drm/tests: Add test for drm_atomic_helper_check_modeset()
[drm/drm-misc.git] / fs / xfs / xfs_dquot.c
blobff982d983989b0c275eca9133bebdce8f6711e23
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2003 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_shared.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_inode.h"
16 #include "xfs_bmap.h"
17 #include "xfs_quota.h"
18 #include "xfs_trans.h"
19 #include "xfs_buf_item.h"
20 #include "xfs_trans_space.h"
21 #include "xfs_trans_priv.h"
22 #include "xfs_qm.h"
23 #include "xfs_trace.h"
24 #include "xfs_log.h"
25 #include "xfs_bmap_btree.h"
26 #include "xfs_error.h"
27 #include "xfs_health.h"
30 * Lock order:
32 * ip->i_lock
33 * qi->qi_tree_lock
34 * dquot->q_qlock (xfs_dqlock() and friends)
35 * dquot->q_flush (xfs_dqflock() and friends)
36 * qi->qi_lru_lock
38 * If two dquots need to be locked the order is user before group/project,
39 * otherwise by the lowest id first, see xfs_dqlock2.
42 struct kmem_cache *xfs_dqtrx_cache;
43 static struct kmem_cache *xfs_dquot_cache;
45 static struct lock_class_key xfs_dquot_group_class;
46 static struct lock_class_key xfs_dquot_project_class;
48 /* Record observations of quota corruption with the health tracking system. */
49 static void
50 xfs_dquot_mark_sick(
51 struct xfs_dquot *dqp)
53 struct xfs_mount *mp = dqp->q_mount;
55 switch (dqp->q_type) {
56 case XFS_DQTYPE_USER:
57 xfs_fs_mark_sick(mp, XFS_SICK_FS_UQUOTA);
58 break;
59 case XFS_DQTYPE_GROUP:
60 xfs_fs_mark_sick(mp, XFS_SICK_FS_GQUOTA);
61 break;
62 case XFS_DQTYPE_PROJ:
63 xfs_fs_mark_sick(mp, XFS_SICK_FS_PQUOTA);
64 break;
65 default:
66 ASSERT(0);
67 break;
72 * This is called to free all the memory associated with a dquot
74 void
75 xfs_qm_dqdestroy(
76 struct xfs_dquot *dqp)
78 ASSERT(list_empty(&dqp->q_lru));
80 kvfree(dqp->q_logitem.qli_item.li_lv_shadow);
81 mutex_destroy(&dqp->q_qlock);
83 XFS_STATS_DEC(dqp->q_mount, xs_qm_dquot);
84 kmem_cache_free(xfs_dquot_cache, dqp);
88 * If default limits are in force, push them into the dquot now.
89 * We overwrite the dquot limits only if they are zero and this
90 * is not the root dquot.
92 void
93 xfs_qm_adjust_dqlimits(
94 struct xfs_dquot *dq)
96 struct xfs_mount *mp = dq->q_mount;
97 struct xfs_quotainfo *q = mp->m_quotainfo;
98 struct xfs_def_quota *defq;
99 int prealloc = 0;
101 ASSERT(dq->q_id);
102 defq = xfs_get_defquota(q, xfs_dquot_type(dq));
104 if (!dq->q_blk.softlimit) {
105 dq->q_blk.softlimit = defq->blk.soft;
106 prealloc = 1;
108 if (!dq->q_blk.hardlimit) {
109 dq->q_blk.hardlimit = defq->blk.hard;
110 prealloc = 1;
112 if (!dq->q_ino.softlimit)
113 dq->q_ino.softlimit = defq->ino.soft;
114 if (!dq->q_ino.hardlimit)
115 dq->q_ino.hardlimit = defq->ino.hard;
116 if (!dq->q_rtb.softlimit)
117 dq->q_rtb.softlimit = defq->rtb.soft;
118 if (!dq->q_rtb.hardlimit)
119 dq->q_rtb.hardlimit = defq->rtb.hard;
121 if (prealloc)
122 xfs_dquot_set_prealloc_limits(dq);
125 /* Set the expiration time of a quota's grace period. */
126 time64_t
127 xfs_dquot_set_timeout(
128 struct xfs_mount *mp,
129 time64_t timeout)
131 struct xfs_quotainfo *qi = mp->m_quotainfo;
133 return clamp_t(time64_t, timeout, qi->qi_expiry_min,
134 qi->qi_expiry_max);
137 /* Set the length of the default grace period. */
138 time64_t
139 xfs_dquot_set_grace_period(
140 time64_t grace)
142 return clamp_t(time64_t, grace, XFS_DQ_GRACE_MIN, XFS_DQ_GRACE_MAX);
146 * Determine if this quota counter is over either limit and set the quota
147 * timers as appropriate.
149 static inline void
150 xfs_qm_adjust_res_timer(
151 struct xfs_mount *mp,
152 struct xfs_dquot_res *res,
153 struct xfs_quota_limits *qlim)
155 ASSERT(res->hardlimit == 0 || res->softlimit <= res->hardlimit);
157 if ((res->softlimit && res->count > res->softlimit) ||
158 (res->hardlimit && res->count > res->hardlimit)) {
159 if (res->timer == 0)
160 res->timer = xfs_dquot_set_timeout(mp,
161 ktime_get_real_seconds() + qlim->time);
162 } else {
163 res->timer = 0;
168 * Check the limits and timers of a dquot and start or reset timers
169 * if necessary.
170 * This gets called even when quota enforcement is OFF, which makes our
171 * life a little less complicated. (We just don't reject any quota
172 * reservations in that case, when enforcement is off).
173 * We also return 0 as the values of the timers in Q_GETQUOTA calls, when
174 * enforcement's off.
175 * In contrast, warnings are a little different in that they don't
176 * 'automatically' get started when limits get exceeded. They do
177 * get reset to zero, however, when we find the count to be under
178 * the soft limit (they are only ever set non-zero via userspace).
