DONE
);
1843 xfs_buf_corruption_error(bp
, fa
);
1848 * Handling of buffer targets (buftargs).
1852 * Wait for any bufs with callbacks that have been submitted but have not yet
1853 * returned. These buffers will have an elevated hold count, so wait on those
1854 * while freeing all the buffers only held by the LRU.
1856 static enum lru_status
1857 xfs_buftarg_drain_rele(
1858 struct list_head
*item
,
1859 struct list_lru_one
*lru
,
1863 struct xfs_buf
*bp
= container_of(item
, struct xfs_buf
, b_lru
);
1864 struct list_head
*dispose
= arg
;
1866 if (atomic_read(&bp
->b_hold
) > 1) {
1867 /* need to wait, so skip it this pass */
1868 trace_xfs_buf_drain_buftarg(bp
, _RET_IP_
);
1871 if (!spin_trylock(&bp
->b_lock
))
1875 * clear the LRU reference count so the buffer doesn't get
1876 * ignored in xfs_buf_rele().
1878 atomic_set(&bp
->b_lru_ref
, 0);
1879 bp
->b_state
|= XFS_BSTATE_DISPOSE
;
1880 list_lru_isolate_move(lru
, item
, dispose
);
1881 spin_unlock(&bp
->b_lock
);
1886 * Wait for outstanding I/O on the buftarg to complete.
1890 struct xfs_buftarg
*btp
)
1893 * First wait on the buftarg I/O count for all in-flight buffers to be
1894 * released. This is critical as new buffers do not make the LRU until
1895 * they are released.
1897 * Next, flush the buffer workqueue to ensure all completion processing
1898 * has finished. Just waiting on buffer locks is not sufficient for
1899 * async IO as the reference count held over IO is not released until
1900 * after the buffer lock is dropped. Hence we need to ensure here that
1901 * all reference counts have been dropped before we start walking the
1904 while (percpu_counter_sum(&btp
->bt_io_count
))
1906 flush_workqueue(btp
->bt_mount
->m_buf_workqueue
);
1911 struct xfs_buftarg
*btp
)
1915 bool write_fail
= false;
1917 xfs_buftarg_wait(btp
);
1919 /* loop until there is nothing left on the lru list. */
1920 while (list_lru_count(&btp
->bt_lru
)) {
1921 list_lru_walk(&btp
->bt_lru
, xfs_buftarg_drain_rele
,
1922 &dispose
, LONG_MAX
);
1924 while (!list_empty(&dispose
)) {
1926 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
1927 list_del_init(&bp
->b_lru
);
1928 if (bp
->b_flags
& XBF_WRITE_FAIL
) {
1930 xfs_buf_alert_ratelimited(bp
,
1931 "XFS: Corruption Alert",
1932 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1933 (long long)xfs_buf_daddr(bp
));
1942 * If one or more failed buffers were freed, that means dirty metadata
1943 * was thrown away. This should only ever happen after I/O completion
1944 * handling has elevated I/O error(s) to permanent failures and shuts
1948 ASSERT(xlog_is_shutdown(btp
->bt_mount
->m_log
));
1949 xfs_alert(btp
->bt_mount
,
1950 "Please run xfs_repair to determine the extent of the problem.");
1954 static enum lru_status
1955 xfs_buftarg_isolate(
1956 struct list_head
*item
,
1957 struct list_lru_one
*lru
,
1960 struct xfs_buf
*bp
= container_of(item
, struct xfs_buf
, b_lru
);
1961 struct list_head
*dispose
= arg
;
1964 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1965 * If we fail to get the lock, just skip it.
1967 if (!spin_trylock(&bp
->b_lock
))
1970 * Decrement the b_lru_ref count unless the value is already
1971 * zero. If the value is already zero, we need to reclaim the
1972 * buffer, otherwise it gets another trip through the LRU.
