1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_trace.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_buf_item.h"
20 #include "xfs_log_priv.h"
21 #include "xfs_error.h"
22 #include "xfs_rtbitmap.h"
24 #include <linux/iversion.h>
26 struct kmem_cache
*xfs_ili_cache
; /* inode log item */
28 static inline struct xfs_inode_log_item
*INODE_ITEM(struct xfs_log_item
*lip
)
30 return container_of(lip
, struct xfs_inode_log_item
, ili_item
);
35 struct xfs_log_item
*lip
)
37 return INODE_ITEM(lip
)->ili_inode
->i_ino
;
40 #ifdef DEBUG_EXPENSIVE
42 xfs_inode_item_precommit_check(
45 struct xfs_mount
*mp
= ip
->i_mount
;
46 struct xfs_dinode
*dip
;
49 dip
= kzalloc(mp
->m_sb
.sb_inodesize
, GFP_KERNEL
| GFP_NOFS
);
55 xfs_inode_to_disk(ip
, dip
, 0);
56 xfs_dinode_calc_crc(mp
, dip
);
57 fa
= xfs_dinode_verify(mp
, ip
->i_ino
, dip
);
59 xfs_inode_verifier_error(ip
, -EFSCORRUPTED
, __func__
, dip
,
61 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
67 # define xfs_inode_item_precommit_check(ip) ((void)0)
71 * Prior to finally logging the inode, we have to ensure that all the
72 * per-modification inode state changes are applied. This includes VFS inode
73 * state updates, format conversions, verifier state synchronisation and
74 * ensuring the inode buffer remains in memory whilst the inode is dirty.
76 * We have to be careful when we grab the inode cluster buffer due to lock
77 * ordering constraints. The unlinked inode modifications (xfs_iunlink_item)
78 * require AGI -> inode cluster buffer lock order. The inode cluster buffer is
79 * not locked until ->precommit, so it happens after everything else has been
82 * Further, we have AGI -> AGF lock ordering, and with O_TMPFILE handling we
83 * have AGI -> AGF -> iunlink item -> inode cluster buffer lock order. Hence we
84 * cannot safely lock the inode cluster buffer in xfs_trans_log_inode() because
85 * it can be called on a inode (e.g. via bumplink/droplink) before we take the
86 * AGF lock modifying directory blocks.
88 * Rather than force a complete rework of all the transactions to call
89 * xfs_trans_log_inode() once and once only at the end of every transaction, we
90 * move the pinning of the inode cluster buffer to a ->precommit operation. This
91 * matches how the xfs_iunlink_item locks the inode cluster buffer, and it
92 * ensures that the inode cluster buffer locking is always done last in a
93 * transaction. i.e. we ensure the lock order is always AGI -> AGF -> inode
96 * If we return the inode number as the precommit sort key then we'll also
97 * guarantee that the order all inode cluster buffer locking is the same all the
98 * inodes and unlink items in the transaction.
101 xfs_inode_item_precommit(
102 struct xfs_trans
*tp
,
103 struct xfs_log_item
*lip
)
105 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
106 struct xfs_inode
*ip
= iip
->ili_inode
;
107 struct inode
*inode
= VFS_I(ip
);
108 unsigned int flags
= iip
->ili_dirty_flags
;
111 * Don't bother with i_lock for the I_DIRTY_TIME check here, as races
112 * don't matter - we either will need an extra transaction in 24 hours
113 * to log the timestamps, or will clear already cleared fields in the
116 if (inode
->i_state
& I_DIRTY_TIME
) {
117 spin_lock(&inode
->i_lock
);
118 inode
->i_state
&= ~I_DIRTY_TIME
;
119 spin_unlock(&inode
->i_lock
);
123 * If we're updating the inode core or the timestamps and it's possible
124 * to upgrade this inode to bigtime format, do so now.
126 if ((flags
& (XFS_ILOG_CORE
| XFS_ILOG_TIMESTAMP
)) &&
127 xfs_has_bigtime(ip
->i_mount
) &&
128 !xfs_inode_has_bigtime(ip
)) {
129 ip
->i_diflags2
|= XFS_DIFLAG2_BIGTIME
;
130 flags
|= XFS_ILOG_CORE
;
134 * Inode verifiers do not check that the extent size hint is an integer
135 * multiple of the rt extent size on a directory with both rtinherit
136 * and extszinherit flags set. If we're logging a directory that is
137 * misconfigured in this way, clear the hint.
