drm/ast: Only warn about unsupported TX chips on Gen4 and later
[drm/drm-misc.git] / fs / xfs / xfs_buf_item_recover.c
blob3d0c6402cb36344244daf8a5c8c6fa1cf6e95714
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_trans.h"
15 #include "xfs_buf_item.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_trace.h"
18 #include "xfs_log.h"
19 #include "xfs_log_priv.h"
20 #include "xfs_log_recover.h"
21 #include "xfs_error.h"
22 #include "xfs_inode.h"
23 #include "xfs_dir2.h"
24 #include "xfs_quota.h"
25 #include "xfs_alloc.h"
26 #include "xfs_ag.h"
27 #include "xfs_sb.h"
28 #include "xfs_rtgroup.h"
29 #include "xfs_rtbitmap.h"
32 * This is the number of entries in the l_buf_cancel_table used during
33 * recovery.
35 #define XLOG_BC_TABLE_SIZE 64
37 #define XLOG_BUF_CANCEL_BUCKET(log, blkno) \
38 ((log)->l_buf_cancel_table + ((uint64_t)blkno % XLOG_BC_TABLE_SIZE))
41 * This structure is used during recovery to record the buf log items which
42 * have been canceled and should not be replayed.
44 struct xfs_buf_cancel {
45 xfs_daddr_t bc_blkno;
46 uint bc_len;
47 int bc_refcount;
48 struct list_head bc_list;
51 static struct xfs_buf_cancel *
52 xlog_find_buffer_cancelled(
53 struct xlog *log,
54 xfs_daddr_t blkno,
55 uint len)
57 struct list_head *bucket;
58 struct xfs_buf_cancel *bcp;
60 if (!log->l_buf_cancel_table)
61 return NULL;
63 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
64 list_for_each_entry(bcp, bucket, bc_list) {
65 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
66 return bcp;
69 return NULL;
72 static bool
73 xlog_add_buffer_cancelled(
74 struct xlog *log,
75 xfs_daddr_t blkno,
76 uint len)
78 struct xfs_buf_cancel *bcp;
81 * If we find an existing cancel record, this indicates that the buffer
82 * was cancelled multiple times. To ensure that during pass 2 we keep
83 * the record in the table until we reach its last occurrence in the
84 * log, a reference count is kept to tell how many times we expect to
85 * see this record during the second pass.
87 bcp = xlog_find_buffer_cancelled(log, blkno, len);
88 if (bcp) {
89 bcp->bc_refcount++;
90 return false;
93 bcp = kmalloc(sizeof(struct xfs_buf_cancel), GFP_KERNEL | __GFP_NOFAIL);
94 bcp->bc_blkno = blkno;
95 bcp->bc_len = len;
96 bcp->bc_refcount = 1;
97 list_add_tail(&bcp->bc_list, XLOG_BUF_CANCEL_BUCKET(log, blkno));
98 return true;
102 * Check if there is and entry for blkno, len in the buffer cancel record table.
104 bool
105 xlog_is_buffer_cancelled(
106 struct xlog *log,
107 xfs_daddr_t blkno,
108 uint len)
110 return xlog_find_buffer_cancelled(log, blkno, len) != NULL;
114 * Check if there is and entry for blkno, len in the buffer cancel record table,
115 * and decremented the reference count on it if there is one.
117 * Remove the cancel record once the refcount hits zero, so that if the same
118 * buffer is re-used again after its last cancellation we actually replay the
119 * changes made at that point.
121 static bool
122 xlog_put_buffer_cancelled(
123 struct xlog *log,
124 xfs_daddr_t blkno,
125 uint len)
127 struct xfs_buf_cancel *bcp;
129 bcp = xlog_find_buffer_cancelled(log, blkno, len);
130 if (!bcp) {
131 ASSERT(0);
132 return false;
135 if (--bcp->bc_refcount == 0) {
136 list_del(&bcp->bc_list);
137 kfree(bcp);
139 return true;
142 /* log buffer item recovery */
145 * Sort buffer items for log recovery. Most buffer items should end up on the
146 * buffer list and are recovered first, with the following exceptions:
148 * 1. XFS_BLF_CANCEL buffers must be processed last because some log items
149 * might depend on the incor ecancellation record, and replaying a cancelled
150 * buffer item can remove the incore record.
152 * 2. XFS_BLF_INODE_BUF buffers are handled after most regular items so that
153 * we replay di_next_unlinked only after flushing the inode 'free' state
154 * to the inode buffer.
156 * See xlog_recover_reorder_trans for more details.
158 STATIC enum xlog_recover_reorder
159 xlog_recover_buf_reorder(
160 struct xlog_recover_item *item)
162 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
164 if (buf_f->blf_flags & XFS_BLF_CANCEL)
165 return XLOG_REORDER_CANCEL_LIST;
166 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
167 return XLOG_REORDER_INODE_BUFFER_LIST;
168 return XLOG_REORDER_BUFFER_LIST;
171 STATIC void
172 xlog_recover_buf_ra_pass2(
173 struct xlog *log,
174 struct xlog_recover_item *item)
176 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
178 xlog_buf_readahead(log, buf_f->blf_blkno, buf_f->blf_len, NULL);
182 * Build up the table of buf cancel records so that we don't replay cancelled
183 * data in the second pass.
