drm/tests: Add test for drm_atomic_helper_check_modeset()
[drm/drm-misc.git] / fs / xfs / xfs_inode.c
blobc8ad2606f928b27f6b28705976ed88791b9d41e0
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include <linux/iversion.h>
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_dir2.h"
18 #include "xfs_attr.h"
19 #include "xfs_bit.h"
20 #include "xfs_trans_space.h"
21 #include "xfs_trans.h"
22 #include "xfs_buf_item.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_iunlink_item.h"
25 #include "xfs_ialloc.h"
26 #include "xfs_bmap.h"
27 #include "xfs_bmap_util.h"
28 #include "xfs_errortag.h"
29 #include "xfs_error.h"
30 #include "xfs_quota.h"
31 #include "xfs_filestream.h"
32 #include "xfs_trace.h"
33 #include "xfs_icache.h"
34 #include "xfs_symlink.h"
35 #include "xfs_trans_priv.h"
36 #include "xfs_log.h"
37 #include "xfs_bmap_btree.h"
38 #include "xfs_reflink.h"
39 #include "xfs_ag.h"
40 #include "xfs_log_priv.h"
41 #include "xfs_health.h"
42 #include "xfs_pnfs.h"
43 #include "xfs_parent.h"
44 #include "xfs_xattr.h"
45 #include "xfs_inode_util.h"
46 #include "xfs_metafile.h"
48 struct kmem_cache *xfs_inode_cache;
51 * These two are wrapper routines around the xfs_ilock() routine used to
52 * centralize some grungy code. They are used in places that wish to lock the
53 * inode solely for reading the extents. The reason these places can't just
54 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
55 * bringing in of the extents from disk for a file in b-tree format. If the
56 * inode is in b-tree format, then we need to lock the inode exclusively until
57 * the extents are read in. Locking it exclusively all the time would limit
58 * our parallelism unnecessarily, though. What we do instead is check to see
59 * if the extents have been read in yet, and only lock the inode exclusively
60 * if they have not.
62 * The functions return a value which should be given to the corresponding
63 * xfs_iunlock() call.
65 uint
66 xfs_ilock_data_map_shared(
67 struct xfs_inode *ip)
69 uint lock_mode = XFS_ILOCK_SHARED;
71 if (xfs_need_iread_extents(&ip->i_df))
72 lock_mode = XFS_ILOCK_EXCL;
73 xfs_ilock(ip, lock_mode);
74 return lock_mode;
77 uint
78 xfs_ilock_attr_map_shared(
79 struct xfs_inode *ip)
81 uint lock_mode = XFS_ILOCK_SHARED;
83 if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
84 lock_mode = XFS_ILOCK_EXCL;
85 xfs_ilock(ip, lock_mode);
86 return lock_mode;
90 * You can't set both SHARED and EXCL for the same lock,
91 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
92 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
93 * to set in lock_flags.
95 static inline void
96 xfs_lock_flags_assert(
97 uint lock_flags)
99 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
100 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
101 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
102 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
103 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
104 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
105 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
106 ASSERT(lock_flags != 0);
110 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
111 * multi-reader locks: invalidate_lock and the i_lock. This routine allows
112 * various combinations of the locks to be obtained.
114 * The 3 locks should always be ordered so that the IO lock is obtained first,
115 * the mmap lock second and the ilock last in order to prevent deadlock.
117 * Basic locking order:
119 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
121 * mmap_lock locking order:
123 * i_rwsem -> page lock -> mmap_lock
124 * mmap_lock -> invalidate_lock -> page_lock
126 * The difference in mmap_lock locking order mean that we cannot hold the
127 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
128 * can fault in pages during copy in/out (for buffered IO) or require the
129 * mmap_lock in get_user_pages() to map the user pages into the kernel address
130 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
131 * fault because page faults already hold the mmap_lock.
133 * Hence to serialise fully against both syscall and mmap based IO, we need to
134 * take both the i_rwsem and the invalidate_lock. These locks should *only* be
135 * both taken in places where we need to invalidate the page cache in a race
136 * free manner (e.g. truncate, hole punch and other extent manipulation
137 * functions).
139 void
140 xfs_ilock(
141 xfs_inode_t *ip,
142 uint lock_flags)
144 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
146 xfs_lock_flags_assert(lock_flags);
148 if (lock_flags & XFS_IOLOCK_EXCL) {
149 down_write_nested(&VFS_I(ip)->i_rwsem,
150 XFS_IOLOCK_DEP(lock_flags));
151 } else if (lock_flags & XFS_IOLOCK_SHARED) {
152 down_read_nested(&VFS_I(ip)->i_rwsem,
153 XFS_IOLOCK_DEP(lock_flags));
156 if (lock_flags & XFS_MMAPLOCK_EXCL) {
157 down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
158 XFS_MMAPLOCK_DEP(lock_flags));
159 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
160 down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
161 XFS_MMAPLOCK_DEP(lock_flags));
164 if (lock_flags & XFS_ILOCK_EXCL)
165 down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
166 else if (lock_flags & XFS_ILOCK_SHARED)
167 down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
171 * This is just like xfs_ilock(), except that the caller
172 * is guaranteed not to sleep. It returns 1 if it gets
173 * the requested locks and 0 otherwise. If the IO lock is
174 * obtained but the inode lock cannot be, then the IO lock
175 * is dropped before returning.
177 * ip -- the inode being locked
178 * lock_flags -- this parameter indicates the inode's locks to be
179 * to be locked. See the comment for xfs_ilock() for a list
180 * of valid values.
183 xfs_ilock_nowait(
184 xfs_inode_t *ip,
185 uint lock_flags)
187 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
189 xfs_lock_flags_assert(lock_flags);
191 if (lock_flags & XFS_IOLOCK_EXCL) {
192 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
193 goto out;
194 } else if (lock_flags & XFS_IOLOCK_SHARED) {
195 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
196 goto out;
199 if (lock_flags & XFS_MMAPLOCK_EXCL) {
200 if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
201 goto out_undo_iolock;
202 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
203 if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
204 goto out_undo_iolock;
207 if (lock_flags & XFS_ILOCK_EXCL) {
208 if (!down_write_trylock(&ip->i_lock))
209 goto out_undo_mmaplock;
210 } else if (lock_flags & XFS_ILOCK_SHARED) {
211 if (!down_read_trylock(&ip->i_lock))
212 goto out_undo_mmaplock;
214 return 1;
216 out_undo_mmaplock:
217 if (lock_flags & XFS_MMAPLOCK_EXCL)
218 up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
219 else if (lock_flags & XFS_MMAPLOCK_SHARED)
220 up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
221 out_undo_iolock:
222 if (lock_flags & XFS_IOLOCK_EXCL)
223 up_write(&VFS_I(ip)->i_rwsem);
224 else if (lock_flags & XFS_IOLOCK_SHARED)
225 up_read(&VFS_I(ip)->i_rwsem);
226 out:
227 return 0;
231 * xfs_iunlock() is used to drop the inode locks acquired with
232 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
233 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
234 * that we know which locks to drop.
236 * ip -- the inode being unlocked
237 * lock_flags -- this parameter indicates the inode's locks to be
238 * to be unlocked. See the comment for xfs_ilock() for a list
239 * of valid values for this parameter.
242 void
243 xfs_iunlock(
244 xfs_inode_t *ip,
245 uint lock_flags)
247 xfs_lock_flags_assert(lock_flags);
249 if (lock_flags & XFS_IOLOCK_EXCL)
250 up_write(&VFS_I(ip)->i_rwsem);
251 else if (lock_flags & XFS_IOLOCK_SHARED)
252 up_read(&VFS_I(ip)->i_rwsem);
254 if (lock_flags & XFS_MMAPLOCK_EXCL)
255 up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
256 else if (lock_flags & XFS_MMAPLOCK_SHARED)
257 up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
259 if (lock_flags & XFS_ILOCK_EXCL)
260 up_write(&ip->i_lock);
261 else if (lock_flags & XFS_ILOCK_SHARED)
262 up_read(&ip->i_lock);
264 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
268 * give up write locks. the i/o lock cannot be held nested
269 * if it is being demoted.
271 void
272 xfs_ilock_demote(
273 xfs_inode_t *ip,
274 uint lock_flags)
276 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
277 ASSERT((lock_flags &
278 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
280 if (lock_flags & XFS_ILOCK_EXCL)
281 downgrade_write(&ip->i_lock);
282 if (lock_flags & XFS_MMAPLOCK_EXCL)
283 downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
284 if (lock_flags & XFS_IOLOCK_EXCL)
285 downgrade_write(&VFS_I(ip)->i_rwsem);
287 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
290 void
291 xfs_assert_ilocked(
292 struct xfs_inode *ip,
293 uint lock_flags)
296 * Sometimes we assert the ILOCK is held exclusively, but we're in
297 * a workqueue, so lockdep doesn't know we're the owner.
299 if (lock_flags & XFS_ILOCK_SHARED)
300 rwsem_assert_held(&ip->i_lock);
301 else if (lock_flags & XFS_ILOCK_EXCL)
302 rwsem_assert_held_write_nolockdep(&ip->i_lock);
304 if (lock_flags & XFS_MMAPLOCK_SHARED)
305 rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock);
306 else if (lock_flags & XFS_MMAPLOCK_EXCL)
307 rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock);
309 if (lock_flags & XFS_IOLOCK_SHARED)
310 rwsem_assert_held(&VFS_I(ip)->i_rwsem);
311 else if (lock_flags & XFS_IOLOCK_EXCL)
312 rwsem_assert_held_write(&VFS_I(ip)->i_rwsem);
316 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
317 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
318 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
319 * errors and warnings.
321 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
322 static bool
323 xfs_lockdep_subclass_ok(
324 int subclass)
326 return subclass < MAX_LOCKDEP_SUBCLASSES;
328 #else
329 #define xfs_lockdep_subclass_ok(subclass) (true)
330 #endif
333 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
334 * value. This can be called for any type of inode lock combination, including
335 * parent locking. Care must be taken to ensure we don't overrun the subclass
336 * storage fields in the class mask we build.
338 static inline uint
339 xfs_lock_inumorder(
340 uint lock_mode,
341 uint subclass)
343 uint class = 0;
345 ASSERT(!(lock_mode & XFS_ILOCK_PARENT));
346 ASSERT(xfs_lockdep_subclass_ok(subclass));
348 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
349 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
350 class += subclass << XFS_IOLOCK_SHIFT;
353 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
354 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
355 class += subclass << XFS_MMAPLOCK_SHIFT;
358 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
359 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
360 class += subclass << XFS_ILOCK_SHIFT;
363 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
367 * The following routine will lock n inodes in exclusive mode. We assume the
368 * caller calls us with the inodes in i_ino order.
370 * We need to detect deadlock where an inode that we lock is in the AIL and we
371 * start waiting for another inode that is locked by a thread in a long running
372 * transaction (such as truncate). This can result in deadlock since the long
373 * running trans might need to wait for the inode we just locked in order to
374 * push the tail and free space in the log.
376 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
377 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
378 * lock more than one at a time, lockdep will report false positives saying we
379 * have violated locking orders.