180 void
181 xfs_qm_adjust_dqtimers(
182 struct xfs_dquot *dq)
184 struct xfs_mount *mp = dq->q_mount;
185 struct xfs_quotainfo *qi = mp->m_quotainfo;
186 struct xfs_def_quota *defq;
188 ASSERT(dq->q_id);
189 defq = xfs_get_defquota(qi, xfs_dquot_type(dq));
191 xfs_qm_adjust_res_timer(dq->q_mount, &dq->q_blk, &defq->blk);
192 xfs_qm_adjust_res_timer(dq->q_mount, &dq->q_ino, &defq->ino);
193 xfs_qm_adjust_res_timer(dq->q_mount, &dq->q_rtb, &defq->rtb);
197 * initialize a buffer full of dquots and log the whole thing
199 void
200 xfs_qm_init_dquot_blk(
201 struct xfs_trans *tp,
202 xfs_dqid_t id,
203 xfs_dqtype_t type,
204 struct xfs_buf *bp)
206 struct xfs_mount *mp = tp->t_mountp;
207 struct xfs_quotainfo *q = mp->m_quotainfo;
208 struct xfs_dqblk *d;
209 xfs_dqid_t curid;
210 unsigned int qflag;
211 unsigned int blftype;
212 int i;
214 ASSERT(tp);
215 ASSERT(xfs_buf_islocked(bp));
217 switch (type) {
218 case XFS_DQTYPE_USER:
219 qflag = XFS_UQUOTA_CHKD;
220 blftype = XFS_BLF_UDQUOT_BUF;
221 break;
222 case XFS_DQTYPE_PROJ:
223 qflag = XFS_PQUOTA_CHKD;
224 blftype = XFS_BLF_PDQUOT_BUF;
225 break;
226 case XFS_DQTYPE_GROUP:
227 qflag = XFS_GQUOTA_CHKD;
228 blftype = XFS_BLF_GDQUOT_BUF;
229 break;
230 default:
231 ASSERT(0);
232 return;
235 d = bp->b_addr;
238 * ID of the first dquot in the block - id's are zero based.
240 curid = id - (id % q->qi_dqperchunk);
241 memset(d, 0, BBTOB(q->qi_dqchunklen));
242 for (i = 0; i < q->qi_dqperchunk; i++, d++, curid++) {
243 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
244 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
245 d->dd_diskdq.d_id = cpu_to_be32(curid);
246 d->dd_diskdq.d_type = type;
247 if (curid > 0 && xfs_has_bigtime(mp))
248 d->dd_diskdq.d_type |= XFS_DQTYPE_BIGTIME;
249 if (xfs_has_crc(mp)) {
250 uuid_copy(&d->dd_uuid, &mp->m_sb.sb_meta_uuid);
251 xfs_update_cksum((char *)d, sizeof(struct xfs_dqblk),
252 XFS_DQUOT_CRC_OFF);
256 xfs_trans_dquot_buf(tp, bp, blftype);
259 * quotacheck uses delayed writes to update all the dquots on disk in an
260 * efficient manner instead of logging the individual dquot changes as
261 * they are made. However if we log the buffer allocated here and crash
262 * after quotacheck while the logged initialisation is still in the
263 * active region of the log, log recovery can replay the dquot buffer
264 * initialisation over the top of the checked dquots and corrupt quota
265 * accounting.
267 * To avoid this problem, quotacheck cannot log the initialised buffer.
268 * We must still dirty the buffer and write it back before the
269 * allocation transaction clears the log. Therefore, mark the buffer as
270 * ordered instead of logging it directly. This is safe for quotacheck
271 * because it detects and repairs allocated but initialized dquot blocks
272 * in the quota inodes.
274 if (!(mp->m_qflags & qflag))
275 xfs_trans_ordered_buf(tp, bp);
276 else
277 xfs_trans_log_buf(tp, bp, 0, BBTOB(q->qi_dqchunklen) - 1);
280 static void
281 xfs_dquot_set_prealloc(
282 struct xfs_dquot_pre *pre,
283 const struct xfs_dquot_res *res)
285 xfs_qcnt_t space;
287 pre->q_prealloc_hi_wmark = res->hardlimit;
288 pre->q_prealloc_lo_wmark = res->softlimit;
290 space = div_u64(pre->q_prealloc_hi_wmark, 100);
291 if (!pre->q_prealloc_lo_wmark)
292 pre->q_prealloc_lo_wmark = space * 95;
294 pre->q_low_space[XFS_QLOWSP_1_PCNT] = space;
295 pre->q_low_space[XFS_QLOWSP_3_PCNT] = space * 3;
296 pre->q_low_space[XFS_QLOWSP_5_PCNT] = space * 5;
300 * Initialize the dynamic speculative preallocation thresholds. The lo/hi
301 * watermarks correspond to the soft and hard limits by default. If a soft limit
302 * is not specified, we use 95% of the hard limit.
304 void
305 xfs_dquot_set_prealloc_limits(struct xfs_dquot *dqp)
307 xfs_dquot_set_prealloc(&dqp->q_blk_prealloc, &dqp->q_blk);
308 xfs_dquot_set_prealloc(&dqp->q_rtb_prealloc, &dqp->q_rtb);
312 * Ensure that the given in-core dquot has a buffer on disk backing it, and
313 * return the buffer locked and held. This is called when the bmapi finds a
314 * hole.
316 STATIC int
317 xfs_dquot_disk_alloc(
318 struct xfs_dquot *dqp,
319 struct xfs_buf **bpp)
321 struct xfs_bmbt_irec map;
322 struct xfs_trans *tp;
323 struct xfs_mount *mp = dqp->q_mount;
324 struct xfs_buf *bp;
325 xfs_dqtype_t qtype = xfs_dquot_type(dqp);
326 struct xfs_inode *quotip = xfs_quota_inode(mp, qtype);
327 int nmaps = 1;
328 int error;
330 trace_xfs_dqalloc(dqp);
332 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_qm_dqalloc,
333 XFS_QM_DQALLOC_SPACE_RES(mp), 0, 0, &tp);
334 if (error)
335 return error;
337 xfs_ilock(quotip, XFS_ILOCK_EXCL);
338 xfs_trans_ijoin(tp, quotip, 0);
340 if (!xfs_this_quota_on(dqp->q_mount, qtype)) {
342 * Return if this type of quotas is turned off while we didn't
343 * have an inode lock
345 error = -ESRCH;
346 goto err_cancel;
349 error = xfs_iext_count_extend(tp, quotip, XFS_DATA_FORK,
350 XFS_IEXT_ADD_NOSPLIT_CNT);
351 if (error)
352 goto err_cancel;
354 /* Create the block mapping. */
355 error = xfs_bmapi_write(tp, quotip, dqp->q_fileoffset,
356 XFS_DQUOT_CLUSTER_SIZE_FSB, XFS_BMAPI_METADATA, 0, &map,
357 &nmaps);
358 if (error)
359 goto err_cancel;
361 ASSERT(map.br_blockcount == XFS_DQUOT_CLUSTER_SIZE_FSB);
362 ASSERT((map.br_startblock != DELAYSTARTBLOCK) &&
363 (map.br_startblock != HOLESTARTBLOCK));
366 * Keep track of the blkno to save a lookup later
368 dqp->q_blkno = XFS_FSB_TO_DADDR(mp, map.br_startblock);
370 /* now we can just get the buffer (there's nothing to read yet) */
371 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, dqp->q_blkno,
372 mp->m_quotainfo->qi_dqchunklen, 0, &bp);
373 if (error)
374 goto err_cancel;
375 bp->b_ops = &xfs_dquot_buf_ops;
378 * Make a chunk of dquots out of this buffer and log
379 * the entire thing.