185 static int
186 xlog_recover_buf_commit_pass1(
187 struct xlog *log,
188 struct xlog_recover_item *item)
190 struct xfs_buf_log_format *bf = item->ri_buf[0].i_addr;
192 if (!xfs_buf_log_check_iovec(&item->ri_buf[0])) {
193 xfs_err(log->l_mp, "bad buffer log item size (%d)",
194 item->ri_buf[0].i_len);
195 return -EFSCORRUPTED;
198 if (!(bf->blf_flags & XFS_BLF_CANCEL))
199 trace_xfs_log_recover_buf_not_cancel(log, bf);
200 else if (xlog_add_buffer_cancelled(log, bf->blf_blkno, bf->blf_len))
201 trace_xfs_log_recover_buf_cancel_add(log, bf);
202 else
203 trace_xfs_log_recover_buf_cancel_ref_inc(log, bf);
204 return 0;
208 * Validate the recovered buffer is of the correct type and attach the
209 * appropriate buffer operations to them for writeback. Magic numbers are in a
210 * few places:
211 * the first 16 bits of the buffer (inode buffer, dquot buffer),
212 * the first 32 bits of the buffer (most blocks),
213 * inside a struct xfs_da_blkinfo at the start of the buffer.
215 static void
216 xlog_recover_validate_buf_type(
217 struct xfs_mount *mp,
218 struct xfs_buf *bp,
219 struct xfs_buf_log_format *buf_f,
220 xfs_lsn_t current_lsn)
222 struct xfs_da_blkinfo *info = bp->b_addr;
223 uint32_t magic32;
224 uint16_t magic16;
225 uint16_t magicda;
226 char *warnmsg = NULL;
229 * We can only do post recovery validation on items on CRC enabled
230 * fielsystems as we need to know when the buffer was written to be able
231 * to determine if we should have replayed the item. If we replay old
232 * metadata over a newer buffer, then it will enter a temporarily
233 * inconsistent state resulting in verification failures. Hence for now
234 * just avoid the verification stage for non-crc filesystems
236 if (!xfs_has_crc(mp))
237 return;
239 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
240 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
241 magicda = be16_to_cpu(info->magic);
242 switch (xfs_blft_from_flags(buf_f)) {
243 case XFS_BLFT_BTREE_BUF:
244 switch (magic32) {
245 case XFS_ABTB_CRC_MAGIC:
246 case XFS_ABTB_MAGIC:
247 bp->b_ops = &xfs_bnobt_buf_ops;
248 break;
249 case XFS_ABTC_CRC_MAGIC:
250 case XFS_ABTC_MAGIC:
251 bp->b_ops = &xfs_cntbt_buf_ops;
252 break;
253 case XFS_IBT_CRC_MAGIC:
254 case XFS_IBT_MAGIC:
255 bp->b_ops = &xfs_inobt_buf_ops;
256 break;
257 case XFS_FIBT_CRC_MAGIC:
258 case XFS_FIBT_MAGIC:
259 bp->b_ops = &xfs_finobt_buf_ops;
260 break;
261 case XFS_BMAP_CRC_MAGIC:
262 case XFS_BMAP_MAGIC:
263 bp->b_ops = &xfs_bmbt_buf_ops;
264 break;
265 case XFS_RMAP_CRC_MAGIC:
266 bp->b_ops = &xfs_rmapbt_buf_ops;
267 break;
268 case XFS_REFC_CRC_MAGIC:
269 bp->b_ops = &xfs_refcountbt_buf_ops;
270 break;
271 default:
272 warnmsg = "Bad btree block magic!";
273 break;
275 break;
276 case XFS_BLFT_AGF_BUF:
277 if (magic32 != XFS_AGF_MAGIC) {
278 warnmsg = "Bad AGF block magic!";
279 break;
281 bp->b_ops = &xfs_agf_buf_ops;
282 break;
283 case XFS_BLFT_AGFL_BUF:
284 if (magic32 != XFS_AGFL_MAGIC) {
285 warnmsg = "Bad AGFL block magic!";
286 break;
288 bp->b_ops = &xfs_agfl_buf_ops;
289 break;
290 case XFS_BLFT_AGI_BUF:
291 if (magic32 != XFS_AGI_MAGIC) {
292 warnmsg = "Bad AGI block magic!";
293 break;
295 bp->b_ops = &xfs_agi_buf_ops;
296 break;
297 case XFS_BLFT_UDQUOT_BUF:
298 case XFS_BLFT_PDQUOT_BUF:
299 case XFS_BLFT_GDQUOT_BUF:
300 #ifdef CONFIG_XFS_QUOTA
301 if (magic16 != XFS_DQUOT_MAGIC) {
302 warnmsg = "Bad DQUOT block magic!";
303 break;
305 bp->b_ops = &xfs_dquot_buf_ops;
306 #else
307 xfs_alert(mp,
308 "Trying to recover dquots without QUOTA support built in!");
309 ASSERT(0);
310 #endif
311 break;
312 case XFS_BLFT_DINO_BUF:
313 if (magic16 != XFS_DINODE_MAGIC) {
314 warnmsg = "Bad INODE block magic!";
315 break;
317 bp->b_ops = &xfs_inode_buf_ops;
318 break;
319 case XFS_BLFT_SYMLINK_BUF:
320 if (magic32 != XFS_SYMLINK_MAGIC) {
321 warnmsg = "Bad symlink block magic!";
322 break;
324 bp->b_ops = &xfs_symlink_buf_ops;
325 break;
326 case XFS_BLFT_DIR_BLOCK_BUF:
327 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
328 magic32 != XFS_DIR3_BLOCK_MAGIC) {
329 warnmsg = "Bad dir block magic!";
330 break;
332 bp->b_ops = &xfs_dir3_block_buf_ops;
333 break;
334 case XFS_BLFT_DIR_DATA_BUF:
335 if (magic32 != XFS_DIR2_DATA_MAGIC &&
336 magic32 != XFS_DIR3_DATA_MAGIC) {
337 warnmsg = "Bad dir data magic!";
338 break;
340 bp->b_ops = &xfs_dir3_data_buf_ops;
341 break;
342 case XFS_BLFT_DIR_FREE_BUF:
343 if (magic32 != XFS_DIR2_FREE_MAGIC &&
344 magic32 != XFS_DIR3_FREE_MAGIC) {
345 warnmsg = "Bad dir3 free magic!";
346 break;
348 bp->b_ops = &xfs_dir3_free_buf_ops;
349 break;
350 case XFS_BLFT_DIR_LEAF1_BUF:
351 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
352 magicda != XFS_DIR3_LEAF1_MAGIC) {
353 warnmsg = "Bad dir leaf1 magic!";
354 break;
356 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
357 break;
358 case XFS_BLFT_DIR_LEAFN_BUF:
359 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
360 magicda != XFS_DIR3_LEAFN_MAGIC) {
361 warnmsg = "Bad dir leafn magic!";
362 break;
364 bp->b_ops = &xfs_dir3_leafn_buf_ops;
365 break;
366 case XFS_BLFT_DA_NODE_BUF:
367 if (magicda != XFS_DA_NODE_MAGIC &&
368 magicda != XFS_DA3_NODE_MAGIC) {
369 warnmsg = "Bad da node magic!";
370 break;
372 bp->b_ops = &xfs_da3_node_buf_ops;
373 break;
374 case XFS_BLFT_ATTR_LEAF_BUF:
375 if (magicda != XFS_ATTR_LEAF_MAGIC &&
376 magicda != XFS_ATTR3_LEAF_MAGIC) {
377 warnmsg = "Bad attr leaf magic!";
378 break;
380 bp->b_ops = &xfs_attr3_leaf_buf_ops;
381 break;
382 case XFS_BLFT_ATTR_RMT_BUF:
383 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
384 warnmsg = "Bad attr remote magic!";
385 break;
387 bp->b_ops = &xfs_attr3_rmt_buf_ops;
388 break;
389 case XFS_BLFT_SB_BUF:
390 if (magic32 != XFS_SB_MAGIC) {
391 warnmsg = "Bad SB block magic!";
392 break;
394 bp->b_ops = &xfs_sb_buf_ops;
395 break;
396 #ifdef CONFIG_XFS_RT
397 case XFS_BLFT_RTBITMAP_BUF:
398 if (xfs_has_rtgroups(mp) && magic32 != XFS_RTBITMAP_MAGIC) {
399 warnmsg = "Bad rtbitmap magic!";
400 break;
402 bp->b_ops = xfs_rtblock_ops(mp, XFS_RTGI_BITMAP);
403 break;
404 case XFS_BLFT_RTSUMMARY_BUF:
405 if (xfs_has_rtgroups(mp) && magic32 != XFS_RTSUMMARY_MAGIC) {
406 warnmsg = "Bad rtsummary magic!";
407 break;
409 bp->b_ops = xfs_rtblock_ops(mp, XFS_RTGI_SUMMARY);
410 break;
411 #endif /* CONFIG_XFS_RT */
412 default:
413 xfs_warn(mp, "Unknown buffer type %d!",
414 xfs_blft_from_flags(buf_f));
415 break;
419 * Nothing else to do in the case of a NULL current LSN as this means
420 * the buffer is more recent than the change in the log and will be
421 * skipped.