139 if ((ip
->i_diflags
& XFS_DIFLAG_RTINHERIT
) &&
140 (ip
->i_diflags
& XFS_DIFLAG_EXTSZINHERIT
) &&
141 xfs_extlen_to_rtxmod(ip
->i_mount
, ip
->i_extsize
) > 0) {
142 ip
->i_diflags
&= ~(XFS_DIFLAG_EXTSIZE
|
143 XFS_DIFLAG_EXTSZINHERIT
);
145 flags
|= XFS_ILOG_CORE
;
149 * Record the specific change for fdatasync optimisation. This allows
150 * fdatasync to skip log forces for inodes that are only timestamp
151 * dirty. Once we've processed the XFS_ILOG_IVERSION flag, convert it
152 * to XFS_ILOG_CORE so that the actual on-disk dirty tracking
153 * (ili_fields) correctly tracks that the version has changed.
155 spin_lock(&iip
->ili_lock
);
156 iip
->ili_fsync_fields
|= (flags
& ~XFS_ILOG_IVERSION
);
157 if (flags
& XFS_ILOG_IVERSION
)
158 flags
= ((flags
& ~XFS_ILOG_IVERSION
) | XFS_ILOG_CORE
);
160 if (!iip
->ili_item
.li_buf
) {
165 * We hold the ILOCK here, so this inode is not going to be
166 * flushed while we are here. Further, because there is no
167 * buffer attached to the item, we know that there is no IO in
168 * progress, so nothing will clear the ili_fields while we read
169 * in the buffer. Hence we can safely drop the spin lock and
170 * read the buffer knowing that the state will not change from
173 spin_unlock(&iip
->ili_lock
);
174 error
= xfs_imap_to_bp(ip
->i_mount
, tp
, &ip
->i_imap
, &bp
);
179 * We need an explicit buffer reference for the log item but
180 * don't want the buffer to remain attached to the transaction.
181 * Hold the buffer but release the transaction reference once
182 * we've attached the inode log item to the buffer log item
186 spin_lock(&iip
->ili_lock
);
187 iip
->ili_item
.li_buf
= bp
;
188 bp
->b_flags
|= _XBF_INODES
;
189 list_add_tail(&iip
->ili_item
.li_bio_list
, &bp
->b_li_list
);
190 xfs_trans_brelse(tp
, bp
);
194 * Always OR in the bits from the ili_last_fields field. This is to
195 * coordinate with the xfs_iflush() and xfs_buf_inode_iodone() routines
196 * in the eventual clearing of the ili_fields bits. See the big comment
197 * in xfs_iflush() for an explanation of this coordination mechanism.
199 iip
->ili_fields
|= (flags
| iip
->ili_last_fields
);
200 spin_unlock(&iip
->ili_lock
);
202 xfs_inode_item_precommit_check(ip
);
205 * We are done with the log item transaction dirty state, so clear it so
206 * that it doesn't pollute future transactions.
208 iip
->ili_dirty_flags
= 0;
213 * The logged size of an inode fork is always the current size of the inode
214 * fork. This means that when an inode fork is relogged, the size of the logged
215 * region is determined by the current state, not the combination of the
216 * previously logged state + the current state. This is different relogging
217 * behaviour to most other log items which will retain the size of the
218 * previously logged changes when smaller regions are relogged.
220 * Hence operations that remove data from the inode fork (e.g. shortform
221 * dir/attr remove, extent form extent removal, etc), the size of the relogged
222 * inode gets -smaller- rather than stays the same size as the previously logged
223 * size and this can result in the committing transaction reducing the amount of
224 * space being consumed by the CIL.