381 xfs_qm_init_dquot_blk(tp, dqp->q_id, qtype, bp);
382 xfs_buf_set_ref(bp, XFS_DQUOT_REF);
385 * Hold the buffer and join it to the dfops so that we'll still own
386 * the buffer when we return to the caller. The buffer disposal on
387 * error must be paid attention to very carefully, as it has been
388 * broken since commit efa092f3d4c6 "[XFS] Fixes a bug in the quota
389 * code when allocating a new dquot record" in 2005, and the later
390 * conversion to xfs_defer_ops in commit 310a75a3c6c747 failed to keep
391 * the buffer locked across the _defer_finish call. We can now do
392 * this correctly with xfs_defer_bjoin.
394 * Above, we allocated a disk block for the dquot information and used
395 * get_buf to initialize the dquot. If the _defer_finish fails, the old
396 * transaction is gone but the new buffer is not joined or held to any
397 * transaction, so we must _buf_relse it.
399 * If everything succeeds, the caller of this function is returned a
400 * buffer that is locked and held to the transaction. The caller
401 * is responsible for unlocking any buffer passed back, either
402 * manually or by committing the transaction. On error, the buffer is
403 * released and not passed back.
405 * Keep the quota inode ILOCKed until after the transaction commit to
406 * maintain the atomicity of bmap/rmap updates.
408 xfs_trans_bhold(tp, bp);
409 error = xfs_trans_commit(tp);
410 xfs_iunlock(quotip, XFS_ILOCK_EXCL);
411 if (error) {
412 xfs_buf_relse(bp);
413 return error;
416 *bpp = bp;
417 return 0;
419 err_cancel:
420 xfs_trans_cancel(tp);
421 xfs_iunlock(quotip, XFS_ILOCK_EXCL);
422 return error;
426 * Read in the in-core dquot's on-disk metadata and return the buffer.
427 * Returns ENOENT to signal a hole.
429 STATIC int
430 xfs_dquot_disk_read(
431 struct xfs_mount *mp,
432 struct xfs_dquot *dqp,
433 struct xfs_buf **bpp)
435 struct xfs_bmbt_irec map;
436 struct xfs_buf *bp;
437 xfs_dqtype_t qtype = xfs_dquot_type(dqp);
438 struct xfs_inode *quotip = xfs_quota_inode(mp, qtype);
439 uint lock_mode;
440 int nmaps = 1;
441 int error;
443 lock_mode = xfs_ilock_data_map_shared(quotip);
444 if (!xfs_this_quota_on(mp, qtype)) {
446 * Return if this type of quotas is turned off while we
447 * didn't have the quota inode lock.
449 xfs_iunlock(quotip, lock_mode);
450 return -ESRCH;
454 * Find the block map; no allocations yet
456 error = xfs_bmapi_read(quotip, dqp->q_fileoffset,
457 XFS_DQUOT_CLUSTER_SIZE_FSB, &map, &nmaps, 0);
458 xfs_iunlock(quotip, lock_mode);
459 if (error)
460 return error;
462 ASSERT(nmaps == 1);
463 ASSERT(map.br_blockcount >= 1);
464 ASSERT(map.br_startblock != DELAYSTARTBLOCK);
465 if (map.br_startblock == HOLESTARTBLOCK)
466 return -ENOENT;
468 trace_xfs_dqtobp_read(dqp);
471 * store the blkno etc so that we don't have to do the
472 * mapping all the time
474 dqp->q_blkno = XFS_FSB_TO_DADDR(mp, map.br_startblock);
476 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dqp->q_blkno,
477 mp->m_quotainfo->qi_dqchunklen, 0, &bp,
478 &xfs_dquot_buf_ops);
479 if (xfs_metadata_is_sick(error))
480 xfs_dquot_mark_sick(dqp);
481 if (error) {
482 ASSERT(bp == NULL);
483 return error;
486 ASSERT(xfs_buf_islocked(bp));
487 xfs_buf_set_ref(bp, XFS_DQUOT_REF);
488 *bpp = bp;
490 return 0;
493 /* Allocate and initialize everything we need for an incore dquot. */
494 STATIC struct xfs_dquot *
495 xfs_dquot_alloc(
496 struct xfs_mount *mp,
497 xfs_dqid_t id,
498 xfs_dqtype_t type)
500 struct xfs_dquot *dqp;
502 dqp = kmem_cache_zalloc(xfs_dquot_cache, GFP_KERNEL | __GFP_NOFAIL);
504 dqp->q_type = type;
505 dqp->q_id = id;
506 dqp->q_mount = mp;
507 INIT_LIST_HEAD(&dqp->q_lru);
508 mutex_init(&dqp->q_qlock);
509 init_waitqueue_head(&dqp->q_pinwait);
510 dqp->q_fileoffset = (xfs_fileoff_t)id / mp->m_quotainfo->qi_dqperchunk;
512 * Offset of dquot in the (fixed sized) dquot chunk.
514 dqp->q_bufoffset = (id % mp->m_quotainfo->qi_dqperchunk) *
515 sizeof(struct xfs_dqblk);
518 * Because we want to use a counting completion, complete
519 * the flush completion once to allow a single access to
520 * the flush completion without blocking.
522 init_completion(&dqp->q_flush);
523 complete(&dqp->q_flush);
526 * Make sure group quotas have a different lock class than user
527 * quotas.
