drm/tests: Add test for drm_atomic_helper_check_modeset()
[drm/drm-misc.git] / fs / xfs / xfs_file.c
blob4a0b7de4f7aedc177ff5abbd4ca9d4c94eaa6658
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_dir2.h"
19 #include "xfs_dir2_priv.h"
20 #include "xfs_ioctl.h"
21 #include "xfs_trace.h"
22 #include "xfs_log.h"
23 #include "xfs_icache.h"
24 #include "xfs_pnfs.h"
25 #include "xfs_iomap.h"
26 #include "xfs_reflink.h"
27 #include "xfs_file.h"
29 #include <linux/dax.h>
30 #include <linux/falloc.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mman.h>
33 #include <linux/fadvise.h>
34 #include <linux/mount.h>
36 static const struct vm_operations_struct xfs_file_vm_ops;
39 * Decide if the given file range is aligned to the size of the fundamental
40 * allocation unit for the file.
42 bool
43 xfs_is_falloc_aligned(
44 struct xfs_inode *ip,
45 loff_t pos,
46 long long int len)
48 unsigned int alloc_unit = xfs_inode_alloc_unitsize(ip);
50 if (!is_power_of_2(alloc_unit))
51 return isaligned_64(pos, alloc_unit) &&
52 isaligned_64(len, alloc_unit);
54 return !((pos | len) & (alloc_unit - 1));
58 * Fsync operations on directories are much simpler than on regular files,
59 * as there is no file data to flush, and thus also no need for explicit
60 * cache flush operations, and there are no non-transaction metadata updates
61 * on directories either.
63 STATIC int
64 xfs_dir_fsync(
65 struct file *file,
66 loff_t start,
67 loff_t end,
68 int datasync)
70 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
72 trace_xfs_dir_fsync(ip);
73 return xfs_log_force_inode(ip);
76 static xfs_csn_t
77 xfs_fsync_seq(
78 struct xfs_inode *ip,
79 bool datasync)
81 if (!xfs_ipincount(ip))
82 return 0;
83 if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
84 return 0;
85 return ip->i_itemp->ili_commit_seq;
89 * All metadata updates are logged, which means that we just have to flush the
90 * log up to the latest LSN that touched the inode.
92 * If we have concurrent fsync/fdatasync() calls, we need them to all block on
93 * the log force before we clear the ili_fsync_fields field. This ensures that
94 * we don't get a racing sync operation that does not wait for the metadata to
95 * hit the journal before returning. If we race with clearing ili_fsync_fields,
96 * then all that will happen is the log force will do nothing as the lsn will
97 * already be on disk. We can't race with setting ili_fsync_fields because that
98 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
99 * shared until after the ili_fsync_fields is cleared.
101 static int
102 xfs_fsync_flush_log(
103 struct xfs_inode *ip,
104 bool datasync,
105 int *log_flushed)
107 int error = 0;
108 xfs_csn_t seq;
110 xfs_ilock(ip, XFS_ILOCK_SHARED);
111 seq = xfs_fsync_seq(ip, datasync);
112 if (seq) {
113 error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
114 log_flushed);
116 spin_lock(&ip->i_itemp->ili_lock);
117 ip->i_itemp->ili_fsync_fields = 0;
118 spin_unlock(&ip->i_itemp->ili_lock);
120 xfs_iunlock(ip, XFS_ILOCK_SHARED);
121 return error;
124 STATIC int
125 xfs_file_fsync(
126 struct file *file,
127 loff_t start,
128 loff_t end,
129 int datasync)
131 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
132 struct xfs_mount *mp = ip->i_mount;
133 int error, err2;
134 int log_flushed = 0;
136 trace_xfs_file_fsync(ip);
138 error = file_write_and_wait_range(file, start, end);
139 if (error)
140 return error;
142 if (xfs_is_shutdown(mp))
143 return -EIO;
145 xfs_iflags_clear(ip, XFS_ITRUNCATED);
148 * If we have an RT and/or log subvolume we need to make sure to flush
149 * the write cache the device used for file data first. This is to
150 * ensure newly written file data make it to disk before logging the new
151 * inode size in case of an extending write.
153 if (XFS_IS_REALTIME_INODE(ip))
154 error = blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
155 else if (mp->m_logdev_targp != mp->m_ddev_targp)
156 error = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
159 * Any inode that has dirty modifications in the log is pinned. The
160 * racy check here for a pinned inode will not catch modifications
161 * that happen concurrently to the fsync call, but fsync semantics
162 * only require to sync previously completed I/O.
164 if (xfs_ipincount(ip)) {
165 err2 = xfs_fsync_flush_log(ip, datasync, &log_flushed);
166 if (err2 && !error)
167 error = err2;
171 * If we only have a single device, and the log force about was
172 * a no-op we might have to flush the data device cache here.
173 * This can only happen for fdatasync/O_DSYNC if we were overwriting
174 * an already allocated file and thus do not have any metadata to
175 * commit.
177 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
178 mp->m_logdev_targp == mp->m_ddev_targp) {
179 err2 = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
180 if (err2 && !error)
181 error = err2;
184 return error;
187 static int
188 xfs_ilock_iocb(
189 struct kiocb *iocb,
190 unsigned int lock_mode)
192 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
194 if (iocb->ki_flags & IOCB_NOWAIT) {
195 if (!xfs_ilock_nowait(ip, lock_mode))
196 return -EAGAIN;
197 } else {
198 xfs_ilock(ip, lock_mode);
201 return 0;
204 static int
205 xfs_ilock_iocb_for_write(
206 struct kiocb *iocb,
207 unsigned int *lock_mode)
209 ssize_t ret;
210 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
212 ret = xfs_ilock_iocb(iocb, *lock_mode);
213 if (ret)
214 return ret;
217 * If a reflink remap is in progress we always need to take the iolock
218 * exclusively to wait for it to finish.