227 xfs_inode_item_data_fork_size(
228 struct xfs_inode_log_item
*iip
,
232 struct xfs_inode
*ip
= iip
->ili_inode
;
234 switch (ip
->i_df
.if_format
) {
235 case XFS_DINODE_FMT_EXTENTS
:
236 if ((iip
->ili_fields
& XFS_ILOG_DEXT
) &&
237 ip
->i_df
.if_nextents
> 0 &&
238 ip
->i_df
.if_bytes
> 0) {
239 /* worst case, doesn't subtract delalloc extents */
240 *nbytes
+= xfs_inode_data_fork_size(ip
);
244 case XFS_DINODE_FMT_BTREE
:
245 if ((iip
->ili_fields
& XFS_ILOG_DBROOT
) &&
246 ip
->i_df
.if_broot_bytes
> 0) {
247 *nbytes
+= ip
->i_df
.if_broot_bytes
;
251 case XFS_DINODE_FMT_LOCAL
:
252 if ((iip
->ili_fields
& XFS_ILOG_DDATA
) &&
253 ip
->i_df
.if_bytes
> 0) {
254 *nbytes
+= xlog_calc_iovec_len(ip
->i_df
.if_bytes
);
259 case XFS_DINODE_FMT_DEV
:
268 xfs_inode_item_attr_fork_size(
269 struct xfs_inode_log_item
*iip
,
273 struct xfs_inode
*ip
= iip
->ili_inode
;
275 switch (ip
->i_af
.if_format
) {
276 case XFS_DINODE_FMT_EXTENTS
:
277 if ((iip
->ili_fields
& XFS_ILOG_AEXT
) &&
278 ip
->i_af
.if_nextents
> 0 &&
279 ip
->i_af
.if_bytes
> 0) {
280 /* worst case, doesn't subtract unused space */
281 *nbytes
+= xfs_inode_attr_fork_size(ip
);
285 case XFS_DINODE_FMT_BTREE
:
286 if ((iip
->ili_fields
& XFS_ILOG_ABROOT
) &&
287 ip
->i_af
.if_broot_bytes
> 0) {
288 *nbytes
+= ip
->i_af
.if_broot_bytes
;
292 case XFS_DINODE_FMT_LOCAL
:
293 if ((iip
->ili_fields
& XFS_ILOG_ADATA
) &&
294 ip
->i_af
.if_bytes
> 0) {
295 *nbytes
+= xlog_calc_iovec_len(ip
->i_af
.if_bytes
);
306 * This returns the number of iovecs needed to log the given inode item.
308 * We need one iovec for the inode log format structure, one for the
309 * inode core, and possibly one for the inode data/extents/b-tree root
310 * and one for the inode attribute data/extents/b-tree root.
314 struct xfs_log_item
*lip
,
318 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
319 struct xfs_inode
*ip
= iip
->ili_inode
;
322 *nbytes
+= sizeof(struct xfs_inode_log_format
) +
323 xfs_log_dinode_size(ip
->i_mount
);
325 xfs_inode_item_data_fork_size(iip
, nvecs
, nbytes
);
326 if (xfs_inode_has_attr_fork(ip
))
327 xfs_inode_item_attr_fork_size(iip
, nvecs
, nbytes
);
331 xfs_inode_item_format_data_fork(
332 struct xfs_inode_log_item
*iip
,
333 struct xfs_inode_log_format
*ilf
,
334 struct xfs_log_vec
*lv
,
335 struct xfs_log_iovec
**vecp
)
337 struct xfs_inode
*ip
= iip
->ili_inode
;
340 switch (ip
->i_df
.if_format
) {
341 case XFS_DINODE_FMT_EXTENTS
:
343 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
| XFS_ILOG_DEV
);
345 if ((iip
->ili_fields
& XFS_ILOG_DEXT
) &&
346 ip
->i_df
.if_nextents
> 0 &&
347 ip
->i_df
.if_bytes
> 0) {
348 struct xfs_bmbt_rec
*p
;
350 ASSERT(xfs_iext_count(&ip
->i_df
) > 0);
352 p
= xlog_prepare_iovec(lv
, vecp
, XLOG_REG_TYPE_IEXT
);
353 data_bytes
= xfs_iextents_copy(ip
, p
, XFS_DATA_FORK
);
354 xlog_finish_iovec(lv
, *vecp
, data_bytes
);
356 ASSERT(data_bytes
<= ip
->i_df
.if_bytes