381 void
382 xfs_lock_inodes(
383 struct xfs_inode **ips,
384 int inodes,
385 uint lock_mode)
387 int attempts = 0;
388 uint i;
389 int j;
390 bool try_lock;
391 struct xfs_log_item *lp;
394 * Currently supports between 2 and 5 inodes with exclusive locking. We
395 * support an arbitrary depth of locking here, but absolute limits on
396 * inodes depend on the type of locking and the limits placed by
397 * lockdep annotations in xfs_lock_inumorder. These are all checked by
398 * the asserts.
400 ASSERT(ips && inodes >= 2 && inodes <= 5);
401 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
402 XFS_ILOCK_EXCL));
403 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
404 XFS_ILOCK_SHARED)));
405 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
406 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
407 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
408 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
410 if (lock_mode & XFS_IOLOCK_EXCL) {
411 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
412 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
413 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
415 again:
416 try_lock = false;
417 i = 0;
418 for (; i < inodes; i++) {
419 ASSERT(ips[i]);
421 if (i && (ips[i] == ips[i - 1])) /* Already locked */
422 continue;
425 * If try_lock is not set yet, make sure all locked inodes are
426 * not in the AIL. If any are, set try_lock to be used later.
428 if (!try_lock) {
429 for (j = (i - 1); j >= 0 && !try_lock; j--) {
430 lp = &ips[j]->i_itemp->ili_item;
431 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
432 try_lock = true;
437 * If any of the previous locks we have locked is in the AIL,
438 * we must TRY to get the second and subsequent locks. If
439 * we can't get any, we must release all we have
440 * and try again.
442 if (!try_lock) {
443 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
444 continue;
447 /* try_lock means we have an inode locked that is in the AIL. */
448 ASSERT(i != 0);
449 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
450 continue;
453 * Unlock all previous guys and try again. xfs_iunlock will try
454 * to push the tail if the inode is in the AIL.
456 attempts++;
457 for (j = i - 1; j >= 0; j--) {
459 * Check to see if we've already unlocked this one. Not
460 * the first one going back, and the inode ptr is the
461 * same.
463 if (j != (i - 1) && ips[j] == ips[j + 1])
464 continue;
466 xfs_iunlock(ips[j], lock_mode);
469 if ((attempts % 5) == 0) {
470 delay(1); /* Don't just spin the CPU */
472 goto again;
477 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
478 * mmaplock must be double-locked separately since we use i_rwsem and
479 * invalidate_lock for that. We now support taking one lock EXCL and the
480 * other SHARED.
482 void
483 xfs_lock_two_inodes(
484 struct xfs_inode *ip0,
485 uint ip0_mode,
486 struct xfs_inode *ip1,
487 uint ip1_mode)
489 int attempts = 0;
490 struct xfs_log_item *lp;
492 ASSERT(hweight32(ip0_mode) == 1);
493 ASSERT(hweight32(ip1_mode) == 1);
494 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
495 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
496 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
497 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
498 ASSERT(ip0->i_ino != ip1->i_ino);
500 if (ip0->i_ino > ip1->i_ino) {
501 swap(ip0, ip1);
502 swap(ip0_mode, ip1_mode);
505 again:
506 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
509 * If the first lock we have locked is in the AIL, we must TRY to get
510 * the second lock. If we can't get it, we must release the first one
511 * and try again.
513 lp = &ip0->i_itemp->ili_item;
514 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
515 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
516 xfs_iunlock(ip0, ip0_mode);
517 if ((++attempts % 5) == 0)
518 delay(1); /* Don't just spin the CPU */
519 goto again;
521 } else {
522 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
527 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
528 * is allowed, otherwise it has to be an exact match. If a CI match is found,
529 * ci_name->name will point to a the actual name (caller must free) or
530 * will be set to NULL if an exact match is found.
533 xfs_lookup(
534 struct xfs_inode *dp,
535 const struct xfs_name *name,
536 struct xfs_inode **ipp,
537 struct xfs_name *ci_name)
539 xfs_ino_t inum;
540 int error;
542 trace_xfs_lookup(dp, name);
544 if (xfs_is_shutdown(dp->i_mount))
545 return -EIO;
546 if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
547 return -EIO;
549 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
550 if (error)
551 goto out_unlock;
553 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
554 if (error)
555 goto out_free_name;
558 * Fail if a directory entry in the regular directory tree points to
559 * a metadata file.
561 if (XFS_IS_CORRUPT(dp->i_mount, xfs_is_metadir_inode(*ipp))) {
562 xfs_fs_mark_sick(dp->i_mount, XFS_SICK_FS_METADIR);
563 error = -EFSCORRUPTED;
564 goto out_irele;
567 return 0;
569 out_irele:
570 xfs_irele(*ipp);
571 out_free_name:
572 if (ci_name)
573 kfree(ci_name->name);
574 out_unlock:
575 *ipp = NULL;
576 return error;
580 * Initialise a newly allocated inode and return the in-core inode to the
581 * caller locked exclusively.
583 * Caller is responsible for unlocking the inode manually upon return
586 xfs_icreate(
587 struct xfs_trans *tp,
588 xfs_ino_t ino,
589 const struct xfs_icreate_args *args,
590 struct xfs_inode **ipp)
592 struct xfs_mount *mp = tp->t_mountp;
593 struct xfs_inode *ip = NULL;
594 int error;
597 * Get the in-core inode with the lock held exclusively to prevent
598 * others from looking at until we're done.
600 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
601 if (error)
602 return error;
604 ASSERT(ip != NULL);
605 xfs_trans_ijoin(tp, ip, 0);
606 xfs_inode_init(tp, args, ip);
608 /* now that we have an i_mode we can setup the inode structure */
609 xfs_setup_inode(ip);
611 *ipp = ip;
612 return 0;
615 /* Return dquots for the ids that will be assigned to a new file. */
617 xfs_icreate_dqalloc(
618 const struct xfs_icreate_args *args,
619 struct xfs_dquot **udqpp,
620 struct xfs_dquot **gdqpp,
621 struct xfs_dquot **pdqpp)
623 struct inode *dir = VFS_I(args->pip);
624 kuid_t uid = GLOBAL_ROOT_UID;
625 kgid_t gid = GLOBAL_ROOT_GID;
626 prid_t prid = 0;
627 unsigned int flags = XFS_QMOPT_QUOTALL;
629 if (args->idmap) {
631 * The uid/gid computation code must match what the VFS uses to
632 * assign i_[ug]id. INHERIT adjusts the gid computation for
633 * setgid/grpid systems.
635 uid = mapped_fsuid(args->idmap, i_user_ns(dir));
636 gid = mapped_fsgid(args->idmap, i_user_ns(dir));
637 prid = xfs_get_initial_prid(args->pip);
638 flags |= XFS_QMOPT_INHERIT;
641 *udqpp = *gdqpp = *pdqpp = NULL;
643 return xfs_qm_vop_dqalloc(args->pip, uid, gid, prid, flags, udqpp,
644 gdqpp, pdqpp);
648 xfs_create(
649 const struct xfs_icreate_args *args,
650 struct xfs_name *name,
651 struct xfs_inode **ipp)
653 struct xfs_inode *dp = args->pip;
654 struct xfs_dir_update du = {
655 .dp = dp,
656 .name = name,
658 struct xfs_mount *mp = dp->i_mount;
659 struct xfs_trans *tp = NULL;
660 struct xfs_dquot *udqp;
661 struct xfs_dquot *gdqp;
662 struct xfs_dquot *pdqp;
663 struct xfs_trans_res *tres;
664 xfs_ino_t ino;
665 bool unlock_dp_on_error = false;
666 bool is_dir = S_ISDIR(args->mode);
667 uint resblks;
668 int error;
670 trace_xfs_create(dp, name);
672 if (xfs_is_shutdown(mp))
673 return -EIO;
674 if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
675 return -EIO;
677 /* Make sure that we have allocated dquot(s) on disk. */
678 error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp);
679 if (error)
680 return error;
682 if (is_dir) {
683 resblks = xfs_mkdir_space_res(mp, name->len);
684 tres = &M_RES(mp)->tr_mkdir;
685 } else {
686 resblks = xfs_create_space_res(mp, name->len);
687 tres = &M_RES(mp)->tr_create;
690 error = xfs_parent_start(mp, &du.ppargs);
691 if (error)
692 goto out_release_dquots;
695 * Initially assume that the file does not exist and
696 * reserve the resources for that case. If that is not
697 * the case we'll drop the one we have and get a more
698 * appropriate transaction later.
700 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
701 &tp);
702 if (error == -ENOSPC) {
703 /* flush outstanding delalloc blocks and retry */
704 xfs_flush_inodes(mp);
705 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
706 resblks, &tp);
708 if (error)
709 goto out_parent;
711 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
712 unlock_dp_on_error = true;
715 * A newly created regular or special file just has one directory
716 * entry pointing to them, but a directory also the "." entry
717 * pointing to itself.
719 error = xfs_dialloc(&tp, args, &ino);
720 if (!error)
721 error = xfs_icreate(tp, ino, args, &du.ip);
722 if (error)
723 goto out_trans_cancel;
726 * Now we join the directory inode to the transaction. We do not do it
727 * earlier because xfs_dialloc might commit the previous transaction
728 * (and release all the locks). An error from here on will result in
729 * the transaction cancel unlocking dp so don't do it explicitly in the
730 * error path.
732 xfs_trans_ijoin(tp, dp, 0);
734 error = xfs_dir_create_child(tp, resblks, &du);
735 if (error)
736 goto out_trans_cancel;
739 * If this is a synchronous mount, make sure that the
740 * create transaction goes to disk before returning to
741 * the user.
743 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
744 xfs_trans_set_sync(tp);
747 * Attach the dquot(s) to the inodes and modify them incore.
748 * These ids of the inode couldn't have changed since the new
749 * inode has been locked ever since it was created.
751 xfs_qm_vop_create_dqattach(tp, du.ip, udqp, gdqp, pdqp);
753 error = xfs_trans_commit(tp);
754 if (error)
755 goto out_release_inode;
757 xfs_qm_dqrele(udqp);
758 xfs_qm_dqrele(gdqp);
759 xfs_qm_dqrele(pdqp);
761 *ipp = du.ip;
762 xfs_iunlock(du.ip, XFS_ILOCK_EXCL);
763 xfs_iunlock(dp, XFS_ILOCK_EXCL);
764 xfs_parent_finish(mp, du.ppargs);
765 return 0;
767 out_trans_cancel:
768 xfs_trans_cancel(tp);
769 out_release_inode:
771 * Wait until after the current transaction is aborted to finish the
772 * setup of the inode and release the inode. This prevents recursive
773 * transactions and deadlocks from xfs_inactive.