529 switch (type) {
530 case XFS_DQTYPE_USER:
531 /* uses the default lock class */
532 break;
533 case XFS_DQTYPE_GROUP:
534 lockdep_set_class(&dqp->q_qlock, &xfs_dquot_group_class);
535 break;
536 case XFS_DQTYPE_PROJ:
537 lockdep_set_class(&dqp->q_qlock, &xfs_dquot_project_class);
538 break;
539 default:
540 ASSERT(0);
541 break;
544 xfs_qm_dquot_logitem_init(dqp);
546 XFS_STATS_INC(mp, xs_qm_dquot);
547 return dqp;
550 /* Check the ondisk dquot's id and type match what the incore dquot expects. */
551 static bool
552 xfs_dquot_check_type(
553 struct xfs_dquot *dqp,
554 struct xfs_disk_dquot *ddqp)
556 uint8_t ddqp_type;
557 uint8_t dqp_type;
559 ddqp_type = ddqp->d_type & XFS_DQTYPE_REC_MASK;
560 dqp_type = xfs_dquot_type(dqp);
562 if (be32_to_cpu(ddqp->d_id) != dqp->q_id)
563 return false;
566 * V5 filesystems always expect an exact type match. V4 filesystems
567 * expect an exact match for user dquots and for non-root group and
568 * project dquots.
570 if (xfs_has_crc(dqp->q_mount) ||
571 dqp_type == XFS_DQTYPE_USER || dqp->q_id != 0)
572 return ddqp_type == dqp_type;
575 * V4 filesystems support either group or project quotas, but not both
576 * at the same time. The non-user quota file can be switched between
577 * group and project quota uses depending on the mount options, which
578 * means that we can encounter the other type when we try to load quota
579 * defaults. Quotacheck will soon reset the entire quota file
580 * (including the root dquot) anyway, but don't log scary corruption
581 * reports to dmesg.
583 return ddqp_type == XFS_DQTYPE_GROUP || ddqp_type == XFS_DQTYPE_PROJ;
586 /* Copy the in-core quota fields in from the on-disk buffer. */
587 STATIC int
588 xfs_dquot_from_disk(
589 struct xfs_dquot *dqp,
590 struct xfs_buf *bp)
592 struct xfs_dqblk *dqb = xfs_buf_offset(bp, dqp->q_bufoffset);
593 struct xfs_disk_dquot *ddqp = &dqb->dd_diskdq;
596 * Ensure that we got the type and ID we were looking for.
597 * Everything else was checked by the dquot buffer verifier.
599 if (!xfs_dquot_check_type(dqp, ddqp)) {
600 xfs_alert_tag(bp->b_mount, XFS_PTAG_VERIFIER_ERROR,
601 "Metadata corruption detected at %pS, quota %u",
602 __this_address, dqp->q_id);
603 xfs_alert(bp->b_mount, "Unmount and run xfs_repair");
604 xfs_dquot_mark_sick(dqp);
605 return -EFSCORRUPTED;
608 /* copy everything from disk dquot to the incore dquot */
609 dqp->q_type = ddqp->d_type;
610 dqp->q_blk.hardlimit = be64_to_cpu(ddqp->d_blk_hardlimit);
611 dqp->q_blk.softlimit = be64_to_cpu(ddqp->d_blk_softlimit);
612 dqp->q_ino.hardlimit = be64_to_cpu(ddqp->d_ino_hardlimit);
613 dqp->q_ino.softlimit = be64_to_cpu(ddqp->d_ino_softlimit);
614 dqp->q_rtb.hardlimit = be64_to_cpu(ddqp->d_rtb_hardlimit);
615 dqp->q_rtb.softlimit = be64_to_cpu(ddqp->d_rtb_softlimit);
617 dqp->q_blk.count = be64_to_cpu(ddqp->d_bcount);
618 dqp->q_ino.count = be64_to_cpu(ddqp->d_icount);
619 dqp->q_rtb.count = be64_to_cpu(ddqp->d_rtbcount);
621 dqp->q_blk.timer = xfs_dquot_from_disk_ts(ddqp, ddqp->d_btimer);
622 dqp->q_ino.timer = xfs_dquot_from_disk_ts(ddqp, ddqp->d_itimer);
623 dqp->q_rtb.timer = xfs_dquot_from_disk_ts(ddqp, ddqp->d_rtbtimer);
626 * Reservation counters are defined as reservation plus current usage
627 * to avoid having to add every time.
629 dqp->q_blk.reserved = dqp->q_blk.count;
630 dqp->q_ino.reserved = dqp->q_ino.count;
631 dqp->q_rtb.reserved = dqp->q_rtb.count;
633 /* initialize the dquot speculative prealloc thresholds */
634 xfs_dquot_set_prealloc_limits(dqp);
635 return 0;
638 /* Copy the in-core quota fields into the on-disk buffer. */
639 void
640 xfs_dquot_to_disk(
641 struct xfs_disk_dquot *ddqp,
642 struct xfs_dquot *dqp)
644 ddqp->d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
645 ddqp->d_version = XFS_DQUOT_VERSION;
646 ddqp->d_type = dqp->q_type;
647 ddqp->d_id = cpu_to_be32(dqp->q_id);
648 ddqp->d_pad0 = 0;
649 ddqp->d_pad = 0;
651 ddqp->d_blk_hardlimit = cpu_to_be64(dqp->q_blk.hardlimit);
652 ddqp->d_blk_softlimit = cpu_to_be64(dqp->q_blk.softlimit);
653 ddqp->d_ino_hardlimit = cpu_to_be64(dqp->q_ino.hardlimit);
654 ddqp->d_ino_softlimit = cpu_to_be64(dqp->q_ino.softlimit);
655 ddqp->d_rtb_hardlimit = cpu_to_be64(dqp->q_rtb.hardlimit);
656 ddqp->d_rtb_softlimit = cpu_to_be64(dqp->q_rtb.softlimit);
658 ddqp->d_bcount = cpu_to_be64(dqp->q_blk.count);
659 ddqp->d_icount = cpu_to_be64(dqp->q_ino.count);
660 ddqp->d_rtbcount = cpu_to_be64(dqp->q_rtb.count);
662 ddqp->d_bwarns = 0;
663 ddqp->d_iwarns = 0;
664 ddqp->d_rtbwarns = 0;
666 ddqp->d_btimer = xfs_dquot_to_disk_ts(dqp, dqp->q_blk.timer);
667 ddqp->d_itimer = xfs_dquot_to_disk_ts(dqp, dqp->q_ino.timer);
668 ddqp->d_rtbtimer = xfs_dquot_to_disk_ts(dqp, dqp->q_rtb.timer);
672 * Read in the ondisk dquot using dqtobp() then copy it to an incore version,
673 * and release the buffer immediately. If @can_alloc is true, fill any
674 * holes in the on-disk metadata.