);
358 ilf
->ilf_dsize
= data_bytes
;
361 iip
->ili_fields
&= ~XFS_ILOG_DEXT
;
364 case XFS_DINODE_FMT_BTREE
:
366 ~(XFS_ILOG_DDATA
| XFS_ILOG_DEXT
| XFS_ILOG_DEV
);
368 if ((iip
->ili_fields
& XFS_ILOG_DBROOT
) &&
369 ip
->i_df
.if_broot_bytes
> 0) {
370 ASSERT(ip
->i_df
.if_broot
!= NULL
);
371 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_IBROOT
,
373 ip
->i_df
.if_broot_bytes
);
374 ilf
->ilf_dsize
= ip
->i_df
.if_broot_bytes
;
377 ASSERT(!(iip
->ili_fields
&
379 iip
->ili_fields
&= ~XFS_ILOG_DBROOT
;
382 case XFS_DINODE_FMT_LOCAL
:
384 ~(XFS_ILOG_DEXT
| XFS_ILOG_DBROOT
| XFS_ILOG_DEV
);
385 if ((iip
->ili_fields
& XFS_ILOG_DDATA
) &&
386 ip
->i_df
.if_bytes
> 0) {
387 ASSERT(ip
->i_df
.if_data
!= NULL
);
388 ASSERT(ip
->i_disk_size
> 0);
389 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_ILOCAL
,
390 ip
->i_df
.if_data
, ip
->i_df
.if_bytes
);
391 ilf
->ilf_dsize
= (unsigned)ip
->i_df
.if_bytes
;
394 iip
->ili_fields
&= ~XFS_ILOG_DDATA
;
397 case XFS_DINODE_FMT_DEV
:
399 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
| XFS_ILOG_DEXT
);
400 if (iip
->ili_fields
& XFS_ILOG_DEV
)
401 ilf
->ilf_u
.ilfu_rdev
= sysv_encode_dev(VFS_I(ip
)->i_rdev
);
410 xfs_inode_item_format_attr_fork(
411 struct xfs_inode_log_item
*iip
,
412 struct xfs_inode_log_format
*ilf
,
413 struct xfs_log_vec
*lv
,
414 struct xfs_log_iovec
**vecp
)
416 struct xfs_inode
*ip
= iip
->ili_inode
;
419 switch (ip
->i_af
.if_format
) {
420 case XFS_DINODE_FMT_EXTENTS
:
422 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
);
424 if ((iip
->ili_fields
& XFS_ILOG_AEXT
) &&
425 ip
->i_af
.if_nextents
> 0 &&
426 ip
->i_af
.if_bytes
> 0) {
427 struct xfs_bmbt_rec
*p
;
429 ASSERT(xfs_iext_count(&ip
->i_af
) ==
430 ip
->i_af
.if_nextents
);
432 p
= xlog_prepare_iovec(lv
, vecp
, XLOG_REG_TYPE_IATTR_EXT
);
433 data_bytes
= xfs_iextents_copy(ip
, p
, XFS_ATTR_FORK
);
434 xlog_finish_iovec(lv
, *vecp
, data_bytes
);
436 ilf
->ilf_asize
= data_bytes
;
439 iip
->ili_fields
&= ~XFS_ILOG_AEXT
;
442 case XFS_DINODE_FMT_BTREE
:
444 ~(XFS_ILOG_ADATA
| XFS_ILOG_AEXT
);
446 if ((iip
->ili_fields
& XFS_ILOG_ABROOT
) &&
447 ip
->i_af
.if_broot_bytes
> 0) {
448 ASSERT(ip
->i_af
.if_broot
!= NULL
);
450 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_IATTR_BROOT
,
452 ip
->i_af
.if_broot_bytes
);
453 ilf
->ilf_asize
= ip
->i_af
.if_broot_bytes
;
456 iip
->ili_fields
&= ~XFS_ILOG_ABROOT
;
459 case XFS_DINODE_FMT_LOCAL
:
461 ~(XFS_ILOG_AEXT
| XFS_ILOG_ABROOT
);
463 if ((iip
->ili_fields
& XFS_ILOG_ADATA
) &&
464 ip
->i_af
.if_bytes
> 0) {
465 ASSERT(ip
->i_af
.if_data
!= NULL
);
466 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_IATTR_LOCAL
,
467 ip
->i_af
.if_data
, ip
->i_af
.if_bytes
);
468 ilf
->ilf_asize
= (unsigned)ip
->i_af
.if_bytes
;
471 iip
->ili_fields
&= ~XFS_ILOG_ADATA
;
481 * Convert an incore timestamp to a log timestamp. Note that the log format
482 * specifies host endian format!