775 if (du.ip) {
776 xfs_iunlock(du.ip, XFS_ILOCK_EXCL);
777 xfs_finish_inode_setup(du.ip);
778 xfs_irele(du.ip);
780 out_parent:
781 xfs_parent_finish(mp, du.ppargs);
782 out_release_dquots:
783 xfs_qm_dqrele(udqp);
784 xfs_qm_dqrele(gdqp);
785 xfs_qm_dqrele(pdqp);
787 if (unlock_dp_on_error)
788 xfs_iunlock(dp, XFS_ILOCK_EXCL);
789 return error;
793 xfs_create_tmpfile(
794 const struct xfs_icreate_args *args,
795 struct xfs_inode **ipp)
797 struct xfs_inode *dp = args->pip;
798 struct xfs_mount *mp = dp->i_mount;
799 struct xfs_inode *ip = NULL;
800 struct xfs_trans *tp = NULL;
801 struct xfs_dquot *udqp;
802 struct xfs_dquot *gdqp;
803 struct xfs_dquot *pdqp;
804 struct xfs_trans_res *tres;
805 xfs_ino_t ino;
806 uint resblks;
807 int error;
809 ASSERT(args->flags & XFS_ICREATE_TMPFILE);
811 if (xfs_is_shutdown(mp))
812 return -EIO;
814 /* Make sure that we have allocated dquot(s) on disk. */
815 error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp);
816 if (error)
817 return error;
819 resblks = XFS_IALLOC_SPACE_RES(mp);
820 tres = &M_RES(mp)->tr_create_tmpfile;
822 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
823 &tp);
824 if (error)
825 goto out_release_dquots;
827 error = xfs_dialloc(&tp, args, &ino);
828 if (!error)
829 error = xfs_icreate(tp, ino, args, &ip);
830 if (error)
831 goto out_trans_cancel;
833 if (xfs_has_wsync(mp))
834 xfs_trans_set_sync(tp);
837 * Attach the dquot(s) to the inodes and modify them incore.
838 * These ids of the inode couldn't have changed since the new
839 * inode has been locked ever since it was created.
841 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
843 error = xfs_iunlink(tp, ip);
844 if (error)
845 goto out_trans_cancel;
847 error = xfs_trans_commit(tp);
848 if (error)
849 goto out_release_inode;
851 xfs_qm_dqrele(udqp);
852 xfs_qm_dqrele(gdqp);
853 xfs_qm_dqrele(pdqp);
855 *ipp = ip;
856 xfs_iunlock(ip, XFS_ILOCK_EXCL);
857 return 0;
859 out_trans_cancel:
860 xfs_trans_cancel(tp);
861 out_release_inode:
863 * Wait until after the current transaction is aborted to finish the
864 * setup of the inode and release the inode. This prevents recursive
865 * transactions and deadlocks from xfs_inactive.
867 if (ip) {
868 xfs_iunlock(ip, XFS_ILOCK_EXCL);
869 xfs_finish_inode_setup(ip);
870 xfs_irele(ip);
872 out_release_dquots:
873 xfs_qm_dqrele(udqp);
874 xfs_qm_dqrele(gdqp);
875 xfs_qm_dqrele(pdqp);
877 return error;
881 xfs_link(
882 struct xfs_inode *tdp,
883 struct xfs_inode *sip,
884 struct xfs_name *target_name)
886 struct xfs_dir_update du = {
887 .dp = tdp,
888 .name = target_name,
889 .ip = sip,
891 struct xfs_mount *mp = tdp->i_mount;
892 struct xfs_trans *tp;
893 int error, nospace_error = 0;
894 int resblks;
896 trace_xfs_link(tdp, target_name);
898 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
900 if (xfs_is_shutdown(mp))
901 return -EIO;
902 if (xfs_ifork_zapped(tdp, XFS_DATA_FORK))
903 return -EIO;
905 error = xfs_qm_dqattach(sip);
906 if (error)
907 goto std_return;
909 error = xfs_qm_dqattach(tdp);
910 if (error)
911 goto std_return;
913 error = xfs_parent_start(mp, &du.ppargs);
914 if (error)
915 goto std_return;
917 resblks = xfs_link_space_res(mp, target_name->len);
918 error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
919 &tp, &nospace_error);
920 if (error)
921 goto out_parent;
924 * We don't allow reservationless or quotaless hardlinking when parent
925 * pointers are enabled because we can't back out if the xattrs must
926 * grow.
928 if (du.ppargs && nospace_error) {
929 error = nospace_error;
930 goto error_return;
934 * If we are using project inheritance, we only allow hard link
935 * creation in our tree when the project IDs are the same; else
936 * the tree quota mechanism could be circumvented.
938 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
939 tdp->i_projid != sip->i_projid)) {
941 * Project quota setup skips special files which can
942 * leave inodes in a PROJINHERIT directory without a
943 * project ID set. We need to allow links to be made
944 * to these "project-less" inodes because userspace
945 * expects them to succeed after project ID setup,
946 * but everything else should be rejected.
948 if (!special_file(VFS_I(sip)->i_mode) ||
949 sip->i_projid != 0) {
950 error = -EXDEV;
951 goto error_return;
955 error = xfs_dir_add_child(tp, resblks, &du);
956 if (error)
957 goto error_return;
960 * If this is a synchronous mount, make sure that the
961 * link transaction goes to disk before returning to
962 * the user.
964 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
965 xfs_trans_set_sync(tp);
967 error = xfs_trans_commit(tp);
968 xfs_iunlock(tdp, XFS_ILOCK_EXCL);
969 xfs_iunlock(sip, XFS_ILOCK_EXCL);
970 xfs_parent_finish(mp, du.ppargs);
971 return error;
973 error_return:
974 xfs_trans_cancel(tp);
975 xfs_iunlock(tdp, XFS_ILOCK_EXCL);
976 xfs_iunlock(sip, XFS_ILOCK_EXCL);
977 out_parent:
978 xfs_parent_finish(mp, du.ppargs);
979 std_return:
980 if (error == -ENOSPC && nospace_error)
981 error = nospace_error;
982 return error;
985 /* Clear the reflink flag and the cowblocks tag if possible. */
986 static void
987 xfs_itruncate_clear_reflink_flags(
988 struct xfs_inode *ip)
990 struct xfs_ifork *dfork;
991 struct xfs_ifork *cfork;
993 if (!xfs_is_reflink_inode(ip))
994 return;
995 dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
996 cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
997 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
998 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
999 if (cfork->if_bytes == 0)
1000 xfs_inode_clear_cowblocks_tag(ip);
1004 * Free up the underlying blocks past new_size. The new size must be smaller
1005 * than the current size. This routine can be used both for the attribute and
1006 * data fork, and does not modify the inode size, which is left to the caller.
1008 * The transaction passed to this routine must have made a permanent log
1009 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1010 * given transaction and start new ones, so make sure everything involved in
1011 * the transaction is tidy before calling here. Some transaction will be
1012 * returned to the caller to be committed. The incoming transaction must
1013 * already include the inode, and both inode locks must be held exclusively.
1014 * The inode must also be "held" within the transaction. On return the inode
1015 * will be "held" within the returned transaction. This routine does NOT
1016 * require any disk space to be reserved for it within the transaction.
1018 * If we get an error, we must return with the inode locked and linked into the
1019 * current transaction. This keeps things simple for the higher level code,
1020 * because it always knows that the inode is locked and held in the transaction
1021 * that returns to it whether errors occur or not. We don't mark the inode
1022 * dirty on error so that transactions can be easily aborted if possible.
1025 xfs_itruncate_extents_flags(
1026 struct xfs_trans **tpp,
1027 struct xfs_inode *ip,
1028 int whichfork,
1029 xfs_fsize_t new_size,
1030 int flags)
1032 struct xfs_mount *mp = ip->i_mount;
1033 struct xfs_trans *tp = *tpp;
1034 xfs_fileoff_t first_unmap_block;
1035 int error = 0;
1037 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1038 if (atomic_read(&VFS_I(ip)->i_count))
1039 xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL);
1040 ASSERT(new_size <= XFS_ISIZE(ip));
1041 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1042 ASSERT(ip->i_itemp != NULL);
1043 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1044 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1046 trace_xfs_itruncate_extents_start(ip, new_size);
1048 flags |= xfs_bmapi_aflag(whichfork);
1051 * Since it is possible for space to become allocated beyond
1052 * the end of the file (in a crash where the space is allocated
1053 * but the inode size is not yet updated), simply remove any
1054 * blocks which show up between the new EOF and the maximum
1055 * possible file size.
1057 * We have to free all the blocks to the bmbt maximum offset, even if
1058 * the page cache can't scale that far.
1060 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1061 if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1062 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1063 return 0;
1066 error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block,
1067 XFS_MAX_FILEOFF);
1068 if (error)
1069 goto out;
1071 if (whichfork == XFS_DATA_FORK) {
1072 /* Remove all pending CoW reservations. */
1073 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1074 first_unmap_block, XFS_MAX_FILEOFF, true);
1075 if (error)
1076 goto out;
1078 xfs_itruncate_clear_reflink_flags(ip);
1082 * Always re-log the inode so that our permanent transaction can keep
1083 * on rolling it forward in the log.
1085 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1087 trace_xfs_itruncate_extents_end(ip, new_size);
1089 out:
1090 *tpp = tp;
1091 return error;
1095 * Mark all the buffers attached to this directory stale. In theory we should
1096 * never be freeing a directory with any blocks at all, but this covers the
1097 * case where we've recovered a directory swap with a "temporary" directory
1098 * created by online repair and now need to dump it.
1100 STATIC void
1101 xfs_inactive_dir(
1102 struct xfs_inode *dp)
1104 struct xfs_iext_cursor icur;
1105 struct xfs_bmbt_irec got;
1106 struct xfs_mount *mp = dp->i_mount;
1107 struct xfs_da_geometry *geo = mp->m_dir_geo;
1108 struct xfs_ifork *ifp = xfs_ifork_ptr(dp, XFS_DATA_FORK);
1109 xfs_fileoff_t off;
1112 * Invalidate each directory block. All directory blocks are of
1113 * fsbcount length and alignment, so we only need to walk those same
1114 * offsets. We hold the only reference to this inode, so we must wait
1115 * for the buffer locks.
1117 for_each_xfs_iext(ifp, &icur, &got) {
1118 for (off = round_up(got.br_startoff, geo->fsbcount);
1119 off < got.br_startoff + got.br_blockcount;
1120 off += geo->fsbcount) {
1121 struct xfs_buf *bp = NULL;
1122 xfs_fsblock_t fsbno;
1123 int error;
1125 fsbno = (off - got.br_startoff) + got.br_startblock;
1126 error = xfs_buf_incore(mp->m_ddev_targp,
1127 XFS_FSB_TO_DADDR(mp, fsbno),
1128 XFS_FSB_TO_BB(mp, geo->fsbcount),
1129 XBF_LIVESCAN, &bp);
1130 if (error)
1131 continue;
1133 xfs_buf_stale(bp);
1134 xfs_buf_relse(bp);
1140 * xfs_inactive_truncate
1142 * Called to perform a truncate when an inode becomes unlinked.
1144 STATIC int
1145 xfs_inactive_truncate(
1146 struct xfs_inode *ip)
1148 struct xfs_mount *mp = ip->i_mount;
1149 struct xfs_trans *tp;
1150 int error;
1152 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1153 if (error) {
1154 ASSERT(xfs_is_shutdown(mp));
1155 return error;
1157 xfs_ilock(ip, XFS_ILOCK_EXCL);
1158 xfs_trans_ijoin(tp, ip, 0);
1161 * Log the inode size first to prevent stale data exposure in the event
1162 * of a system crash before the truncate completes. See the related
1163 * comment in xfs_vn_setattr_size() for details.
