1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_inode_item.h"
17 #include "xfs_quota.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_dquot_item.h"
22 #include "xfs_dquot.h"
23 #include "xfs_reflink.h"
24 #include "xfs_ialloc.h"
26 #include "xfs_log_priv.h"
27 #include "xfs_health.h"
28 #include "xfs_da_format.h"
30 #include "xfs_metafile.h"
32 #include <linux/iversion.h>
34 /* Radix tree tags for incore inode tree. */
36 /* inode is to be reclaimed */
37 #define XFS_ICI_RECLAIM_TAG 0
38 /* Inode has speculative preallocations (posteof or cow) to clean. */
39 #define XFS_ICI_BLOCKGC_TAG 1
42 * The goal for walking incore inodes. These can correspond with incore inode
43 * radix tree tags when convenient. Avoid existing XFS_IWALK namespace.
45 enum xfs_icwalk_goal
{
46 /* Goals directly associated with tagged inodes. */
47 XFS_ICWALK_BLOCKGC
= XFS_ICI_BLOCKGC_TAG
,
48 XFS_ICWALK_RECLAIM
= XFS_ICI_RECLAIM_TAG
,
51 static int xfs_icwalk(struct xfs_mount
*mp
,
52 enum xfs_icwalk_goal goal
, struct xfs_icwalk
*icw
);
53 static int xfs_icwalk_ag(struct xfs_perag
*pag
,
54 enum xfs_icwalk_goal goal
, struct xfs_icwalk
*icw
);
57 * Private inode cache walk flags for struct xfs_icwalk. Must not
58 * coincide with XFS_ICWALK_FLAGS_VALID.
61 /* Stop scanning after icw_scan_limit inodes. */
62 #define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28)
64 #define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27)
65 #define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */
67 #define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_SCAN_LIMIT | \
68 XFS_ICWALK_FLAG_RECLAIM_SICK | \
69 XFS_ICWALK_FLAG_UNION)
71 /* Marks for the perag xarray */
72 #define XFS_PERAG_RECLAIM_MARK XA_MARK_0
73 #define XFS_PERAG_BLOCKGC_MARK XA_MARK_1
75 static inline xa_mark_t
ici_tag_to_mark(unsigned int tag
)
77 if (tag
== XFS_ICI_RECLAIM_TAG
)
78 return XFS_PERAG_RECLAIM_MARK
;
79 ASSERT(tag
== XFS_ICI_BLOCKGC_TAG
);
80 return XFS_PERAG_BLOCKGC_MARK
;
84 * Allocate and initialise an xfs_inode.
94 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
95 * and return NULL here on ENOMEM.
97 ip
= alloc_inode_sb(mp
->m_super
, xfs_inode_cache
, GFP_KERNEL
| __GFP_NOFAIL
);
99 if (inode_init_always(mp
->m_super
, VFS_I(ip
))) {
100 kmem_cache_free(xfs_inode_cache
, ip
);
104 /* VFS doesn't initialise i_mode! */
105 VFS_I(ip
)->i_mode
= 0;
106 mapping_set_folio_min_order(VFS_I(ip
)->i_mapping
,
107 M_IGEO(mp
)->min_folio_order
);
109 XFS_STATS_INC(mp
, vn_active
);
110 ASSERT(atomic_read(&ip
->i_pincount
) == 0);
111 ASSERT(ip
->i_ino
== 0);
113 /* initialise the xfs inode */
116 memset(&ip
->i_imap
, 0, sizeof(struct xfs_imap
));
118 memset(&ip
->i_af
, 0, sizeof(ip
->i_af
));
119 ip
->i_af
.if_format
= XFS_DINODE_FMT_EXTENTS
;
120 memset(&ip
->i_df
, 0, sizeof(ip
->i_df
));
122 ip
->i_delayed_blks
= 0;
123 ip
->i_diflags2
= mp
->m_ino_geo
.new_diflags2
;
128 INIT_WORK(&ip
->i_ioend_work
, xfs_end_io
);
129 INIT_LIST_HEAD(&ip
->i_ioend_list
);
130 spin_lock_init(&ip
->i_ioend_lock
);
131 ip
->i_next_unlinked
= NULLAGINO
;
132 ip
->i_prev_unlinked
= 0;
138 xfs_inode_free_callback(
139 struct rcu_head
*head
)
141 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
142 struct xfs_inode
*ip
= XFS_I(inode
);
144 switch (VFS_I(ip
)->i_mode
& S_IFMT
) {
148 xfs_idestroy_fork(&ip
->i_df
);
152 xfs_ifork_zap_attr(ip
);
155 xfs_idestroy_fork(ip
->i_cowfp
);
156 kmem_cache_free(xfs_ifork_cache
, ip
->i_cowfp
);
159 ASSERT(!test_bit(XFS_LI_IN_AIL
,
160 &ip
->i_itemp
->ili_item
.li_flags
));
161 xfs_inode_item_destroy(ip
);
165 kmem_cache_free(xfs_inode_cache
, ip
);
170 struct xfs_inode
*ip
)
172 /* asserts to verify all state is correct here */
173 ASSERT(atomic_read(&ip
->i_pincount
) == 0);
174 ASSERT(!ip
->i_itemp
|| list_empty(&ip
->i_itemp
->ili_item
.li_bio_list
));
175 XFS_STATS_DEC(ip
->i_mount
, vn_active
);
177 call_rcu(&VFS_I(ip
)->i_rcu
, xfs_inode_free_callback
);
182 struct xfs_inode
*ip
)
184 ASSERT(!xfs_iflags_test(ip
, XFS_IFLUSHING
));
187 * Because we use RCU freeing we need to ensure the inode always
188 * appears to be reclaimed with an invalid inode number when in the
189 * free state. The ip->i_flags_lock provides the barrier against lookup
192 spin_lock(&ip
->i_flags_lock
);
193 ip
->i_flags
= XFS_IRECLAIM
;
195 spin_unlock(&ip
->i_flags_lock
);
197 __xfs_inode_free(ip
);
201 * Queue background inode reclaim work if there are reclaimable inodes and there
202 * isn't reclaim work already scheduled or in progress.
205 xfs_reclaim_work_queue(
206 struct xfs_mount
*mp
)
210 if (xfs_group_marked(mp
, XG_TYPE_AG
, XFS_PERAG_RECLAIM_MARK
)) {
211 queue_delayed_work(mp
->m_reclaim_workqueue
, &mp
->m_reclaim_work
,
212 msecs_to_jiffies(xfs_syncd_centisecs
/ 6 * 10));
218 * Background scanning to trim preallocated space. This is queued based on the
219 * 'speculative_prealloc_lifetime' tunable (5m by default).
223 struct xfs_perag
*pag
)
225 struct xfs_mount
*mp
= pag_mount(pag
);
227 if (!xfs_is_blockgc_enabled(mp
))
231 if (radix_tree_tagged(&pag
->pag_ici_root
, XFS_ICI_BLOCKGC_TAG
))
232 queue_delayed_work(mp
->m_blockgc_wq
, &pag
->pag_blockgc_work
,
233 msecs_to_jiffies(xfs_blockgc_secs
* 1000));
237 /* Set a tag on both the AG incore inode tree and the AG radix tree. */
239 xfs_perag_set_inode_tag(
240 struct xfs_perag
*pag
,
246 lockdep_assert_held(&pag
->pag_ici_lock
);
248 was_tagged
= radix_tree_tagged(&pag
->pag_ici_root
, tag
);
249 radix_tree_tag_set(&pag
->pag_ici_root
, agino
, tag
);
251 if (tag
== XFS_ICI_RECLAIM_TAG
)
252 pag
->pag_ici_reclaimable
++;
257 /* propagate the tag up into the pag xarray tree */
258 xfs_group_set_mark(pag_group(pag
), ici_tag_to_mark(tag
));
260 /* start background work */
262 case XFS_ICI_RECLAIM_TAG
:
263 xfs_reclaim_work_queue(pag_mount(pag
));
265 case XFS_ICI_BLOCKGC_TAG
:
266 xfs_blockgc_queue(pag
);
270 trace_xfs_perag_set_inode_tag(pag
, _RET_IP_
);
273 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */
275 xfs_perag_clear_inode_tag(
276 struct xfs_perag
*pag
,
280 lockdep_assert_held(&pag
->pag_ici_lock
);
283 * Reclaim can signal (with a null agino) that it cleared its own tag
284 * by removing the inode from the radix tree.
286 if (agino
!= NULLAGINO
)
287 radix_tree_tag_clear(&pag
->pag_ici_root
, agino
, tag
);
289 ASSERT(tag
== XFS_ICI_RECLAIM_TAG
);
291 if (tag
== XFS_ICI_RECLAIM_TAG
)
292 pag
->pag_ici_reclaimable
--;
294 if (radix_tree_tagged(&pag
->pag_ici_root
, tag
))
297 /* clear the tag from the pag xarray */
298 xfs_group_clear_mark(pag_group(pag
), ici_tag_to_mark(tag
));
299 trace_xfs_perag_clear_inode_tag(pag
, _RET_IP_
);
303 * Find the next AG after @pag, or the first AG if @pag is NULL.