484 static inline xfs_log_timestamp_t
485 xfs_inode_to_log_dinode_ts(
486 struct xfs_inode
*ip
,
487 const struct timespec64 tv
)
489 struct xfs_log_legacy_timestamp
*lits
;
490 xfs_log_timestamp_t its
;
492 if (xfs_inode_has_bigtime(ip
))
493 return xfs_inode_encode_bigtime(tv
);
495 lits
= (struct xfs_log_legacy_timestamp
*)&its
;
496 lits
->t_sec
= tv
.tv_sec
;
497 lits
->t_nsec
= tv
.tv_nsec
;
503 * The legacy DMAPI fields are only present in the on-disk and in-log inodes,
504 * but not in the in-memory one. But we are guaranteed to have an inode buffer
505 * in memory when logging an inode, so we can just copy it from the on-disk
506 * inode to the in-log inode here so that recovery of file system with these
507 * fields set to non-zero values doesn't lose them. For all other cases we zero
511 xfs_copy_dm_fields_to_log_dinode(
512 struct xfs_inode
*ip
,
513 struct xfs_log_dinode
*to
)
515 struct xfs_dinode
*dip
;
517 dip
= xfs_buf_offset(ip
->i_itemp
->ili_item
.li_buf
,
518 ip
->i_imap
.im_boffset
);
520 if (xfs_iflags_test(ip
, XFS_IPRESERVE_DM_FIELDS
)) {
521 to
->di_dmevmask
= be32_to_cpu(dip
->di_dmevmask
);
522 to
->di_dmstate
= be16_to_cpu(dip
->di_dmstate
);
530 xfs_inode_to_log_dinode_iext_counters(
531 struct xfs_inode
*ip
,
532 struct xfs_log_dinode
*to
)
534 if (xfs_inode_has_large_extent_counts(ip
)) {
535 to
->di_big_nextents
= xfs_ifork_nextents(&ip
->i_df
);
536 to
->di_big_anextents
= xfs_ifork_nextents(&ip
->i_af
);
537 to
->di_nrext64_pad
= 0;
539 to
->di_nextents
= xfs_ifork_nextents(&ip
->i_df
);
540 to
->di_anextents
= xfs_ifork_nextents(&ip
->i_af
);
545 xfs_inode_to_log_dinode(
546 struct xfs_inode
*ip
,
547 struct xfs_log_dinode
*to
,
550 struct inode
*inode
= VFS_I(ip
);
552 to
->di_magic
= XFS_DINODE_MAGIC
;
553 to
->di_format
= xfs_ifork_format(&ip
->i_df
);
554 to
->di_uid
= i_uid_read(inode
);
555 to
->di_gid
= i_gid_read(inode
);
556 to
->di_projid_lo
= ip
->i_projid
& 0xffff;
557 to
->di_projid_hi
= ip
->i_projid
>> 16;
559 to
->di_atime
= xfs_inode_to_log_dinode_ts(ip
, inode_get_atime(inode
));
560 to
->di_mtime
= xfs_inode_to_log_dinode_ts(ip
, inode_get_mtime(inode
));
561 to
->di_ctime
= xfs_inode_to_log_dinode_ts(ip
, inode_get_ctime(inode
));
562 to
->di_nlink
= inode
->i_nlink
;
563 to
->di_gen
= inode
->i_generation
;
564 to
->di_mode
= inode
->i_mode
;
566 to
->di_size
= ip
->i_disk_size
;
567 to
->di_nblocks
= ip
->i_nblocks
;
568 to
->di_extsize
= ip
->i_extsize
;
569 to
->di_forkoff
= ip
->i_forkoff
;
570 to
->di_aformat
= xfs_ifork_format(&ip
->i_af
);
571 to
->di_flags
= ip
->i_diflags
;
573 xfs_copy_dm_fields_to_log_dinode(ip
, to
);
575 /* log a dummy value to ensure log structure is fully initialised */
576 to
->di_next_unlinked
= NULLAGINO
;
578 if (xfs_has_v3inodes(ip
->i_mount
)) {
580 to
->di_changecount
= inode_peek_iversion(inode
);
581 to
->di_crtime
= xfs_inode_to_log_dinode_ts(ip
, ip
->i_crtime
);
582 to
->di_flags2
= ip
->i_diflags2
;
583 to
->di_cowextsize
= ip
->i_cowextsize
;
584 to
->di_ino
= ip
->i_ino