1165 ip->i_disk_size = 0;
1166 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1168 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1169 if (error)
1170 goto error_trans_cancel;
1172 ASSERT(ip->i_df.if_nextents == 0);
1174 error = xfs_trans_commit(tp);
1175 if (error)
1176 goto error_unlock;
1178 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1179 return 0;
1181 error_trans_cancel:
1182 xfs_trans_cancel(tp);
1183 error_unlock:
1184 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1185 return error;
1189 * xfs_inactive_ifree()
1191 * Perform the inode free when an inode is unlinked.
1193 STATIC int
1194 xfs_inactive_ifree(
1195 struct xfs_inode *ip)
1197 struct xfs_mount *mp = ip->i_mount;
1198 struct xfs_trans *tp;
1199 int error;
1202 * We try to use a per-AG reservation for any block needed by the finobt
1203 * tree, but as the finobt feature predates the per-AG reservation
1204 * support a degraded file system might not have enough space for the
1205 * reservation at mount time. In that case try to dip into the reserved
1206 * pool and pray.
1208 * Send a warning if the reservation does happen to fail, as the inode
1209 * now remains allocated and sits on the unlinked list until the fs is
1210 * repaired.
1212 if (unlikely(mp->m_finobt_nores)) {
1213 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1214 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1215 &tp);
1216 } else {
1217 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1219 if (error) {
1220 if (error == -ENOSPC) {
1221 xfs_warn_ratelimited(mp,
1222 "Failed to remove inode(s) from unlinked list. "
1223 "Please free space, unmount and run xfs_repair.");
1224 } else {
1225 ASSERT(xfs_is_shutdown(mp));
1227 return error;
1231 * We do not hold the inode locked across the entire rolling transaction
1232 * here. We only need to hold it for the first transaction that
1233 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1234 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1235 * here breaks the relationship between cluster buffer invalidation and
1236 * stale inode invalidation on cluster buffer item journal commit
1237 * completion, and can result in leaving dirty stale inodes hanging
1238 * around in memory.
1240 * We have no need for serialising this inode operation against other
1241 * operations - we freed the inode and hence reallocation is required
1242 * and that will serialise on reallocating the space the deferops need
1243 * to free. Hence we can unlock the inode on the first commit of
1244 * the transaction rather than roll it right through the deferops. This
1245 * avoids relogging the XFS_ISTALE inode.
1247 * We check that xfs_ifree() hasn't grown an internal transaction roll
1248 * by asserting that the inode is still locked when it returns.
1250 xfs_ilock(ip, XFS_ILOCK_EXCL);
1251 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1253 error = xfs_ifree(tp, ip);
1254 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1255 if (error) {
1257 * If we fail to free the inode, shut down. The cancel
1258 * might do that, we need to make sure. Otherwise the
1259 * inode might be lost for a long time or forever.
1261 if (!xfs_is_shutdown(mp)) {
1262 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1263 __func__, error);
1264 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1266 xfs_trans_cancel(tp);
1267 return error;
1271 * Credit the quota account(s). The inode is gone.
1273 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1275 return xfs_trans_commit(tp);
1279 * Returns true if we need to update the on-disk metadata before we can free
1280 * the memory used by this inode. Updates include freeing post-eof
1281 * preallocations; freeing COW staging extents; and marking the inode free in
1282 * the inobt if it is on the unlinked list.
1284 bool
1285 xfs_inode_needs_inactive(
1286 struct xfs_inode *ip)
1288 struct xfs_mount *mp = ip->i_mount;
1289 struct xfs_ifork *cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1292 * If the inode is already free, then there can be nothing
1293 * to clean up here.
1295 if (VFS_I(ip)->i_mode == 0)
1296 return false;
1299 * If this is a read-only mount, don't do this (would generate I/O)
1300 * unless we're in log recovery and cleaning the iunlinked list.
1302 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1303 return false;
1305 /* If the log isn't running, push inodes straight to reclaim. */
1306 if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1307 return false;
1309 /* Metadata inodes require explicit resource cleanup. */
1310 if (xfs_is_internal_inode(ip))
1311 return false;
1313 /* Want to clean out the cow blocks if there are any. */
1314 if (cow_ifp && cow_ifp->if_bytes > 0)
1315 return true;
1317 /* Unlinked files must be freed. */
1318 if (VFS_I(ip)->i_nlink == 0)
1319 return true;
1322 * This file isn't being freed, so check if there are post-eof blocks
1323 * to free.
1325 * Note: don't bother with iolock here since lockdep complains about
1326 * acquiring it in reclaim context. We have the only reference to the
1327 * inode at this point anyways.
1329 return xfs_can_free_eofblocks(ip);
1333 * Save health status somewhere, if we're dumping an inode with uncorrected
1334 * errors and online repair isn't running.
1336 static inline void
1337 xfs_inactive_health(
1338 struct xfs_inode *ip)
1340 struct xfs_mount *mp = ip->i_mount;
1341 struct xfs_perag *pag;
1342 unsigned int sick;
1343 unsigned int checked;
1345 xfs_inode_measure_sickness(ip, &sick, &checked);
1346 if (!sick)
1347 return;
1349 trace_xfs_inode_unfixed_corruption(ip, sick);
1351 if (sick & XFS_SICK_INO_FORGET)
1352 return;
1354 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1355 if (!pag) {
1356 /* There had better still be a perag structure! */
1357 ASSERT(0);
1358 return;
1361 xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES);
1362 xfs_perag_put(pag);
1366 * xfs_inactive
1368 * This is called when the vnode reference count for the vnode
1369 * goes to zero. If the file has been unlinked, then it must
1370 * now be truncated. Also, we clear all of the read-ahead state
1371 * kept for the inode here since the file is now closed.
1374 xfs_inactive(
1375 xfs_inode_t *ip)
1377 struct xfs_mount *mp;
1378 int error = 0;
1379 int truncate = 0;
1382 * If the inode is already free, then there can be nothing
1383 * to clean up here.
1385 if (VFS_I(ip)->i_mode == 0) {
1386 ASSERT(ip->i_df.if_broot_bytes == 0);
1387 goto out;
1390 mp = ip->i_mount;
1391 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1393 xfs_inactive_health(ip);
1396 * If this is a read-only mount, don't do this (would generate I/O)
1397 * unless we're in log recovery and cleaning the iunlinked list.
1399 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1400 goto out;
1402 /* Metadata inodes require explicit resource cleanup. */
1403 if (xfs_is_internal_inode(ip))
1404 goto out;
1406 /* Try to clean out the cow blocks if there are any. */
1407 if (xfs_inode_has_cow_data(ip))
1408 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1410 if (VFS_I(ip)->i_nlink != 0) {
1412 * Note: don't bother with iolock here since lockdep complains
1413 * about acquiring it in reclaim context. We have the only
1414 * reference to the inode at this point anyways.
1416 if (xfs_can_free_eofblocks(ip))
1417 error = xfs_free_eofblocks(ip);
1419 goto out;
1422 if (S_ISREG(VFS_I(ip)->i_mode) &&
1423 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1424 xfs_inode_has_filedata(ip)))
1425 truncate = 1;
1427 if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) {
1429 * If this inode is being inactivated during a quotacheck and
1430 * has not yet been scanned by quotacheck, we /must/ remove
1431 * the dquots from the inode before inactivation changes the
1432 * block and inode counts. Most probably this is a result of
1433 * reloading the incore iunlinked list to purge unrecovered
1434 * unlinked inodes.
1436 xfs_qm_dqdetach(ip);
1437 } else {
1438 error = xfs_qm_dqattach(ip);
1439 if (error)
1440 goto out;
1443 if (S_ISDIR(VFS_I(ip)->i_mode) && ip->i_df.if_nextents > 0) {
1444 xfs_inactive_dir(ip);
1445 truncate = 1;
1448 if (S_ISLNK(VFS_I(ip)->i_mode))
1449 error = xfs_inactive_symlink(ip);
1450 else if (truncate)
1451 error = xfs_inactive_truncate(ip);
1452 if (error)
1453 goto out;
1456 * If there are attributes associated with the file then blow them away
1457 * now. The code calls a routine that recursively deconstructs the
1458 * attribute fork. If also blows away the in-core attribute fork.
1460 if (xfs_inode_has_attr_fork(ip)) {
1461 error = xfs_attr_inactive(ip);
1462 if (error)
1463 goto out;
1466 ASSERT(ip->i_forkoff == 0);
1469 * Free the inode.
1471 error = xfs_inactive_ifree(ip);
1473 out:
1475 * We're done making metadata updates for this inode, so we can release
1476 * the attached dquots.
1478 xfs_qm_dqdetach(ip);
1479 return error;
1483 * Find an inode on the unlinked list. This does not take references to the
1484 * inode as we have existence guarantees by holding the AGI buffer lock and that
1485 * only unlinked, referenced inodes can be on the unlinked inode list. If we
1486 * don't find the inode in cache, then let the caller handle the situation.
1488 struct xfs_inode *
1489 xfs_iunlink_lookup(
1490 struct xfs_perag *pag,
1491 xfs_agino_t agino)
1493 struct xfs_inode *ip;
1495 rcu_read_lock();
1496 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1497 if (!ip) {
1498 /* Caller can handle inode not being in memory. */
1499 rcu_read_unlock();
1500 return NULL;
1504 * Inode in RCU freeing limbo should not happen. Warn about this and
1505 * let the caller handle the failure.
1507 if (WARN_ON_ONCE(!ip->i_ino)) {
1508 rcu_read_unlock();
1509 return NULL;
1511 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1512 rcu_read_unlock();
1513 return ip;
1517 * Load the inode @next_agino into the cache and set its prev_unlinked pointer
1518 * to @prev_agino. Caller must hold the AGI to synchronize with other changes
1519 * to the unlinked list.
1522 xfs_iunlink_reload_next(
1523 struct xfs_trans *tp,
1524 struct xfs_buf *agibp,
1525 xfs_agino_t prev_agino,
1526 xfs_agino_t next_agino)
1528 struct xfs_perag *pag = agibp->b_pag;
1529 struct xfs_mount *mp = pag_mount(pag);
1530 struct xfs_inode *next_ip = NULL;
1531 int error;
1533 ASSERT(next_agino != NULLAGINO);
1535 #ifdef DEBUG
1536 rcu_read_lock();
1537 next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino);
1538 ASSERT(next_ip == NULL);
1539 rcu_read_unlock();
1540 #endif
1542 xfs_info_ratelimited(mp,
1543 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating recovery.",
1544 next_agino, pag_agno(pag));
1547 * Use an untrusted lookup just to be cautious in case the AGI has been
1548 * corrupted and now points at a free inode. That shouldn't happen,
1549 * but we'd rather shut down now since we're already running in a weird
1550 * situation.