305 static struct xfs_perag
*
306 xfs_perag_grab_next_tag(
307 struct xfs_mount
*mp
,
308 struct xfs_perag
*pag
,
311 return to_perag(xfs_group_grab_next_mark(mp
,
312 pag
? pag_group(pag
) : NULL
,
313 ici_tag_to_mark(tag
), XG_TYPE_AG
));
317 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
318 * part of the structure. This is made more complex by the fact we store
319 * information about the on-disk values in the VFS inode and so we can't just
320 * overwrite the values unconditionally. Hence we save the parameters we
321 * need to retain across reinitialisation, and rewrite them into the VFS inode
322 * after reinitialisation even if it fails.
326 struct xfs_mount
*mp
,
330 uint32_t nlink
= inode
->i_nlink
;
331 uint32_t generation
= inode
->i_generation
;
332 uint64_t version
= inode_peek_iversion(inode
);
333 umode_t mode
= inode
->i_mode
;
334 dev_t dev
= inode
->i_rdev
;
335 kuid_t uid
= inode
->i_uid
;
336 kgid_t gid
= inode
->i_gid
;
337 unsigned long state
= inode
->i_state
;
339 error
= inode_init_always(mp
->m_super
, inode
);
341 set_nlink(inode
, nlink
);
342 inode
->i_generation
= generation
;
343 inode_set_iversion_queried(inode
, version
);
344 inode
->i_mode
= mode
;
348 inode
->i_state
= state
;
349 mapping_set_folio_min_order(inode
->i_mapping
,
350 M_IGEO(mp
)->min_folio_order
);
355 * Carefully nudge an inode whose VFS state has been torn down back into a
356 * usable state. Drops the i_flags_lock and the rcu read lock.
360 struct xfs_perag
*pag
,
361 struct xfs_inode
*ip
) __releases(&ip
->i_flags_lock
)
363 struct xfs_mount
*mp
= ip
->i_mount
;
364 struct inode
*inode
= VFS_I(ip
);
367 trace_xfs_iget_recycle(ip
);
369 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
))
373 * We need to make it look like the inode is being reclaimed to prevent
374 * the actual reclaim workers from stomping over us while we recycle
375 * the inode. We can't clear the radix tree tag yet as it requires
376 * pag_ici_lock to be held exclusive.
378 ip
->i_flags
|= XFS_IRECLAIM
;
380 spin_unlock(&ip
->i_flags_lock
);
383 ASSERT(!rwsem_is_locked(&inode
->i_rwsem
));
384 error
= xfs_reinit_inode(mp
, inode
);
385 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
388 * Re-initializing the inode failed, and we are in deep
389 * trouble. Try to re-add it to the reclaim list.
392 spin_lock(&ip
->i_flags_lock
);
393 ip
->i_flags
&= ~(XFS_INEW
| XFS_IRECLAIM
);
394 ASSERT(ip
->i_flags
& XFS_IRECLAIMABLE
);
395 spin_unlock(&ip
->i_flags_lock
);
398 trace_xfs_iget_recycle_fail(ip
);
402 spin_lock(&pag
->pag_ici_lock
);
403 spin_lock(&ip
->i_flags_lock
);
406 * Clear the per-lifetime state in the inode as we are now effectively
407 * a new inode and need to return to the initial state before reuse
410 ip
->i_flags
&= ~XFS_IRECLAIM_RESET_FLAGS
;
411 ip
->i_flags
|= XFS_INEW
;
412 xfs_perag_clear_inode_tag(pag
, XFS_INO_TO_AGINO(mp
, ip
->i_ino
),
413 XFS_ICI_RECLAIM_TAG
);
414 inode
->i_state
= I_NEW
;
415 spin_unlock(&ip
->i_flags_lock
);
416 spin_unlock(&pag
->pag_ici_lock
);
422 * If we are allocating a new inode, then check what was returned is
423 * actually a free, empty inode. If we are not allocating an inode,
424 * then check we didn't find a free inode.
427 * 0 if the inode free state matches the lookup context
428 * -ENOENT if the inode is free and we are not allocating
429 * -EFSCORRUPTED if there is any state mismatch at all
432 xfs_iget_check_free_state(
433 struct xfs_inode
*ip
,
436 if (flags
& XFS_IGET_CREATE
) {
437 /* should be a free inode */
438 if (VFS_I(ip
)->i_mode
!= 0) {
439 xfs_warn(ip
->i_mount
,
440 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
441 ip
->i_ino
, VFS_I(ip
)->i_mode
);
442 xfs_agno_mark_sick(ip
->i_mount
,
443 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
445 return -EFSCORRUPTED
;
448 if (ip
->i_nblocks
!= 0) {
449 xfs_warn(ip
->i_mount
,
450 "Corruption detected! Free inode 0x%llx has blocks allocated!",
452 xfs_agno_mark_sick(ip
->i_mount
,
453 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
455 return -EFSCORRUPTED
;
460 /* should be an allocated inode */
461 if (VFS_I(ip
)->i_mode
== 0)
467 /* Make all pending inactivation work start immediately. */
469 xfs_inodegc_queue_all(
470 struct xfs_mount
*mp
)
472 struct xfs_inodegc
*gc
;
476 for_each_cpu(cpu
, &mp
->m_inodegc_cpumask
) {
477 gc
= per_cpu_ptr(mp
->m_inodegc
, cpu
);
478 if (!llist_empty(&gc
->list
)) {
479 mod_delayed_work_on(cpu
, mp
->m_inodegc_wq
, &gc
->work
, 0);
487 /* Wait for all queued work and collect errors */
489 xfs_inodegc_wait_all(
490 struct xfs_mount
*mp
)
495 flush_workqueue(mp
->m_inodegc_wq
);
496 for_each_cpu(cpu
, &mp
->m_inodegc_cpumask
) {
497 struct xfs_inodegc
*gc
;
499 gc
= per_cpu_ptr(mp
->m_inodegc
, cpu
);
500 if (gc
->error
&& !error
)
509 * Check the validity of the inode we just found it the cache
513 struct xfs_perag
*pag
,
514 struct xfs_inode
*ip
,
517 int lock_flags
) __releases(RCU
)
519 struct inode
*inode
= VFS_I(ip
);
520 struct xfs_mount
*mp
= ip
->i_mount
;
524 * check for re-use of an inode within an RCU grace period due to the
525 * radix tree nodes not being updated yet. We monitor for this by
526 * setting the inode number to zero before freeing the inode structure.
527 * If the inode has been reallocated and set up, then the inode number
528 * will not match, so check for that, too.
530 spin_lock(&ip
->i_flags_lock
);
531 if (ip
->i_ino
!= ino
)
535 * If we are racing with another cache hit that is currently
536 * instantiating this inode or currently recycling it out of
537 * reclaimable state, wait for the initialisation to complete
540 * If we're racing with the inactivation worker we also want to wait.
541 * If we're creating a new file, it's possible that the worker
542 * previously marked the inode as free on disk but hasn't finished
543 * updating the incore state yet. The AGI buffer will be dirty and
544 * locked to the icreate transaction, so a synchronous push of the
545 * inodegc workers would result in deadlock. For a regular iget, the
546 * worker is running already, so we might as well wait.
548 * XXX(hch): eventually we should do something equivalent to
549 * wait_on_inode to wait for these flags to be cleared
550 * instead of polling for it.
552 if (ip
->i_flags
& (XFS_INEW
| XFS_IRECLAIM
| XFS_INACTIVATING
))
555 if (ip
->i_flags
& XFS_NEED_INACTIVE
) {
556 /* Unlinked inodes cannot be re-grabbed. */
557 if (VFS_I(ip
)->i_nlink
== 0) {
561 goto out_inodegc_flush
;
565 * Check the inode free state is valid. This also detects lookup
566 * racing with unlinks.
568 error
= xfs_iget_check_free_state(ip
, flags
);
572 /* Skip inodes that have no vfs state. */
573 if ((flags
& XFS_IGET_INCORE
) &&
574 (ip
->i_flags
& XFS_IRECLAIMABLE
))
577 /* The inode fits the selection criteria; process it. */
578 if (ip
->i_flags
& XFS_IRECLAIMABLE
) {
579 /* Drops i_flags_lock and RCU read lock. */
580 error
= xfs_iget_recycle(pag
, ip
);
581 if (error
== -EAGAIN
)
586 /* If the VFS inode is being torn down, pause and try again. */
590 /* We've got a live one. */
591 spin_unlock(&ip
->i_flags_lock
);
593 trace_xfs_iget_hit(ip
);
597 xfs_ilock(ip
, lock_flags
);
599 if (!(flags
& XFS_IGET_INCORE
))
600 xfs_iflags_clear(ip
, XFS_ISTALE
);
601 XFS_STATS_INC(mp
, xs_ig_found
);
606 trace_xfs_iget_skip(ip
);
607 XFS_STATS_INC(mp
, xs_ig_frecycle
);
610 spin_unlock(&ip
->i_flags_lock
);
615 spin_unlock(&ip
->i_flags_lock
);
618 * Do not wait for the workers, because the caller could hold an AGI
619 * buffer lock. We're just going to sleep in a loop anyway.