423 if (current_lsn == NULLCOMMITLSN)
424 return;
426 if (warnmsg) {
427 xfs_warn(mp, warnmsg);
428 ASSERT(0);
432 * We must update the metadata LSN of the buffer as it is written out to
433 * ensure that older transactions never replay over this one and corrupt
434 * the buffer. This can occur if log recovery is interrupted at some
435 * point after the current transaction completes, at which point a
436 * subsequent mount starts recovery from the beginning.
438 * Write verifiers update the metadata LSN from log items attached to
439 * the buffer. Therefore, initialize a bli purely to carry the LSN to
440 * the verifier.
442 if (bp->b_ops) {
443 struct xfs_buf_log_item *bip;
445 bp->b_flags |= _XBF_LOGRECOVERY;
446 xfs_buf_item_init(bp, mp);
447 bip = bp->b_log_item;
448 bip->bli_item.li_lsn = current_lsn;
453 * Perform a 'normal' buffer recovery. Each logged region of the
454 * buffer should be copied over the corresponding region in the
455 * given buffer. The bitmap in the buf log format structure indicates
456 * where to place the logged data.
458 STATIC void
459 xlog_recover_do_reg_buffer(
460 struct xfs_mount *mp,
461 struct xlog_recover_item *item,
462 struct xfs_buf *bp,
463 struct xfs_buf_log_format *buf_f,
464 xfs_lsn_t current_lsn)
466 int i;
467 int bit;
468 int nbits;
469 xfs_failaddr_t fa;
470 const size_t size_disk_dquot = sizeof(struct xfs_disk_dquot);
472 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
474 bit = 0;
475 i = 1; /* 0 is the buf format structure */
476 while (1) {
477 bit = xfs_next_bit(buf_f->blf_data_map,
478 buf_f->blf_map_size, bit);
479 if (bit == -1)
480 break;
481 nbits = xfs_contig_bits(buf_f->blf_data_map,
482 buf_f->blf_map_size, bit);
483 ASSERT(nbits > 0);
484 ASSERT(item->ri_buf[i].i_addr != NULL);
485 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
486 ASSERT(BBTOB(bp->b_length) >=
487 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
490 * The dirty regions logged in the buffer, even though
491 * contiguous, may span multiple chunks. This is because the
492 * dirty region may span a physical page boundary in a buffer
493 * and hence be split into two separate vectors for writing into
494 * the log. Hence we need to trim nbits back to the length of
495 * the current region being copied out of the log.
497 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
498 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
501 * Do a sanity check if this is a dquot buffer. Just checking
502 * the first dquot in the buffer should do. XXXThis is
503 * probably a good thing to do for other buf types also.
505 fa = NULL;
506 if (buf_f->blf_flags &
507 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
508 if (item->ri_buf[i].i_addr == NULL) {
509 xfs_alert(mp,
510 "XFS: NULL dquot in %s.", __func__);
511 goto next;
513 if (item->ri_buf[i].i_len < size_disk_dquot) {
514 xfs_alert(mp,
515 "XFS: dquot too small (%d) in %s.",
516 item->ri_buf[i].i_len, __func__);
517 goto next;
519 fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr, -1);
520 if (fa) {
521 xfs_alert(mp,
522 "dquot corrupt at %pS trying to replay into block 0x%llx",
523 fa, xfs_buf_daddr(bp));
524 goto next;
528 memcpy(xfs_buf_offset(bp,
529 (uint)bit << XFS_BLF_SHIFT), /* dest */
530 item->ri_buf[i].i_addr, /* source */
531 nbits<<XFS_BLF_SHIFT); /* length */
532 next:
533 i++;
534 bit += nbits;
537 /* Shouldn't be any more regions */
538 ASSERT(i == item->ri_total);
540 xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
544 * Perform a dquot buffer recovery.
545 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
546 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
547 * Else, treat it as a regular buffer and do recovery.
549 * Return false if the buffer was tossed and true if we recovered the buffer to
550 * indicate to the caller if the buffer needs writing.
552 STATIC bool
553 xlog_recover_do_dquot_buffer(
554 struct xfs_mount *mp,
555 struct xlog *log,
556 struct xlog_recover_item *item,
557 struct xfs_buf *bp,
558 struct xfs_buf_log_format *buf_f)
560 uint type;
562 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
565 * Filesystems are required to send in quota flags at mount time.
567 if (!mp->m_qflags)
568 return false;
570 type = 0;
571 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
572 type |= XFS_DQTYPE_USER;
573 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
574 type |= XFS_DQTYPE_PROJ;
575 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
576 type |= XFS_DQTYPE_GROUP;
578 * This type of quotas was turned off, so ignore this buffer
580 if (log->l_quotaoffs_flag & type)
581 return false;
583 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
584 return true;
588 * Perform recovery for a buffer full of inodes. In these buffers, the only
589 * data which should be recovered is that which corresponds to the
590 * di_next_unlinked pointers in the on disk inode structures. The rest of the
591 * data for the inodes is always logged through the inodes themselves rather
592 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
594 * The only time when buffers full of inodes are fully recovered is when the
595 * buffer is full of newly allocated inodes. In this case the buffer will
596 * not be marked as an inode buffer and so will be sent to
597 * xlog_recover_do_reg_buffer() below during recovery.
