1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
17 #include "xfs_bmap_util.h"
19 #include "xfs_dir2_priv.h"
20 #include "xfs_ioctl.h"
21 #include "xfs_trace.h"
23 #include "xfs_icache.h"
25 #include "xfs_iomap.h"
26 #include "xfs_reflink.h"
29 #include <linux/dax.h>
30 #include <linux/falloc.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mman.h>
33 #include <linux/fadvise.h>
34 #include <linux/mount.h>
36 static const struct vm_operations_struct xfs_file_vm_ops
;
39 * Decide if the given file range is aligned to the size of the fundamental
40 * allocation unit for the file.
43 xfs_is_falloc_aligned(
48 unsigned int alloc_unit
= xfs_inode_alloc_unitsize(ip
);
50 if (!is_power_of_2(alloc_unit
))
51 return isaligned_64(pos
, alloc_unit
) &&
52 isaligned_64(len
, alloc_unit
);
54 return !((pos
| len
) & (alloc_unit
- 1));
58 * Fsync operations on directories are much simpler than on regular files,
59 * as there is no file data to flush, and thus also no need for explicit
60 * cache flush operations, and there are no non-transaction metadata updates
61 * on directories either.
70 struct xfs_inode
*ip
= XFS_I(file
->f_mapping
->host
);
72 trace_xfs_dir_fsync(ip
);
73 return xfs_log_force_inode(ip
);
81 if (!xfs_ipincount(ip
))
83 if (datasync
&& !(ip
->i_itemp
->ili_fsync_fields
& ~XFS_ILOG_TIMESTAMP
))
85 return ip
->i_itemp
->ili_commit_seq
;
89 * All metadata updates are logged, which means that we just have to flush the
90 * log up to the latest LSN that touched the inode.
92 * If we have concurrent fsync/fdatasync() calls, we need them to all block on
93 * the log force before we clear the ili_fsync_fields field. This ensures that
94 * we don't get a racing sync operation that does not wait for the metadata to
95 * hit the journal before returning. If we race with clearing ili_fsync_fields,
96 * then all that will happen is the log force will do nothing as the lsn will
97 * already be on disk. We can't race with setting ili_fsync_fields because that
98 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
99 * shared until after the ili_fsync_fields is cleared.
103 struct xfs_inode
*ip
,
110 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
111 seq
= xfs_fsync_seq(ip
, datasync
);
113 error
= xfs_log_force_seq(ip
->i_mount
, seq
, XFS_LOG_SYNC
,
116 spin_lock(&ip
->i_itemp
->ili_lock
);
117 ip
->i_itemp
->ili_fsync_fields
= 0;
118 spin_unlock(&ip
->i_itemp
->ili_lock
);
120 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
131 struct xfs_inode
*ip
= XFS_I(file
->f_mapping
->host
);
132 struct xfs_mount
*mp
= ip
->i_mount
;
136 trace_xfs_file_fsync(ip
);
138 error
= file_write_and_wait_range(file
, start
, end
);
142 if (xfs_is_shutdown(mp
))
145 xfs_iflags_clear(ip
, XFS_ITRUNCATED
);
148 * If we have an RT and/or log subvolume we need to make sure to flush
149 * the write cache the device used for file data first. This is to
150 * ensure newly written file data make it to disk before logging the new
151 * inode size in case of an extending write.
153 if (XFS_IS_REALTIME_INODE(ip
))
154 error
= blkdev_issue_flush(mp
->m_rtdev_targp
->bt_bdev
);
155 else if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
156 error
= blkdev_issue_flush(mp
->m_ddev_targp
->bt_bdev
);
159 * Any inode that has dirty modifications in the log is pinned. The
160 * racy check here for a pinned inode will not catch modifications
161 * that happen concurrently to the fsync call, but fsync semantics
162 * only require to sync previously completed I/O.
164 if (xfs_ipincount(ip
)) {
165 err2
= xfs_fsync_flush_log(ip
, datasync
, &log_flushed
);
171 * If we only have a single device, and the log force about was
172 * a no-op we might have to flush the data device cache here.
173 * This can only happen for fdatasync/O_DSYNC if we were overwriting
174 * an already allocated file and thus do not have any metadata to
177 if (!log_flushed
&& !XFS_IS_REALTIME_INODE(ip
) &&
178 mp
->m_logdev_targp
== mp
->m_ddev_targp
) {
179 err2
= blkdev_issue_flush(mp
->m_ddev_targp
->bt_bdev
);
190 unsigned int lock_mode
)
192 struct xfs_inode
*ip
= XFS_I(file_inode(iocb
->ki_filp
));
194 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
195 if (!xfs_ilock_nowait(ip
, lock_mode
))
198 xfs_ilock(ip
, lock_mode
);
205 xfs_ilock_iocb_for_write(
207 unsigned int *lock_mode
)
210 struct xfs_inode
*ip
= XFS_I(file_inode(iocb
->ki_filp
));
212 ret
= xfs_ilock_iocb(iocb
, *lock_mode
);
217 * If a reflink remap is in progress we always need to take the iolock
218 * exclusively to wait for it to finish.