621 if (xfs_is_inodegc_enabled(mp
))
622 xfs_inodegc_queue_all(mp
);
628 struct xfs_mount
*mp
,
629 struct xfs_perag
*pag
,
632 struct xfs_inode
**ipp
,
636 struct xfs_inode
*ip
;
638 xfs_agino_t agino
= XFS_INO_TO_AGINO(mp
, ino
);
640 ip
= xfs_inode_alloc(mp
, ino
);
644 error
= xfs_imap(pag
, tp
, ip
->i_ino
, &ip
->i_imap
, flags
);
649 * For version 5 superblocks, if we are initialising a new inode and we
650 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
651 * simply build the new inode core with a random generation number.
653 * For version 4 (and older) superblocks, log recovery is dependent on
654 * the i_flushiter field being initialised from the current on-disk
655 * value and hence we must also read the inode off disk even when
656 * initializing new inodes.
658 if (xfs_has_v3inodes(mp
) &&
659 (flags
& XFS_IGET_CREATE
) && !xfs_has_ikeep(mp
)) {
660 VFS_I(ip
)->i_generation
= get_random_u32();
664 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &bp
);
668 error
= xfs_inode_from_disk(ip
,
669 xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
));
671 xfs_buf_set_ref(bp
, XFS_INO_REF
);
673 xfs_inode_mark_sick(ip
, XFS_SICK_INO_CORE
);
674 xfs_trans_brelse(tp
, bp
);
680 trace_xfs_iget_miss(ip
);
683 * Check the inode free state is valid. This also detects lookup
684 * racing with unlinks.
686 error
= xfs_iget_check_free_state(ip
, flags
);
691 * Preload the radix tree so we can insert safely under the
692 * write spinlock. Note that we cannot sleep inside the preload
695 if (radix_tree_preload(GFP_KERNEL
| __GFP_NOLOCKDEP
)) {
701 * Because the inode hasn't been added to the radix-tree yet it can't
702 * be found by another thread, so we can do the non-sleeping lock here.
705 if (!xfs_ilock_nowait(ip
, lock_flags
))
710 * These values must be set before inserting the inode into the radix
711 * tree as the moment it is inserted a concurrent lookup (allowed by the
712 * RCU locking mechanism) can find it and that lookup must see that this
713 * is an inode currently under construction (i.e. that XFS_INEW is set).
714 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
715 * memory barrier that ensures this detection works correctly at lookup
718 if (flags
& XFS_IGET_DONTCACHE
)
719 d_mark_dontcache(VFS_I(ip
));
723 xfs_iflags_set(ip
, XFS_INEW
);
725 /* insert the new inode */
726 spin_lock(&pag
->pag_ici_lock
);
727 error
= radix_tree_insert(&pag
->pag_ici_root
, agino
, ip
);
728 if (unlikely(error
)) {
729 WARN_ON(error
!= -EEXIST
);
730 XFS_STATS_INC(mp
, xs_ig_dup
);
732 goto out_preload_end
;
734 spin_unlock(&pag
->pag_ici_lock
);
735 radix_tree_preload_end();
741 spin_unlock(&pag
->pag_ici_lock
);
742 radix_tree_preload_end();
744 xfs_iunlock(ip
, lock_flags
);
746 __destroy_inode(VFS_I(ip
));
752 * Look up an inode by number in the given file system. The inode is looked up
753 * in the cache held in each AG. If the inode is found in the cache, initialise
754 * the vfs inode if necessary.
756 * If it is not in core, read it in from the file system's device, add it to the
757 * cache and initialise the vfs inode.
759 * The inode is locked according to the value of the lock_flags parameter.
760 * Inode lookup is only done during metadata operations and not as part of the
761 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
765 struct xfs_mount
*mp
,
766 struct xfs_trans
*tp
,
770 struct xfs_inode
**ipp
)
772 struct xfs_inode
*ip
;
773 struct xfs_perag
*pag
;
777 ASSERT((lock_flags
& (XFS_IOLOCK_EXCL
| XFS_IOLOCK_SHARED
)) == 0);
779 /* reject inode numbers outside existing AGs */
780 if (!xfs_verify_ino(mp
, ino
))
783 XFS_STATS_INC(mp
, xs_ig_attempts
);
785 /* get the perag structure and ensure that it's inode capable */
786 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ino
));
787 agino
= XFS_INO_TO_AGINO(mp
, ino
);
792 ip
= radix_tree_lookup(&pag
->pag_ici_root
, agino
);
795 error
= xfs_iget_cache_hit(pag
, ip
, ino
, flags
, lock_flags
);
797 goto out_error_or_again
;
800 if (flags
& XFS_IGET_INCORE
) {
802 goto out_error_or_again
;
804 XFS_STATS_INC(mp
, xs_ig_missed
);
806 error
= xfs_iget_cache_miss(mp
, pag
, tp
, ino
, &ip
,
809 goto out_error_or_again
;
816 * If we have a real type for an on-disk inode, we can setup the inode
817 * now. If it's a new inode being created, xfs_init_new_inode will
820 if (xfs_iflags_test(ip
, XFS_INEW
) && VFS_I(ip
)->i_mode
!= 0)
821 xfs_setup_existing_inode(ip
);
825 if (!(flags
& (XFS_IGET_INCORE
| XFS_IGET_NORETRY
)) &&
835 * Get a metadata inode.
837 * The metafile type must match the file mode exactly, and for files in the
838 * metadata directory tree, it must match the inode's metatype exactly.
841 xfs_trans_metafile_iget(
842 struct xfs_trans
*tp
,
844 enum xfs_metafile_type metafile_type
,
845 struct xfs_inode
**ipp
)
847 struct xfs_mount
*mp
= tp
->t_mountp
;
848 struct xfs_inode
*ip
;
852 error
= xfs_iget(mp
, tp
, ino
, 0, 0, &ip
);
853 if (error
== -EFSCORRUPTED
|| error
== -EINVAL
)
858 if (VFS_I(ip
)->i_nlink
== 0)
861 if (metafile_type
== XFS_METAFILE_DIR
)
865 if (inode_wrong_type(VFS_I(ip
), mode
))
867 if (xfs_has_metadir(mp
)) {
868 if (!xfs_is_metadir_inode(ip
))
870 if (metafile_type
!= ip
->i_metatype
)
879 xfs_err(mp
, "metadata inode 0x%llx type %u is corrupt", ino
,
881 xfs_fs_mark_sick(mp
, XFS_SICK_FS_METADIR
);
882 return -EFSCORRUPTED
;
885 /* Grab a metadata file if the caller doesn't already have a transaction. */
888 struct xfs_mount
*mp
,
890 enum xfs_metafile_type metafile_type
,
891 struct xfs_inode
**ipp
)
893 struct xfs_trans
*tp
;
896 error
= xfs_trans_alloc_empty(mp
, &tp
);
900 error
= xfs_trans_metafile_iget(tp
, ino
, metafile_type
, ipp
);
901 xfs_trans_cancel(tp
);
906 * Grab the inode for reclaim exclusively.
908 * We have found this inode via a lookup under RCU, so the inode may have
909 * already been freed, or it may be in the process of being recycled by
910 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
911 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
912 * will not be set. Hence we need to check for both these flag conditions to
913 * avoid inodes that are no longer reclaim candidates.
915 * Note: checking for other state flags here, under the i_flags_lock or not, is
916 * racy and should be avoided. Those races should be resolved only after we have
917 * ensured that we are able to reclaim this inode and the world can see that we
918 * are going to reclaim it.
920 * Return true if we grabbed it, false otherwise.
924 struct xfs_inode
*ip
,
925 struct xfs_icwalk
*icw
)
927 ASSERT(rcu_read_lock_held());
929 spin_lock(&ip
->i_flags_lock
);
930 if (!__xfs_iflags_test(ip
, XFS_IRECLAIMABLE
) ||
931 __xfs_iflags_test(ip
, XFS_IRECLAIM
)) {
932 /* not a reclaim candidate. */
933 spin_unlock(&ip
->i_flags_lock
);
937 /* Don't reclaim a sick inode unless the caller asked for it. */
939 (!icw
|| !(icw
->icw_flags
& XFS_ICWALK_FLAG_RECLAIM_SICK
))) {
940 spin_unlock(&ip
->i_flags_lock
);
944 __xfs_iflags_set(ip
, XFS_IRECLAIM
);
945 spin_unlock(&ip
->i_flags_lock
);
950 * Inode reclaim is non-blocking, so the default action if progress cannot be
951 * made is to "requeue" the inode for reclaim by unlocking it and clearing the
952 * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about
953 * blocking anymore and hence we can wait for the inode to be able to reclaim
956 * We do no IO here - if callers require inodes to be cleaned they must push the
957 * AIL first to trigger writeback of dirty inodes. This enables writeback to be
958 * done in the background in a non-blocking manner, and enables memory reclaim
959 * to make progress without blocking.