220 if (*lock_mode == XFS_IOLOCK_SHARED &&
221 xfs_iflags_test(ip, XFS_IREMAPPING)) {
222 xfs_iunlock(ip, *lock_mode);
223 *lock_mode = XFS_IOLOCK_EXCL;
224 return xfs_ilock_iocb(iocb, *lock_mode);
227 return 0;
230 STATIC ssize_t
231 xfs_file_dio_read(
232 struct kiocb *iocb,
233 struct iov_iter *to)
235 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
236 ssize_t ret;
238 trace_xfs_file_direct_read(iocb, to);
240 if (!iov_iter_count(to))
241 return 0; /* skip atime */
243 file_accessed(iocb->ki_filp);
245 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
246 if (ret)
247 return ret;
248 ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0, NULL, 0);
249 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
251 return ret;
254 static noinline ssize_t
255 xfs_file_dax_read(
256 struct kiocb *iocb,
257 struct iov_iter *to)
259 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
260 ssize_t ret = 0;
262 trace_xfs_file_dax_read(iocb, to);
264 if (!iov_iter_count(to))
265 return 0; /* skip atime */
267 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
268 if (ret)
269 return ret;
270 ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
271 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
273 file_accessed(iocb->ki_filp);
274 return ret;
277 STATIC ssize_t
278 xfs_file_buffered_read(
279 struct kiocb *iocb,
280 struct iov_iter *to)
282 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
283 ssize_t ret;
285 trace_xfs_file_buffered_read(iocb, to);
287 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
288 if (ret)
289 return ret;
290 ret = generic_file_read_iter(iocb, to);
291 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
293 return ret;
296 STATIC ssize_t
297 xfs_file_read_iter(
298 struct kiocb *iocb,
299 struct iov_iter *to)
301 struct inode *inode = file_inode(iocb->ki_filp);
302 struct xfs_mount *mp = XFS_I(inode)->i_mount;
303 ssize_t ret = 0;
305 XFS_STATS_INC(mp, xs_read_calls);
307 if (xfs_is_shutdown(mp))
308 return -EIO;
310 if (IS_DAX(inode))
311 ret = xfs_file_dax_read(iocb, to);
312 else if (iocb->ki_flags & IOCB_DIRECT)
313 ret = xfs_file_dio_read(iocb, to);
314 else
315 ret = xfs_file_buffered_read(iocb, to);
317 if (ret > 0)
318 XFS_STATS_ADD(mp, xs_read_bytes, ret);
319 return ret;
322 STATIC ssize_t
323 xfs_file_splice_read(
324 struct file *in,
325 loff_t *ppos,
326 struct pipe_inode_info *pipe,
327 size_t len,
328 unsigned int flags)
330 struct inode *inode = file_inode(in);
331 struct xfs_inode *ip = XFS_I(inode);
332 struct xfs_mount *mp = ip->i_mount;
333 ssize_t ret = 0;
335 XFS_STATS_INC(mp, xs_read_calls);
337 if (xfs_is_shutdown(mp))
338 return -EIO;
340 trace_xfs_file_splice_read(ip, *ppos, len);
342 xfs_ilock(ip, XFS_IOLOCK_SHARED);
343 ret = filemap_splice_read(in, ppos, pipe, len, flags);
344 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
345 if (ret > 0)
346 XFS_STATS_ADD(mp, xs_read_bytes, ret);
347 return ret;
351 * Take care of zeroing post-EOF blocks when they might exist.
353 * Returns 0 if successfully, a negative error for a failure, or 1 if this
354 * function dropped the iolock and reacquired it exclusively and the caller
355 * needs to restart the write sanity checks.
357 static ssize_t
358 xfs_file_write_zero_eof(
359 struct kiocb *iocb,
360 struct iov_iter *from,
361 unsigned int *iolock,
362 size_t count,
363 bool *drained_dio)
365 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
366 loff_t isize;
367 int error;
370 * We need to serialise against EOF updates that occur in IO completions
371 * here. We want to make sure that nobody is changing the size while
372 * we do this check until we have placed an IO barrier (i.e. hold
373 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. The
374 * spinlock effectively forms a memory barrier once we have
375 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and
376 * hence be able to correctly determine if we need to run zeroing.
378 spin_lock(&ip->i_flags_lock);
379 isize = i_size_read(VFS_I(ip));
380 if (iocb->ki_pos <= isize) {
381 spin_unlock(&ip->i_flags_lock);
382 return 0;
384 spin_unlock(&ip->i_flags_lock);
386 if (iocb->ki_flags & IOCB_NOWAIT)
387 return -EAGAIN;
389 if (!*drained_dio) {
391 * If zeroing is needed and we are currently holding the iolock
392 * shared, we need to update it to exclusive which implies
393 * having to redo all checks before.
395 if (*iolock == XFS_IOLOCK_SHARED) {
396 xfs_iunlock(ip, *iolock);
397 *iolock = XFS_IOLOCK_EXCL;
398 xfs_ilock(ip, *iolock);
399 iov_iter_reexpand(from, count);
403 * We now have an IO submission barrier in place, but AIO can do
404 * EOF updates during IO completion and hence we now need to
405 * wait for all of them to drain. Non-AIO DIO will have drained
406 * before we are given the XFS_IOLOCK_EXCL, and so for most
407 * cases this wait is a no-op.
409 inode_dio_wait(VFS_I(ip));
410 *drained_dio = true;
411 return 1;
414 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
416 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
417 error = xfs_zero_range(ip, isize, iocb->ki_pos - isize, NULL);
418 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
420 return error;
424 * Common pre-write limit and setup checks.
426 * Called with the iolock held either shared and exclusive according to
427 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
428 * if called for a direct write beyond i_size.
430 STATIC ssize_t
431 xfs_file_write_checks(
432 struct kiocb *iocb,
433 struct iov_iter *from,
434 unsigned int *iolock)
436 struct inode *inode = iocb->ki_filp->f_mapping->host;
437 size_t count = iov_iter_count(from);
438 bool drained_dio = false;
439 ssize_t error;
441 restart:
442 error = generic_write_checks(iocb, from);
443 if (error <= 0)
444 return error;
446 if (iocb->ki_flags & IOCB_NOWAIT) {
447 error = break_layout(inode, false);
448 if (error == -EWOULDBLOCK)
449 error = -EAGAIN;
450 } else {
451 error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
454 if (error)
455 return error;
458 * For changing security info in file_remove_privs() we need i_rwsem
459 * exclusively.