1974 if (atomic_add_unless(&bp
->b_lru_ref
, -1, 0)) {
1975 spin_unlock(&bp
->b_lock
);
1979 bp
->b_state
|= XFS_BSTATE_DISPOSE
;
1980 list_lru_isolate_move(lru
, item
, dispose
);
1981 spin_unlock(&bp
->b_lock
);
1985 static unsigned long
1986 xfs_buftarg_shrink_scan(
1987 struct shrinker
*shrink
,
1988 struct shrink_control
*sc
)
1990 struct xfs_buftarg
*btp
= shrink
->private_data
;
1992 unsigned long freed
;
1994 freed
= list_lru_shrink_walk(&btp
->bt_lru
, sc
,
1995 xfs_buftarg_isolate
, &dispose
);
1997 while (!list_empty(&dispose
)) {
1999 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
2000 list_del_init(&bp
->b_lru
);
2007 static unsigned long
2008 xfs_buftarg_shrink_count(
2009 struct shrinker
*shrink
,
2010 struct shrink_control
*sc
)
2012 struct xfs_buftarg
*btp
= shrink
->private_data
;
2013 return list_lru_shrink_count(&btp
->bt_lru
, sc
);
2017 xfs_destroy_buftarg(
2018 struct xfs_buftarg
*btp
)
2020 shrinker_free(btp
->bt_shrinker
);
2021 ASSERT(percpu_counter_sum(&btp
->bt_io_count
) == 0);
2022 percpu_counter_destroy(&btp
->bt_io_count
);
2023 list_lru_destroy(&btp
->bt_lru
);
2028 struct xfs_buftarg
*btp
)
2030 xfs_destroy_buftarg(btp
);
2031 fs_put_dax(btp
->bt_daxdev
, btp
->bt_mount
);
2032 /* the main block device is closed by kill_block_super */
2033 if (btp
->bt_bdev
!= btp
->bt_mount
->m_super
->s_bdev
)
2034 bdev_fput(btp
->bt_bdev_file
);
2039 xfs_setsize_buftarg(
2040 struct xfs_buftarg
*btp
,
2041 unsigned int sectorsize
)
2043 /* Set up metadata sector size info */
2044 btp
->bt_meta_sectorsize
= sectorsize
;
2045 btp
->bt_meta_sectormask
= sectorsize
- 1;
2047 if (set_blocksize(btp
->bt_bdev_file
, sectorsize
)) {
2048 xfs_warn(btp
->bt_mount
,
2049 "Cannot set_blocksize to %u on device %pg",
2050 sectorsize
, btp
->bt_bdev
);
2059 struct xfs_buftarg
*btp
,
2060 size_t logical_sectorsize
,
2063 /* Set up device logical sector size mask */
2064 btp
->bt_logical_sectorsize
= logical_sectorsize
;
2065 btp
->bt_logical_sectormask
= logical_sectorsize
- 1;
2068 * Buffer IO error rate limiting. Limit it to no more than 10 messages
2069 * per 30 seconds so as to not spam logs too much on repeated errors.