676 static int
677 xfs_qm_dqread(
678 struct xfs_mount *mp,
679 xfs_dqid_t id,
680 xfs_dqtype_t type,
681 bool can_alloc,
682 struct xfs_dquot **dqpp)
684 struct xfs_dquot *dqp;
685 struct xfs_buf *bp;
686 int error;
688 dqp = xfs_dquot_alloc(mp, id, type);
689 trace_xfs_dqread(dqp);
691 /* Try to read the buffer, allocating if necessary. */
692 error = xfs_dquot_disk_read(mp, dqp, &bp);
693 if (error == -ENOENT && can_alloc)
694 error = xfs_dquot_disk_alloc(dqp, &bp);
695 if (error)
696 goto err;
699 * At this point we should have a clean locked buffer. Copy the data
700 * to the incore dquot and release the buffer since the incore dquot
701 * has its own locking protocol so we needn't tie up the buffer any
702 * further.
704 ASSERT(xfs_buf_islocked(bp));
705 error = xfs_dquot_from_disk(dqp, bp);
706 xfs_buf_relse(bp);
707 if (error)
708 goto err;
710 *dqpp = dqp;
711 return error;
713 err:
714 trace_xfs_dqread_fail(dqp);
715 xfs_qm_dqdestroy(dqp);
716 *dqpp = NULL;
717 return error;
721 * Advance to the next id in the current chunk, or if at the
722 * end of the chunk, skip ahead to first id in next allocated chunk
723 * using the SEEK_DATA interface.
725 static int
726 xfs_dq_get_next_id(
727 struct xfs_mount *mp,
728 xfs_dqtype_t type,
729 xfs_dqid_t *id)
731 struct xfs_inode *quotip = xfs_quota_inode(mp, type);
732 xfs_dqid_t next_id = *id + 1; /* simple advance */
733 uint lock_flags;
734 struct xfs_bmbt_irec got;
735 struct xfs_iext_cursor cur;
736 xfs_fsblock_t start;
737 int error = 0;
739 /* If we'd wrap past the max ID, stop */
740 if (next_id < *id)
741 return -ENOENT;
743 /* If new ID is within the current chunk, advancing it sufficed */
744 if (next_id % mp->m_quotainfo->qi_dqperchunk) {
745 *id = next_id;
746 return 0;
749 /* Nope, next_id is now past the current chunk, so find the next one */
750 start = (xfs_fsblock_t)next_id / mp->m_quotainfo->qi_dqperchunk;
752 lock_flags = xfs_ilock_data_map_shared(quotip);
753 error = xfs_iread_extents(NULL, quotip, XFS_DATA_FORK);
754 if (error)
755 return error;
757 if (xfs_iext_lookup_extent(quotip, &quotip->i_df, start, &cur, &got)) {
758 /* contiguous chunk, bump startoff for the id calculation */
759 if (got.br_startoff < start)
760 got.br_startoff = start;
761 *id = got.br_startoff * mp->m_quotainfo->qi_dqperchunk;
762 } else {
763 error = -ENOENT;
766 xfs_iunlock(quotip, lock_flags);
768 return error;
772 * Look up the dquot in the in-core cache. If found, the dquot is returned
773 * locked and ready to go.
775 static struct xfs_dquot *
776 xfs_qm_dqget_cache_lookup(
777 struct xfs_mount *mp,
778 struct xfs_quotainfo *qi,
779 struct radix_tree_root *tree,
780 xfs_dqid_t id)
782 struct xfs_dquot *dqp;
784 restart:
785 mutex_lock(&qi->qi_tree_lock);
786 dqp = radix_tree_lookup(tree, id);
787 if (!dqp) {
788 mutex_unlock(&qi->qi_tree_lock);
789 XFS_STATS_INC(mp, xs_qm_dqcachemisses);
790 return NULL;
793 xfs_dqlock(dqp);
794 if (dqp->q_flags & XFS_DQFLAG_FREEING) {
795 xfs_dqunlock(dqp);
796 mutex_unlock(&qi->qi_tree_lock);
797 trace_xfs_dqget_freeing(dqp);
798 delay(1);
799 goto restart;
802 dqp->q_nrefs++;
803 mutex_unlock(&qi->qi_tree_lock);
805 trace_xfs_dqget_hit(dqp);
806 XFS_STATS_INC(mp, xs_qm_dqcachehits);
807 return dqp;
811 * Try to insert a new dquot into the in-core cache. If an error occurs the
812 * caller should throw away the dquot and start over. Otherwise, the dquot
813 * is returned locked (and held by the cache) as if there had been a cache
814 * hit.
816 * The insert needs to be done under memalloc_nofs context because the radix
817 * tree can do memory allocation during insert. The qi->qi_tree_lock is taken in
818 * memory reclaim when freeing unused dquots, so we cannot have the radix tree
819 * node allocation recursing into filesystem reclaim whilst we hold the
820 * qi_tree_lock.
822 static int
823 xfs_qm_dqget_cache_insert(
824 struct xfs_mount *mp,
825 struct xfs_quotainfo *qi,
826 struct radix_tree_root *tree,
827 xfs_dqid_t id,
828 struct xfs_dquot *dqp)
830 unsigned int nofs_flags;
831 int error;
833 nofs_flags = memalloc_nofs_save();
834 mutex_lock(&qi->qi_tree_lock);
835 error = radix_tree_insert(tree, id, dqp);
836 if (unlikely(error)) {
837 /* Duplicate found! Caller must try again. */
838 trace_xfs_dqget_dup(dqp);
839 goto out_unlock;
842 /* Return a locked dquot to the caller, with a reference taken. */
843 xfs_dqlock(dqp);
844 dqp->q_nrefs = 1;
845 qi->qi_dquots++;
847 out_unlock:
848 mutex_unlock(&qi->qi_tree_lock);
849 memalloc_nofs_restore(nofs_flags);
850 return error;
853 /* Check our input parameters. */
854 static int
855 xfs_qm_dqget_checks(
856 struct xfs_mount *mp,
857 xfs_dqtype_t type)
859 switch (type) {
860 case XFS_DQTYPE_USER:
861 if (!XFS_IS_UQUOTA_ON(mp))
862 return -ESRCH;
863 return 0;
864 case XFS_DQTYPE_GROUP:
865 if (!XFS_IS_GQUOTA_ON(mp))
866 return -ESRCH;
867 return 0;
868 case XFS_DQTYPE_PROJ:
869 if (!XFS_IS_PQUOTA_ON(mp))
870 return -ESRCH;
871 return 0;
872 default:
873 WARN_ON_ONCE(0);
874 return -EINVAL;
879 * Given the file system, id, and type (UDQUOT/GDQUOT/PDQUOT), return a
880 * locked dquot, doing an allocation (if requested) as needed.