461 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
462 xfs_iunlock(XFS_I(inode), *iolock);
463 *iolock = XFS_IOLOCK_EXCL;
464 error = xfs_ilock_iocb(iocb, *iolock);
465 if (error) {
466 *iolock = 0;
467 return error;
469 goto restart;
473 * If the offset is beyond the size of the file, we need to zero all
474 * blocks that fall between the existing EOF and the start of this
475 * write.
477 * We can do an unlocked check for i_size here safely as I/O completion
478 * can only extend EOF. Truncate is locked out at this point, so the
479 * EOF can not move backwards, only forwards. Hence we only need to take
480 * the slow path when we are at or beyond the current EOF.
482 if (iocb->ki_pos > i_size_read(inode)) {
483 error = xfs_file_write_zero_eof(iocb, from, iolock, count,
484 &drained_dio);
485 if (error == 1)
486 goto restart;
487 if (error)
488 return error;
491 return kiocb_modified(iocb);
494 static int
495 xfs_dio_write_end_io(
496 struct kiocb *iocb,
497 ssize_t size,
498 int error,
499 unsigned flags)
501 struct inode *inode = file_inode(iocb->ki_filp);
502 struct xfs_inode *ip = XFS_I(inode);
503 loff_t offset = iocb->ki_pos;
504 unsigned int nofs_flag;
506 trace_xfs_end_io_direct_write(ip, offset, size);
508 if (xfs_is_shutdown(ip->i_mount))
509 return -EIO;
511 if (error)
512 return error;
513 if (!size)
514 return 0;
517 * Capture amount written on completion as we can't reliably account
518 * for it on submission.
520 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
523 * We can allocate memory here while doing writeback on behalf of
524 * memory reclaim. To avoid memory allocation deadlocks set the
525 * task-wide nofs context for the following operations.
527 nofs_flag = memalloc_nofs_save();
529 if (flags & IOMAP_DIO_COW) {
530 error = xfs_reflink_end_cow(ip, offset, size);
531 if (error)
532 goto out;
536 * Unwritten conversion updates the in-core isize after extent
537 * conversion but before updating the on-disk size. Updating isize any
538 * earlier allows a racing dio read to find unwritten extents before
539 * they are converted.
541 if (flags & IOMAP_DIO_UNWRITTEN) {
542 error = xfs_iomap_write_unwritten(ip, offset, size, true);
543 goto out;
547 * We need to update the in-core inode size here so that we don't end up
548 * with the on-disk inode size being outside the in-core inode size. We
549 * have no other method of updating EOF for AIO, so always do it here
550 * if necessary.
552 * We need to lock the test/set EOF update as we can be racing with
553 * other IO completions here to update the EOF. Failing to serialise
554 * here can result in EOF moving backwards and Bad Things Happen when
555 * that occurs.
557 * As IO completion only ever extends EOF, we can do an unlocked check
558 * here to avoid taking the spinlock. If we land within the current EOF,
559 * then we do not need to do an extending update at all, and we don't
560 * need to take the lock to check this. If we race with an update moving
561 * EOF, then we'll either still be beyond EOF and need to take the lock,
562 * or we'll be within EOF and we don't need to take it at all.
564 if (offset + size <= i_size_read(inode))
565 goto out;
567 spin_lock(&ip->i_flags_lock);
568 if (offset + size > i_size_read(inode)) {
569 i_size_write(inode, offset + size);
570 spin_unlock(&ip->i_flags_lock);
571 error = xfs_setfilesize(ip, offset, size);
572 } else {
573 spin_unlock(&ip->i_flags_lock);
576 out:
577 memalloc_nofs_restore(nofs_flag);
578 return error;
581 static const struct iomap_dio_ops xfs_dio_write_ops = {
582 .end_io = xfs_dio_write_end_io,
586 * Handle block aligned direct I/O writes
588 static noinline ssize_t
589 xfs_file_dio_write_aligned(
590 struct xfs_inode *ip,
591 struct kiocb *iocb,
592 struct iov_iter *from)
594 unsigned int iolock = XFS_IOLOCK_SHARED;
595 ssize_t ret;
597 ret = xfs_ilock_iocb_for_write(iocb, &iolock);
598 if (ret)
599 return ret;
600 ret = xfs_file_write_checks(iocb, from, &iolock);
601 if (ret)
602 goto out_unlock;
605 * We don't need to hold the IOLOCK exclusively across the IO, so demote
606 * the iolock back to shared if we had to take the exclusive lock in
607 * xfs_file_write_checks() for other reasons.
609 if (iolock == XFS_IOLOCK_EXCL) {
610 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
611 iolock = XFS_IOLOCK_SHARED;
613 trace_xfs_file_direct_write(iocb, from);
614 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
615 &xfs_dio_write_ops, 0, NULL, 0);
616 out_unlock:
617 if (iolock)
618 xfs_iunlock(ip, iolock);
619 return ret;
623 * Handle block unaligned direct I/O writes
625 * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
626 * them to be done in parallel with reads and other direct I/O writes. However,
627 * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
628 * to do sub-block zeroing and that requires serialisation against other direct
629 * I/O to the same block. In this case we need to serialise the submission of
630 * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
631 * In the case where sub-block zeroing is not required, we can do concurrent
632 * sub-block dios to the same block successfully.
634 * Optimistically submit the I/O using the shared lock first, but use the
635 * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
636 * if block allocation or partial block zeroing would be required. In that case
637 * we try again with the exclusive lock.
639 static noinline ssize_t
640 xfs_file_dio_write_unaligned(
641 struct xfs_inode *ip,
642 struct kiocb *iocb,
643 struct iov_iter *from)
645 size_t isize = i_size_read(VFS_I(ip));
646 size_t count = iov_iter_count(from);
647 unsigned int iolock = XFS_IOLOCK_SHARED;
648 unsigned int flags = IOMAP_DIO_OVERWRITE_ONLY;
649 ssize_t ret;
652 * Extending writes need exclusivity because of the sub-block zeroing
653 * that the DIO code always does for partial tail blocks beyond EOF, so
654 * don't even bother trying the fast path in this case.