220 if (*lock_mode
== XFS_IOLOCK_SHARED
&&
221 xfs_iflags_test(ip
, XFS_IREMAPPING
)) {
222 xfs_iunlock(ip
, *lock_mode
);
223 *lock_mode
= XFS_IOLOCK_EXCL
;
224 return xfs_ilock_iocb(iocb
, *lock_mode
);
235 struct xfs_inode
*ip
= XFS_I(file_inode(iocb
->ki_filp
));
238 trace_xfs_file_direct_read(iocb
, to
);
240 if (!iov_iter_count(to
))
241 return 0; /* skip atime */
243 file_accessed(iocb
->ki_filp
);
245 ret
= xfs_ilock_iocb(iocb
, XFS_IOLOCK_SHARED
);
248 ret
= iomap_dio_rw(iocb
, to
, &xfs_read_iomap_ops
, NULL
, 0, NULL
, 0);
249 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
254 static noinline ssize_t
259 struct xfs_inode
*ip
= XFS_I(iocb
->ki_filp
->f_mapping
->host
);
262 trace_xfs_file_dax_read(iocb
, to
);
264 if (!iov_iter_count(to
))
265 return 0; /* skip atime */
267 ret
= xfs_ilock_iocb(iocb
, XFS_IOLOCK_SHARED
);
270 ret
= dax_iomap_rw(iocb
, to
, &xfs_read_iomap_ops
);
271 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
273 file_accessed(iocb
->ki_filp
);
278 xfs_file_buffered_read(
282 struct xfs_inode
*ip
= XFS_I(file_inode(iocb
->ki_filp
));
285 trace_xfs_file_buffered_read(iocb
, to
);
287 ret
= xfs_ilock_iocb(iocb
, XFS_IOLOCK_SHARED
);
290 ret
= generic_file_read_iter(iocb
, to
);
291 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
301 struct inode
*inode
= file_inode(iocb
->ki_filp
);
302 struct xfs_mount
*mp
= XFS_I(inode
)->i_mount
;
305 XFS_STATS_INC(mp
, xs_read_calls
);
307 if (xfs_is_shutdown(mp
))
311 ret
= xfs_file_dax_read(iocb
, to
);
312 else if (iocb
->ki_flags
& IOCB_DIRECT
)
313 ret
= xfs_file_dio_read(iocb
, to
);
315 ret
= xfs_file_buffered_read(iocb
, to
);
318 XFS_STATS_ADD(mp
, xs_read_bytes
, ret
);
323 xfs_file_splice_read(
326 struct pipe_inode_info
*pipe
,
330 struct inode
*inode
= file_inode(in
);
331 struct xfs_inode
*ip
= XFS_I(inode
);
332 struct xfs_mount
*mp
= ip
->i_mount
;
335 XFS_STATS_INC(mp
, xs_read_calls
);
337 if (xfs_is_shutdown(mp
))
340 trace_xfs_file_splice_read(ip
, *ppos
, len
);
342 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
343 ret
= filemap_splice_read(in
, ppos
, pipe
, len
, flags
);
344 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
346 XFS_STATS_ADD(mp
, xs_read_bytes
, ret
);
351 * Take care of zeroing post-EOF blocks when they might exist.
353 * Returns 0 if successfully, a negative error for a failure, or 1 if this
354 * function dropped the iolock and reacquired it exclusively and the caller
355 * needs to restart the write sanity checks.
358 xfs_file_write_zero_eof(
360 struct iov_iter
*from
,
361 unsigned int *iolock
,
365 struct xfs_inode
*ip
= XFS_I(iocb
->ki_filp
->f_mapping
->host
);
370 * We need to serialise against EOF updates that occur in IO completions
371 * here. We want to make sure that nobody is changing the size while
372 * we do this check until we have placed an IO barrier (i.e. hold
373 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. The
374 * spinlock effectively forms a memory barrier once we have
375 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and
376 * hence be able to correctly determine if we need to run zeroing.
378 spin_lock(&ip
->i_flags_lock
);
379 isize
= i_size_read(VFS_I(ip
));
380 if (iocb
->ki_pos
<= isize
) {
381 spin_unlock(&ip
->i_flags_lock
);
384 spin_unlock(&ip
->i_flags_lock
);
386 if (iocb
->ki_flags
& IOCB_NOWAIT
)
391 * If zeroing is needed and we are currently holding the iolock
392 * shared, we need to update it to exclusive which implies
393 * having to redo all checks before.
395 if (*iolock
== XFS_IOLOCK_SHARED
) {
396 xfs_iunlock(ip
, *iolock
);
397 *iolock
= XFS_IOLOCK_EXCL
;
398 xfs_ilock(ip
, *iolock
);
399 iov_iter_reexpand(from
, count
);
403 * We now have an IO submission barrier in place, but AIO can do
404 * EOF updates during IO completion and hence we now need to
405 * wait for all of them to drain. Non-AIO DIO will have drained
406 * before we are given the XFS_IOLOCK_EXCL, and so for most
407 * cases this wait is a no-op.
409 inode_dio_wait(VFS_I(ip
));
414 trace_xfs_zero_eof(ip
, isize
, iocb
->ki_pos
- isize
);
416 xfs_ilock(ip
, XFS_MMAPLOCK_EXCL
);
417 error
= xfs_zero_range(ip
, isize
, iocb
->ki_pos
- isize
, NULL
);
418 xfs_iunlock(ip
, XFS_MMAPLOCK_EXCL
);
424 * Common pre-write limit and setup checks.
426 * Called with the iolock held either shared and exclusive according to
427 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
428 * if called for a direct write beyond i_size.
431 xfs_file_write_checks(
433 struct iov_iter
*from
,
434 unsigned int *iolock
)
436 struct inode
*inode
= iocb
->ki_filp
->f_mapping
->host
;
437 size_t count
= iov_iter_count(from
);
438 bool drained_dio
= false;
442 error
= generic_write_checks(iocb
, from
);
446 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
447 error
= break_layout(inode
, false);
448 if (error
== -EWOULDBLOCK
)
451 error
= xfs_break_layouts(inode
, iolock
, BREAK_WRITE
);
458 * For changing security info in file_remove_privs() we need i_rwsem
461 if (*iolock
== XFS_IOLOCK_SHARED
&& !IS_NOSEC(inode
)) {
462 xfs_iunlock(XFS_I(inode
), *iolock
);
463 *iolock
= XFS_IOLOCK_EXCL
;
464 error
= xfs_ilock_iocb(iocb
, *iolock
);
473 * If the offset is beyond the size of the file, we need to zero all
474 * blocks that fall between the existing EOF and the start of this
477 * We can do an unlocked check for i_size here safely as I/O completion
478 * can only extend EOF. Truncate is locked out at this point, so the
479 * EOF can not move backwards, only forwards. Hence we only need to take
480 * the slow path when we are at or beyond the current EOF.