599 STATIC int
600 xlog_recover_do_inode_buffer(
601 struct xfs_mount *mp,
602 struct xlog_recover_item *item,
603 struct xfs_buf *bp,
604 struct xfs_buf_log_format *buf_f)
606 int i;
607 int item_index = 0;
608 int bit = 0;
609 int nbits = 0;
610 int reg_buf_offset = 0;
611 int reg_buf_bytes = 0;
612 int next_unlinked_offset;
613 int inodes_per_buf;
614 xfs_agino_t *logged_nextp;
615 xfs_agino_t *buffer_nextp;
617 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
620 * Post recovery validation only works properly on CRC enabled
621 * filesystems.
623 if (xfs_has_crc(mp))
624 bp->b_ops = &xfs_inode_buf_ops;
626 inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog;
627 for (i = 0; i < inodes_per_buf; i++) {
628 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
629 offsetof(struct xfs_dinode, di_next_unlinked);
631 while (next_unlinked_offset >=
632 (reg_buf_offset + reg_buf_bytes)) {
634 * The next di_next_unlinked field is beyond
635 * the current logged region. Find the next
636 * logged region that contains or is beyond
637 * the current di_next_unlinked field.
639 bit += nbits;
640 bit = xfs_next_bit(buf_f->blf_data_map,
641 buf_f->blf_map_size, bit);
644 * If there are no more logged regions in the
645 * buffer, then we're done.
647 if (bit == -1)
648 return 0;
650 nbits = xfs_contig_bits(buf_f->blf_data_map,
651 buf_f->blf_map_size, bit);
652 ASSERT(nbits > 0);
653 reg_buf_offset = bit << XFS_BLF_SHIFT;
654 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
655 item_index++;
659 * If the current logged region starts after the current
660 * di_next_unlinked field, then move on to the next
661 * di_next_unlinked field.
663 if (next_unlinked_offset < reg_buf_offset)
664 continue;
666 ASSERT(item->ri_buf[item_index].i_addr != NULL);
667 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
668 ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length));
671 * The current logged region contains a copy of the
672 * current di_next_unlinked field. Extract its value
673 * and copy it to the buffer copy.
675 logged_nextp = item->ri_buf[item_index].i_addr +
676 next_unlinked_offset - reg_buf_offset;
677 if (XFS_IS_CORRUPT(mp, *logged_nextp == 0)) {
678 xfs_alert(mp,
679 "Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
680 "Trying to replay bad (0) inode di_next_unlinked field.",
681 item, bp);
682 return -EFSCORRUPTED;
685 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
686 *buffer_nextp = *logged_nextp;
689 * If necessary, recalculate the CRC in the on-disk inode. We
690 * have to leave the inode in a consistent state for whoever
691 * reads it next....
693 xfs_dinode_calc_crc(mp,
694 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
698 return 0;
702 * Update the in-memory superblock and perag structures from the primary SB
703 * buffer.
705 * This is required because transactions running after growfs may require the
706 * updated values to be set in a previous fully commit transaction.
708 static int
709 xlog_recover_do_primary_sb_buffer(
710 struct xfs_mount *mp,
711 struct xlog_recover_item *item,
712 struct xfs_buf *bp,
713 struct xfs_buf_log_format *buf_f,
714 xfs_lsn_t current_lsn)
716 struct xfs_dsb *dsb = bp->b_addr;
717 xfs_agnumber_t orig_agcount = mp->m_sb.sb_agcount;
718 xfs_rgnumber_t orig_rgcount = mp->m_sb.sb_rgcount;
719 int error;
721 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
723 if (orig_agcount == 0) {
724 xfs_alert(mp, "Trying to grow file system without AGs");
725 return -EFSCORRUPTED;
729 * Update the in-core super block from the freshly recovered on-disk one.
731 xfs_sb_from_disk(&mp->m_sb, dsb);
733 if (mp->m_sb.sb_agcount < orig_agcount) {
734 xfs_alert(mp, "Shrinking AG count in log recovery not supported");
735 return -EFSCORRUPTED;
737 if (mp->m_sb.sb_rgcount < orig_rgcount) {
738 xfs_warn(mp,
739 "Shrinking rtgroup count in log recovery not supported");
740 return -EFSCORRUPTED;
744 * If the last AG was grown or shrunk, we also need to update the
745 * length in the in-core perag structure and values depending on it.
747 error = xfs_update_last_ag_size(mp, orig_agcount);
748 if (error)
749 return error;
752 * If the last rtgroup was grown or shrunk, we also need to update the
753 * length in the in-core rtgroup structure and values depending on it.
754 * Ignore this on any filesystem with zero rtgroups.