883 xfs_qm_dqget(
884 struct xfs_mount *mp,
885 xfs_dqid_t id,
886 xfs_dqtype_t type,
887 bool can_alloc,
888 struct xfs_dquot **O_dqpp)
890 struct xfs_quotainfo *qi = mp->m_quotainfo;
891 struct radix_tree_root *tree = xfs_dquot_tree(qi, type);
892 struct xfs_dquot *dqp;
893 int error;
895 error = xfs_qm_dqget_checks(mp, type);
896 if (error)
897 return error;
899 restart:
900 dqp = xfs_qm_dqget_cache_lookup(mp, qi, tree, id);
901 if (dqp) {
902 *O_dqpp = dqp;
903 return 0;
906 error = xfs_qm_dqread(mp, id, type, can_alloc, &dqp);
907 if (error)
908 return error;
910 error = xfs_qm_dqget_cache_insert(mp, qi, tree, id, dqp);
911 if (error) {
913 * Duplicate found. Just throw away the new dquot and start
914 * over.
916 xfs_qm_dqdestroy(dqp);
917 XFS_STATS_INC(mp, xs_qm_dquot_dups);
918 goto restart;
921 trace_xfs_dqget_miss(dqp);
922 *O_dqpp = dqp;
923 return 0;
927 * Given a dquot id and type, read and initialize a dquot from the on-disk
928 * metadata. This function is only for use during quota initialization so
929 * it ignores the dquot cache assuming that the dquot shrinker isn't set up.
930 * The caller is responsible for _qm_dqdestroy'ing the returned dquot.
933 xfs_qm_dqget_uncached(
934 struct xfs_mount *mp,
935 xfs_dqid_t id,
936 xfs_dqtype_t type,
937 struct xfs_dquot **dqpp)
939 int error;
941 error = xfs_qm_dqget_checks(mp, type);
942 if (error)
943 return error;
945 return xfs_qm_dqread(mp, id, type, 0, dqpp);
948 /* Return the quota id for a given inode and type. */
949 xfs_dqid_t
950 xfs_qm_id_for_quotatype(
951 struct xfs_inode *ip,
952 xfs_dqtype_t type)
954 switch (type) {
955 case XFS_DQTYPE_USER:
956 return i_uid_read(VFS_I(ip));
957 case XFS_DQTYPE_GROUP:
958 return i_gid_read(VFS_I(ip));
959 case XFS_DQTYPE_PROJ:
960 return ip->i_projid;
962 ASSERT(0);
963 return 0;
967 * Return the dquot for a given inode and type. If @can_alloc is true, then
968 * allocate blocks if needed. The inode's ILOCK must be held and it must not
969 * have already had an inode attached.
972 xfs_qm_dqget_inode(
973 struct xfs_inode *ip,
974 xfs_dqtype_t type,
975 bool can_alloc,
976 struct xfs_dquot **O_dqpp)
978 struct xfs_mount *mp = ip->i_mount;
979 struct xfs_quotainfo *qi = mp->m_quotainfo;
980 struct radix_tree_root *tree = xfs_dquot_tree(qi, type);
981 struct xfs_dquot *dqp;
982 xfs_dqid_t id;
983 int error;
985 error = xfs_qm_dqget_checks(mp, type);
986 if (error)
987 return error;
989 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
990 ASSERT(xfs_inode_dquot(ip, type) == NULL);
991 ASSERT(!xfs_is_metadir_inode(ip));
993 id = xfs_qm_id_for_quotatype(ip, type);
995 restart:
996 dqp = xfs_qm_dqget_cache_lookup(mp, qi, tree, id);
997 if (dqp) {
998 *O_dqpp = dqp;
999 return 0;
1003 * Dquot cache miss. We don't want to keep the inode lock across
1004 * a (potential) disk read. Also we don't want to deal with the lock
1005 * ordering between quotainode and this inode. OTOH, dropping the inode
1006 * lock here means dealing with a chown that can happen before
1007 * we re-acquire the lock.
1009 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1010 error = xfs_qm_dqread(mp, id, type, can_alloc, &dqp);
1011 xfs_ilock(ip, XFS_ILOCK_EXCL);
1012 if (error)
1013 return error;
1016 * A dquot could be attached to this inode by now, since we had
1017 * dropped the ilock.
1019 if (xfs_this_quota_on(mp, type)) {
1020 struct xfs_dquot *dqp1;
1022 dqp1 = xfs_inode_dquot(ip, type);
1023 if (dqp1) {
1024 xfs_qm_dqdestroy(dqp);
1025 dqp = dqp1;
1026 xfs_dqlock(dqp);
1027 goto dqret;
1029 } else {
1030 /* inode stays locked on return */
1031 xfs_qm_dqdestroy(dqp);
1032 return -ESRCH;
1035 error = xfs_qm_dqget_cache_insert(mp, qi, tree, id, dqp);
1036 if (error) {
1038 * Duplicate found. Just throw away the new dquot and start
1039 * over.
1041 xfs_qm_dqdestroy(dqp);
1042 XFS_STATS_INC(mp, xs_qm_dquot_dups);
1043 goto restart;
1046 dqret:
1047 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1048 trace_xfs_dqget_miss(dqp);
1049 *O_dqpp = dqp;
1050 return 0;
1054 * Starting at @id and progressing upwards, look for an initialized incore
1055 * dquot, lock it, and return it.
1058 xfs_qm_dqget_next(
1059 struct xfs_mount *mp,
1060 xfs_dqid_t id,
1061 xfs_dqtype_t type,
1062 struct xfs_dquot **dqpp)
1064 struct xfs_dquot *dqp;
1065 int error = 0;
1067 *dqpp = NULL;
1068 for (; !error; error = xfs_dq_get_next_id(mp, type, &id)) {
1069 error = xfs_qm_dqget(mp, id, type, false, &dqp);
1070 if (error == -ENOENT)
1071 continue;
1072 else if (error != 0)
1073 break;
1075 if (!XFS_IS_DQUOT_UNINITIALIZED(dqp)) {
1076 *dqpp = dqp;
1077 return 0;
1080 xfs_qm_dqput(dqp);
1083 return error;
1087 * Release a reference to the dquot (decrement ref-count) and unlock it.