482 if (iocb
->ki_pos
> i_size_read(inode
)) {
483 error
= xfs_file_write_zero_eof(iocb
, from
, iolock
, count
,
491 return kiocb_modified(iocb
);
495 xfs_dio_write_end_io(
501 struct inode
*inode
= file_inode(iocb
->ki_filp
);
502 struct xfs_inode
*ip
= XFS_I(inode
);
503 loff_t offset
= iocb
->ki_pos
;
504 unsigned int nofs_flag
;
506 trace_xfs_end_io_direct_write(ip
, offset
, size
);
508 if (xfs_is_shutdown(ip
->i_mount
))
517 * Capture amount written on completion as we can't reliably account
518 * for it on submission.
520 XFS_STATS_ADD(ip
->i_mount
, xs_write_bytes
, size
);
523 * We can allocate memory here while doing writeback on behalf of
524 * memory reclaim. To avoid memory allocation deadlocks set the
525 * task-wide nofs context for the following operations.
527 nofs_flag
= memalloc_nofs_save();
529 if (flags
& IOMAP_DIO_COW
) {
530 error
= xfs_reflink_end_cow(ip
, offset
, size
);
536 * Unwritten conversion updates the in-core isize after extent
537 * conversion but before updating the on-disk size. Updating isize any
538 * earlier allows a racing dio read to find unwritten extents before
539 * they are converted.
541 if (flags
& IOMAP_DIO_UNWRITTEN
) {
542 error
= xfs_iomap_write_unwritten(ip
, offset
, size
, true);
547 * We need to update the in-core inode size here so that we don't end up
548 * with the on-disk inode size being outside the in-core inode size. We
549 * have no other method of updating EOF for AIO, so always do it here
552 * We need to lock the test/set EOF update as we can be racing with
553 * other IO completions here to update the EOF. Failing to serialise
554 * here can result in EOF moving backwards and Bad Things Happen when
557 * As IO completion only ever extends EOF, we can do an unlocked check
558 * here to avoid taking the spinlock. If we land within the current EOF,
559 * then we do not need to do an extending update at all, and we don't
560 * need to take the lock to check this. If we race with an update moving
561 * EOF, then we'll either still be beyond EOF and need to take the lock,
562 * or we'll be within EOF and we don't need to take it at all.
564 if (offset
+ size
<= i_size_read(inode
))
567 spin_lock(&ip
->i_flags_lock
);
568 if (offset
+ size
> i_size_read(inode
)) {
569 i_size_write(inode
, offset
+ size
);
570 spin_unlock(&ip
->i_flags_lock
);
571 error
= xfs_setfilesize(ip
, offset
, size
);
573 spin_unlock(&ip
->i_flags_lock
);
577 memalloc_nofs_restore(nofs_flag
);
581 static const struct iomap_dio_ops xfs_dio_write_ops
= {
582 .end_io
= xfs_dio_write_end_io
,
586 * Handle block aligned direct I/O writes
588 static noinline ssize_t
589 xfs_file_dio_write_aligned(
590 struct xfs_inode
*ip
,
592 struct iov_iter
*from
)
594 unsigned int iolock
= XFS_IOLOCK_SHARED
;
597 ret
= xfs_ilock_iocb_for_write(iocb
, &iolock
);
600 ret
= xfs_file_write_checks(iocb
, from
, &iolock
);
605 * We don't need to hold the IOLOCK exclusively across the IO, so demote
606 * the iolock back to shared if we had to take the exclusive lock in
607 * xfs_file_write_checks() for other reasons.
609 if (iolock
== XFS_IOLOCK_EXCL
) {
610 xfs_ilock_demote(ip
, XFS_IOLOCK_EXCL
);
611 iolock
= XFS_IOLOCK_SHARED
;
613 trace_xfs_file_direct_write(iocb
, from
);
614 ret
= iomap_dio_rw(iocb
, from
, &xfs_direct_write_iomap_ops
,
615 &xfs_dio_write_ops
, 0, NULL
, 0);
618 xfs_iunlock(ip
, iolock
);
623 * Handle block unaligned direct I/O writes
625 * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
626 * them to be done in parallel with reads and other direct I/O writes. However,
627 * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
628 * to do sub-block zeroing and that requires serialisation against other direct
629 * I/O to the same block. In this case we need to serialise the submission of
630 * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
631 * In the case where sub-block zeroing is not required, we can do concurrent
632 * sub-block dios to the same block successfully.
634 * Optimistically submit the I/O using the shared lock first, but use the
635 * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
636 * if block allocation or partial block zeroing would be required. In that case
637 * we try again with the exclusive lock.
639 static noinline ssize_t
640 xfs_file_dio_write_unaligned(
641 struct xfs_inode
*ip
,
643 struct iov_iter
*from
)
645 size_t isize
= i_size_read(VFS_I(ip
));
646 size_t count
= iov_iter_count(from
);
647 unsigned int iolock
= XFS_IOLOCK_SHARED
;
648 unsigned int flags
= IOMAP_DIO_OVERWRITE_ONLY
;
652 * Extending writes need exclusivity because of the sub-block zeroing
653 * that the DIO code always does for partial tail blocks beyond EOF, so
654 * don't even bother trying the fast path in this case.