2071 ratelimit_state_init(&btp
->bt_ioerror_rl
, 30 * HZ
,
2072 DEFAULT_RATELIMIT_BURST
);
2074 if (list_lru_init(&btp
->bt_lru
))
2076 if (percpu_counter_init(&btp
->bt_io_count
, 0, GFP_KERNEL
))
2077 goto out_destroy_lru
;
2080 shrinker_alloc(SHRINKER_NUMA_AWARE
, "xfs-buf:%s", descr
);
2081 if (!btp
->bt_shrinker
)
2082 goto out_destroy_io_count
;
2083 btp
->bt_shrinker
->count_objects
= xfs_buftarg_shrink_count
;
2084 btp
->bt_shrinker
->scan_objects
= xfs_buftarg_shrink_scan
;
2085 btp
->bt_shrinker
->private_data
= btp
;
2086 shrinker_register(btp
->bt_shrinker
);
2089 out_destroy_io_count
:
2090 percpu_counter_destroy(&btp
->bt_io_count
);
2092 list_lru_destroy(&btp
->bt_lru
);
2096 struct xfs_buftarg
*
2098 struct xfs_mount
*mp
,
2099 struct file
*bdev_file
)
2101 struct xfs_buftarg
*btp
;
2102 const struct dax_holder_operations
*ops
= NULL
;
2104 #if defined(CONFIG_FS_DAX) && defined(CONFIG_MEMORY_FAILURE)
2105 ops
= &xfs_dax_holder_operations
;
2107 btp
= kzalloc(sizeof(*btp
), GFP_KERNEL
| __GFP_NOFAIL
);
2110 btp
->bt_bdev_file
= bdev_file
;
2111 btp
->bt_bdev
= file_bdev(bdev_file
);
2112 btp
->bt_dev
= btp
->bt_bdev
->bd_dev
;
2113 btp
->bt_daxdev
= fs_dax_get_by_bdev(btp
->bt_bdev
, &btp
->bt_dax_part_off
,
2116 if (bdev_can_atomic_write(btp
->bt_bdev
)) {
2117 btp
->bt_bdev_awu_min
= bdev_atomic_write_unit_min_bytes(
2119 btp
->bt_bdev_awu_max
= bdev_atomic_write_unit_max_bytes(
2124 * When allocating the buftargs we have not yet read the super block and
2125 * thus don't know the file system sector size yet.
2127 if (xfs_setsize_buftarg(btp
, bdev_logical_block_size(btp
->bt_bdev
)))
2129 if (xfs_init_buftarg(btp
, bdev_logical_block_size(btp
->bt_bdev
),
2144 list_del_init(&bp
->b_list
);
2145 wake_up_var(&bp
->b_list
);
2149 * Cancel a delayed write list.
2151 * Remove each buffer from the list, clear the delwri queue flag and drop the
2152 * associated buffer reference.
2155 xfs_buf_delwri_cancel(
2156 struct list_head
*list
)
2160 while (!list_empty(list
)) {
2161 bp
= list_first_entry(list
, struct xfs_buf
, b_list
);
2164 bp
->b_flags
&= ~_XBF_DELWRI_Q
;
2165 xfs_buf_list_del(bp
);
2171 * Add a buffer to the delayed write list.
2173 * This queues a buffer for writeout if it hasn't already been. Note that
2174 * neither this routine nor the buffer list submission functions perform
2175 * any internal synchronization. It is expected that the lists are thread-local
2178 * Returns true if we queued up the buffer, or false if it already had
2179 * been on the buffer list.
2182 xfs_buf_delwri_queue(
2184 struct list_head
*list
)
2186 ASSERT(xfs_buf_islocked(bp
));
2187 ASSERT(!(bp
->b_flags
& XBF_READ
));
2190 * If the buffer is already marked delwri it already is queued up
2191 * by someone else for imediate writeout. Just ignore it in that
2194 if (bp
->b_flags
& _XBF_DELWRI_Q
) {
2195 trace_xfs_buf_delwri_queued(bp
, _RET_IP_
);
2199 trace_xfs_buf_delwri_queue(bp
, _RET_IP_
);
2202 * If a buffer gets written out synchronously or marked stale while it
2203 * is on a delwri list we lazily remove it. To do this, the other party
2204 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2205 * It remains referenced and on the list. In a rare corner case it
2206 * might get readded to a delwri list after the synchronous writeout, in
2207 * which case we need just need to re-add the flag here.
2209 bp
->b_flags
|= _XBF_DELWRI_Q
;
2210 if (list_empty(&bp
->b_list
)) {
2211 atomic_inc(&bp
->b_hold
);
2212 list_add_tail(&bp
->b_list
, list
);
2219 * Queue a buffer to this delwri list as part of a data integrity operation.
2220 * If the buffer is on any other delwri list, we'll wait for that to clear
2221 * so that the caller can submit the buffer for IO and wait for the result.