1552 error = xfs_iget(mp, tp, xfs_agino_to_ino(pag, next_agino),
1553 XFS_IGET_UNTRUSTED, 0, &next_ip);
1554 if (error) {
1555 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
1556 return error;
1559 /* If this is not an unlinked inode, something is very wrong. */
1560 if (VFS_I(next_ip)->i_nlink != 0) {
1561 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
1562 error = -EFSCORRUPTED;
1563 goto rele;
1566 next_ip->i_prev_unlinked = prev_agino;
1567 trace_xfs_iunlink_reload_next(next_ip);
1568 rele:
1569 ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE));
1570 if (xfs_is_quotacheck_running(mp) && next_ip)
1571 xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED);
1572 xfs_irele(next_ip);
1573 return error;
1577 * Look up the inode number specified and if it is not already marked XFS_ISTALE
1578 * mark it stale. We should only find clean inodes in this lookup that aren't
1579 * already stale.
1581 static void
1582 xfs_ifree_mark_inode_stale(
1583 struct xfs_perag *pag,
1584 struct xfs_inode *free_ip,
1585 xfs_ino_t inum)
1587 struct xfs_mount *mp = pag_mount(pag);
1588 struct xfs_inode_log_item *iip;
1589 struct xfs_inode *ip;
1591 retry:
1592 rcu_read_lock();
1593 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
1595 /* Inode not in memory, nothing to do */
1596 if (!ip) {
1597 rcu_read_unlock();
1598 return;
1602 * because this is an RCU protected lookup, we could find a recently
1603 * freed or even reallocated inode during the lookup. We need to check
1604 * under the i_flags_lock for a valid inode here. Skip it if it is not
1605 * valid, the wrong inode or stale.
1607 spin_lock(&ip->i_flags_lock);
1608 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
1609 goto out_iflags_unlock;
1612 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
1613 * other inodes that we did not find in the list attached to the buffer
1614 * and are not already marked stale. If we can't lock it, back off and
1615 * retry.
1617 if (ip != free_ip) {
1618 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1619 spin_unlock(&ip->i_flags_lock);
1620 rcu_read_unlock();
1621 delay(1);
1622 goto retry;
1625 ip->i_flags |= XFS_ISTALE;
1628 * If the inode is flushing, it is already attached to the buffer. All
1629 * we needed to do here is mark the inode stale so buffer IO completion
1630 * will remove it from the AIL.
1632 iip = ip->i_itemp;
1633 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
1634 ASSERT(!list_empty(&iip->ili_item.li_bio_list));
1635 ASSERT(iip->ili_last_fields);
1636 goto out_iunlock;
1640 * Inodes not attached to the buffer can be released immediately.
1641 * Everything else has to go through xfs_iflush_abort() on journal
1642 * commit as the flock synchronises removal of the inode from the
1643 * cluster buffer against inode reclaim.
1645 if (!iip || list_empty(&iip->ili_item.li_bio_list))
1646 goto out_iunlock;
1648 __xfs_iflags_set(ip, XFS_IFLUSHING);
1649 spin_unlock(&ip->i_flags_lock);
1650 rcu_read_unlock();
1652 /* we have a dirty inode in memory that has not yet been flushed. */
1653 spin_lock(&iip->ili_lock);
1654 iip->ili_last_fields = iip->ili_fields;
1655 iip->ili_fields = 0;
1656 iip->ili_fsync_fields = 0;
1657 spin_unlock(&iip->ili_lock);
1658 ASSERT(iip->ili_last_fields);
1660 if (ip != free_ip)
1661 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1662 return;
1664 out_iunlock:
1665 if (ip != free_ip)
1666 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1667 out_iflags_unlock:
1668 spin_unlock(&ip->i_flags_lock);
1669 rcu_read_unlock();
1673 * A big issue when freeing the inode cluster is that we _cannot_ skip any
1674 * inodes that are in memory - they all must be marked stale and attached to
1675 * the cluster buffer.
1677 static int
1678 xfs_ifree_cluster(
1679 struct xfs_trans *tp,
1680 struct xfs_perag *pag,
1681 struct xfs_inode *free_ip,
1682 struct xfs_icluster *xic)
1684 struct xfs_mount *mp = free_ip->i_mount;
1685 struct xfs_ino_geometry *igeo = M_IGEO(mp);
1686 struct xfs_buf *bp;
1687 xfs_daddr_t blkno;
1688 xfs_ino_t inum = xic->first_ino;
1689 int nbufs;
1690 int i, j;
1691 int ioffset;
1692 int error;
1694 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
1696 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
1698 * The allocation bitmap tells us which inodes of the chunk were
1699 * physically allocated. Skip the cluster if an inode falls into
1700 * a sparse region.
1702 ioffset = inum - xic->first_ino;
1703 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
1704 ASSERT(ioffset % igeo->inodes_per_cluster == 0);
1705 continue;
1708 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1709 XFS_INO_TO_AGBNO(mp, inum));
1712 * We obtain and lock the backing buffer first in the process
1713 * here to ensure dirty inodes attached to the buffer remain in
1714 * the flushing state while we mark them stale.
1716 * If we scan the in-memory inodes first, then buffer IO can
1717 * complete before we get a lock on it, and hence we may fail
1718 * to mark all the active inodes on the buffer stale.
1720 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1721 mp->m_bsize * igeo->blocks_per_cluster,
1722 XBF_UNMAPPED, &bp);
1723 if (error)
1724 return error;
1727 * This buffer may not have been correctly initialised as we
1728 * didn't read it from disk. That's not important because we are
1729 * only using to mark the buffer as stale in the log, and to
1730 * attach stale cached inodes on it.
1732 * For the inode that triggered the cluster freeing, this
1733 * attachment may occur in xfs_inode_item_precommit() after we
1734 * have marked this buffer stale. If this buffer was not in
1735 * memory before xfs_ifree_cluster() started, it will not be
1736 * marked XBF_DONE and this will cause problems later in
1737 * xfs_inode_item_precommit() when we trip over a (stale, !done)
1738 * buffer to attached to the transaction.
1740 * Hence we have to mark the buffer as XFS_DONE here. This is
1741 * safe because we are also marking the buffer as XBF_STALE and
1742 * XFS_BLI_STALE. That means it will never be dispatched for
1743 * IO and it won't be unlocked until the cluster freeing has
1744 * been committed to the journal and the buffer unpinned. If it
1745 * is written, we want to know about it, and we want it to
1746 * fail. We can acheive this by adding a write verifier to the
1747 * buffer.
1749 bp->b_flags |= XBF_DONE;
1750 bp->b_ops = &xfs_inode_buf_ops;
1753 * Now we need to set all the cached clean inodes as XFS_ISTALE,
1754 * too. This requires lookups, and will skip inodes that we've
1755 * already marked XFS_ISTALE.
1757 for (i = 0; i < igeo->inodes_per_cluster; i++)
1758 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
1760 xfs_trans_stale_inode_buf(tp, bp);
1761 xfs_trans_binval(tp, bp);
1763 return 0;
1767 * This is called to return an inode to the inode free list. The inode should
1768 * already be truncated to 0 length and have no pages associated with it. This
1769 * routine also assumes that the inode is already a part of the transaction.
1771 * The on-disk copy of the inode will have been added to the list of unlinked
1772 * inodes in the AGI. We need to remove the inode from that list atomically with
1773 * respect to freeing it here.
1776 xfs_ifree(
1777 struct xfs_trans *tp,
1778 struct xfs_inode *ip)
1780 struct xfs_mount *mp = ip->i_mount;
1781 struct xfs_perag *pag;
1782 struct xfs_icluster xic = { 0 };
1783 struct xfs_inode_log_item *iip = ip->i_itemp;
1784 int error;
1786 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1787 ASSERT(VFS_I(ip)->i_nlink == 0);
1788 ASSERT(ip->i_df.if_nextents == 0);
1789 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
1790 ASSERT(ip->i_nblocks == 0);
1792 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1794 error = xfs_inode_uninit(tp, pag, ip, &xic);
1795 if (error)
1796 goto out;
1798 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
1799 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
1801 /* Don't attempt to replay owner changes for a deleted inode */
1802 spin_lock(&iip->ili_lock);
1803 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
1804 spin_unlock(&iip->ili_lock);
1806 if (xic.deleted)
1807 error = xfs_ifree_cluster(tp, pag, ip, &xic);
1808 out:
1809 xfs_perag_put(pag);
1810 return error;
1814 * This is called to unpin an inode. The caller must have the inode locked
1815 * in at least shared mode so that the buffer cannot be subsequently pinned
1816 * once someone is waiting for it to be unpinned.
1818 static void
1819 xfs_iunpin(
1820 struct xfs_inode *ip)
1822 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
1824 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
1826 /* Give the log a push to start the unpinning I/O */
1827 xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
1831 static void
1832 __xfs_iunpin_wait(
1833 struct xfs_inode *ip)
1835 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
1836 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
1838 xfs_iunpin(ip);
1840 do {
1841 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1842 if (xfs_ipincount(ip))
1843 io_schedule();
1844 } while (xfs_ipincount(ip));
1845 finish_wait(wq, &wait.wq_entry);
1848 void
1849 xfs_iunpin_wait(
1850 struct xfs_inode *ip)
1852 if (xfs_ipincount(ip))
1853 __xfs_iunpin_wait(ip);
1857 * Removing an inode from the namespace involves removing the directory entry
1858 * and dropping the link count on the inode. Removing the directory entry can
1859 * result in locking an AGF (directory blocks were freed) and removing a link
1860 * count can result in placing the inode on an unlinked list which results in
1861 * locking an AGI.
1863 * The big problem here is that we have an ordering constraint on AGF and AGI
1864 * locking - inode allocation locks the AGI, then can allocate a new extent for
1865 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
1866 * removes the inode from the unlinked list, requiring that we lock the AGI
1867 * first, and then freeing the inode can result in an inode chunk being freed
1868 * and hence freeing disk space requiring that we lock an AGF.
1870 * Hence the ordering that is imposed by other parts of the code is AGI before
1871 * AGF. This means we cannot remove the directory entry before we drop the inode
1872 * reference count and put it on the unlinked list as this results in a lock
1873 * order of AGF then AGI, and this can deadlock against inode allocation and
1874 * freeing. Therefore we must drop the link counts before we remove the
1875 * directory entry.
1877 * This is still safe from a transactional point of view - it is not until we
1878 * get to xfs_defer_finish() that we have the possibility of multiple
1879 * transactions in this operation. Hence as long as we remove the directory
1880 * entry and drop the link count in the first transaction of the remove
1881 * operation, there are no transactional constraints on the ordering here.
1884 xfs_remove(
1885 struct xfs_inode *dp,
1886 struct xfs_name *name,
1887 struct xfs_inode *ip)
1889 struct xfs_dir_update du = {
1890 .dp = dp,
1891 .name = name,
1892 .ip = ip,
1894 struct xfs_mount *mp = dp->i_mount;
1895 struct xfs_trans *tp = NULL;
1896 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
1897 int dontcare;
1898 int error = 0;
1899 uint resblks;
1901 trace_xfs_remove(dp, name);
1903 if (xfs_is_shutdown(mp))
1904 return -EIO;
1905 if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
1906 return -EIO;
1908 error = xfs_qm_dqattach(dp);
1909 if (error)
1910 goto std_return;
1912 error = xfs_qm_dqattach(ip);
1913 if (error)
1914 goto std_return;
1916 error = xfs_parent_start(mp, &du.ppargs);
1917 if (error)
1918 goto std_return;
1921 * We try to get the real space reservation first, allowing for
1922 * directory btree deletion(s) implying possible bmap insert(s). If we
1923 * can't get the space reservation then we use 0 instead, and avoid the
1924 * bmap btree insert(s) in the directory code by, if the bmap insert
1925 * tries to happen, instead trimming the LAST block from the directory.