656 if (iocb
->ki_pos
> isize
|| iocb
->ki_pos
+ count
>= isize
) {
657 if (iocb
->ki_flags
& IOCB_NOWAIT
)
660 iolock
= XFS_IOLOCK_EXCL
;
661 flags
= IOMAP_DIO_FORCE_WAIT
;
664 ret
= xfs_ilock_iocb_for_write(iocb
, &iolock
);
669 * We can't properly handle unaligned direct I/O to reflink files yet,
670 * as we can't unshare a partial block.
672 if (xfs_is_cow_inode(ip
)) {
673 trace_xfs_reflink_bounce_dio_write(iocb
, from
);
678 ret
= xfs_file_write_checks(iocb
, from
, &iolock
);
683 * If we are doing exclusive unaligned I/O, this must be the only I/O
684 * in-flight. Otherwise we risk data corruption due to unwritten extent
685 * conversions from the AIO end_io handler. Wait for all other I/O to
688 if (flags
& IOMAP_DIO_FORCE_WAIT
)
689 inode_dio_wait(VFS_I(ip
));
691 trace_xfs_file_direct_write(iocb
, from
);
692 ret
= iomap_dio_rw(iocb
, from
, &xfs_direct_write_iomap_ops
,
693 &xfs_dio_write_ops
, flags
, NULL
, 0);
696 * Retry unaligned I/O with exclusive blocking semantics if the DIO
697 * layer rejected it for mapping or locking reasons. If we are doing
698 * nonblocking user I/O, propagate the error.
700 if (ret
== -EAGAIN
&& !(iocb
->ki_flags
& IOCB_NOWAIT
)) {
701 ASSERT(flags
& IOMAP_DIO_OVERWRITE_ONLY
);
702 xfs_iunlock(ip
, iolock
);
703 goto retry_exclusive
;
708 xfs_iunlock(ip
, iolock
);
715 struct iov_iter
*from
)
717 struct xfs_inode
*ip
= XFS_I(file_inode(iocb
->ki_filp
));
718 struct xfs_buftarg
*target
= xfs_inode_buftarg(ip
);
719 size_t count
= iov_iter_count(from
);
721 /* direct I/O must be aligned to device logical sector size */
722 if ((iocb
->ki_pos
| count
) & target
->bt_logical_sectormask
)
724 if ((iocb
->ki_pos
| count
) & ip
->i_mount
->m_blockmask
)
725 return xfs_file_dio_write_unaligned(ip
, iocb
, from
);
726 return xfs_file_dio_write_aligned(ip
, iocb
, from
);
729 static noinline ssize_t
732 struct iov_iter
*from
)
734 struct inode
*inode
= iocb
->ki_filp
->f_mapping
->host
;
735 struct xfs_inode
*ip
= XFS_I(inode
);
736 unsigned int iolock
= XFS_IOLOCK_EXCL
;
737 ssize_t ret
, error
= 0;
740 ret
= xfs_ilock_iocb(iocb
, iolock
);
743 ret
= xfs_file_write_checks(iocb
, from
, &iolock
);
749 trace_xfs_file_dax_write(iocb
, from
);
750 ret
= dax_iomap_rw(iocb
, from
, &xfs_dax_write_iomap_ops
);
751 if (ret
> 0 && iocb
->ki_pos
> i_size_read(inode
)) {
752 i_size_write(inode
, iocb
->ki_pos
);
753 error
= xfs_setfilesize(ip
, pos
, ret
);
757 xfs_iunlock(ip
, iolock
);
762 XFS_STATS_ADD(ip
->i_mount
, xs_write_bytes
, ret
);
764 /* Handle various SYNC-type writes */
765 ret
= generic_write_sync(iocb
, ret
);
771 xfs_file_buffered_write(
773 struct iov_iter
*from
)
775 struct inode
*inode
= iocb
->ki_filp
->f_mapping
->host
;
776 struct xfs_inode
*ip
= XFS_I(inode
);
778 bool cleared_space
= false;
782 iolock
= XFS_IOLOCK_EXCL
;
783 ret
= xfs_ilock_iocb(iocb
, iolock
);
787 ret
= xfs_file_write_checks(iocb
, from
, &iolock
);
791 trace_xfs_file_buffered_write(iocb
, from
);
792 ret
= iomap_file_buffered_write(iocb
, from
,
793 &xfs_buffered_write_iomap_ops
, NULL
);
796 * If we hit a space limit, try to free up some lingering preallocated
797 * space before returning an error. In the case of ENOSPC, first try to
798 * write back all dirty inodes to free up some of the excess reserved
799 * metadata space. This reduces the chances that the eofblocks scan
800 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
801 * also behaves as a filter to prevent too many eofblocks scans from
802 * running at the same time. Use a synchronous scan to increase the
803 * effectiveness of the scan.
805 if (ret
== -EDQUOT
&& !cleared_space
) {
806 xfs_iunlock(ip
, iolock
);
807 xfs_blockgc_free_quota(ip
, XFS_ICWALK_FLAG_SYNC
);
808 cleared_space
= true;
810 } else if (ret
== -ENOSPC
&& !cleared_space
) {
811 struct xfs_icwalk icw
= {0};
813 cleared_space
= true;
814 xfs_flush_inodes(ip
->i_mount
);
816 xfs_iunlock(ip
, iolock
);
817 icw
.icw_flags
= XFS_ICWALK_FLAG_SYNC
;
818 xfs_blockgc_free_space(ip
->i_mount
, &icw
);
824 xfs_iunlock(ip
, iolock
);
827 XFS_STATS_ADD(ip
->i_mount
, xs_write_bytes
, ret
);
828 /* Handle various SYNC-type writes */
829 ret
= generic_write_sync(iocb
, ret
);
837 struct iov_iter
*from
)
839 struct inode
*inode
= iocb
->ki_filp
->f_mapping
->host
;
840 struct xfs_inode
*ip
= XFS_I(inode
);
842 size_t ocount
= iov_iter_count(from
);
844 XFS_STATS_INC(ip
->i_mount
, xs_write_calls
);
849 if (xfs_is_shutdown(ip
->i_mount
))
853 return xfs_file_dax_write(iocb
, from
);
855 if (iocb
->ki_flags
& IOCB_ATOMIC
) {
857 * Currently only atomic writing of a single FS block is
858 * supported. It would be possible to atomic write smaller than
859 * a FS block, but there is no requirement to support this.