;
586 memset(to
->di_pad2
, 0, sizeof(to
->di_pad2
));
587 uuid_copy(&to
->di_uuid
, &ip
->i_mount
->m_sb
.sb_meta_uuid
);
590 /* dummy value for initialisation */
593 if (xfs_is_metadir_inode(ip
))
594 to
->di_metatype
= ip
->i_metatype
;
599 to
->di_flushiter
= ip
->i_flushiter
;
600 memset(to
->di_v2_pad
, 0, sizeof(to
->di_v2_pad
));
604 xfs_inode_to_log_dinode_iext_counters(ip
, to
);
608 * Format the inode core. Current timestamp data is only in the VFS inode
609 * fields, so we need to grab them from there. Hence rather than just copying
610 * the XFS inode core structure, format the fields directly into the iovec.
613 xfs_inode_item_format_core(
614 struct xfs_inode
*ip
,
615 struct xfs_log_vec
*lv
,
616 struct xfs_log_iovec
**vecp
)
618 struct xfs_log_dinode
*dic
;
620 dic
= xlog_prepare_iovec(lv
, vecp
, XLOG_REG_TYPE_ICORE
);
621 xfs_inode_to_log_dinode(ip
, dic
, ip
->i_itemp
->ili_item
.li_lsn
);
622 xlog_finish_iovec(lv
, *vecp
, xfs_log_dinode_size(ip
->i_mount
));
626 * This is called to fill in the vector of log iovecs for the given inode
627 * log item. It fills the first item with an inode log format structure,
628 * the second with the on-disk inode structure, and a possible third and/or
629 * fourth with the inode data/extents/b-tree root and inode attributes
630 * data/extents/b-tree root.
632 * Note: Always use the 64 bit inode log format structure so we don't
633 * leave an uninitialised hole in the format item on 64 bit systems. Log
634 * recovery on 32 bit systems handles this just fine, so there's no reason
635 * for not using an initialising the properly padded structure all the time.
638 xfs_inode_item_format(
639 struct xfs_log_item
*lip
,
640 struct xfs_log_vec
*lv
)
642 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
643 struct xfs_inode
*ip
= iip
->ili_inode
;
644 struct xfs_log_iovec
*vecp
= NULL
;
645 struct xfs_inode_log_format
*ilf
;
647 ilf
= xlog_prepare_iovec(lv
, &vecp
, XLOG_REG_TYPE_IFORMAT
);
648 ilf
->ilf_type
= XFS_LI_INODE
;
649 ilf
->ilf_ino
= ip
->i_ino
;
650 ilf
->ilf_blkno
= ip
->i_imap
.im_blkno
;
651 ilf
->ilf_len
= ip
->i_imap
.im_len
;
652 ilf
->ilf_boffset
= ip
->i_imap
.im_boffset
;
653 ilf
->ilf_fields
= XFS_ILOG_CORE
;
654 ilf
->ilf_size
= 2; /* format + core */
657 * make sure we don't leak uninitialised data into the log in the case
658 * when we don't log every field in the inode.
663 memset(&ilf
->ilf_u
, 0, sizeof(ilf
->ilf_u
));
665 xlog_finish_iovec(lv
, vecp
, sizeof(*ilf
));
667 xfs_inode_item_format_core(ip
, lv
, &vecp
);
668 xfs_inode_item_format_data_fork(iip
, ilf
, lv
, &vecp
);
669 if (xfs_inode_has_attr_fork(ip
)) {
670 xfs_inode_item_format_attr_fork(iip
, ilf
, lv
, &vecp
);
673 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
);
676 /* update the format with the exact fields we actually logged */
677 ilf
->ilf_fields
|= (iip
->ili_fields
& ~XFS_ILOG_TIMESTAMP
);
681 * This is called to pin the inode associated with the inode log
682 * item in memory so it cannot be written out.