1927 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
1928 * the directory code can handle a reservationless update and we don't
1929 * want to prevent a user from trying to free space by deleting things.
1931 resblks = xfs_remove_space_res(mp, name->len);
1932 error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
1933 &tp, &dontcare);
1934 if (error) {
1935 ASSERT(error != -ENOSPC);
1936 goto out_parent;
1939 error = xfs_dir_remove_child(tp, resblks, &du);
1940 if (error)
1941 goto out_trans_cancel;
1944 * If this is a synchronous mount, make sure that the
1945 * remove transaction goes to disk before returning to
1946 * the user.
1948 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1949 xfs_trans_set_sync(tp);
1951 error = xfs_trans_commit(tp);
1952 if (error)
1953 goto out_unlock;
1955 if (is_dir && xfs_inode_is_filestream(ip))
1956 xfs_filestream_deassociate(ip);
1958 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1959 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1960 xfs_parent_finish(mp, du.ppargs);
1961 return 0;
1963 out_trans_cancel:
1964 xfs_trans_cancel(tp);
1965 out_unlock:
1966 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1967 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1968 out_parent:
1969 xfs_parent_finish(mp, du.ppargs);
1970 std_return:
1971 return error;
1974 static inline void
1975 xfs_iunlock_rename(
1976 struct xfs_inode **i_tab,
1977 int num_inodes)
1979 int i;
1981 for (i = num_inodes - 1; i >= 0; i--) {
1982 /* Skip duplicate inodes if src and target dps are the same */
1983 if (!i_tab[i] || (i > 0 && i_tab[i] == i_tab[i - 1]))
1984 continue;
1985 xfs_iunlock(i_tab[i], XFS_ILOCK_EXCL);
1990 * Enter all inodes for a rename transaction into a sorted array.
1992 #define __XFS_SORT_INODES 5
1993 STATIC void
1994 xfs_sort_for_rename(
1995 struct xfs_inode *dp1, /* in: old (source) directory inode */
1996 struct xfs_inode *dp2, /* in: new (target) directory inode */
1997 struct xfs_inode *ip1, /* in: inode of old entry */
1998 struct xfs_inode *ip2, /* in: inode of new entry */
1999 struct xfs_inode *wip, /* in: whiteout inode */
2000 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2001 int *num_inodes) /* in/out: inodes in array */
2003 int i;
2005 ASSERT(*num_inodes == __XFS_SORT_INODES);
2006 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2009 * i_tab contains a list of pointers to inodes. We initialize
2010 * the table here & we'll sort it. We will then use it to
2011 * order the acquisition of the inode locks.
2013 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2015 i = 0;
2016 i_tab[i++] = dp1;
2017 i_tab[i++] = dp2;
2018 i_tab[i++] = ip1;
2019 if (ip2)
2020 i_tab[i++] = ip2;
2021 if (wip)
2022 i_tab[i++] = wip;
2023 *num_inodes = i;
2025 xfs_sort_inodes(i_tab, *num_inodes);
2028 void
2029 xfs_sort_inodes(
2030 struct xfs_inode **i_tab,
2031 unsigned int num_inodes)
2033 int i, j;
2035 ASSERT(num_inodes <= __XFS_SORT_INODES);
2038 * Sort the elements via bubble sort. (Remember, there are at
2039 * most 5 elements to sort, so this is adequate.)
2041 for (i = 0; i < num_inodes; i++) {
2042 for (j = 1; j < num_inodes; j++) {
2043 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino)
2044 swap(i_tab[j], i_tab[j - 1]);
2050 * xfs_rename_alloc_whiteout()
2052 * Return a referenced, unlinked, unlocked inode that can be used as a
2053 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2054 * crash between allocating the inode and linking it into the rename transaction
2055 * recovery will free the inode and we won't leak it.
2057 static int
2058 xfs_rename_alloc_whiteout(
2059 struct mnt_idmap *idmap,
2060 struct xfs_name *src_name,
2061 struct xfs_inode *dp,
2062 struct xfs_inode **wip)
2064 struct xfs_icreate_args args = {
2065 .idmap = idmap,
2066 .pip = dp,
2067 .mode = S_IFCHR | WHITEOUT_MODE,
2068 .flags = XFS_ICREATE_TMPFILE,
2070 struct xfs_inode *tmpfile;
2071 struct qstr name;
2072 int error;
2074 error = xfs_create_tmpfile(&args, &tmpfile);
2075 if (error)
2076 return error;
2078 name.name = src_name->name;
2079 name.len = src_name->len;
2080 error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2081 if (error) {
2082 xfs_finish_inode_setup(tmpfile);
2083 xfs_irele(tmpfile);
2084 return error;
2088 * Prepare the tmpfile inode as if it were created through the VFS.
2089 * Complete the inode setup and flag it as linkable. nlink is already
2090 * zero, so we can skip the drop_nlink.
2092 xfs_setup_iops(tmpfile);
2093 xfs_finish_inode_setup(tmpfile);
2094 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2096 *wip = tmpfile;
2097 return 0;
2101 * xfs_rename
2104 xfs_rename(
2105 struct mnt_idmap *idmap,
2106 struct xfs_inode *src_dp,
2107 struct xfs_name *src_name,
2108 struct xfs_inode *src_ip,
2109 struct xfs_inode *target_dp,
2110 struct xfs_name *target_name,
2111 struct xfs_inode *target_ip,
2112 unsigned int flags)
2114 struct xfs_dir_update du_src = {
2115 .dp = src_dp,
2116 .name = src_name,
2117 .ip = src_ip,
2119 struct xfs_dir_update du_tgt = {
2120 .dp = target_dp,
2121 .name = target_name,
2122 .ip = target_ip,
2124 struct xfs_dir_update du_wip = { };
2125 struct xfs_mount *mp = src_dp->i_mount;
2126 struct xfs_trans *tp;
2127 struct xfs_inode *inodes[__XFS_SORT_INODES];
2128 int i;
2129 int num_inodes = __XFS_SORT_INODES;
2130 bool new_parent = (src_dp != target_dp);
2131 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2132 int spaceres;
2133 bool retried = false;
2134 int error, nospace_error = 0;
2136 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2138 if ((flags & RENAME_EXCHANGE) && !target_ip)
2139 return -EINVAL;
2142 * If we are doing a whiteout operation, allocate the whiteout inode
2143 * we will be placing at the target and ensure the type is set
2144 * appropriately.
2146 if (flags & RENAME_WHITEOUT) {
2147 error = xfs_rename_alloc_whiteout(idmap, src_name, target_dp,
2148 &du_wip.ip);
2149 if (error)
2150 return error;
2152 /* setup target dirent info as whiteout */
2153 src_name->type = XFS_DIR3_FT_CHRDEV;
2156 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, du_wip.ip,
2157 inodes, &num_inodes);
2159 error = xfs_parent_start(mp, &du_src.ppargs);
2160 if (error)
2161 goto out_release_wip;
2163 if (du_wip.ip) {
2164 error = xfs_parent_start(mp, &du_wip.ppargs);
2165 if (error)
2166 goto out_src_ppargs;
2169 if (target_ip) {
2170 error = xfs_parent_start(mp, &du_tgt.ppargs);
2171 if (error)
2172 goto out_wip_ppargs;
2175 retry:
2176 nospace_error = 0;
2177 spaceres = xfs_rename_space_res(mp, src_name->len, target_ip != NULL,
2178 target_name->len, du_wip.ip != NULL);
2179 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2180 if (error == -ENOSPC) {
2181 nospace_error = error;
2182 spaceres = 0;
2183 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2184 &tp);
2186 if (error)
2187 goto out_tgt_ppargs;
2190 * We don't allow reservationless renaming when parent pointers are
2191 * enabled because we can't back out if the xattrs must grow.
2193 if (du_src.ppargs && nospace_error) {
2194 error = nospace_error;
2195 xfs_trans_cancel(tp);
2196 goto out_tgt_ppargs;
2200 * Attach the dquots to the inodes
2202 error = xfs_qm_vop_rename_dqattach(inodes);
2203 if (error) {
2204 xfs_trans_cancel(tp);
2205 goto out_tgt_ppargs;
2209 * Lock all the participating inodes. Depending upon whether
2210 * the target_name exists in the target directory, and
2211 * whether the target directory is the same as the source
2212 * directory, we can lock from 2 to 5 inodes.
2214 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2217 * Join all the inodes to the transaction.
2219 xfs_trans_ijoin(tp, src_dp, 0);
2220 if (new_parent)
2221 xfs_trans_ijoin(tp, target_dp, 0);
2222 xfs_trans_ijoin(tp, src_ip, 0);
2223 if (target_ip)
2224 xfs_trans_ijoin(tp, target_ip, 0);
2225 if (du_wip.ip)
2226 xfs_trans_ijoin(tp, du_wip.ip, 0);
2229 * If we are using project inheritance, we only allow renames
2230 * into our tree when the project IDs are the same; else the
2231 * tree quota mechanism would be circumvented.
2233 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
2234 target_dp->i_projid != src_ip->i_projid)) {
2235 error = -EXDEV;
2236 goto out_trans_cancel;
2239 /* RENAME_EXCHANGE is unique from here on. */
2240 if (flags & RENAME_EXCHANGE) {
2241 error = xfs_dir_exchange_children(tp, &du_src, &du_tgt,
2242 spaceres);
2243 if (error)
2244 goto out_trans_cancel;
2245 goto out_commit;
2249 * Try to reserve quota to handle an expansion of the target directory.
2250 * We'll allow the rename to continue in reservationless mode if we hit
2251 * a space usage constraint. If we trigger reservationless mode, save
2252 * the errno if there isn't any free space in the target directory.
2254 if (spaceres != 0) {
2255 error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
2256 0, false);
2257 if (error == -EDQUOT || error == -ENOSPC) {
2258 if (!retried) {
2259 xfs_trans_cancel(tp);
2260 xfs_iunlock_rename(inodes, num_inodes);
2261 xfs_blockgc_free_quota(target_dp, 0);
2262 retried = true;
2263 goto retry;
2266 nospace_error = error;
2267 spaceres = 0;
2268 error = 0;
2270 if (error)
2271 goto out_trans_cancel;
2275 * We don't allow quotaless renaming when parent pointers are enabled
2276 * because we can't back out if the xattrs must grow.
2278 if (du_src.ppargs && nospace_error) {
2279 error = nospace_error;
2280 goto out_trans_cancel;
2284 * Lock the AGI buffers we need to handle bumping the nlink of the
2285 * whiteout inode off the unlinked list and to handle dropping the
2286 * nlink of the target inode. Per locking order rules, do this in
2287 * increasing AG order and before directory block allocation tries to
2288 * grab AGFs because we grab AGIs before AGFs.