860 * Note that iomap also does not support this yet.
862 if (ocount
!= ip
->i_mount
->m_sb
.sb_blocksize
)
864 ret
= generic_atomic_write_valid(iocb
, from
);
869 if (iocb
->ki_flags
& IOCB_DIRECT
) {
871 * Allow a directio write to fall back to a buffered
872 * write *only* in the case that we're doing a reflink
873 * CoW. In all other directio scenarios we do not
874 * allow an operation to fall back to buffered mode.
876 ret
= xfs_file_dio_write(iocb
, from
);
881 return xfs_file_buffered_write(iocb
, from
);
884 /* Does this file, inode, or mount want synchronous writes? */
885 static inline bool xfs_file_sync_writes(struct file
*filp
)
887 struct xfs_inode
*ip
= XFS_I(file_inode(filp
));
889 if (xfs_has_wsync(ip
->i_mount
))
891 if (filp
->f_flags
& (__O_SYNC
| O_DSYNC
))
893 if (IS_SYNC(file_inode(filp
)))
907 struct inode
*inode
= file_inode(file
);
909 if ((mode
& FALLOC_FL_KEEP_SIZE
) || offset
+ len
<= i_size_read(inode
))
911 *new_size
= offset
+ len
;
912 return inode_newsize_ok(inode
, *new_size
);
920 struct iattr iattr
= {
921 .ia_valid
= ATTR_SIZE
,
927 return xfs_vn_setattr_size(file_mnt_idmap(file
), file_dentry(file
),
932 xfs_falloc_collapse_range(
937 struct inode
*inode
= file_inode(file
);
938 loff_t new_size
= i_size_read(inode
) - len
;
941 if (!xfs_is_falloc_aligned(XFS_I(inode
), offset
, len
))
945 * There is no need to overlap collapse range with EOF, in which case it
946 * is effectively a truncate operation
948 if (offset
+ len
>= i_size_read(inode
))
951 error
= xfs_collapse_file_space(XFS_I(inode
), offset
, len
);
954 return xfs_falloc_setsize(file
, new_size
);
958 xfs_falloc_insert_range(
963 struct inode
*inode
= file_inode(file
);
964 loff_t isize
= i_size_read(inode
);
967 if (!xfs_is_falloc_aligned(XFS_I(inode
), offset
, len
))
971 * New inode size must not exceed ->s_maxbytes, accounting for
972 * possible signed overflow.
974 if (inode
->i_sb
->s_maxbytes
- isize
< len
)
977 /* Offset should be less than i_size */
981 error
= xfs_falloc_setsize(file
, isize
+ len
);
986 * Perform hole insertion now that the file size has been updated so
987 * that if we crash during the operation we don't leave shifted extents
988 * past EOF and hence losing access to the data that is contained within
991 return xfs_insert_file_space(XFS_I(inode
), offset
, len
);
995 * Punch a hole and prealloc the range. We use a hole punch rather than
996 * unwritten extent conversion for two reasons:
998 * 1.) Hole punch handles partial block zeroing for us.
999 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued by
1000 * virtue of the hole punch.
1003 xfs_falloc_zero_range(
1009 struct inode
*inode
= file_inode(file
);
1010 unsigned int blksize
= i_blocksize(inode
);
1011 loff_t new_size
= 0;
1014 trace_xfs_zero_file_space(XFS_I(inode
));
1016 error
= xfs_falloc_newsize(file
, mode
, offset
, len
, &new_size
);
1020 error
= xfs_free_file_space(XFS_I(inode
), offset
, len
);
1024 len
= round_up(offset
+ len
, blksize
) - round_down(offset
, blksize
);
1025 offset
= round_down(offset
, blksize
);
1026 error
= xfs_alloc_file_space(XFS_I(inode
), offset
, len
);
1029 return xfs_falloc_setsize(file
, new_size
);
1033 xfs_falloc_unshare_range(
1039 struct inode
*inode
= file_inode(file
);
1040 loff_t new_size
= 0;
1043 error
= xfs_falloc_newsize(file
, mode
, offset
, len
, &new_size
);
1047 error
= xfs_reflink_unshare(XFS_I(inode
), offset
, len
);
1051 error
= xfs_alloc_file_space(XFS_I(inode
), offset
, len
);
1054 return xfs_falloc_setsize(file
, new_size
);
1058 xfs_falloc_allocate_range(
1064 struct inode
*inode
= file_inode(file
);
1065 loff_t new_size
= 0;
1069 * If always_cow mode we can't use preallocations and thus should not
1072 if (xfs_is_always_cow_inode(XFS_I(inode
)))
1075 error
= xfs_falloc_newsize(file
, mode
, offset
, len
, &new_size
);
1079 error
= xfs_alloc_file_space(XFS_I(inode
), offset
, len
);
1082 return xfs_falloc_setsize(file
, new_size
);
1085 #define XFS_FALLOC_FL_SUPPORTED \
1086 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
1087 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
1088 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
1097 struct inode
*inode
= file_inode(file
);
1098 struct xfs_inode
*ip
= XFS_I(inode
);
1100 uint iolock
= XFS_IOLOCK_EXCL
| XFS_MMAPLOCK_EXCL
;
1102 if (!S_ISREG(inode
->i_mode
))
1104 if (mode
& ~XFS_FALLOC_FL_SUPPORTED
)
1107 xfs_ilock(ip
, iolock
);
1108 error
= xfs_break_layouts(inode
, &iolock
, BREAK_UNMAP
);
1113 * Must wait for all AIO to complete before we continue as AIO can
1114 * change the file size on completion without holding any locks we
1115 * currently hold. We must do this first because AIO can update both
1116 * the on disk and in memory inode sizes, and the operations that follow
1117 * require the in-memory size to be fully up-to-date.