963 struct xfs_inode
*ip
,
964 struct xfs_perag
*pag
)
966 xfs_ino_t ino
= ip
->i_ino
; /* for radix_tree_delete */
968 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
))
970 if (xfs_iflags_test_and_set(ip
, XFS_IFLUSHING
))
974 * Check for log shutdown because aborting the inode can move the log
975 * tail and corrupt in memory state. This is fine if the log is shut
976 * down, but if the log is still active and only the mount is shut down
977 * then the in-memory log tail movement caused by the abort can be
978 * incorrectly propagated to disk.
980 if (xlog_is_shutdown(ip
->i_mount
->m_log
)) {
982 xfs_iflush_shutdown_abort(ip
);
985 if (xfs_ipincount(ip
))
986 goto out_clear_flush
;
987 if (!xfs_inode_clean(ip
))
988 goto out_clear_flush
;
990 xfs_iflags_clear(ip
, XFS_IFLUSHING
);
992 trace_xfs_inode_reclaiming(ip
);
995 * Because we use RCU freeing we need to ensure the inode always appears
996 * to be reclaimed with an invalid inode number when in the free state.
997 * We do this as early as possible under the ILOCK so that
998 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
999 * detect races with us here. By doing this, we guarantee that once
1000 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1001 * it will see either a valid inode that will serialise correctly, or it
1002 * will see an invalid inode that it can skip.
1004 spin_lock(&ip
->i_flags_lock
);
1005 ip
->i_flags
= XFS_IRECLAIM
;
1009 spin_unlock(&ip
->i_flags_lock
);
1011 ASSERT(!ip
->i_itemp
|| ip
->i_itemp
->ili_item
.li_buf
== NULL
);
1012 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1014 XFS_STATS_INC(ip
->i_mount
, xs_ig_reclaims
);
1016 * Remove the inode from the per-AG radix tree.
1018 * Because radix_tree_delete won't complain even if the item was never
1019 * added to the tree assert that it's been there before to catch
1020 * problems with the inode life time early on.
1022 spin_lock(&pag
->pag_ici_lock
);
1023 if (!radix_tree_delete(&pag
->pag_ici_root
,
1024 XFS_INO_TO_AGINO(ip
->i_mount
, ino
)))
1026 xfs_perag_clear_inode_tag(pag
, NULLAGINO
, XFS_ICI_RECLAIM_TAG
);
1027 spin_unlock(&pag
->pag_ici_lock
);
1030 * Here we do an (almost) spurious inode lock in order to coordinate
1031 * with inode cache radix tree lookups. This is because the lookup
1032 * can reference the inodes in the cache without taking references.
1034 * We make that OK here by ensuring that we wait until the inode is
1035 * unlocked after the lookup before we go ahead and free it.
1037 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1038 ASSERT(!ip
->i_udquot
&& !ip
->i_gdquot
&& !ip
->i_pdquot
);
1039 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1040 ASSERT(xfs_inode_clean(ip
));
1042 __xfs_inode_free(ip
);
1046 xfs_iflags_clear(ip
, XFS_IFLUSHING
);
1048 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1050 xfs_iflags_clear(ip
, XFS_IRECLAIM
);
1053 /* Reclaim sick inodes if we're unmounting or the fs went down. */
1055 xfs_want_reclaim_sick(
1056 struct xfs_mount
*mp
)
1058 return xfs_is_unmounting(mp
) || xfs_has_norecovery(mp
) ||
1059 xfs_is_shutdown(mp
);
1064 struct xfs_mount
*mp
)
1066 struct xfs_icwalk icw
= {
1070 if (xfs_want_reclaim_sick(mp
))
1071 icw
.icw_flags
|= XFS_ICWALK_FLAG_RECLAIM_SICK
;
1073 while (xfs_group_marked(mp
, XG_TYPE_AG
, XFS_PERAG_RECLAIM_MARK
)) {
1074 xfs_ail_push_all_sync(mp
->m_ail
);
1075 xfs_icwalk(mp
, XFS_ICWALK_RECLAIM
, &icw
);
1080 * The shrinker infrastructure determines how many inodes we should scan for
1081 * reclaim. We want as many clean inodes ready to reclaim as possible, so we
1082 * push the AIL here. We also want to proactively free up memory if we can to
1083 * minimise the amount of work memory reclaim has to do so we kick the
1084 * background reclaim if it isn't already scheduled.
1087 xfs_reclaim_inodes_nr(
1088 struct xfs_mount
*mp
,
1089 unsigned long nr_to_scan
)
1091 struct xfs_icwalk icw
= {
1092 .icw_flags
= XFS_ICWALK_FLAG_SCAN_LIMIT
,
1093 .icw_scan_limit
= min_t(unsigned long, LONG_MAX
, nr_to_scan
),
1096 if (xfs_want_reclaim_sick(mp
))
1097 icw
.icw_flags
|= XFS_ICWALK_FLAG_RECLAIM_SICK
;
1099 /* kick background reclaimer and push the AIL */
1100 xfs_reclaim_work_queue(mp
);
1101 xfs_ail_push_all(mp
->m_ail
);
1103 xfs_icwalk(mp
, XFS_ICWALK_RECLAIM
, &icw
);
1108 * Return the number of reclaimable inodes in the filesystem for
1109 * the shrinker to determine how much to reclaim.
1112 xfs_reclaim_inodes_count(
1113 struct xfs_mount
*mp
)
1115 XA_STATE (xas
, &mp
->m_groups
[XG_TYPE_AG
].xa
, 0);
1116 long reclaimable
= 0;
1117 struct xfs_perag
*pag
;
1120 xas_for_each_marked(&xas
, pag
, ULONG_MAX
, XFS_PERAG_RECLAIM_MARK
) {
1121 trace_xfs_reclaim_inodes_count(pag
, _THIS_IP_
);
1122 reclaimable
+= pag
->pag_ici_reclaimable
;
1130 xfs_icwalk_match_id(
1131 struct xfs_inode
*ip
,
1132 struct xfs_icwalk
*icw
)
1134 if ((icw
->icw_flags
& XFS_ICWALK_FLAG_UID
) &&
1135 !uid_eq(VFS_I(ip
)->i_uid
, icw
->icw_uid
))
1138 if ((icw
->icw_flags
& XFS_ICWALK_FLAG_GID
) &&
1139 !gid_eq(VFS_I(ip
)->i_gid
, icw
->icw_gid
))
1142 if ((icw
->icw_flags
& XFS_ICWALK_FLAG_PRID
) &&
1143 ip
->i_projid
!= icw
->icw_prid
)
1150 * A union-based inode filtering algorithm. Process the inode if any of the
1151 * criteria match. This is for global/internal scans only.
1154 xfs_icwalk_match_id_union(
1155 struct xfs_inode
*ip
,
1156 struct xfs_icwalk
*icw
)
1158 if ((icw
->icw_flags
& XFS_ICWALK_FLAG_UID
) &&
1159 uid_eq(VFS_I(ip
)->i_uid
, icw
->icw_uid
))
1162 if ((icw
->icw_flags
& XFS_ICWALK_FLAG_GID
) &&
1163 gid_eq(VFS_I(ip
)->i_gid
, icw
->icw_gid
))
1166 if ((icw
->icw_flags
& XFS_ICWALK_FLAG_PRID
) &&
1167 ip
->i_projid
== icw
->icw_prid
)
1174 * Is this inode @ip eligible for eof/cow block reclamation, given some
1175 * filtering parameters @icw? The inode is eligible if @icw is null or
1176 * if the predicate functions match.