656 if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
657 if (iocb->ki_flags & IOCB_NOWAIT)
658 return -EAGAIN;
659 retry_exclusive:
660 iolock = XFS_IOLOCK_EXCL;
661 flags = IOMAP_DIO_FORCE_WAIT;
664 ret = xfs_ilock_iocb_for_write(iocb, &iolock);
665 if (ret)
666 return ret;
669 * We can't properly handle unaligned direct I/O to reflink files yet,
670 * as we can't unshare a partial block.
672 if (xfs_is_cow_inode(ip)) {
673 trace_xfs_reflink_bounce_dio_write(iocb, from);
674 ret = -ENOTBLK;
675 goto out_unlock;
678 ret = xfs_file_write_checks(iocb, from, &iolock);
679 if (ret)
680 goto out_unlock;
683 * If we are doing exclusive unaligned I/O, this must be the only I/O
684 * in-flight. Otherwise we risk data corruption due to unwritten extent
685 * conversions from the AIO end_io handler. Wait for all other I/O to
686 * drain first.
688 if (flags & IOMAP_DIO_FORCE_WAIT)
689 inode_dio_wait(VFS_I(ip));
691 trace_xfs_file_direct_write(iocb, from);
692 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
693 &xfs_dio_write_ops, flags, NULL, 0);
696 * Retry unaligned I/O with exclusive blocking semantics if the DIO
697 * layer rejected it for mapping or locking reasons. If we are doing
698 * nonblocking user I/O, propagate the error.
700 if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
701 ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
702 xfs_iunlock(ip, iolock);
703 goto retry_exclusive;
706 out_unlock:
707 if (iolock)
708 xfs_iunlock(ip, iolock);
709 return ret;
712 static ssize_t
713 xfs_file_dio_write(
714 struct kiocb *iocb,
715 struct iov_iter *from)
717 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
718 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
719 size_t count = iov_iter_count(from);
721 /* direct I/O must be aligned to device logical sector size */
722 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
723 return -EINVAL;
724 if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask)
725 return xfs_file_dio_write_unaligned(ip, iocb, from);
726 return xfs_file_dio_write_aligned(ip, iocb, from);
729 static noinline ssize_t
730 xfs_file_dax_write(
731 struct kiocb *iocb,
732 struct iov_iter *from)
734 struct inode *inode = iocb->ki_filp->f_mapping->host;
735 struct xfs_inode *ip = XFS_I(inode);
736 unsigned int iolock = XFS_IOLOCK_EXCL;
737 ssize_t ret, error = 0;
738 loff_t pos;
740 ret = xfs_ilock_iocb(iocb, iolock);
741 if (ret)
742 return ret;
743 ret = xfs_file_write_checks(iocb, from, &iolock);
744 if (ret)
745 goto out;
747 pos = iocb->ki_pos;
749 trace_xfs_file_dax_write(iocb, from);
750 ret = dax_iomap_rw(iocb, from, &xfs_dax_write_iomap_ops);
751 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
752 i_size_write(inode, iocb->ki_pos);
753 error = xfs_setfilesize(ip, pos, ret);
755 out:
756 if (iolock)
757 xfs_iunlock(ip, iolock);
758 if (error)
759 return error;
761 if (ret > 0) {
762 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
764 /* Handle various SYNC-type writes */
765 ret = generic_write_sync(iocb, ret);
767 return ret;
770 STATIC ssize_t
771 xfs_file_buffered_write(
772 struct kiocb *iocb,
773 struct iov_iter *from)
775 struct inode *inode = iocb->ki_filp->f_mapping->host;
776 struct xfs_inode *ip = XFS_I(inode);
777 ssize_t ret;
778 bool cleared_space = false;
779 unsigned int iolock;
781 write_retry:
782 iolock = XFS_IOLOCK_EXCL;
783 ret = xfs_ilock_iocb(iocb, iolock);
784 if (ret)
785 return ret;
787 ret = xfs_file_write_checks(iocb, from, &iolock);
788 if (ret)
789 goto out;
791 trace_xfs_file_buffered_write(iocb, from);
792 ret = iomap_file_buffered_write(iocb, from,
793 &xfs_buffered_write_iomap_ops, NULL);
796 * If we hit a space limit, try to free up some lingering preallocated
797 * space before returning an error. In the case of ENOSPC, first try to
798 * write back all dirty inodes to free up some of the excess reserved
799 * metadata space. This reduces the chances that the eofblocks scan
800 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
801 * also behaves as a filter to prevent too many eofblocks scans from
802 * running at the same time. Use a synchronous scan to increase the
803 * effectiveness of the scan.
805 if (ret == -EDQUOT && !cleared_space) {
806 xfs_iunlock(ip, iolock);
807 xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC);
808 cleared_space = true;
809 goto write_retry;
810 } else if (ret == -ENOSPC && !cleared_space) {
811 struct xfs_icwalk icw = {0};
813 cleared_space = true;
814 xfs_flush_inodes(ip->i_mount);
816 xfs_iunlock(ip, iolock);
817 icw.icw_flags = XFS_ICWALK_FLAG_SYNC;
818 xfs_blockgc_free_space(ip->i_mount, &icw);
819 goto write_retry;
822 out:
823 if (iolock)
824 xfs_iunlock(ip, iolock);
826 if (ret > 0) {
827 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
828 /* Handle various SYNC-type writes */
829 ret = generic_write_sync(iocb, ret);
831 return ret;
834 STATIC ssize_t
835 xfs_file_write_iter(
836 struct kiocb *iocb,
837 struct iov_iter *from)
839 struct inode *inode = iocb->ki_filp->f_mapping->host;
840 struct xfs_inode *ip = XFS_I(inode);
841 ssize_t ret;
842 size_t ocount = iov_iter_count(from);
844 XFS_STATS_INC(ip->i_mount, xs_write_calls);
846 if (ocount == 0)
847 return 0;
849 if (xfs_is_shutdown(ip->i_mount))
850 return -EIO;
852 if (IS_DAX(inode))
853 return xfs_file_dax_write(iocb, from);
855 if (iocb->ki_flags & IOCB_ATOMIC) {
857 * Currently only atomic writing of a single FS block is
858 * supported. It would be possible to atomic write smaller than
859 * a FS block, but there is no requirement to support this.