1119 inode_dio_wait(inode
);
1121 error
= file_modified(file
);
1125 switch (mode
& FALLOC_FL_MODE_MASK
) {
1126 case FALLOC_FL_PUNCH_HOLE
:
1127 error
= xfs_free_file_space(ip
, offset
, len
);
1129 case FALLOC_FL_COLLAPSE_RANGE
:
1130 error
= xfs_falloc_collapse_range(file
, offset
, len
);
1132 case FALLOC_FL_INSERT_RANGE
:
1133 error
= xfs_falloc_insert_range(file
, offset
, len
);
1135 case FALLOC_FL_ZERO_RANGE
:
1136 error
= xfs_falloc_zero_range(file
, mode
, offset
, len
);
1138 case FALLOC_FL_UNSHARE_RANGE
:
1139 error
= xfs_falloc_unshare_range(file
, mode
, offset
, len
);
1141 case FALLOC_FL_ALLOCATE_RANGE
:
1142 error
= xfs_falloc_allocate_range(file
, mode
, offset
, len
);
1145 error
= -EOPNOTSUPP
;
1149 if (!error
&& xfs_file_sync_writes(file
))
1150 error
= xfs_log_force_inode(ip
);
1153 xfs_iunlock(ip
, iolock
);
1164 struct xfs_inode
*ip
= XFS_I(file_inode(file
));
1169 * Operations creating pages in page cache need protection from hole
1170 * punching and similar ops
1172 if (advice
== POSIX_FADV_WILLNEED
) {
1173 lockflags
= XFS_IOLOCK_SHARED
;
1174 xfs_ilock(ip
, lockflags
);
1176 ret
= generic_fadvise(file
, start
, end
, advice
);
1178 xfs_iunlock(ip
, lockflags
);
1183 xfs_file_remap_range(
1184 struct file
*file_in
,
1186 struct file
*file_out
,
1189 unsigned int remap_flags
)
1191 struct inode
*inode_in
= file_inode(file_in
);
1192 struct xfs_inode
*src
= XFS_I(inode_in
);
1193 struct inode
*inode_out
= file_inode(file_out
);
1194 struct xfs_inode
*dest
= XFS_I(inode_out
);
1195 struct xfs_mount
*mp
= src
->i_mount
;
1196 loff_t remapped
= 0;
1197 xfs_extlen_t cowextsize
;
1200 if (remap_flags
& ~(REMAP_FILE_DEDUP
| REMAP_FILE_ADVISORY
))
1203 if (!xfs_has_reflink(mp
))
1206 if (xfs_is_shutdown(mp
))
1209 /* Prepare and then clone file data. */
1210 ret
= xfs_reflink_remap_prep(file_in
, pos_in
, file_out
, pos_out
,
1212 if (ret
|| len
== 0)
1215 trace_xfs_reflink_remap_range(src
, pos_in
, len
, dest
, pos_out
);
1217 ret
= xfs_reflink_remap_blocks(src
, pos_in
, dest
, pos_out
, len
,
1223 * Carry the cowextsize hint from src to dest if we're sharing the
1224 * entire source file to the entire destination file, the source file
1225 * has a cowextsize hint, and the destination file does not.
1228 if (pos_in
== 0 && len
== i_size_read(inode_in
) &&
1229 (src
->i_diflags2
& XFS_DIFLAG2_COWEXTSIZE
) &&
1230 pos_out
== 0 && len
>= i_size_read(inode_out
) &&
1231 !(dest
->i_diflags2
& XFS_DIFLAG2_COWEXTSIZE
))
1232 cowextsize
= src
->i_cowextsize
;
1234 ret
= xfs_reflink_update_dest(dest
, pos_out
+ len
, cowextsize
,
1239 if (xfs_file_sync_writes(file_in
) || xfs_file_sync_writes(file_out
))
1240 xfs_log_force_inode(dest
);
1242 xfs_iunlock2_remapping(src
, dest
);
1244 trace_xfs_reflink_remap_range_error(dest
, ret
, _RET_IP_
);
1245 return remapped
> 0 ? remapped
: ret
;
1250 struct inode
*inode
,
1253 if (xfs_is_shutdown(XFS_M(inode
->i_sb
)))
1255 file
->f_mode
|= FMODE_NOWAIT
| FMODE_CAN_ODIRECT
;
1256 if (xfs_inode_can_atomicwrite(XFS_I(inode
)))
1257 file
->f_mode
|= FMODE_CAN_ATOMIC_WRITE
;
1258 return generic_file_open(inode
, file
);
1263 struct inode
*inode
,
1266 struct xfs_inode
*ip
= XFS_I(inode
);
1270 if (xfs_is_shutdown(ip
->i_mount
))
1272 error
= generic_file_open(inode
, file
);
1277 * If there are any blocks, read-ahead block 0 as we're almost
1278 * certain to have the next operation be a read there.
1280 mode
= xfs_ilock_data_map_shared(ip
);
1281 if (ip
->i_df
.if_nextents
> 0)
1282 error
= xfs_dir3_data_readahead(ip
, 0, 0);
1283 xfs_iunlock(ip
, mode
);
1288 * Don't bother propagating errors. We're just doing cleanup, and the caller
1289 * ignores the return value anyway.