1180 struct xfs_inode
*ip
,
1181 struct xfs_icwalk
*icw
)
1188 if (icw
->icw_flags
& XFS_ICWALK_FLAG_UNION
)
1189 match
= xfs_icwalk_match_id_union(ip
, icw
);
1191 match
= xfs_icwalk_match_id(ip
, icw
);
1195 /* skip the inode if the file size is too small */
1196 if ((icw
->icw_flags
& XFS_ICWALK_FLAG_MINFILESIZE
) &&
1197 XFS_ISIZE(ip
) < icw
->icw_min_file_size
)
1204 * This is a fast pass over the inode cache to try to get reclaim moving on as
1205 * many inodes as possible in a short period of time. It kicks itself every few
1206 * seconds, as well as being kicked by the inode cache shrinker when memory
1211 struct work_struct
*work
)
1213 struct xfs_mount
*mp
= container_of(to_delayed_work(work
),
1214 struct xfs_mount
, m_reclaim_work
);
1216 xfs_icwalk(mp
, XFS_ICWALK_RECLAIM
, NULL
);
1217 xfs_reclaim_work_queue(mp
);
1221 xfs_inode_free_eofblocks(
1222 struct xfs_inode
*ip
,
1223 struct xfs_icwalk
*icw
,
1224 unsigned int *lockflags
)
1228 wait
= icw
&& (icw
->icw_flags
& XFS_ICWALK_FLAG_SYNC
);
1230 if (!xfs_iflags_test(ip
, XFS_IEOFBLOCKS
))
1234 * If the mapping is dirty the operation can block and wait for some
1235 * time. Unless we are waiting, skip it.
1237 if (!wait
&& mapping_tagged(VFS_I(ip
)->i_mapping
, PAGECACHE_TAG_DIRTY
))
1240 if (!xfs_icwalk_match(ip
, icw
))
1244 * If the caller is waiting, return -EAGAIN to keep the background
1245 * scanner moving and revisit the inode in a subsequent pass.
1247 if (!xfs_ilock_nowait(ip
, XFS_IOLOCK_EXCL
)) {
1252 *lockflags
|= XFS_IOLOCK_EXCL
;
1254 if (xfs_can_free_eofblocks(ip
))
1255 return xfs_free_eofblocks(ip
);
1257 /* inode could be preallocated */
1258 trace_xfs_inode_free_eofblocks_invalid(ip
);
1259 xfs_inode_clear_eofblocks_tag(ip
);
1264 xfs_blockgc_set_iflag(
1265 struct xfs_inode
*ip
,
1266 unsigned long iflag
)
1268 struct xfs_mount
*mp
= ip
->i_mount
;
1269 struct xfs_perag
*pag
;
1271 ASSERT((iflag
& ~(XFS_IEOFBLOCKS
| XFS_ICOWBLOCKS
)) == 0);
1274 * Don't bother locking the AG and looking up in the radix trees
1275 * if we already know that we have the tag set.
1277 if (ip
->i_flags
& iflag
)
1279 spin_lock(&ip
->i_flags_lock
);
1280 ip
->i_flags
|= iflag
;
1281 spin_unlock(&ip
->i_flags_lock
);
1283 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
1284 spin_lock(&pag
->pag_ici_lock
);
1286 xfs_perag_set_inode_tag(pag
, XFS_INO_TO_AGINO(mp
, ip
->i_ino
),
1287 XFS_ICI_BLOCKGC_TAG
);
1289 spin_unlock(&pag
->pag_ici_lock
);
1294 xfs_inode_set_eofblocks_tag(
1297 trace_xfs_inode_set_eofblocks_tag(ip
);
1298 return xfs_blockgc_set_iflag(ip
, XFS_IEOFBLOCKS
);
1302 xfs_blockgc_clear_iflag(
1303 struct xfs_inode
*ip
,
1304 unsigned long iflag
)
1306 struct xfs_mount
*mp
= ip
->i_mount
;
1307 struct xfs_perag
*pag
;
1310 ASSERT((iflag
& ~(XFS_IEOFBLOCKS
| XFS_ICOWBLOCKS
)) == 0);
1312 spin_lock(&ip
->i_flags_lock
);
1313 ip
->i_flags
&= ~iflag
;
1314 clear_tag
= (ip
->i_flags
& (XFS_IEOFBLOCKS
| XFS_ICOWBLOCKS
)) == 0;
1315 spin_unlock(&ip
->i_flags_lock
);
1320 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
1321 spin_lock(&pag
->pag_ici_lock
);
1323 xfs_perag_clear_inode_tag(pag
, XFS_INO_TO_AGINO(mp
, ip
->i_ino
),
1324 XFS_ICI_BLOCKGC_TAG
);
1326 spin_unlock(&pag
->pag_ici_lock
);
1331 xfs_inode_clear_eofblocks_tag(
1334 trace_xfs_inode_clear_eofblocks_tag(ip
);
1335 return xfs_blockgc_clear_iflag(ip
, XFS_IEOFBLOCKS
);
1339 * Prepare to free COW fork blocks from an inode.
1342 xfs_prep_free_cowblocks(
1343 struct xfs_inode
*ip
,
1344 struct xfs_icwalk
*icw
)
1348 sync
= icw
&& (icw
->icw_flags
& XFS_ICWALK_FLAG_SYNC
);
1351 * Just clear the tag if we have an empty cow fork or none at all. It's
1352 * possible the inode was fully unshared since it was originally tagged.
1354 if (!xfs_inode_has_cow_data(ip
)) {
1355 trace_xfs_inode_free_cowblocks_invalid(ip
);
1356 xfs_inode_clear_cowblocks_tag(ip
);
1361 * A cowblocks trim of an inode can have a significant effect on
1362 * fragmentation even when a reasonable COW extent size hint is set.
1363 * Therefore, we prefer to not process cowblocks unless they are clean
1364 * and idle. We can never process a cowblocks inode that is dirty or has
1365 * in-flight I/O under any circumstances, because outstanding writeback
1366 * or dio expects targeted COW fork blocks exist through write
1367 * completion where they can be remapped into the data fork.
1369 * Therefore, the heuristic used here is to never process inodes
1370 * currently opened for write from background (i.e. non-sync) scans. For
1371 * sync scans, use the pagecache/dio state of the inode to ensure we
1372 * never free COW fork blocks out from under pending I/O.
1374 if (!sync
&& inode_is_open_for_write(VFS_I(ip
)))
1376 return xfs_can_free_cowblocks(ip
);
1380 * Automatic CoW Reservation Freeing
1382 * These functions automatically garbage collect leftover CoW reservations
1383 * that were made on behalf of a cowextsize hint when we start to run out
1384 * of quota or when the reservations sit around for too long. If the file
1385 * has dirty pages or is undergoing writeback, its CoW reservations will
1388 * The actual garbage collection piggybacks off the same code that runs
1389 * the speculative EOF preallocation garbage collector.
1392 xfs_inode_free_cowblocks(
1393 struct xfs_inode
*ip
,
1394 struct xfs_icwalk
*icw
,
1395 unsigned int *lockflags
)
1400 wait
= icw
&& (icw
->icw_flags
& XFS_ICWALK_FLAG_SYNC
);
1402 if (!xfs_iflags_test(ip
, XFS_ICOWBLOCKS
))
1405 if (!xfs_prep_free_cowblocks(ip
, icw
))
1408 if (!xfs_icwalk_match(ip
, icw
))
1412 * If the caller is waiting, return -EAGAIN to keep the background
1413 * scanner moving and revisit the inode in a subsequent pass.
1415 if (!(*lockflags
& XFS_IOLOCK_EXCL
) &&
1416 !xfs_ilock_nowait(ip
, XFS_IOLOCK_EXCL
)) {
1421 *lockflags
|= XFS_IOLOCK_EXCL
;
1423 if (!xfs_ilock_nowait(ip
, XFS_MMAPLOCK_EXCL
)) {
1428 *lockflags
|= XFS_MMAPLOCK_EXCL
;
1431 * Check again, nobody else should be able to dirty blocks or change
1432 * the reflink iflag now that we have the first two locks held.
1434 if (xfs_prep_free_cowblocks(ip
, icw
))
1435 ret
= xfs_reflink_cancel_cow_range(ip
, 0, NULLFILEOFF
, false);
1440 xfs_inode_set_cowblocks_tag(
1443 trace_xfs_inode_set_cowblocks_tag(ip
);
1444 return xfs_blockgc_set_iflag(ip
, XFS_ICOWBLOCKS
);
1448 xfs_inode_clear_cowblocks_tag(
1451 trace_xfs_inode_clear_cowblocks_tag(ip
);
1452 return xfs_blockgc_clear_iflag(ip
, XFS_ICOWBLOCKS
);
1455 /* Disable post-EOF and CoW block auto-reclamation. */
1458 struct xfs_mount
*mp
)
1460 struct xfs_perag
*pag
= NULL
;
1462 if (!xfs_clear_blockgc_enabled(mp
))
1465 while ((pag
= xfs_perag_next(mp
, pag
)))
1466 cancel_delayed_work_sync(&pag
->pag_blockgc_work
);
1467 trace_xfs_blockgc_stop(mp
, __return_address
);
1470 /* Enable post-EOF and CoW block auto-reclamation. */
1473 struct xfs_mount
*mp
)
1475 struct xfs_perag
*pag
= NULL
;
1477 if (xfs_set_blockgc_enabled(mp
))
1480 trace_xfs_blockgc_start(mp
, __return_address
);
1481 while ((pag
= xfs_perag_grab_next_tag(mp
, pag
, XFS_ICI_BLOCKGC_TAG
)))
1482 xfs_blockgc_queue(pag
);
1485 /* Don't try to run block gc on an inode that's in any of these states. */
1486 #define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \
1487 XFS_NEED_INACTIVE | \
1488 XFS_INACTIVATING | \
1489 XFS_IRECLAIMABLE | \
1492 * Decide if the given @ip is eligible for garbage collection of speculative
1493 * preallocations, and grab it if so. Returns true if it's ready to go or
1494 * false if we should just ignore it.