860 * Note that iomap also does not support this yet.
862 if (ocount != ip->i_mount->m_sb.sb_blocksize)
863 return -EINVAL;
864 ret = generic_atomic_write_valid(iocb, from);
865 if (ret)
866 return ret;
869 if (iocb->ki_flags & IOCB_DIRECT) {
871 * Allow a directio write to fall back to a buffered
872 * write *only* in the case that we're doing a reflink
873 * CoW. In all other directio scenarios we do not
874 * allow an operation to fall back to buffered mode.
876 ret = xfs_file_dio_write(iocb, from);
877 if (ret != -ENOTBLK)
878 return ret;
881 return xfs_file_buffered_write(iocb, from);
884 /* Does this file, inode, or mount want synchronous writes? */
885 static inline bool xfs_file_sync_writes(struct file *filp)
887 struct xfs_inode *ip = XFS_I(file_inode(filp));
889 if (xfs_has_wsync(ip->i_mount))
890 return true;
891 if (filp->f_flags & (__O_SYNC | O_DSYNC))
892 return true;
893 if (IS_SYNC(file_inode(filp)))
894 return true;
896 return false;
899 static int
900 xfs_falloc_newsize(
901 struct file *file,
902 int mode,
903 loff_t offset,
904 loff_t len,
905 loff_t *new_size)
907 struct inode *inode = file_inode(file);
909 if ((mode & FALLOC_FL_KEEP_SIZE) || offset + len <= i_size_read(inode))
910 return 0;
911 *new_size = offset + len;
912 return inode_newsize_ok(inode, *new_size);
915 static int
916 xfs_falloc_setsize(
917 struct file *file,
918 loff_t new_size)
920 struct iattr iattr = {
921 .ia_valid = ATTR_SIZE,
922 .ia_size = new_size,
925 if (!new_size)
926 return 0;
927 return xfs_vn_setattr_size(file_mnt_idmap(file), file_dentry(file),
928 &iattr);
931 static int
932 xfs_falloc_collapse_range(
933 struct file *file,
934 loff_t offset,
935 loff_t len)
937 struct inode *inode = file_inode(file);
938 loff_t new_size = i_size_read(inode) - len;
939 int error;
941 if (!xfs_is_falloc_aligned(XFS_I(inode), offset, len))
942 return -EINVAL;
945 * There is no need to overlap collapse range with EOF, in which case it
946 * is effectively a truncate operation
948 if (offset + len >= i_size_read(inode))
949 return -EINVAL;
951 error = xfs_collapse_file_space(XFS_I(inode), offset, len);
952 if (error)
953 return error;
954 return xfs_falloc_setsize(file, new_size);
957 static int
958 xfs_falloc_insert_range(
959 struct file *file,
960 loff_t offset,
961 loff_t len)
963 struct inode *inode = file_inode(file);
964 loff_t isize = i_size_read(inode);
965 int error;
967 if (!xfs_is_falloc_aligned(XFS_I(inode), offset, len))
968 return -EINVAL;
971 * New inode size must not exceed ->s_maxbytes, accounting for
972 * possible signed overflow.
974 if (inode->i_sb->s_maxbytes - isize < len)
975 return -EFBIG;
977 /* Offset should be less than i_size */
978 if (offset >= isize)
979 return -EINVAL;
981 error = xfs_falloc_setsize(file, isize + len);
982 if (error)
983 return error;
986 * Perform hole insertion now that the file size has been updated so
987 * that if we crash during the operation we don't leave shifted extents
988 * past EOF and hence losing access to the data that is contained within
989 * them.
991 return xfs_insert_file_space(XFS_I(inode), offset, len);
995 * Punch a hole and prealloc the range. We use a hole punch rather than
996 * unwritten extent conversion for two reasons:
998 * 1.) Hole punch handles partial block zeroing for us.
999 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued by
1000 * virtue of the hole punch.
1002 static int
1003 xfs_falloc_zero_range(
1004 struct file *file,
1005 int mode,
1006 loff_t offset,
1007 loff_t len)
1009 struct inode *inode = file_inode(file);
1010 unsigned int blksize = i_blocksize(inode);
1011 loff_t new_size = 0;
1012 int error;
1014 trace_xfs_zero_file_space(XFS_I(inode));
1016 error = xfs_falloc_newsize(file, mode, offset, len, &new_size);
1017 if (error)
1018 return error;
1020 error = xfs_free_file_space(XFS_I(inode), offset, len);
1021 if (error)
1022 return error;
1024 len = round_up(offset + len, blksize) - round_down(offset, blksize);
1025 offset = round_down(offset, blksize);
1026 error = xfs_alloc_file_space(XFS_I(inode), offset, len);
1027 if (error)
1028 return error;
1029 return xfs_falloc_setsize(file, new_size);
1032 static int
1033 xfs_falloc_unshare_range(
1034 struct file *file,
1035 int mode,
1036 loff_t offset,
1037 loff_t len)
1039 struct inode *inode = file_inode(file);
1040 loff_t new_size = 0;
1041 int error;
1043 error = xfs_falloc_newsize(file, mode, offset, len, &new_size);
1044 if (error)
1045 return error;
1047 error = xfs_reflink_unshare(XFS_I(inode), offset, len);
1048 if (error)
1049 return error;
1051 error = xfs_alloc_file_space(XFS_I(inode), offset, len);
1052 if (error)
1053 return error;
1054 return xfs_falloc_setsize(file, new_size);
1057 static int
1058 xfs_falloc_allocate_range(
1059 struct file *file,
1060 int mode,
1061 loff_t offset,
1062 loff_t len)
1064 struct inode *inode = file_inode(file);
1065 loff_t new_size = 0;
1066 int error;
1069 * If always_cow mode we can't use preallocations and thus should not
1070 * create them.