1293 struct inode
*inode
,
1296 struct xfs_inode
*ip
= XFS_I(inode
);
1297 struct xfs_mount
*mp
= ip
->i_mount
;
1300 * If this is a read-only mount or the file system has been shut down,
1301 * don't generate I/O.
1303 if (xfs_is_readonly(mp
) || xfs_is_shutdown(mp
))
1307 * If we previously truncated this file and removed old data in the
1308 * process, we want to initiate "early" writeout on the last close.
1309 * This is an attempt to combat the notorious NULL files problem which
1310 * is particularly noticeable from a truncate down, buffered (re-)write
1311 * (delalloc), followed by a crash. What we are effectively doing here
1312 * is significantly reducing the time window where we'd otherwise be
1313 * exposed to that problem.
1315 if (xfs_iflags_test_and_clear(ip
, XFS_ITRUNCATED
)) {
1316 xfs_iflags_clear(ip
, XFS_EOFBLOCKS_RELEASED
);
1317 if (ip
->i_delayed_blks
> 0)
1318 filemap_flush(inode
->i_mapping
);
1322 * XFS aggressively preallocates post-EOF space to generate contiguous
1323 * allocations for writers that append to the end of the file.
1325 * To support workloads that close and reopen the file frequently, these
1326 * preallocations usually persist after a close unless it is the first
1327 * close for the inode. This is a tradeoff to generate tightly packed
1328 * data layouts for unpacking tarballs or similar archives that write
1329 * one file after another without going back to it while keeping the
1330 * preallocation for files that have recurring open/write/close cycles.
1332 * This heuristic is skipped for inodes with the append-only flag as
1333 * that flag is rather pointless for inodes written only once.
1335 * There is no point in freeing blocks here for open but unlinked files
1336 * as they will be taken care of by the inactivation path soon.
1338 * When releasing a read-only context, don't flush data or trim post-EOF
1339 * blocks. This avoids open/read/close workloads from removing EOF
1340 * blocks that other writers depend upon to reduce fragmentation.
1342 * If we can't get the iolock just skip truncating the blocks past EOF
1343 * because we could deadlock with the mmap_lock otherwise. We'll get
1344 * another chance to drop them once the last reference to the inode is
1345 * dropped, so we'll never leak blocks permanently.
1347 if (inode
->i_nlink
&&
1348 (file
->f_mode
& FMODE_WRITE
) &&
1349 !(ip
->i_diflags
& XFS_DIFLAG_APPEND
) &&
1350 !xfs_iflags_test(ip
, XFS_EOFBLOCKS_RELEASED
) &&
1351 xfs_ilock_nowait(ip
, XFS_IOLOCK_EXCL
)) {
1352 if (xfs_can_free_eofblocks(ip
) &&
1353 !xfs_iflags_test_and_set(ip
, XFS_EOFBLOCKS_RELEASED
))
1354 xfs_free_eofblocks(ip
);
1355 xfs_iunlock(ip
, XFS_IOLOCK_EXCL
);
1364 struct dir_context
*ctx
)
1366 struct inode
*inode
= file_inode(file
);
1367 xfs_inode_t
*ip
= XFS_I(inode
);
1371 * The Linux API doesn't pass down the total size of the buffer
1372 * we read into down to the filesystem. With the filldir concept
1373 * it's not needed for correct information, but the XFS dir2 leaf
1374 * code wants an estimate of the buffer size to calculate it's
1375 * readahead window and size the buffers used for mapping to
1378 * Try to give it an estimate that's good enough, maybe at some
1379 * point we can change the ->readdir prototype to include the
1380 * buffer size. For now we use the current glibc buffer size.
1382 bufsize
= (size_t)min_t(loff_t
, XFS_READDIR_BUFSIZE
, ip
->i_disk_size
);
1384 return xfs_readdir(NULL
, ip
, ctx
, bufsize
);
1393 struct inode
*inode
= file
->f_mapping
->host
;
1395 if (xfs_is_shutdown(XFS_I(inode
)->i_mount
))
1400 return generic_file_llseek(file
, offset
, whence
);
1402 offset
= iomap_seek_hole(inode
, offset
, &xfs_seek_iomap_ops
);
1405 offset
= iomap_seek_data(inode
, offset
, &xfs_seek_iomap_ops
);
1411 return vfs_setpos(file
, offset
, inode
->i_sb
->s_maxbytes
);
1414 static inline vm_fault_t
1415 xfs_dax_fault_locked(
1416 struct vm_fault
*vmf
,
1423 if (!IS_ENABLED(CONFIG_FS_DAX
)) {
1425 return VM_FAULT_SIGBUS
;
1427 ret
= dax_iomap_fault(vmf
, order
, &pfn
, NULL
,
1428 (write_fault
&& !vmf
->cow_page
) ?
1429 &xfs_dax_write_iomap_ops
:
1430 &xfs_read_iomap_ops
);
1431 if (ret
& VM_FAULT_NEEDDSYNC
)
1432 ret
= dax_finish_sync_fault(vmf
, order
, pfn
);
1438 struct vm_fault
*vmf
,
1441 struct xfs_inode
*ip
= XFS_I(file_inode(vmf
->vma
->vm_file
));
1444 trace_xfs_read_fault(ip
, order
);
1446 xfs_ilock(ip
, XFS_MMAPLOCK_SHARED
);
1447 ret
= xfs_dax_fault_locked(vmf
, order
, false);
1448 xfs_iunlock(ip
, XFS_MMAPLOCK_SHARED
);
1454 * Locking for serialisation of IO during page faults. This results in a lock
1458 * sb_start_pagefault(vfs, freeze)
1459 * invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation)
1461 * i_lock (XFS - extent map serialisation)
1465 struct vm_fault
*vmf
,
1468 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
1469 struct xfs_inode
*ip
= XFS_I(inode
);
1470 unsigned int lock_mode
= XFS_MMAPLOCK_SHARED
;
1473 trace_xfs_write_fault(ip
, order
);
1475 sb_start_pagefault(inode
->i_sb
);
1476 file_update_time(vmf
->vma
->vm_file
);
1479 * Normally we only need the shared mmaplock, but if a reflink remap is
1480 * in progress we take the exclusive lock to wait for the remap to
1481 * finish before taking a write fault.