1498 struct xfs_inode
*ip
)
1500 struct inode
*inode
= VFS_I(ip
);
1502 ASSERT(rcu_read_lock_held());
1504 /* Check for stale RCU freed inode */
1505 spin_lock(&ip
->i_flags_lock
);
1507 goto out_unlock_noent
;
1509 if (ip
->i_flags
& XFS_BLOCKGC_NOGRAB_IFLAGS
)
1510 goto out_unlock_noent
;
1511 spin_unlock(&ip
->i_flags_lock
);
1513 /* nothing to sync during shutdown */
1514 if (xfs_is_shutdown(ip
->i_mount
))
1517 /* If we can't grab the inode, it must on it's way to reclaim. */
1521 /* inode is valid */
1525 spin_unlock(&ip
->i_flags_lock
);
1529 /* Scan one incore inode for block preallocations that we can remove. */
1531 xfs_blockgc_scan_inode(
1532 struct xfs_inode
*ip
,
1533 struct xfs_icwalk
*icw
)
1535 unsigned int lockflags
= 0;
1538 error
= xfs_inode_free_eofblocks(ip
, icw
, &lockflags
);
1542 error
= xfs_inode_free_cowblocks(ip
, icw
, &lockflags
);
1545 xfs_iunlock(ip
, lockflags
);
1550 /* Background worker that trims preallocated space. */
1553 struct work_struct
*work
)
1555 struct xfs_perag
*pag
= container_of(to_delayed_work(work
),
1556 struct xfs_perag
, pag_blockgc_work
);
1557 struct xfs_mount
*mp
= pag_mount(pag
);
1560 trace_xfs_blockgc_worker(mp
, __return_address
);
1562 error
= xfs_icwalk_ag(pag
, XFS_ICWALK_BLOCKGC
, NULL
);
1564 xfs_info(mp
, "AG %u preallocation gc worker failed, err=%d",
1565 pag_agno(pag
), error
);
1566 xfs_blockgc_queue(pag
);
1570 * Try to free space in the filesystem by purging inactive inodes, eofblocks
1574 xfs_blockgc_free_space(
1575 struct xfs_mount
*mp
,
1576 struct xfs_icwalk
*icw
)
1580 trace_xfs_blockgc_free_space(mp
, icw
, _RET_IP_
);
1582 error
= xfs_icwalk(mp
, XFS_ICWALK_BLOCKGC
, icw
);
1586 return xfs_inodegc_flush(mp
);
1590 * Reclaim all the free space that we can by scheduling the background blockgc
1591 * and inodegc workers immediately and waiting for them all to clear.
1594 xfs_blockgc_flush_all(
1595 struct xfs_mount
*mp
)
1597 struct xfs_perag
*pag
= NULL
;
1599 trace_xfs_blockgc_flush_all(mp
, __return_address
);
1602 * For each blockgc worker, move its queue time up to now. If it wasn't
1603 * queued, it will not be requeued. Then flush whatever is left.
1605 while ((pag
= xfs_perag_grab_next_tag(mp
, pag
, XFS_ICI_BLOCKGC_TAG
)))
1606 mod_delayed_work(mp
->m_blockgc_wq
, &pag
->pag_blockgc_work
, 0);
1608 while ((pag
= xfs_perag_grab_next_tag(mp
, pag
, XFS_ICI_BLOCKGC_TAG
)))
1609 flush_delayed_work(&pag
->pag_blockgc_work
);
1611 return xfs_inodegc_flush(mp
);
1615 * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which
1616 * quota caused an allocation failure, so we make a best effort by including
1617 * each quota under low free space conditions (less than 1% free space) in the
1620 * Callers must not hold any inode's ILOCK. If requesting a synchronous scan
1621 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1625 xfs_blockgc_free_dquots(
1626 struct xfs_mount
*mp
,
1627 struct xfs_dquot
*udqp
,
1628 struct xfs_dquot
*gdqp
,
1629 struct xfs_dquot
*pdqp
,
1630 unsigned int iwalk_flags
)
1632 struct xfs_icwalk icw
= {0};
1633 bool do_work
= false;
1635 if (!udqp
&& !gdqp
&& !pdqp
)
1639 * Run a scan to free blocks using the union filter to cover all
1640 * applicable quotas in a single scan.
1642 icw
.icw_flags
= XFS_ICWALK_FLAG_UNION
| iwalk_flags
;
1644 if (XFS_IS_UQUOTA_ENFORCED(mp
) && udqp
&& xfs_dquot_lowsp(udqp
)) {
1645 icw
.icw_uid
= make_kuid(mp
->m_super
->s_user_ns
, udqp
->q_id
);
1646 icw
.icw_flags
|= XFS_ICWALK_FLAG_UID
;
1650 if (XFS_IS_UQUOTA_ENFORCED(mp
) && gdqp
&& xfs_dquot_lowsp(gdqp
)) {
1651 icw
.icw_gid
= make_kgid(mp
->m_super
->s_user_ns
, gdqp
->q_id
);
1652 icw
.icw_flags
|= XFS_ICWALK_FLAG_GID
;
1656 if (XFS_IS_PQUOTA_ENFORCED(mp
) && pdqp
&& xfs_dquot_lowsp(pdqp
)) {
1657 icw
.icw_prid
= pdqp
->q_id
;
1658 icw
.icw_flags
|= XFS_ICWALK_FLAG_PRID
;
1665 return xfs_blockgc_free_space(mp
, &icw
);
1668 /* Run cow/eofblocks scans on the quotas attached to the inode. */
1670 xfs_blockgc_free_quota(
1671 struct xfs_inode
*ip
,
1672 unsigned int iwalk_flags
)
1674 return xfs_blockgc_free_dquots(ip
->i_mount
,
1675 xfs_inode_dquot(ip
, XFS_DQTYPE_USER
),
1676 xfs_inode_dquot(ip
, XFS_DQTYPE_GROUP
),
1677 xfs_inode_dquot(ip
, XFS_DQTYPE_PROJ
), iwalk_flags
);
1680 /* XFS Inode Cache Walking Code */
1683 * The inode lookup is done in batches to keep the amount of lock traffic and
1684 * radix tree lookups to a minimum. The batch size is a trade off between
1685 * lookup reduction and stack usage. This is in the reclaim path, so we can't
1688 #define XFS_LOOKUP_BATCH 32
1692 * Decide if we want to grab this inode in anticipation of doing work towards
1697 enum xfs_icwalk_goal goal
,
1698 struct xfs_inode
*ip
,
1699 struct xfs_icwalk
*icw
)
1702 case XFS_ICWALK_BLOCKGC
:
1703 return xfs_blockgc_igrab(ip
);
1704 case XFS_ICWALK_RECLAIM
:
1705 return xfs_reclaim_igrab(ip
, icw
);
1712 * Process an inode. Each processing function must handle any state changes
1713 * made by the icwalk igrab function. Return -EAGAIN to skip an inode.
1716 xfs_icwalk_process_inode(
1717 enum xfs_icwalk_goal goal
,
1718 struct xfs_inode
*ip
,
1719 struct xfs_perag
*pag
,
1720 struct xfs_icwalk
*icw
)
1725 case XFS_ICWALK_BLOCKGC
:
1726 error
= xfs_blockgc_scan_inode(ip
, icw
);
1728 case XFS_ICWALK_RECLAIM
:
1729 xfs_reclaim_inode(ip
, pag
);
1736 * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1737 * process them in some manner.
1741 struct xfs_perag
*pag
,
1742 enum xfs_icwalk_goal goal
,
1743 struct xfs_icwalk
*icw
)
1745 struct xfs_mount
*mp
= pag_mount(pag
);
1746 uint32_t first_index
;
1755 if (goal
== XFS_ICWALK_RECLAIM
)
1756 first_index
= READ_ONCE(pag
->pag_ici_reclaim_cursor
);
1761 struct xfs_inode
*batch
[XFS_LOOKUP_BATCH
];
1767 nr_found
= radix_tree_gang_lookup_tag(&pag
->pag_ici_root
,
1768 (void **) batch
, first_index
,
1769 XFS_LOOKUP_BATCH
, goal
);
1777 * Grab the inodes before we drop the lock. if we found
1778 * nothing, nr == 0 and the loop will be skipped.