2290 * The (vfs) caller must ensure that if src is a directory then
2291 * target_ip is either null or an empty directory.
2293 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
2294 if (inodes[i] == du_wip.ip ||
2295 (inodes[i] == target_ip &&
2296 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
2297 struct xfs_perag *pag;
2298 struct xfs_buf *bp;
2300 pag = xfs_perag_get(mp,
2301 XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
2302 error = xfs_read_agi(pag, tp, 0, &bp);
2303 xfs_perag_put(pag);
2304 if (error)
2305 goto out_trans_cancel;
2309 error = xfs_dir_rename_children(tp, &du_src, &du_tgt, spaceres,
2310 &du_wip);
2311 if (error)
2312 goto out_trans_cancel;
2314 if (du_wip.ip) {
2316 * Now we have a real link, clear the "I'm a tmpfile" state
2317 * flag from the inode so it doesn't accidentally get misused in
2318 * future.
2320 VFS_I(du_wip.ip)->i_state &= ~I_LINKABLE;
2323 out_commit:
2325 * If this is a synchronous mount, make sure that the rename
2326 * transaction goes to disk before returning to the user.
2328 if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2329 xfs_trans_set_sync(tp);
2331 error = xfs_trans_commit(tp);
2332 nospace_error = 0;
2333 goto out_unlock;
2335 out_trans_cancel:
2336 xfs_trans_cancel(tp);
2337 out_unlock:
2338 xfs_iunlock_rename(inodes, num_inodes);
2339 out_tgt_ppargs:
2340 xfs_parent_finish(mp, du_tgt.ppargs);
2341 out_wip_ppargs:
2342 xfs_parent_finish(mp, du_wip.ppargs);
2343 out_src_ppargs:
2344 xfs_parent_finish(mp, du_src.ppargs);
2345 out_release_wip:
2346 if (du_wip.ip)
2347 xfs_irele(du_wip.ip);
2348 if (error == -ENOSPC && nospace_error)
2349 error = nospace_error;
2350 return error;
2353 static int
2354 xfs_iflush(
2355 struct xfs_inode *ip,
2356 struct xfs_buf *bp)
2358 struct xfs_inode_log_item *iip = ip->i_itemp;
2359 struct xfs_dinode *dip;
2360 struct xfs_mount *mp = ip->i_mount;
2361 int error;
2363 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
2364 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
2365 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
2366 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2367 ASSERT(iip->ili_item.li_buf == bp);
2369 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
2372 * We don't flush the inode if any of the following checks fail, but we
2373 * do still update the log item and attach to the backing buffer as if
2374 * the flush happened. This is a formality to facilitate predictable
2375 * error handling as the caller will shutdown and fail the buffer.
2377 error = -EFSCORRUPTED;
2378 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
2379 mp, XFS_ERRTAG_IFLUSH_1)) {
2380 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2381 "%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
2382 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2383 goto flush_out;
2385 if (S_ISREG(VFS_I(ip)->i_mode)) {
2386 if (XFS_TEST_ERROR(
2387 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
2388 ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
2389 mp, XFS_ERRTAG_IFLUSH_3)) {
2390 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2391 "%s: Bad regular inode %llu, ptr "PTR_FMT,
2392 __func__, ip->i_ino, ip);
2393 goto flush_out;
2395 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
2396 if (XFS_TEST_ERROR(
2397 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
2398 ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
2399 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
2400 mp, XFS_ERRTAG_IFLUSH_4)) {
2401 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2402 "%s: Bad directory inode %llu, ptr "PTR_FMT,
2403 __func__, ip->i_ino, ip);
2404 goto flush_out;
2407 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
2408 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
2409 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2410 "%s: detected corrupt incore inode %llu, "
2411 "total extents = %llu nblocks = %lld, ptr "PTR_FMT,
2412 __func__, ip->i_ino,
2413 ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
2414 ip->i_nblocks, ip);
2415 goto flush_out;
2417 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
2418 mp, XFS_ERRTAG_IFLUSH_6)) {
2419 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2420 "%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
2421 __func__, ip->i_ino, ip->i_forkoff, ip);
2422 goto flush_out;
2426 * Inode item log recovery for v2 inodes are dependent on the flushiter
2427 * count for correct sequencing. We bump the flush iteration count so
2428 * we can detect flushes which postdate a log record during recovery.
2429 * This is redundant as we now log every change and hence this can't
2430 * happen but we need to still do it to ensure backwards compatibility
2431 * with old kernels that predate logging all inode changes.
2433 if (!xfs_has_v3inodes(mp))
2434 ip->i_flushiter++;
2437 * If there are inline format data / attr forks attached to this inode,
2438 * make sure they are not corrupt.
2440 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
2441 xfs_ifork_verify_local_data(ip))
2442 goto flush_out;
2443 if (xfs_inode_has_attr_fork(ip) &&
2444 ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
2445 xfs_ifork_verify_local_attr(ip))
2446 goto flush_out;
2449 * Copy the dirty parts of the inode into the on-disk inode. We always
2450 * copy out the core of the inode, because if the inode is dirty at all
2451 * the core must be.
2453 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
2455 /* Wrap, we never let the log put out DI_MAX_FLUSH */
2456 if (!xfs_has_v3inodes(mp)) {
2457 if (ip->i_flushiter == DI_MAX_FLUSH)
2458 ip->i_flushiter = 0;
2461 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
2462 if (xfs_inode_has_attr_fork(ip))
2463 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
2466 * We've recorded everything logged in the inode, so we'd like to clear
2467 * the ili_fields bits so we don't log and flush things unnecessarily.
2468 * However, we can't stop logging all this information until the data
2469 * we've copied into the disk buffer is written to disk. If we did we
2470 * might overwrite the copy of the inode in the log with all the data
2471 * after re-logging only part of it, and in the face of a crash we
2472 * wouldn't have all the data we need to recover.
2474 * What we do is move the bits to the ili_last_fields field. When
2475 * logging the inode, these bits are moved back to the ili_fields field.
2476 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
2477 * we know that the information those bits represent is permanently on
2478 * disk. As long as the flush completes before the inode is logged
2479 * again, then both ili_fields and ili_last_fields will be cleared.
2481 error = 0;
2482 flush_out:
2483 spin_lock(&iip->ili_lock);
2484 iip->ili_last_fields = iip->ili_fields;
2485 iip->ili_fields = 0;
2486 iip->ili_fsync_fields = 0;
2487 set_bit(XFS_LI_FLUSHING, &iip->ili_item.li_flags);
2488 spin_unlock(&iip->ili_lock);
2491 * Store the current LSN of the inode so that we can tell whether the
2492 * item has moved in the AIL from xfs_buf_inode_iodone().
2494 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2495 &iip->ili_item.li_lsn);
2497 /* generate the checksum. */
2498 xfs_dinode_calc_crc(mp, dip);
2499 if (error)
2500 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
2501 return error;
2505 * Non-blocking flush of dirty inode metadata into the backing buffer.
2507 * The caller must have a reference to the inode and hold the cluster buffer
2508 * locked. The function will walk across all the inodes on the cluster buffer it
2509 * can find and lock without blocking, and flush them to the cluster buffer.
2511 * On successful flushing of at least one inode, the caller must write out the
2512 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
2513 * the caller needs to release the buffer. On failure, the filesystem will be
2514 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
2515 * will be returned.
2518 xfs_iflush_cluster(
2519 struct xfs_buf *bp)
2521 struct xfs_mount *mp = bp->b_mount;
2522 struct xfs_log_item *lip, *n;
2523 struct xfs_inode *ip;
2524 struct xfs_inode_log_item *iip;
2525 int clcount = 0;
2526 int error = 0;
2529 * We must use the safe variant here as on shutdown xfs_iflush_abort()
2530 * will remove itself from the list.
2532 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
2533 iip = (struct xfs_inode_log_item *)lip;
2534 ip = iip->ili_inode;
2537 * Quick and dirty check to avoid locks if possible.
2539 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
2540 continue;
2541 if (xfs_ipincount(ip))
2542 continue;
2545 * The inode is still attached to the buffer, which means it is
2546 * dirty but reclaim might try to grab it. Check carefully for
2547 * that, and grab the ilock while still holding the i_flags_lock
2548 * to guarantee reclaim will not be able to reclaim this inode
2549 * once we drop the i_flags_lock.
2551 spin_lock(&ip->i_flags_lock);
2552 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
2553 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
2554 spin_unlock(&ip->i_flags_lock);
2555 continue;
2559 * ILOCK will pin the inode against reclaim and prevent
2560 * concurrent transactions modifying the inode while we are
2561 * flushing the inode. If we get the lock, set the flushing
2562 * state before we drop the i_flags_lock.
2564 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
2565 spin_unlock(&ip->i_flags_lock);
2566 continue;
2568 __xfs_iflags_set(ip, XFS_IFLUSHING);
2569 spin_unlock(&ip->i_flags_lock);
2572 * Abort flushing this inode if we are shut down because the
2573 * inode may not currently be in the AIL. This can occur when
2574 * log I/O failure unpins the inode without inserting into the
2575 * AIL, leaving a dirty/unpinned inode attached to the buffer
2576 * that otherwise looks like it should be flushed.
2578 if (xlog_is_shutdown(mp->m_log)) {
2579 xfs_iunpin_wait(ip);
2580 xfs_iflush_abort(ip);
2581 xfs_iunlock(ip, XFS_ILOCK_SHARED);
2582 error = -EIO;
2583 continue;
2586 /* don't block waiting on a log force to unpin dirty inodes */
2587 if (xfs_ipincount(ip)) {
2588 xfs_iflags_clear(ip, XFS_IFLUSHING);
2589 xfs_iunlock(ip, XFS_ILOCK_SHARED);
2590 continue;
2593 if (!xfs_inode_clean(ip))
2594 error = xfs_iflush(ip, bp);
2595 else
2596 xfs_iflags_clear(ip, XFS_IFLUSHING);
2597 xfs_iunlock(ip, XFS_ILOCK_SHARED);
2598 if (error)
2599 break;
2600 clcount++;
2603 if (error) {
2605 * Shutdown first so we kill the log before we release this
2606 * buffer. If it is an INODE_ALLOC buffer and pins the tail
2607 * of the log, failing it before the _log_ is shut down can
2608 * result in the log tail being moved forward in the journal
2609 * on disk because log writes can still be taking place. Hence
2610 * unpinning the tail will allow the ICREATE intent to be
2611 * removed from the log an recovery will fail with uninitialised
2612 * inode cluster buffers.
2614 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2615 bp->b_flags |= XBF_ASYNC;
2616 xfs_buf_ioend_fail(bp);
2617 return error;
2620 if (!clcount)
2621 return -EAGAIN;
2623 XFS_STATS_INC(mp, xs_icluster_flushcnt);
2624 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
2625 return 0;
2629 /* Release an inode. */
2630 void
2631 xfs_irele(
2632 struct xfs_inode *ip)
2634 trace_xfs_irele(ip, _RET_IP_);
2635 iput(VFS_I(ip));
2639 * Ensure all commited transactions touching the inode are written to the log.