1483 xfs_ilock(ip
, XFS_MMAPLOCK_SHARED
);
1484 if (xfs_iflags_test(ip
, XFS_IREMAPPING
)) {
1485 xfs_iunlock(ip
, XFS_MMAPLOCK_SHARED
);
1486 xfs_ilock(ip
, XFS_MMAPLOCK_EXCL
);
1487 lock_mode
= XFS_MMAPLOCK_EXCL
;
1491 ret
= xfs_dax_fault_locked(vmf
, order
, true);
1493 ret
= iomap_page_mkwrite(vmf
, &xfs_buffered_write_iomap_ops
);
1494 xfs_iunlock(ip
, lock_mode
);
1496 sb_end_pagefault(inode
->i_sb
);
1502 struct vm_fault
*vmf
)
1504 return (vmf
->flags
& FAULT_FLAG_WRITE
) &&
1505 (vmf
->vma
->vm_flags
& VM_SHARED
);
1510 struct vm_fault
*vmf
)
1512 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
1514 /* DAX can shortcut the normal fault path on write faults! */
1515 if (IS_DAX(inode
)) {
1516 if (xfs_is_write_fault(vmf
))
1517 return xfs_write_fault(vmf
, 0);
1518 return xfs_dax_read_fault(vmf
, 0);
1521 trace_xfs_read_fault(XFS_I(inode
), 0);
1522 return filemap_fault(vmf
);
1526 xfs_filemap_huge_fault(
1527 struct vm_fault
*vmf
,
1530 if (!IS_DAX(file_inode(vmf
->vma
->vm_file
)))
1531 return VM_FAULT_FALLBACK
;
1533 /* DAX can shortcut the normal fault path on write faults! */
1534 if (xfs_is_write_fault(vmf
))
1535 return xfs_write_fault(vmf
, order
);
1536 return xfs_dax_read_fault(vmf
, order
);
1540 xfs_filemap_page_mkwrite(
1541 struct vm_fault
*vmf
)
1543 return xfs_write_fault(vmf
, 0);
1547 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1548 * on write faults. In reality, it needs to serialise against truncate and
1549 * prepare memory for writing so handle is as standard write fault.
1552 xfs_filemap_pfn_mkwrite(
1553 struct vm_fault
*vmf
)
1555 return xfs_write_fault(vmf
, 0);
1558 static const struct vm_operations_struct xfs_file_vm_ops
= {
1559 .fault
= xfs_filemap_fault
,
1560 .huge_fault
= xfs_filemap_huge_fault
,
1561 .map_pages
= filemap_map_pages
,
1562 .page_mkwrite
= xfs_filemap_page_mkwrite
,
1563 .pfn_mkwrite
= xfs_filemap_pfn_mkwrite
,
1569 struct vm_area_struct
*vma
)
1571 struct inode
*inode
= file_inode(file
);
1572 struct xfs_buftarg
*target
= xfs_inode_buftarg(XFS_I(inode
));
1575 * We don't support synchronous mappings for non-DAX files and
1576 * for DAX files if underneath dax_device is not synchronous.
1578 if (!daxdev_mapping_supported(vma
, target
->bt_daxdev
))
1581 file_accessed(file
);
1582 vma
->vm_ops
= &xfs_file_vm_ops
;
1584 vm_flags_set(vma
, VM_HUGEPAGE
);
1588 const struct file_operations xfs_file_operations
= {
1589 .llseek
= xfs_file_llseek
,
1590 .read_iter
= xfs_file_read_iter
,
1591 .write_iter
= xfs_file_write_iter
,
1592 .splice_read
= xfs_file_splice_read
,
1593 .splice_write
= iter_file_splice_write
,
1594 .iopoll
= iocb_bio_iopoll
,
1595 .unlocked_ioctl
= xfs_file_ioctl
,
1596 #ifdef CONFIG_COMPAT
1597 .compat_ioctl
= xfs_file_compat_ioctl
,
1599 .mmap
= xfs_file_mmap
,
1600 .open
= xfs_file_open
,
1601 .release
= xfs_file_release
,
1602 .fsync
= xfs_file_fsync
,
1603 .get_unmapped_area
= thp_get_unmapped_area
,
1604 .fallocate
= xfs_file_fallocate
,
1605 .fadvise
= xfs_file_fadvise
,
1606 .remap_file_range
= xfs_file_remap_range
,
1607 .fop_flags
= FOP_MMAP_SYNC
| FOP_BUFFER_RASYNC
|
1608 FOP_BUFFER_WASYNC
| FOP_DIO_PARALLEL_WRITE
,
1611 const struct file_operations xfs_dir_file_operations
= {
1612 .open
= xfs_dir_open
,
1613 .read
= generic_read_dir
,
1614 .iterate_shared
= xfs_file_readdir
,
1615 .llseek
= generic_file_llseek
,
1616 .unlocked_ioctl
= xfs_file_ioctl
,
1617 #ifdef CONFIG_COMPAT
1618 .compat_ioctl
= xfs_file_compat_ioctl
,
1620 .fsync
= xfs_dir_fsync
,