1072 if (xfs_is_always_cow_inode(XFS_I(inode)))
1073 return -EOPNOTSUPP;
1075 error = xfs_falloc_newsize(file, mode, offset, len, &new_size);
1076 if (error)
1077 return error;
1079 error = xfs_alloc_file_space(XFS_I(inode), offset, len);
1080 if (error)
1081 return error;
1082 return xfs_falloc_setsize(file, new_size);
1085 #define XFS_FALLOC_FL_SUPPORTED \
1086 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
1087 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
1088 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
1090 STATIC long
1091 xfs_file_fallocate(
1092 struct file *file,
1093 int mode,
1094 loff_t offset,
1095 loff_t len)
1097 struct inode *inode = file_inode(file);
1098 struct xfs_inode *ip = XFS_I(inode);
1099 long error;
1100 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
1102 if (!S_ISREG(inode->i_mode))
1103 return -EINVAL;
1104 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
1105 return -EOPNOTSUPP;
1107 xfs_ilock(ip, iolock);
1108 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
1109 if (error)
1110 goto out_unlock;
1113 * Must wait for all AIO to complete before we continue as AIO can
1114 * change the file size on completion without holding any locks we
1115 * currently hold. We must do this first because AIO can update both
1116 * the on disk and in memory inode sizes, and the operations that follow
1117 * require the in-memory size to be fully up-to-date.
1119 inode_dio_wait(inode);
1121 error = file_modified(file);
1122 if (error)
1123 goto out_unlock;
1125 switch (mode & FALLOC_FL_MODE_MASK) {
1126 case FALLOC_FL_PUNCH_HOLE:
1127 error = xfs_free_file_space(ip, offset, len);
1128 break;
1129 case FALLOC_FL_COLLAPSE_RANGE:
1130 error = xfs_falloc_collapse_range(file, offset, len);
1131 break;
1132 case FALLOC_FL_INSERT_RANGE:
1133 error = xfs_falloc_insert_range(file, offset, len);
1134 break;
1135 case FALLOC_FL_ZERO_RANGE:
1136 error = xfs_falloc_zero_range(file, mode, offset, len);
1137 break;
1138 case FALLOC_FL_UNSHARE_RANGE:
1139 error = xfs_falloc_unshare_range(file, mode, offset, len);
1140 break;
1141 case FALLOC_FL_ALLOCATE_RANGE:
1142 error = xfs_falloc_allocate_range(file, mode, offset, len);
1143 break;
1144 default:
1145 error = -EOPNOTSUPP;
1146 break;
1149 if (!error && xfs_file_sync_writes(file))
1150 error = xfs_log_force_inode(ip);
1152 out_unlock:
1153 xfs_iunlock(ip, iolock);
1154 return error;
1157 STATIC int
1158 xfs_file_fadvise(
1159 struct file *file,
1160 loff_t start,
1161 loff_t end,
1162 int advice)
1164 struct xfs_inode *ip = XFS_I(file_inode(file));
1165 int ret;
1166 int lockflags = 0;
1169 * Operations creating pages in page cache need protection from hole
1170 * punching and similar ops
1172 if (advice == POSIX_FADV_WILLNEED) {
1173 lockflags = XFS_IOLOCK_SHARED;
1174 xfs_ilock(ip, lockflags);
1176 ret = generic_fadvise(file, start, end, advice);
1177 if (lockflags)
1178 xfs_iunlock(ip, lockflags);
1179 return ret;
1182 STATIC loff_t
1183 xfs_file_remap_range(
1184 struct file *file_in,
1185 loff_t pos_in,
1186 struct file *file_out,
1187 loff_t pos_out,
1188 loff_t len,
1189 unsigned int remap_flags)
1191 struct inode *inode_in = file_inode(file_in);
1192 struct xfs_inode *src = XFS_I(inode_in);
1193 struct inode *inode_out = file_inode(file_out);
1194 struct xfs_inode *dest = XFS_I(inode_out);
1195 struct xfs_mount *mp = src->i_mount;
1196 loff_t remapped = 0;
1197 xfs_extlen_t cowextsize;
1198 int ret;
1200 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1201 return -EINVAL;
1203 if (!xfs_has_reflink(mp))
1204 return -EOPNOTSUPP;
1206 if (xfs_is_shutdown(mp))
1207 return -EIO;
1209 /* Prepare and then clone file data. */
1210 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1211 &len, remap_flags);
1212 if (ret || len == 0)
1213 return ret;
1215 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1217 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1218 &remapped);
1219 if (ret)
1220 goto out_unlock;
1223 * Carry the cowextsize hint from src to dest if we're sharing the
1224 * entire source file to the entire destination file, the source file
1225 * has a cowextsize hint, and the destination file does not.
1227 cowextsize = 0;
1228 if (pos_in == 0 && len == i_size_read(inode_in) &&
1229 (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1230 pos_out == 0 && len >= i_size_read(inode_out) &&
1231 !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE))
1232 cowextsize = src->i_cowextsize;
1234 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1235 remap_flags);
1236 if (ret)
1237 goto out_unlock;
1239 if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
1240 xfs_log_force_inode(dest);
1241 out_unlock:
1242 xfs_iunlock2_remapping(src, dest);
1243 if (ret)
1244 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1245 return remapped > 0 ? remapped : ret;
1248 STATIC int
1249 xfs_file_open(
1250 struct inode *inode,
1251 struct file *file)
1253 if (xfs_is_shutdown(XFS_M(inode->i_sb)))
1254 return -EIO;
1255 file->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
1256 if (xfs_inode_can_atomicwrite(XFS_I(inode)))
1257 file->f_mode |= FMODE_CAN_ATOMIC_WRITE;
1258 return generic_file_open(inode, file);
1261 STATIC int
1262 xfs_dir_open(
1263 struct inode *inode,
1264 struct file *file)
1266 struct xfs_inode *ip = XFS_I(inode);
1267 unsigned int mode;
1268 int error;
1270 if (xfs_is_shutdown(ip->i_mount))
1271 return -EIO;
1272 error = generic_file_open(inode, file);
1273 if (error)
1274 return error;
1277 * If there are any blocks, read-ahead block 0 as we're almost
1278 * certain to have the next operation be a read there.