1089 * If there is a group quota attached to this dquot, carefully release that
1090 * too without tripping over deadlocks'n'stuff.
1092 void
1093 xfs_qm_dqput(
1094 struct xfs_dquot *dqp)
1096 ASSERT(dqp->q_nrefs > 0);
1097 ASSERT(XFS_DQ_IS_LOCKED(dqp));
1099 trace_xfs_dqput(dqp);
1101 if (--dqp->q_nrefs == 0) {
1102 struct xfs_quotainfo *qi = dqp->q_mount->m_quotainfo;
1103 trace_xfs_dqput_free(dqp);
1105 if (list_lru_add_obj(&qi->qi_lru, &dqp->q_lru))
1106 XFS_STATS_INC(dqp->q_mount, xs_qm_dquot_unused);
1108 xfs_dqunlock(dqp);
1112 * Release a dquot. Flush it if dirty, then dqput() it.
1113 * dquot must not be locked.
1115 void
1116 xfs_qm_dqrele(
1117 struct xfs_dquot *dqp)
1119 if (!dqp)
1120 return;
1122 trace_xfs_dqrele(dqp);
1124 xfs_dqlock(dqp);
1126 * We don't care to flush it if the dquot is dirty here.
1127 * That will create stutters that we want to avoid.
1128 * Instead we do a delayed write when we try to reclaim
1129 * a dirty dquot. Also xfs_sync will take part of the burden...
1131 xfs_qm_dqput(dqp);
1135 * This is the dquot flushing I/O completion routine. It is called
1136 * from interrupt level when the buffer containing the dquot is
1137 * flushed to disk. It is responsible for removing the dquot logitem
1138 * from the AIL if it has not been re-logged, and unlocking the dquot's
1139 * flush lock. This behavior is very similar to that of inodes..
1141 static void
1142 xfs_qm_dqflush_done(
1143 struct xfs_log_item *lip)
1145 struct xfs_dq_logitem *qip = (struct xfs_dq_logitem *)lip;
1146 struct xfs_dquot *dqp = qip->qli_dquot;
1147 struct xfs_ail *ailp = lip->li_ailp;
1148 xfs_lsn_t tail_lsn;
1151 * We only want to pull the item from the AIL if its
1152 * location in the log has not changed since we started the flush.
1153 * Thus, we only bother if the dquot's lsn has
1154 * not changed. First we check the lsn outside the lock
1155 * since it's cheaper, and then we recheck while
1156 * holding the lock before removing the dquot from the AIL.
1158 if (test_bit(XFS_LI_IN_AIL, &lip->li_flags) &&
1159 ((lip->li_lsn == qip->qli_flush_lsn) ||
1160 test_bit(XFS_LI_FAILED, &lip->li_flags))) {
1162 spin_lock(&ailp->ail_lock);
1163 xfs_clear_li_failed(lip);
1164 if (lip->li_lsn == qip->qli_flush_lsn) {
1165 /* xfs_ail_update_finish() drops the AIL lock */
1166 tail_lsn = xfs_ail_delete_one(ailp, lip);
1167 xfs_ail_update_finish(ailp, tail_lsn);
1168 } else {
1169 spin_unlock(&ailp->ail_lock);
1174 * Release the dq's flush lock since we're done with it.
1176 xfs_dqfunlock(dqp);
1179 void
1180 xfs_buf_dquot_iodone(
1181 struct xfs_buf *bp)
1183 struct xfs_log_item *lip, *n;
1185 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
1186 list_del_init(&lip->li_bio_list);
1187 xfs_qm_dqflush_done(lip);
1191 void
1192 xfs_buf_dquot_io_fail(
1193 struct xfs_buf *bp)
1195 struct xfs_log_item *lip;
1197 spin_lock(&bp->b_mount->m_ail->ail_lock);
1198 list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
1199 xfs_set_li_failed(lip, bp);
1200 spin_unlock(&bp->b_mount->m_ail->ail_lock);
1203 /* Check incore dquot for errors before we flush. */
1204 static xfs_failaddr_t
1205 xfs_qm_dqflush_check(
1206 struct xfs_dquot *dqp)
1208 xfs_dqtype_t type = xfs_dquot_type(dqp);
1210 if (type != XFS_DQTYPE_USER &&
1211 type != XFS_DQTYPE_GROUP &&
1212 type != XFS_DQTYPE_PROJ)
1213 return __this_address;
1215 if (dqp->q_id == 0)
1216 return NULL;
1218 if (dqp->q_blk.softlimit && dqp->q_blk.count > dqp->q_blk.softlimit &&
1219 !dqp->q_blk.timer)
1220 return __this_address;
1222 if (dqp->q_ino.softlimit && dqp->q_ino.count > dqp->q_ino.softlimit &&
1223 !dqp->q_ino.timer)
1224 return __this_address;
1226 if (dqp->q_rtb.softlimit && dqp->q_rtb.count > dqp->q_rtb.softlimit &&
1227 !dqp->q_rtb.timer)
1228 return __this_address;
1230 /* bigtime flag should never be set on root dquots */
1231 if (dqp->q_type & XFS_DQTYPE_BIGTIME) {
1232 if (!xfs_has_bigtime(dqp->q_mount))
1233 return __this_address;
1234 if (dqp->q_id == 0)
1235 return __this_address;
1238 return NULL;
1242 * Write a modified dquot to disk.
1243 * The dquot must be locked and the flush lock too taken by caller.
1244 * The flush lock will not be unlocked until the dquot reaches the disk,
1245 * but the dquot is free to be unlocked and modified by the caller
1246 * in the interim. Dquot is still locked on return. This behavior is
1247 * identical to that of inodes.