1780 for (i
= 0; i
< nr_found
; i
++) {
1781 struct xfs_inode
*ip
= batch
[i
];
1783 if (done
|| !xfs_icwalk_igrab(goal
, ip
, icw
))
1787 * Update the index for the next lookup. Catch
1788 * overflows into the next AG range which can occur if
1789 * we have inodes in the last block of the AG and we
1790 * are currently pointing to the last inode.
1792 * Because we may see inodes that are from the wrong AG
1793 * due to RCU freeing and reallocation, only update the
1794 * index if it lies in this AG. It was a race that lead
1795 * us to see this inode, so another lookup from the
1796 * same index will not find it again.
1798 if (XFS_INO_TO_AGNO(mp
, ip
->i_ino
) != pag_agno(pag
))
1800 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
+ 1);
1801 if (first_index
< XFS_INO_TO_AGINO(mp
, ip
->i_ino
))
1805 /* unlock now we've grabbed the inodes. */
1808 for (i
= 0; i
< nr_found
; i
++) {
1811 error
= xfs_icwalk_process_inode(goal
, batch
[i
], pag
,
1813 if (error
== -EAGAIN
) {
1817 if (error
&& last_error
!= -EFSCORRUPTED
)
1821 /* bail out if the filesystem is corrupted. */
1822 if (error
== -EFSCORRUPTED
)
1827 if (icw
&& (icw
->icw_flags
& XFS_ICWALK_FLAG_SCAN_LIMIT
)) {
1828 icw
->icw_scan_limit
-= XFS_LOOKUP_BATCH
;
1829 if (icw
->icw_scan_limit
<= 0)
1832 } while (nr_found
&& !done
);
1834 if (goal
== XFS_ICWALK_RECLAIM
) {
1837 WRITE_ONCE(pag
->pag_ici_reclaim_cursor
, first_index
);
1847 /* Walk all incore inodes to achieve a given goal. */
1850 struct xfs_mount
*mp
,
1851 enum xfs_icwalk_goal goal
,
1852 struct xfs_icwalk
*icw
)
1854 struct xfs_perag
*pag
= NULL
;
1858 while ((pag
= xfs_perag_grab_next_tag(mp
, pag
, goal
))) {
1859 error
= xfs_icwalk_ag(pag
, goal
, icw
);
1862 if (error
== -EFSCORRUPTED
) {
1863 xfs_perag_rele(pag
);
1869 BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS
& XFS_ICWALK_FLAGS_VALID
);
1875 struct xfs_inode
*ip
,
1878 struct xfs_ifork
*ifp
= xfs_ifork_ptr(ip
, whichfork
);
1879 struct xfs_bmbt_irec got
;
1880 struct xfs_iext_cursor icur
;
1882 if (!ifp
|| !xfs_iext_lookup_extent(ip
, ifp
, 0, &icur
, &got
))
1885 if (isnullstartblock(got
.br_startblock
)) {
1886 xfs_warn(ip
->i_mount
,
1887 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
1889 whichfork
== XFS_DATA_FORK
? "data" : "cow",
1890 got
.br_startoff
, got
.br_blockcount
);
1892 } while (xfs_iext_next_extent(ifp
, &icur
, &got
));
1895 #define xfs_check_delalloc(ip, whichfork) do { } while (0)
1898 /* Schedule the inode for reclaim. */
1900 xfs_inodegc_set_reclaimable(
1901 struct xfs_inode
*ip
)
1903 struct xfs_mount
*mp
= ip
->i_mount
;
1904 struct xfs_perag
*pag
;
1906 if (!xfs_is_shutdown(mp
) && ip
->i_delayed_blks
) {
1907 xfs_check_delalloc(ip
, XFS_DATA_FORK
);
1908 xfs_check_delalloc(ip
, XFS_COW_FORK
);
1912 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
1913 spin_lock(&pag
->pag_ici_lock
);
1914 spin_lock(&ip
->i_flags_lock
);
1916 trace_xfs_inode_set_reclaimable(ip
);
1917 ip
->i_flags
&= ~(XFS_NEED_INACTIVE
| XFS_INACTIVATING
);
1918 ip
->i_flags
|= XFS_IRECLAIMABLE
;
1919 xfs_perag_set_inode_tag(pag
, XFS_INO_TO_AGINO(mp
, ip
->i_ino
),
1920 XFS_ICI_RECLAIM_TAG
);
1922 spin_unlock(&ip
->i_flags_lock
);
1923 spin_unlock(&pag
->pag_ici_lock
);
1928 * Free all speculative preallocations and possibly even the inode itself.
1929 * This is the last chance to make changes to an otherwise unreferenced file
1930 * before incore reclamation happens.
1933 xfs_inodegc_inactivate(
1934 struct xfs_inode
*ip
)
1938 trace_xfs_inode_inactivating(ip
);
1939 error
= xfs_inactive(ip
);
1940 xfs_inodegc_set_reclaimable(ip
);
1947 struct work_struct
*work
)
1949 struct xfs_inodegc
*gc
= container_of(to_delayed_work(work
),
1950 struct xfs_inodegc
, work
);
1951 struct llist_node
*node
= llist_del_all(&gc
->list
);
1952 struct xfs_inode
*ip
, *n
;
1953 struct xfs_mount
*mp
= gc
->mp
;
1954 unsigned int nofs_flag
;
1957 * Clear the cpu mask bit and ensure that we have seen the latest
1958 * update of the gc structure associated with this CPU. This matches
1959 * with the release semantics used when setting the cpumask bit in
1960 * xfs_inodegc_queue.
1962 cpumask_clear_cpu(gc
->cpu
, &mp
->m_inodegc_cpumask
);
1963 smp_mb__after_atomic();
1965 WRITE_ONCE(gc
->items
, 0);
1971 * We can allocate memory here while doing writeback on behalf of
1972 * memory reclaim. To avoid memory allocation deadlocks set the
1973 * task-wide nofs context for the following operations.
1975 nofs_flag
= memalloc_nofs_save();
1977 ip
= llist_entry(node
, struct xfs_inode
, i_gclist
);
1978 trace_xfs_inodegc_worker(mp
, READ_ONCE(gc
->shrinker_hits
));
1980 WRITE_ONCE(gc
->shrinker_hits
, 0);
1981 llist_for_each_entry_safe(ip
, n
, node
, i_gclist
) {
1984 xfs_iflags_set(ip
, XFS_INACTIVATING
);
1985 error
= xfs_inodegc_inactivate(ip
);
1986 if (error
&& !gc
->error
)
1990 memalloc_nofs_restore(nofs_flag
);
1994 * Expedite all pending inodegc work to run immediately. This does not wait for
1995 * completion of the work.
1999 struct xfs_mount
*mp
)
2001 if (!xfs_is_inodegc_enabled(mp
))
2003 trace_xfs_inodegc_push(mp
, __return_address
);
2004 xfs_inodegc_queue_all(mp
);
2008 * Force all currently queued inode inactivation work to run immediately and
2009 * wait for the work to finish.
2013 struct xfs_mount
*mp
)
2015 xfs_inodegc_push(mp
);
2016 trace_xfs_inodegc_flush(mp
, __return_address
);
2017 return xfs_inodegc_wait_all(mp
);
2021 * Flush all the pending work and then disable the inode inactivation background
2022 * workers and wait for them to stop. Caller must hold sb->s_umount to
2023 * coordinate changes in the inodegc_enabled state.
2027 struct xfs_mount
*mp
)
2031 if (!xfs_clear_inodegc_enabled(mp
))
2035 * Drain all pending inodegc work, including inodes that could be
2036 * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan
2037 * threads that sample the inodegc state just prior to us clearing it.
2038 * The inodegc flag state prevents new threads from queuing more
2039 * inodes, so we queue pending work items and flush the workqueue until
2040 * all inodegc lists are empty. IOWs, we cannot use drain_workqueue
2041 * here because it does not allow other unserialized mechanisms to
2042 * reschedule inodegc work while this draining is in progress.
2044 xfs_inodegc_queue_all(mp
);
2046 flush_workqueue(mp
->m_inodegc_wq
);
2047 rerun
= xfs_inodegc_queue_all(mp
);
2050 trace_xfs_inodegc_stop(mp
, __return_address
);
2054 * Enable the inode inactivation background workers and schedule deferred inode
2055 * inactivation work if there is any. Caller must hold sb->s_umount to
2056 * coordinate changes in the inodegc_enabled state.
2060 struct xfs_mount
*mp
)
2062 if (xfs_set_inodegc_enabled(mp
))
2065 trace_xfs_inodegc_start(mp
, __return_address
);
2066 xfs_inodegc_queue_all(mp
);
2069 #ifdef CONFIG_XFS_RT
2071 xfs_inodegc_want_queue_rt_file(
2072 struct xfs_inode
*ip
)
2074 struct xfs_mount
*mp
= ip
->i_mount
;
2076 if (!XFS_IS_REALTIME_INODE(ip
))
2079 if (__percpu_counter_compare(&mp
->m_frextents
,
2080 mp
->m_low_rtexts
[XFS_LOWSP_5_PCNT
],
2081 XFS_FDBLOCKS_BATCH
) < 0)
2087 # define xfs_inodegc_want_queue_rt_file(ip) (false)
2088 #endif /* CONFIG_XFS_RT */
2091 * Schedule the inactivation worker when:
2093 * - We've accumulated more than one inode cluster buffer's worth of inodes.