1280 mode = xfs_ilock_data_map_shared(ip);
1281 if (ip->i_df.if_nextents > 0)
1282 error = xfs_dir3_data_readahead(ip, 0, 0);
1283 xfs_iunlock(ip, mode);
1284 return error;
1288 * Don't bother propagating errors. We're just doing cleanup, and the caller
1289 * ignores the return value anyway.
1291 STATIC int
1292 xfs_file_release(
1293 struct inode *inode,
1294 struct file *file)
1296 struct xfs_inode *ip = XFS_I(inode);
1297 struct xfs_mount *mp = ip->i_mount;
1300 * If this is a read-only mount or the file system has been shut down,
1301 * don't generate I/O.
1303 if (xfs_is_readonly(mp) || xfs_is_shutdown(mp))
1304 return 0;
1307 * If we previously truncated this file and removed old data in the
1308 * process, we want to initiate "early" writeout on the last close.
1309 * This is an attempt to combat the notorious NULL files problem which
1310 * is particularly noticeable from a truncate down, buffered (re-)write
1311 * (delalloc), followed by a crash. What we are effectively doing here
1312 * is significantly reducing the time window where we'd otherwise be
1313 * exposed to that problem.
1315 if (xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED)) {
1316 xfs_iflags_clear(ip, XFS_EOFBLOCKS_RELEASED);
1317 if (ip->i_delayed_blks > 0)
1318 filemap_flush(inode->i_mapping);
1322 * XFS aggressively preallocates post-EOF space to generate contiguous
1323 * allocations for writers that append to the end of the file.
1325 * To support workloads that close and reopen the file frequently, these
1326 * preallocations usually persist after a close unless it is the first
1327 * close for the inode. This is a tradeoff to generate tightly packed
1328 * data layouts for unpacking tarballs or similar archives that write
1329 * one file after another without going back to it while keeping the
1330 * preallocation for files that have recurring open/write/close cycles.
1332 * This heuristic is skipped for inodes with the append-only flag as
1333 * that flag is rather pointless for inodes written only once.
1335 * There is no point in freeing blocks here for open but unlinked files
1336 * as they will be taken care of by the inactivation path soon.
1338 * When releasing a read-only context, don't flush data or trim post-EOF
1339 * blocks. This avoids open/read/close workloads from removing EOF
1340 * blocks that other writers depend upon to reduce fragmentation.
1342 * If we can't get the iolock just skip truncating the blocks past EOF
1343 * because we could deadlock with the mmap_lock otherwise. We'll get
1344 * another chance to drop them once the last reference to the inode is
1345 * dropped, so we'll never leak blocks permanently.
1347 if (inode->i_nlink &&
1348 (file->f_mode & FMODE_WRITE) &&
1349 !(ip->i_diflags & XFS_DIFLAG_APPEND) &&
1350 !xfs_iflags_test(ip, XFS_EOFBLOCKS_RELEASED) &&
1351 xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1352 if (xfs_can_free_eofblocks(ip) &&
1353 !xfs_iflags_test_and_set(ip, XFS_EOFBLOCKS_RELEASED))
1354 xfs_free_eofblocks(ip);
1355 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1358 return 0;
1361 STATIC int
1362 xfs_file_readdir(
1363 struct file *file,
1364 struct dir_context *ctx)
1366 struct inode *inode = file_inode(file);
1367 xfs_inode_t *ip = XFS_I(inode);
1368 size_t bufsize;
1371 * The Linux API doesn't pass down the total size of the buffer
1372 * we read into down to the filesystem. With the filldir concept
1373 * it's not needed for correct information, but the XFS dir2 leaf
1374 * code wants an estimate of the buffer size to calculate it's
1375 * readahead window and size the buffers used for mapping to
1376 * physical blocks.
1378 * Try to give it an estimate that's good enough, maybe at some
1379 * point we can change the ->readdir prototype to include the
1380 * buffer size. For now we use the current glibc buffer size.
1382 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size);
1384 return xfs_readdir(NULL, ip, ctx, bufsize);
1387 STATIC loff_t
1388 xfs_file_llseek(
1389 struct file *file,
1390 loff_t offset,
1391 int whence)
1393 struct inode *inode = file->f_mapping->host;
1395 if (xfs_is_shutdown(XFS_I(inode)->i_mount))
1396 return -EIO;
1398 switch (whence) {
1399 default:
1400 return generic_file_llseek(file, offset, whence);
1401 case SEEK_HOLE:
1402 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1403 break;
1404 case SEEK_DATA:
1405 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1406 break;
1409 if (offset < 0)
1410 return offset;
1411 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1414 static inline vm_fault_t
1415 xfs_dax_fault_locked(
1416 struct vm_fault *vmf,
1417 unsigned int order,
1418 bool write_fault)
1420 vm_fault_t ret;
1421 pfn_t pfn;
1423 if (!IS_ENABLED(CONFIG_FS_DAX)) {
1424 ASSERT(0);
1425 return VM_FAULT_SIGBUS;
1427 ret = dax_iomap_fault(vmf, order, &pfn, NULL,
1428 (write_fault && !vmf->cow_page) ?