2222 * Callers must ensure the buffer is not already on the list.
2225 xfs_buf_delwri_queue_here(
2227 struct list_head
*buffer_list
)
2230 * We need this buffer to end up on the /caller's/ delwri list, not any
2231 * old list. This can happen if the buffer is marked stale (which
2232 * clears DELWRI_Q) after the AIL queues the buffer to its list but
2233 * before the AIL has a chance to submit the list.
2235 while (!list_empty(&bp
->b_list
)) {
2237 wait_var_event(&bp
->b_list
, list_empty(&bp
->b_list
));
2241 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
2243 xfs_buf_delwri_queue(bp
, buffer_list
);
2247 * Compare function is more complex than it needs to be because
2248 * the return value is only 32 bits and we are doing comparisons
2254 const struct list_head
*a
,
2255 const struct list_head
*b
)
2257 struct xfs_buf
*ap
= container_of(a
, struct xfs_buf
, b_list
);
2258 struct xfs_buf
*bp
= container_of(b
, struct xfs_buf
, b_list
);
2261 diff
= ap
->b_maps
[0].bm_bn
- bp
->b_maps
[0].bm_bn
;
2270 * Submit buffers for write. If wait_list is specified, the buffers are
2271 * submitted using sync I/O and placed on the wait list such that the caller can
2272 * iowait each buffer. Otherwise async I/O is used and the buffers are released
2273 * at I/O completion time. In either case, buffers remain locked until I/O
2274 * completes and the buffer is released from the queue.
2277 xfs_buf_delwri_submit_buffers(
2278 struct list_head
*buffer_list
,
2279 struct list_head
*wait_list
)
2281 struct xfs_buf
*bp
, *n
;
2283 struct blk_plug plug
;
2285 list_sort(NULL
, buffer_list
, xfs_buf_cmp
);
2287 blk_start_plug(&plug
);
2288 list_for_each_entry_safe(bp
, n
, buffer_list
, b_list
) {
2290 if (!xfs_buf_trylock(bp
))
2292 if (xfs_buf_ispinned(bp
)) {
2302 * Someone else might have written the buffer synchronously or
2303 * marked it stale in the meantime. In that case only the
2304 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2305 * reference and remove it from the list here.
2307 if (!(bp
->b_flags
& _XBF_DELWRI_Q
)) {
2308 xfs_buf_list_del(bp
);
2313 trace_xfs_buf_delwri_split(bp
, _RET_IP_
);
2316 * If we have a wait list, each buffer (and associated delwri
2317 * queue reference) transfers to it and is submitted
2318 * synchronously. Otherwise, drop the buffer from the delwri
2319 * queue and submit async.
2321 bp
->b_flags
&= ~_XBF_DELWRI_Q
;
2322 bp
->b_flags
|= XBF_WRITE
;
2324 bp
->b_flags
&= ~XBF_ASYNC
;
2325 list_move_tail(&bp
->b_list
, wait_list
);
2327 bp
->b_flags
|= XBF_ASYNC
;
2328 xfs_buf_list_del(bp
);
2330 __xfs_buf_submit(bp
, false);
2332 blk_finish_plug(&plug
);
2338 * Write out a buffer list asynchronously.
2340 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2341 * out and not wait for I/O completion on any of the buffers. This interface
2342 * is only safely useable for callers that can track I/O completion by higher
2343 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2346 * Note: this function will skip buffers it would block on, and in doing so
2347 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2348 * it is up to the caller to ensure that the buffer list is fully submitted or
2349 * cancelled appropriately when they are finished with the list. Failure to
2350 * cancel or resubmit the list until it is empty will result in leaked buffers
2354 xfs_buf_delwri_submit_nowait(
2355 struct list_head
*buffer_list
)
2357 return xfs_buf_delwri_submit_buffers(buffer_list
, NULL
);
2361 * Write out a buffer list synchronously.