2642 xfs_log_force_inode(
2643 struct xfs_inode *ip)
2645 xfs_csn_t seq = 0;
2647 xfs_ilock(ip, XFS_ILOCK_SHARED);
2648 if (xfs_ipincount(ip))
2649 seq = ip->i_itemp->ili_commit_seq;
2650 xfs_iunlock(ip, XFS_ILOCK_SHARED);
2652 if (!seq)
2653 return 0;
2654 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
2658 * Grab the exclusive iolock for a data copy from src to dest, making sure to
2659 * abide vfs locking order (lowest pointer value goes first) and breaking the
2660 * layout leases before proceeding. The loop is needed because we cannot call
2661 * the blocking break_layout() with the iolocks held, and therefore have to
2662 * back out both locks.
2664 static int
2665 xfs_iolock_two_inodes_and_break_layout(
2666 struct inode *src,
2667 struct inode *dest)
2669 int error;
2671 if (src > dest)
2672 swap(src, dest);
2674 retry:
2675 /* Wait to break both inodes' layouts before we start locking. */
2676 error = break_layout(src, true);
2677 if (error)
2678 return error;
2679 if (src != dest) {
2680 error = break_layout(dest, true);
2681 if (error)
2682 return error;
2685 /* Lock one inode and make sure nobody got in and leased it. */
2686 inode_lock(src);
2687 error = break_layout(src, false);
2688 if (error) {
2689 inode_unlock(src);
2690 if (error == -EWOULDBLOCK)
2691 goto retry;
2692 return error;
2695 if (src == dest)
2696 return 0;
2698 /* Lock the other inode and make sure nobody got in and leased it. */
2699 inode_lock_nested(dest, I_MUTEX_NONDIR2);
2700 error = break_layout(dest, false);
2701 if (error) {
2702 inode_unlock(src);
2703 inode_unlock(dest);
2704 if (error == -EWOULDBLOCK)
2705 goto retry;
2706 return error;
2709 return 0;
2712 static int
2713 xfs_mmaplock_two_inodes_and_break_dax_layout(
2714 struct xfs_inode *ip1,
2715 struct xfs_inode *ip2)
2717 int error;
2718 bool retry;
2719 struct page *page;
2721 if (ip1->i_ino > ip2->i_ino)
2722 swap(ip1, ip2);
2724 again:
2725 retry = false;
2726 /* Lock the first inode */
2727 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
2728 error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
2729 if (error || retry) {
2730 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2731 if (error == 0 && retry)
2732 goto again;
2733 return error;
2736 if (ip1 == ip2)
2737 return 0;
2739 /* Nested lock the second inode */
2740 xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
2742 * We cannot use xfs_break_dax_layouts() directly here because it may
2743 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
2744 * for this nested lock case.
2746 page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
2747 if (page && page_ref_count(page) != 1) {
2748 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2749 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2750 goto again;
2753 return 0;
2757 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
2758 * mmap activity.
2761 xfs_ilock2_io_mmap(
2762 struct xfs_inode *ip1,
2763 struct xfs_inode *ip2)
2765 int ret;
2767 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
2768 if (ret)
2769 return ret;
2771 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
2772 ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
2773 if (ret) {
2774 inode_unlock(VFS_I(ip2));
2775 if (ip1 != ip2)
2776 inode_unlock(VFS_I(ip1));
2777 return ret;
2779 } else
2780 filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
2781 VFS_I(ip2)->i_mapping);
2783 return 0;
2786 /* Unlock both inodes to allow IO and mmap activity. */
2787 void
2788 xfs_iunlock2_io_mmap(
2789 struct xfs_inode *ip1,
2790 struct xfs_inode *ip2)
2792 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
2793 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2794 if (ip1 != ip2)
2795 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2796 } else
2797 filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
2798 VFS_I(ip2)->i_mapping);
2800 inode_unlock(VFS_I(ip2));
2801 if (ip1 != ip2)
2802 inode_unlock(VFS_I(ip1));
2805 /* Drop the MMAPLOCK and the IOLOCK after a remap completes. */
2806 void
2807 xfs_iunlock2_remapping(
2808 struct xfs_inode *ip1,
2809 struct xfs_inode *ip2)
2811 xfs_iflags_clear(ip1, XFS_IREMAPPING);
2813 if (ip1 != ip2)
2814 xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED);
2815 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2817 if (ip1 != ip2)
2818 inode_unlock_shared(VFS_I(ip1));
2819 inode_unlock(VFS_I(ip2));
2823 * Reload the incore inode list for this inode. Caller should ensure that
2824 * the link count cannot change, either by taking ILOCK_SHARED or otherwise
2825 * preventing other threads from executing.
2828 xfs_inode_reload_unlinked_bucket(
2829 struct xfs_trans *tp,
2830 struct xfs_inode *ip)
2832 struct xfs_mount *mp = tp->t_mountp;
2833 struct xfs_buf *agibp;
2834 struct xfs_agi *agi;
2835 struct xfs_perag *pag;
2836 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2837 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2838 xfs_agino_t prev_agino, next_agino;
2839 unsigned int bucket;
2840 bool foundit = false;
2841 int error;
2843 /* Grab the first inode in the list */
2844 pag = xfs_perag_get(mp, agno);
2845 error = xfs_ialloc_read_agi(pag, tp, 0, &agibp);
2846 xfs_perag_put(pag);
2847 if (error)
2848 return error;
2851 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the
2852 * incore unlinked list pointers for this inode. Check once more to
2853 * see if we raced with anyone else to reload the unlinked list.
2855 if (!xfs_inode_unlinked_incomplete(ip)) {
2856 foundit = true;
2857 goto out_agibp;
2860 bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
2861 agi = agibp->b_addr;
2863 trace_xfs_inode_reload_unlinked_bucket(ip);
2865 xfs_info_ratelimited(mp,
2866 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating list recovery.",
2867 agino, agno);
2869 prev_agino = NULLAGINO;
2870 next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
2871 while (next_agino != NULLAGINO) {
2872 struct xfs_inode *next_ip = NULL;
2874 /* Found this caller's inode, set its backlink. */
2875 if (next_agino == agino) {
2876 next_ip = ip;
2877 next_ip->i_prev_unlinked = prev_agino;
2878 foundit = true;
2879 goto next_inode;
2882 /* Try in-memory lookup first. */
2883 next_ip = xfs_iunlink_lookup(pag, next_agino);
2884 if (next_ip)
2885 goto next_inode;
2887 /* Inode not in memory, try reloading it. */
2888 error = xfs_iunlink_reload_next(tp, agibp, prev_agino,
2889 next_agino);
2890 if (error)
2891 break;
2893 /* Grab the reloaded inode. */
2894 next_ip = xfs_iunlink_lookup(pag, next_agino);
2895 if (!next_ip) {
2896 /* No incore inode at all? We reloaded it... */
2897 ASSERT(next_ip != NULL);
2898 error = -EFSCORRUPTED;
2899 break;
2902 next_inode:
2903 prev_agino = next_agino;
2904 next_agino = next_ip->i_next_unlinked;
2907 out_agibp:
2908 xfs_trans_brelse(tp, agibp);
2909 /* Should have found this inode somewhere in the iunlinked bucket. */
2910 if (!error && !foundit)
2911 error = -EFSCORRUPTED;
2912 return error;
2915 /* Decide if this inode is missing its unlinked list and reload it. */
2917 xfs_inode_reload_unlinked(
2918 struct xfs_inode *ip)
2920 struct xfs_trans *tp;
2921 int error;
2923 error = xfs_trans_alloc_empty(ip->i_mount, &tp);
2924 if (error)
2925 return error;
2927 xfs_ilock(ip, XFS_ILOCK_SHARED);
2928 if (xfs_inode_unlinked_incomplete(ip))
2929 error = xfs_inode_reload_unlinked_bucket(tp, ip);
2930 xfs_iunlock(ip, XFS_ILOCK_SHARED);
2931 xfs_trans_cancel(tp);
2933 return error;
2936 /* Has this inode fork been zapped by repair? */
2937 bool
2938 xfs_ifork_zapped(
2939 const struct xfs_inode *ip,
2940 int whichfork)
2942 unsigned int datamask = 0;
2944 switch (whichfork) {
2945 case XFS_DATA_FORK:
2946 switch (ip->i_vnode.i_mode & S_IFMT) {
2947 case S_IFDIR:
2948 datamask = XFS_SICK_INO_DIR_ZAPPED;
2949 break;
2950 case S_IFLNK:
2951 datamask = XFS_SICK_INO_SYMLINK_ZAPPED;
2952 break;
2954 return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask);
2955 case XFS_ATTR_FORK:
2956 return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED;
2957 default:
2958 return false;
2962 /* Compute the number of data and realtime blocks used by a file. */
2963 void
2964 xfs_inode_count_blocks(
2965 struct xfs_trans *tp,
2966 struct xfs_inode *ip,
2967 xfs_filblks_t *dblocks,
2968 xfs_filblks_t *rblocks)
2970 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
2972 *rblocks = 0;
2973 if (XFS_IS_REALTIME_INODE(ip))
2974 xfs_bmap_count_leaves(ifp, rblocks);
2975 *dblocks = ip->i_nblocks - *rblocks;
2978 static void
2979 xfs_wait_dax_page(
2980 struct inode *inode)
2982 struct xfs_inode *ip = XFS_I(inode);
2984 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
2985 schedule();
2986 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
2990 xfs_break_dax_layouts(
2991 struct inode *inode,
2992 bool *retry)
2994 struct page *page;
2996 xfs_assert_ilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL);
2998 page = dax_layout_busy_page(inode->i_mapping);
2999 if (!page)
3000 return 0;
3002 *retry = true;
3003 return ___wait_var_event(&page->_refcount,
3004 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
3005 0, 0, xfs_wait_dax_page(inode));
3009 xfs_break_layouts(
3010 struct inode *inode,
3011 uint *iolock,
3012 enum layout_break_reason reason)
3014 bool retry;
3015 int error;
3017 xfs_assert_ilocked(XFS_I(inode), XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL);
3019 do {
3020 retry = false;
3021 switch (reason) {
3022 case BREAK_UNMAP:
3023 error = xfs_break_dax_layouts(inode, &retry);
3024 if (error || retry)
3025 break;
3026 fallthrough;
3027 case BREAK_WRITE:
3028 error = xfs_break_leased_layouts(inode, iolock, &retry);
3029 break;
3030 default:
3031 WARN_ON_ONCE(1);
3032 error = -EINVAL;
3034 } while (error == 0 && retry);
3036 return error;
3039 /* Returns the size of fundamental allocation unit for a file, in bytes. */
3040 unsigned int
3041 xfs_inode_alloc_unitsize(
3042 struct xfs_inode *ip)
3044 unsigned int blocks = 1;
3046 if (XFS_IS_REALTIME_INODE(ip))
3047 blocks = ip->i_mount->m_sb.sb_rextsize;
3049 return XFS_FSB_TO_B(ip->i_mount, blocks);
3052 /* Should we always be using copy on write for file writes? */
3053 bool
3054 xfs_is_always_cow_inode(
3055 const struct xfs_inode *ip)
3057 return ip->i_mount->m_always_cow && xfs_has_reflink(ip->i_mount);