756 if (orig_rgcount > 0) {
757 error = xfs_update_last_rtgroup_size(mp, orig_rgcount);
758 if (error)
759 return error;
763 * Initialize the new perags, and also update various block and inode
764 * allocator setting based off the number of AGs or total blocks.
765 * Because of the latter this also needs to happen if the agcount did
766 * not change.
768 error = xfs_initialize_perag(mp, orig_agcount, mp->m_sb.sb_agcount,
769 mp->m_sb.sb_dblocks, &mp->m_maxagi);
770 if (error) {
771 xfs_warn(mp, "Failed recovery per-ag init: %d", error);
772 return error;
774 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
776 error = xfs_initialize_rtgroups(mp, orig_rgcount, mp->m_sb.sb_rgcount,
777 mp->m_sb.sb_rextents);
778 if (error) {
779 xfs_warn(mp, "Failed recovery rtgroup init: %d", error);
780 return error;
782 return 0;
786 * V5 filesystems know the age of the buffer on disk being recovered. We can
787 * have newer objects on disk than we are replaying, and so for these cases we
788 * don't want to replay the current change as that will make the buffer contents
789 * temporarily invalid on disk.
791 * The magic number might not match the buffer type we are going to recover
792 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
793 * extract the LSN of the existing object in the buffer based on it's current
794 * magic number. If we don't recognise the magic number in the buffer, then
795 * return a LSN of -1 so that the caller knows it was an unrecognised block and
796 * so can recover the buffer.
798 * Note: we cannot rely solely on magic number matches to determine that the
799 * buffer has a valid LSN - we also need to verify that it belongs to this
800 * filesystem, so we need to extract the object's LSN and compare it to that
801 * which we read from the superblock. If the UUIDs don't match, then we've got a
802 * stale metadata block from an old filesystem instance that we need to recover
803 * over the top of.
805 static xfs_lsn_t
806 xlog_recover_get_buf_lsn(
807 struct xfs_mount *mp,
808 struct xfs_buf *bp,
809 struct xfs_buf_log_format *buf_f)
811 uint32_t magic32;
812 uint16_t magic16;
813 uint16_t magicda;
814 void *blk = bp->b_addr;
815 uuid_t *uuid;
816 xfs_lsn_t lsn = -1;
817 uint16_t blft;
819 /* v4 filesystems always recover immediately */
820 if (!xfs_has_crc(mp))
821 goto recover_immediately;
824 * realtime bitmap and summary file blocks do not have magic numbers or
825 * UUIDs, so we must recover them immediately.
827 blft = xfs_blft_from_flags(buf_f);
828 if (!xfs_has_rtgroups(mp) && (blft == XFS_BLFT_RTBITMAP_BUF ||
829 blft == XFS_BLFT_RTSUMMARY_BUF))
830 goto recover_immediately;
832 magic32 = be32_to_cpu(*(__be32 *)blk);
833 switch (magic32) {
834 case XFS_RTSUMMARY_MAGIC:
835 case XFS_RTBITMAP_MAGIC: {
836 struct xfs_rtbuf_blkinfo *hdr = blk;
838 lsn = be64_to_cpu(hdr->rt_lsn);
839 uuid = &hdr->rt_uuid;
840 break;
842 case XFS_ABTB_CRC_MAGIC:
843 case XFS_ABTC_CRC_MAGIC:
844 case XFS_ABTB_MAGIC:
845 case XFS_ABTC_MAGIC:
846 case XFS_RMAP_CRC_MAGIC:
847 case XFS_REFC_CRC_MAGIC:
848 case XFS_FIBT_CRC_MAGIC:
849 case XFS_FIBT_MAGIC:
850 case XFS_IBT_CRC_MAGIC:
851 case XFS_IBT_MAGIC: {
852 struct xfs_btree_block *btb = blk;
854 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
855 uuid = &btb->bb_u.s.bb_uuid;
856 break;
858 case XFS_BMAP_CRC_MAGIC:
859 case XFS_BMAP_MAGIC: {
860 struct xfs_btree_block *btb = blk;
862 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
863 uuid = &btb->bb_u.l.bb_uuid;
864 break;
866 case XFS_AGF_MAGIC:
867 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
868 uuid = &((struct xfs_agf *)blk)->agf_uuid;
869 break;
870 case XFS_AGFL_MAGIC:
871 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
872 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
873 break;
874 case XFS_AGI_MAGIC:
875 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
876 uuid = &((struct xfs_agi *)blk)->agi_uuid;
877 break;
878 case XFS_SYMLINK_MAGIC:
879 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
880 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
881 break;
882 case XFS_DIR3_BLOCK_MAGIC:
883 case XFS_DIR3_DATA_MAGIC:
884 case XFS_DIR3_FREE_MAGIC:
885 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
886 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
887 break;
888 case XFS_ATTR3_RMT_MAGIC:
890 * Remote attr blocks are written synchronously, rather than
891 * being logged. That means they do not contain a valid LSN
892 * (i.e. transactionally ordered) in them, and hence any time we
893 * see a buffer to replay over the top of a remote attribute
894 * block we should simply do so.