1429 &xfs_dax_write_iomap_ops :
1430 &xfs_read_iomap_ops);
1431 if (ret & VM_FAULT_NEEDDSYNC)
1432 ret = dax_finish_sync_fault(vmf, order, pfn);
1433 return ret;
1436 static vm_fault_t
1437 xfs_dax_read_fault(
1438 struct vm_fault *vmf,
1439 unsigned int order)
1441 struct xfs_inode *ip = XFS_I(file_inode(vmf->vma->vm_file));
1442 vm_fault_t ret;
1444 trace_xfs_read_fault(ip, order);
1446 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1447 ret = xfs_dax_fault_locked(vmf, order, false);
1448 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1450 return ret;
1454 * Locking for serialisation of IO during page faults. This results in a lock
1455 * ordering of:
1457 * mmap_lock (MM)
1458 * sb_start_pagefault(vfs, freeze)
1459 * invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation)
1460 * page_lock (MM)
1461 * i_lock (XFS - extent map serialisation)
1463 static vm_fault_t
1464 xfs_write_fault(
1465 struct vm_fault *vmf,
1466 unsigned int order)
1468 struct inode *inode = file_inode(vmf->vma->vm_file);
1469 struct xfs_inode *ip = XFS_I(inode);
1470 unsigned int lock_mode = XFS_MMAPLOCK_SHARED;
1471 vm_fault_t ret;
1473 trace_xfs_write_fault(ip, order);
1475 sb_start_pagefault(inode->i_sb);
1476 file_update_time(vmf->vma->vm_file);
1479 * Normally we only need the shared mmaplock, but if a reflink remap is
1480 * in progress we take the exclusive lock to wait for the remap to
1481 * finish before taking a write fault.
1483 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1484 if (xfs_iflags_test(ip, XFS_IREMAPPING)) {
1485 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1486 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1487 lock_mode = XFS_MMAPLOCK_EXCL;
1490 if (IS_DAX(inode))
1491 ret = xfs_dax_fault_locked(vmf, order, true);
1492 else
1493 ret = iomap_page_mkwrite(vmf, &xfs_buffered_write_iomap_ops);
1494 xfs_iunlock(ip, lock_mode);
1496 sb_end_pagefault(inode->i_sb);
1497 return ret;
1500 static inline bool
1501 xfs_is_write_fault(
1502 struct vm_fault *vmf)
1504 return (vmf->flags & FAULT_FLAG_WRITE) &&
1505 (vmf->vma->vm_flags & VM_SHARED);
1508 static vm_fault_t
1509 xfs_filemap_fault(
1510 struct vm_fault *vmf)
1512 struct inode *inode = file_inode(vmf->vma->vm_file);
1514 /* DAX can shortcut the normal fault path on write faults! */
1515 if (IS_DAX(inode)) {
1516 if (xfs_is_write_fault(vmf))
1517 return xfs_write_fault(vmf, 0);
1518 return xfs_dax_read_fault(vmf, 0);
1521 trace_xfs_read_fault(XFS_I(inode), 0);
1522 return filemap_fault(vmf);
1525 static vm_fault_t
1526 xfs_filemap_huge_fault(
1527 struct vm_fault *vmf,
1528 unsigned int order)
1530 if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1531 return VM_FAULT_FALLBACK;
1533 /* DAX can shortcut the normal fault path on write faults! */
1534 if (xfs_is_write_fault(vmf))
1535 return xfs_write_fault(vmf, order);
1536 return xfs_dax_read_fault(vmf, order);
1539 static vm_fault_t
1540 xfs_filemap_page_mkwrite(
1541 struct vm_fault *vmf)
1543 return xfs_write_fault(vmf, 0);
1547 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1548 * on write faults. In reality, it needs to serialise against truncate and
1549 * prepare memory for writing so handle is as standard write fault.
1551 static vm_fault_t
1552 xfs_filemap_pfn_mkwrite(
1553 struct vm_fault *vmf)
1555 return xfs_write_fault(vmf, 0);
1558 static const struct vm_operations_struct xfs_file_vm_ops = {
1559 .fault = xfs_filemap_fault,
1560 .huge_fault = xfs_filemap_huge_fault,
1561 .map_pages = filemap_map_pages,
1562 .page_mkwrite = xfs_filemap_page_mkwrite,
1563 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1566 STATIC int
1567 xfs_file_mmap(
1568 struct file *file,
1569 struct vm_area_struct *vma)
1571 struct inode *inode = file_inode(file);
1572 struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode));
1575 * We don't support synchronous mappings for non-DAX files and
1576 * for DAX files if underneath dax_device is not synchronous.
1578 if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1579 return -EOPNOTSUPP;
1581 file_accessed(file);
1582 vma->vm_ops = &xfs_file_vm_ops;
1583 if (IS_DAX(inode))
1584 vm_flags_set(vma, VM_HUGEPAGE);
1585 return 0;
1588 const struct file_operations xfs_file_operations = {
1589 .llseek = xfs_file_llseek,
1590 .read_iter = xfs_file_read_iter,
1591 .write_iter = xfs_file_write_iter,
1592 .splice_read = xfs_file_splice_read,
1593 .splice_write = iter_file_splice_write,
1594 .iopoll = iocb_bio_iopoll,
1595 .unlocked_ioctl = xfs_file_ioctl,
1596 #ifdef CONFIG_COMPAT
1597 .compat_ioctl = xfs_file_compat_ioctl,
1598 #endif
1599 .mmap = xfs_file_mmap,
1600 .open = xfs_file_open,
1601 .release = xfs_file_release,
1602 .fsync = xfs_file_fsync,
1603 .get_unmapped_area = thp_get_unmapped_area,
1604 .fallocate = xfs_file_fallocate,
1605 .fadvise = xfs_file_fadvise,
1606 .remap_file_range = xfs_file_remap_range,
1607 .fop_flags = FOP_MMAP_SYNC | FOP_BUFFER_RASYNC |
1608 FOP_BUFFER_WASYNC | FOP_DIO_PARALLEL_WRITE,
1611 const struct file_operations xfs_dir_file_operations = {
1612 .open = xfs_dir_open,
1613 .read = generic_read_dir,
1614 .iterate_shared = xfs_file_readdir,
1615 .llseek = generic_file_llseek,
1616 .unlocked_ioctl = xfs_file_ioctl,
1617 #ifdef CONFIG_COMPAT
1618 .compat_ioctl = xfs_file_compat_ioctl,
1619 #endif
1620 .fsync = xfs_dir_fsync,