2094 * - There is less than 5% free space left.
2095 * - Any of the quotas for this inode are near an enforcement limit.
2098 xfs_inodegc_want_queue_work(
2099 struct xfs_inode
*ip
,
2102 struct xfs_mount
*mp
= ip
->i_mount
;
2104 if (items
> mp
->m_ino_geo
.inodes_per_cluster
)
2107 if (__percpu_counter_compare(&mp
->m_fdblocks
,
2108 mp
->m_low_space
[XFS_LOWSP_5_PCNT
],
2109 XFS_FDBLOCKS_BATCH
) < 0)
2112 if (xfs_inodegc_want_queue_rt_file(ip
))
2115 if (xfs_inode_near_dquot_enforcement(ip
, XFS_DQTYPE_USER
))
2118 if (xfs_inode_near_dquot_enforcement(ip
, XFS_DQTYPE_GROUP
))
2121 if (xfs_inode_near_dquot_enforcement(ip
, XFS_DQTYPE_PROJ
))
2128 * Upper bound on the number of inodes in each AG that can be queued for
2129 * inactivation at any given time, to avoid monopolizing the workqueue.
2131 #define XFS_INODEGC_MAX_BACKLOG (4 * XFS_INODES_PER_CHUNK)
2134 * Make the frontend wait for inactivations when:
2136 * - Memory shrinkers queued the inactivation worker and it hasn't finished.
2137 * - The queue depth exceeds the maximum allowable percpu backlog.
2139 * Note: If we are in a NOFS context here (e.g. current thread is running a
2140 * transaction) the we don't want to block here as inodegc progress may require
2141 * filesystem resources we hold to make progress and that could result in a
2142 * deadlock. Hence we skip out of here if we are in a scoped NOFS context.
2145 xfs_inodegc_want_flush_work(
2146 struct xfs_inode
*ip
,
2148 unsigned int shrinker_hits
)
2150 if (current
->flags
& PF_MEMALLOC_NOFS
)
2153 if (shrinker_hits
> 0)
2156 if (items
> XFS_INODEGC_MAX_BACKLOG
)
2163 * Queue a background inactivation worker if there are inodes that need to be
2164 * inactivated and higher level xfs code hasn't disabled the background
2169 struct xfs_inode
*ip
)
2171 struct xfs_mount
*mp
= ip
->i_mount
;
2172 struct xfs_inodegc
*gc
;
2174 unsigned int shrinker_hits
;
2175 unsigned int cpu_nr
;
2176 unsigned long queue_delay
= 1;
2178 trace_xfs_inode_set_need_inactive(ip
);
2179 spin_lock(&ip
->i_flags_lock
);
2180 ip
->i_flags
|= XFS_NEED_INACTIVE
;
2181 spin_unlock(&ip
->i_flags_lock
);
2184 gc
= this_cpu_ptr(mp
->m_inodegc
);
2185 llist_add(&ip
->i_gclist
, &gc
->list
);
2186 items
= READ_ONCE(gc
->items
);
2187 WRITE_ONCE(gc
->items
, items
+ 1);
2188 shrinker_hits
= READ_ONCE(gc
->shrinker_hits
);
2191 * Ensure the list add is always seen by anyone who finds the cpumask
2192 * bit set. This effectively gives the cpumask bit set operation
2193 * release ordering semantics.
2195 smp_mb__before_atomic();
2196 if (!cpumask_test_cpu(cpu_nr
, &mp
->m_inodegc_cpumask
))
2197 cpumask_test_and_set_cpu(cpu_nr
, &mp
->m_inodegc_cpumask
);
2200 * We queue the work while holding the current CPU so that the work
2201 * is scheduled to run on this CPU.
2203 if (!xfs_is_inodegc_enabled(mp
)) {
2208 if (xfs_inodegc_want_queue_work(ip
, items
))
2211 trace_xfs_inodegc_queue(mp
, __return_address
);
2212 mod_delayed_work_on(current_cpu(), mp
->m_inodegc_wq
, &gc
->work
,
2216 if (xfs_inodegc_want_flush_work(ip
, items
, shrinker_hits
)) {
2217 trace_xfs_inodegc_throttle(mp
, __return_address
);
2218 flush_delayed_work(&gc
->work
);
2223 * We set the inode flag atomically with the radix tree tag. Once we get tag
2224 * lookups on the radix tree, this inode flag can go away.
2226 * We always use background reclaim here because even if the inode is clean, it
2227 * still may be under IO and hence we have wait for IO completion to occur
2228 * before we can reclaim the inode. The background reclaim path handles this
2229 * more efficiently than we can here, so simply let background reclaim tear down
2233 xfs_inode_mark_reclaimable(
2234 struct xfs_inode
*ip
)
2236 struct xfs_mount
*mp
= ip
->i_mount
;
2239 XFS_STATS_INC(mp
, vn_reclaim
);
2242 * We should never get here with any of the reclaim flags already set.
2244 ASSERT_ALWAYS(!xfs_iflags_test(ip
, XFS_ALL_IRECLAIM_FLAGS
));
2246 need_inactive
= xfs_inode_needs_inactive(ip
);
2247 if (need_inactive
) {
2248 xfs_inodegc_queue(ip
);
2252 /* Going straight to reclaim, so drop the dquots. */
2253 xfs_qm_dqdetach(ip
);
2254 xfs_inodegc_set_reclaimable(ip
);
2258 * Register a phony shrinker so that we can run background inodegc sooner when
2259 * there's memory pressure. Inactivation does not itself free any memory but
2260 * it does make inodes reclaimable, which eventually frees memory.
2262 * The count function, seek value, and batch value are crafted to trigger the
2263 * scan function during the second round of scanning. Hopefully this means
2264 * that we reclaimed enough memory that initiating metadata transactions won't
2265 * make things worse.
2267 #define XFS_INODEGC_SHRINKER_COUNT (1UL << DEF_PRIORITY)
2268 #define XFS_INODEGC_SHRINKER_BATCH ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
2270 static unsigned long
2271 xfs_inodegc_shrinker_count(
2272 struct shrinker
*shrink
,
2273 struct shrink_control
*sc
)
2275 struct xfs_mount
*mp
= shrink
->private_data
;
2276 struct xfs_inodegc
*gc
;
2279 if (!xfs_is_inodegc_enabled(mp
))
2282 for_each_cpu(cpu
, &mp
->m_inodegc_cpumask
) {
2283 gc
= per_cpu_ptr(mp
->m_inodegc
, cpu
);
2284 if (!llist_empty(&gc
->list
))
2285 return XFS_INODEGC_SHRINKER_COUNT
;
2291 static unsigned long
2292 xfs_inodegc_shrinker_scan(
2293 struct shrinker
*shrink
,
2294 struct shrink_control
*sc
)
2296 struct xfs_mount
*mp
= shrink
->private_data
;
2297 struct xfs_inodegc
*gc
;
2299 bool no_items
= true;
2301 if (!xfs_is_inodegc_enabled(mp
))
2304 trace_xfs_inodegc_shrinker_scan(mp
, sc
, __return_address
);
2306 for_each_cpu(cpu
, &mp
->m_inodegc_cpumask
) {
2307 gc
= per_cpu_ptr(mp
->m_inodegc
, cpu
);
2308 if (!llist_empty(&gc
->list
)) {
2309 unsigned int h
= READ_ONCE(gc
->shrinker_hits
);
2311 WRITE_ONCE(gc
->shrinker_hits
, h
+ 1);
2312 mod_delayed_work_on(cpu
, mp
->m_inodegc_wq
, &gc
->work
, 0);
2318 * If there are no inodes to inactivate, we don't want the shrinker
2319 * to think there's deferred work to call us back about.
2327 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */
2329 xfs_inodegc_register_shrinker(
2330 struct xfs_mount
*mp
)
2332 mp
->m_inodegc_shrinker
= shrinker_alloc(SHRINKER_NONSLAB
,
2335 if (!mp
->m_inodegc_shrinker
)
2338 mp
->m_inodegc_shrinker
->count_objects
= xfs_inodegc_shrinker_count
;
2339 mp
->m_inodegc_shrinker
->scan_objects
= xfs_inodegc_shrinker_scan
;
2340 mp
->m_inodegc_shrinker
->seeks
= 0;
2341 mp
->m_inodegc_shrinker
->batch
= XFS_INODEGC_SHRINKER_BATCH
;
2342 mp
->m_inodegc_shrinker
->private_data
= mp
;
2344 shrinker_register(mp
->m_inodegc_shrinker
);