896 goto recover_immediately;
897 case XFS_SB_MAGIC:
899 * superblock uuids are magic. We may or may not have a
900 * sb_meta_uuid on disk, but it will be set in the in-core
901 * superblock. We set the uuid pointer for verification
902 * according to the superblock feature mask to ensure we check
903 * the relevant UUID in the superblock.
905 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
906 if (xfs_has_metauuid(mp))
907 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
908 else
909 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
910 break;
911 default:
912 break;
915 if (lsn != (xfs_lsn_t)-1) {
916 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
917 goto recover_immediately;
918 return lsn;
921 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
922 switch (magicda) {
923 case XFS_DIR3_LEAF1_MAGIC:
924 case XFS_DIR3_LEAFN_MAGIC:
925 case XFS_ATTR3_LEAF_MAGIC:
926 case XFS_DA3_NODE_MAGIC:
927 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
928 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
929 break;
930 default:
931 break;
934 if (lsn != (xfs_lsn_t)-1) {
935 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
936 goto recover_immediately;
937 return lsn;
941 * We do individual object checks on dquot and inode buffers as they
942 * have their own individual LSN records. Also, we could have a stale
943 * buffer here, so we have to at least recognise these buffer types.
945 * A notd complexity here is inode unlinked list processing - it logs
946 * the inode directly in the buffer, but we don't know which inodes have
947 * been modified, and there is no global buffer LSN. Hence we need to
948 * recover all inode buffer types immediately. This problem will be
949 * fixed by logical logging of the unlinked list modifications.
951 magic16 = be16_to_cpu(*(__be16 *)blk);
952 switch (magic16) {
953 case XFS_DQUOT_MAGIC:
954 case XFS_DINODE_MAGIC:
955 goto recover_immediately;
956 default:
957 break;
960 /* unknown buffer contents, recover immediately */
962 recover_immediately:
963 return (xfs_lsn_t)-1;
968 * This routine replays a modification made to a buffer at runtime.
969 * There are actually two types of buffer, regular and inode, which
970 * are handled differently. Inode buffers are handled differently
971 * in that we only recover a specific set of data from them, namely
972 * the inode di_next_unlinked fields. This is because all other inode
973 * data is actually logged via inode records and any data we replay
974 * here which overlaps that may be stale.
976 * When meta-data buffers are freed at run time we log a buffer item
977 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
978 * of the buffer in the log should not be replayed at recovery time.
979 * This is so that if the blocks covered by the buffer are reused for
980 * file data before we crash we don't end up replaying old, freed
981 * meta-data into a user's file.
983 * To handle the cancellation of buffer log items, we make two passes
984 * over the log during recovery. During the first we build a table of
985 * those buffers which have been cancelled, and during the second we
986 * only replay those buffers which do not have corresponding cancel
987 * records in the table. See xlog_recover_buf_pass[1,2] above
988 * for more details on the implementation of the table of cancel records.
990 STATIC int
991 xlog_recover_buf_commit_pass2(
992 struct xlog *log,
993 struct list_head *buffer_list,
994 struct xlog_recover_item *item,
995 xfs_lsn_t current_lsn)
997 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
998 struct xfs_mount *mp = log->l_mp;
999 struct xfs_buf *bp;
1000 int error;
1001 uint buf_flags;
1002 xfs_lsn_t lsn;
1005 * In this pass we only want to recover all the buffers which have
1006 * not been cancelled and are not cancellation buffers themselves.
1008 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1009 if (xlog_put_buffer_cancelled(log, buf_f->blf_blkno,
1010 buf_f->blf_len))
1011 goto cancelled;
1012 } else {
1014 if (xlog_is_buffer_cancelled(log, buf_f->blf_blkno,
1015 buf_f->blf_len))
1016 goto cancelled;
1019 trace_xfs_log_recover_buf_recover(log, buf_f);
1021 buf_flags = 0;
1022 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
1023 buf_flags |= XBF_UNMAPPED;
1025 error = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
1026 buf_flags, &bp, NULL);
1027 if (error)
1028 return error;
1031 * Recover the buffer only if we get an LSN from it and it's less than
1032 * the lsn of the transaction we are replaying.
1034 * Note that we have to be extremely careful of readahead here.
1035 * Readahead does not attach verfiers to the buffers so if we don't
1036 * actually do any replay after readahead because of the LSN we found
1037 * in the buffer if more recent than that current transaction then we
1038 * need to attach the verifier directly. Failure to do so can lead to
1039 * future recovery actions (e.g. EFI and unlinked list recovery) can
1040 * operate on the buffers and they won't get the verifier attached. This
1041 * can lead to blocks on disk having the correct content but a stale
1042 * CRC.