2363 * This will take the @buffer_list, write all buffers out and wait for I/O
2364 * completion on all of the buffers. @buffer_list is consumed by the function,
2365 * so callers must have some other way of tracking buffers if they require such
2369 xfs_buf_delwri_submit(
2370 struct list_head
*buffer_list
)
2372 LIST_HEAD (wait_list
);
2373 int error
= 0, error2
;
2376 xfs_buf_delwri_submit_buffers(buffer_list
, &wait_list
);
2378 /* Wait for IO to complete. */
2379 while (!list_empty(&wait_list
)) {
2380 bp
= list_first_entry(&wait_list
, struct xfs_buf
, b_list
);
2382 xfs_buf_list_del(bp
);
2385 * Wait on the locked buffer, check for errors and unlock and
2386 * release the delwri queue reference.
2388 error2
= xfs_buf_iowait(bp
);
2398 * Push a single buffer on a delwri queue.
2400 * The purpose of this function is to submit a single buffer of a delwri queue
2401 * and return with the buffer still on the original queue. The waiting delwri
2402 * buffer submission infrastructure guarantees transfer of the delwri queue
2403 * buffer reference to a temporary wait list. We reuse this infrastructure to
2404 * transfer the buffer back to the original queue.
2406 * Note the buffer transitions from the queued state, to the submitted and wait
2407 * listed state and back to the queued state during this call. The buffer
2408 * locking and queue management logic between _delwri_pushbuf() and
2409 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2413 xfs_buf_delwri_pushbuf(
2415 struct list_head
*buffer_list
)
2417 LIST_HEAD (submit_list
);
2420 ASSERT(bp
->b_flags
& _XBF_DELWRI_Q
);
2422 trace_xfs_buf_delwri_pushbuf(bp
, _RET_IP_
);
2425 * Isolate the buffer to a new local list so we can submit it for I/O
2426 * independently from the rest of the original list.
2429 list_move(&bp
->b_list
, &submit_list
);
2433 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2434 * the buffer on the wait list with the original reference. Rather than
2435 * bounce the buffer from a local wait list back to the original list
2436 * after I/O completion, reuse the original list as the wait list.
2438 xfs_buf_delwri_submit_buffers(&submit_list
, buffer_list
);
2441 * The buffer is now locked, under I/O and wait listed on the original
2442 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2443 * return with the buffer unlocked and on the original queue.
2445 error
= xfs_buf_iowait(bp
);
2446 bp
->b_flags
|= _XBF_DELWRI_Q
;
2452 void xfs_buf_set_ref(struct xfs_buf
*bp
, int lru_ref
)
2455 * Set the lru reference count to 0 based on the error injection tag.
2456 * This allows userspace to disrupt buffer caching for debug/testing
2459 if (XFS_TEST_ERROR(false, bp
->b_mount
, XFS_ERRTAG_BUF_LRU_REF
))
2462 atomic_set(&bp
->b_lru_ref
, lru_ref
);
2466 * Verify an on-disk magic value against the magic value specified in the
2467 * verifier structure. The verifier magic is in disk byte order so the caller is
2468 * expected to pass the value directly from disk.
2475 struct xfs_mount
*mp
= bp
->b_mount
;
2478 idx
= xfs_has_crc(mp
);
2479 if (WARN_ON(!bp
->b_ops
|| !bp
->b_ops
->magic
[idx
]))
2481 return dmagic
== bp
->b_ops
->magic
[idx
];
2484 * Verify an on-disk magic value against the magic value specified in the
2485 * verifier structure. The verifier magic is in disk byte order so the caller is
2486 * expected to pass the value directly from disk.
2493 struct xfs_mount
*mp
= bp
->b_mount
;
2496 idx
= xfs_has_crc(mp
);
2497 if (WARN_ON(!bp
->b_ops
|| !bp
->b_ops
->magic16
[idx
]))
2499 return dmagic
== bp
->b_ops
->magic16
[idx
];