1250 xfs_qm_dqflush(
1251 struct xfs_dquot *dqp,
1252 struct xfs_buf **bpp)
1254 struct xfs_mount *mp = dqp->q_mount;
1255 struct xfs_log_item *lip = &dqp->q_logitem.qli_item;
1256 struct xfs_buf *bp;
1257 struct xfs_dqblk *dqblk;
1258 xfs_failaddr_t fa;
1259 int error;
1261 ASSERT(XFS_DQ_IS_LOCKED(dqp));
1262 ASSERT(!completion_done(&dqp->q_flush));
1264 trace_xfs_dqflush(dqp);
1266 *bpp = NULL;
1268 xfs_qm_dqunpin_wait(dqp);
1271 * Get the buffer containing the on-disk dquot
1273 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dqp->q_blkno,
1274 mp->m_quotainfo->qi_dqchunklen, XBF_TRYLOCK,
1275 &bp, &xfs_dquot_buf_ops);
1276 if (error == -EAGAIN)
1277 goto out_unlock;
1278 if (xfs_metadata_is_sick(error))
1279 xfs_dquot_mark_sick(dqp);
1280 if (error)
1281 goto out_abort;
1283 fa = xfs_qm_dqflush_check(dqp);
1284 if (fa) {
1285 xfs_alert(mp, "corrupt dquot ID 0x%x in memory at %pS",
1286 dqp->q_id, fa);
1287 xfs_buf_relse(bp);
1288 xfs_dquot_mark_sick(dqp);
1289 error = -EFSCORRUPTED;
1290 goto out_abort;
1293 /* Flush the incore dquot to the ondisk buffer. */
1294 dqblk = xfs_buf_offset(bp, dqp->q_bufoffset);
1295 xfs_dquot_to_disk(&dqblk->dd_diskdq, dqp);
1298 * Clear the dirty field and remember the flush lsn for later use.
1300 dqp->q_flags &= ~XFS_DQFLAG_DIRTY;
1302 xfs_trans_ail_copy_lsn(mp->m_ail, &dqp->q_logitem.qli_flush_lsn,
1303 &dqp->q_logitem.qli_item.li_lsn);
1306 * copy the lsn into the on-disk dquot now while we have the in memory
1307 * dquot here. This can't be done later in the write verifier as we
1308 * can't get access to the log item at that point in time.
1310 * We also calculate the CRC here so that the on-disk dquot in the
1311 * buffer always has a valid CRC. This ensures there is no possibility
1312 * of a dquot without an up-to-date CRC getting to disk.
1314 if (xfs_has_crc(mp)) {
1315 dqblk->dd_lsn = cpu_to_be64(dqp->q_logitem.qli_item.li_lsn);
1316 xfs_update_cksum((char *)dqblk, sizeof(struct xfs_dqblk),
1317 XFS_DQUOT_CRC_OFF);
1321 * Attach the dquot to the buffer so that we can remove this dquot from
1322 * the AIL and release the flush lock once the dquot is synced to disk.
1324 bp->b_flags |= _XBF_DQUOTS;
1325 list_add_tail(&dqp->q_logitem.qli_item.li_bio_list, &bp->b_li_list);
1328 * If the buffer is pinned then push on the log so we won't
1329 * get stuck waiting in the write for too long.
1331 if (xfs_buf_ispinned(bp)) {
1332 trace_xfs_dqflush_force(dqp);
1333 xfs_log_force(mp, 0);
1336 trace_xfs_dqflush_done(dqp);
1337 *bpp = bp;
1338 return 0;
1340 out_abort:
1341 dqp->q_flags &= ~XFS_DQFLAG_DIRTY;
1342 xfs_trans_ail_delete(lip, 0);
1343 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1344 out_unlock:
1345 xfs_dqfunlock(dqp);
1346 return error;
1350 * Lock two xfs_dquot structures.
1352 * To avoid deadlocks we always lock the quota structure with
1353 * the lowerd id first.
1355 void
1356 xfs_dqlock2(
1357 struct xfs_dquot *d1,
1358 struct xfs_dquot *d2)
1360 if (d1 && d2) {
1361 ASSERT(d1 != d2);
1362 if (d1->q_id > d2->q_id) {
1363 mutex_lock(&d2->q_qlock);
1364 mutex_lock_nested(&d1->q_qlock, XFS_QLOCK_NESTED);
1365 } else {
1366 mutex_lock(&d1->q_qlock);
1367 mutex_lock_nested(&d2->q_qlock, XFS_QLOCK_NESTED);
1369 } else if (d1) {
1370 mutex_lock(&d1->q_qlock);
1371 } else if (d2) {
1372 mutex_lock(&d2->q_qlock);
1376 static int
1377 xfs_dqtrx_cmp(
1378 const void *a,
1379 const void *b)
1381 const struct xfs_dqtrx *qa = a;
1382 const struct xfs_dqtrx *qb = b;
1384 if (qa->qt_dquot->q_id > qb->qt_dquot->q_id)
1385 return 1;
1386 if (qa->qt_dquot->q_id < qb->qt_dquot->q_id)
1387 return -1;
1388 return 0;
1391 void
1392 xfs_dqlockn(
1393 struct xfs_dqtrx *q)
1395 unsigned int i;
1397 BUILD_BUG_ON(XFS_QM_TRANS_MAXDQS > MAX_LOCKDEP_SUBCLASSES);
1399 /* Sort in order of dquot id, do not allow duplicates */
1400 for (i = 0; i < XFS_QM_TRANS_MAXDQS && q[i].qt_dquot != NULL; i++) {
1401 unsigned int j;
1403 for (j = 0; j < i; j++)
1404 ASSERT(q[i].qt_dquot != q[j].qt_dquot);
1406 if (i == 0)
1407 return;
1409 sort(q, i, sizeof(struct xfs_dqtrx), xfs_dqtrx_cmp, NULL);
1411 mutex_lock(&q[0].qt_dquot->q_qlock);
1412 for (i = 1; i < XFS_QM_TRANS_MAXDQS && q[i].qt_dquot != NULL; i++)
1413 mutex_lock_nested(&q[i].qt_dquot->q_qlock,
1414 XFS_QLOCK_NESTED + i - 1);
1417 int __init
1418 xfs_qm_init(void)
1420 xfs_dquot_cache = kmem_cache_create("xfs_dquot",
1421 sizeof(struct xfs_dquot),
1422 0, 0, NULL);
1423 if (!xfs_dquot_cache)
1424 goto out;
1426 xfs_dqtrx_cache = kmem_cache_create("xfs_dqtrx",
1427 sizeof(struct xfs_dquot_acct),
1428 0, 0, NULL);
1429 if (!xfs_dqtrx_cache)
1430 goto out_free_dquot_cache;
1432 return 0;
1434 out_free_dquot_cache:
1435 kmem_cache_destroy(xfs_dquot_cache);
1436 out:
1437 return -ENOMEM;
1440 void
1441 xfs_qm_exit(void)
1443 kmem_cache_destroy(xfs_dqtrx_cache);
1444 kmem_cache_destroy(xfs_dquot_cache);