1044 * It is safe to assume these clean buffers are currently up to date.
1045 * If the buffer is dirtied by a later transaction being replayed, then
1046 * the verifier will be reset to match whatever recover turns that
1047 * buffer into.
1049 lsn = xlog_recover_get_buf_lsn(mp, bp, buf_f);
1050 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
1051 trace_xfs_log_recover_buf_skip(log, buf_f);
1052 xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
1055 * We're skipping replay of this buffer log item due to the log
1056 * item LSN being behind the ondisk buffer. Verify the buffer
1057 * contents since we aren't going to run the write verifier.
1059 if (bp->b_ops) {
1060 bp->b_ops->verify_read(bp);
1061 error = bp->b_error;
1063 goto out_release;
1066 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1067 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
1068 if (error)
1069 goto out_release;
1070 } else if (buf_f->blf_flags &
1071 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1072 bool dirty;
1074 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
1075 if (!dirty)
1076 goto out_release;
1077 } else if ((xfs_blft_from_flags(buf_f) & XFS_BLFT_SB_BUF) &&
1078 xfs_buf_daddr(bp) == 0) {
1079 error = xlog_recover_do_primary_sb_buffer(mp, item, bp, buf_f,
1080 current_lsn);
1081 if (error)
1082 goto out_release;
1084 /* Update the rt superblock if we have one. */
1085 if (xfs_has_rtsb(mp) && mp->m_rtsb_bp) {
1086 struct xfs_buf *rtsb_bp = mp->m_rtsb_bp;
1088 xfs_buf_lock(rtsb_bp);
1089 xfs_buf_hold(rtsb_bp);
1090 xfs_update_rtsb(rtsb_bp, bp);
1091 rtsb_bp->b_flags |= _XBF_LOGRECOVERY;
1092 xfs_buf_delwri_queue(rtsb_bp, buffer_list);
1093 xfs_buf_relse(rtsb_bp);
1095 } else {
1096 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
1100 * Perform delayed write on the buffer. Asynchronous writes will be
1101 * slower when taking into account all the buffers to be flushed.
1103 * Also make sure that only inode buffers with good sizes stay in
1104 * the buffer cache. The kernel moves inodes in buffers of 1 block
1105 * or inode_cluster_size bytes, whichever is bigger. The inode
1106 * buffers in the log can be a different size if the log was generated
1107 * by an older kernel using unclustered inode buffers or a newer kernel
1108 * running with a different inode cluster size. Regardless, if
1109 * the inode buffer size isn't max(blocksize, inode_cluster_size)
1110 * for *our* value of inode_cluster_size, then we need to keep
1111 * the buffer out of the buffer cache so that the buffer won't
1112 * overlap with future reads of those inodes.
1114 if (XFS_DINODE_MAGIC ==
1115 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
1116 (BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) {
1117 xfs_buf_stale(bp);
1118 error = xfs_bwrite(bp);
1119 } else {
1120 ASSERT(bp->b_mount == mp);
1121 bp->b_flags |= _XBF_LOGRECOVERY;
1122 xfs_buf_delwri_queue(bp, buffer_list);
1125 out_release:
1126 xfs_buf_relse(bp);
1127 return error;
1128 cancelled:
1129 trace_xfs_log_recover_buf_cancel(log, buf_f);
1130 return 0;
1133 const struct xlog_recover_item_ops xlog_buf_item_ops = {
1134 .item_type = XFS_LI_BUF,
1135 .reorder = xlog_recover_buf_reorder,
1136 .ra_pass2 = xlog_recover_buf_ra_pass2,
1137 .commit_pass1 = xlog_recover_buf_commit_pass1,
1138 .commit_pass2 = xlog_recover_buf_commit_pass2,
1141 #ifdef DEBUG
1142 void
1143 xlog_check_buf_cancel_table(
1144 struct xlog *log)
1146 int i;
1148 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
1149 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
1151 #endif
1154 xlog_alloc_buf_cancel_table(
1155 struct xlog *log)
1157 void *p;
1158 int i;
1160 ASSERT(log->l_buf_cancel_table == NULL);
1162 p = kmalloc_array(XLOG_BC_TABLE_SIZE, sizeof(struct list_head),
1163 GFP_KERNEL);
1164 if (!p)
1165 return -ENOMEM;
1167 log->l_buf_cancel_table = p;
1168 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
1169 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
1171 return 0;
1174 void
1175 xlog_free_buf_cancel_table(
1176 struct xlog *log)
1178 int i;
1180 if (!log->l_buf_cancel_table)
1181 return;
1183 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) {
1184 struct xfs_buf_cancel *bc;
1186 while ((bc = list_first_entry_or_null(
1187 &log->l_buf_cancel_table[i],
1188 struct xfs_buf_cancel, bc_list))) {
1189 list_del(&bc->bc_list);
1190 kfree(bc);
1194 kfree(log->l_buf_cancel_table);
1195 log->l_buf_cancel_table = NULL;