686 struct xfs_log_item
*lip
)
688 struct xfs_inode
*ip
= INODE_ITEM(lip
)->ili_inode
;
690 xfs_assert_ilocked(ip
, XFS_ILOCK_EXCL
);
693 trace_xfs_inode_pin(ip
, _RET_IP_
);
694 atomic_inc(&ip
->i_pincount
);
699 * This is called to unpin the inode associated with the inode log
700 * item which was previously pinned with a call to xfs_inode_item_pin().
702 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
704 * Note that unpin can race with inode cluster buffer freeing marking the buffer
705 * stale. In that case, flush completions are run from the buffer unpin call,
706 * which may happen before the inode is unpinned. If we lose the race, there
707 * will be no buffer attached to the log item, but the inode will be marked
711 xfs_inode_item_unpin(
712 struct xfs_log_item
*lip
,
715 struct xfs_inode
*ip
= INODE_ITEM(lip
)->ili_inode
;
717 trace_xfs_inode_unpin(ip
, _RET_IP_
);
718 ASSERT(lip
->li_buf
|| xfs_iflags_test(ip
, XFS_ISTALE
));
719 ASSERT(atomic_read(&ip
->i_pincount
) > 0);
720 if (atomic_dec_and_test(&ip
->i_pincount
))
721 wake_up_bit(&ip
->i_flags
, __XFS_IPINNED_BIT
);
726 struct xfs_log_item
*lip
,
727 struct list_head
*buffer_list
)
728 __releases(&lip
->li_ailp
->ail_lock
)
729 __acquires(&lip
->li_ailp
->ail_lock
)
731 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
732 struct xfs_inode
*ip
= iip
->ili_inode
;
733 struct xfs_buf
*bp
= lip
->li_buf
;
734 uint rval
= XFS_ITEM_SUCCESS
;
737 if (!bp
|| (ip
->i_flags
& XFS_ISTALE
)) {
739 * Inode item/buffer is being aborted due to cluster
740 * buffer deletion. Trigger a log force to have that operation
741 * completed and items removed from the AIL before the next push
744 return XFS_ITEM_PINNED
;
747 if (xfs_ipincount(ip
) > 0 || xfs_buf_ispinned(bp
))
748 return XFS_ITEM_PINNED
;
750 if (xfs_iflags_test(ip
, XFS_IFLUSHING
))
751 return XFS_ITEM_FLUSHING
;
753 if (!xfs_buf_trylock(bp
))
754 return XFS_ITEM_LOCKED
;
756 spin_unlock(&lip
->li_ailp
->ail_lock
);
759 * We need to hold a reference for flushing the cluster buffer as it may
760 * fail the buffer without IO submission. In which case, we better get a
761 * reference for that completion because otherwise we don't get a
762 * reference for IO until we queue the buffer for delwri submission.
765 error
= xfs_iflush_cluster(bp
);
767 if (!xfs_buf_delwri_queue(bp
, buffer_list
))
768 rval
= XFS_ITEM_FLUSHING
;
772 * Release the buffer if we were unable to flush anything. On
773 * any other error, the buffer has already been released.
775 if (error
== -EAGAIN
)
777 rval
= XFS_ITEM_LOCKED
;
780 spin_lock(&lip
->li_ailp
->ail_lock
);
785 * Unlock the inode associated with the inode log item.
788 xfs_inode_item_release(
789 struct xfs_log_item
*lip
)
791 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
792 struct xfs_inode
*ip
= iip
->ili_inode
;
793 unsigned short lock_flags
;
795 ASSERT(ip
->i_itemp
!= NULL
);
796 xfs_assert_ilocked(ip
, XFS_ILOCK_EXCL
);
798 lock_flags
= iip
->ili_lock_flags
;
799 iip
->ili_lock_flags
= 0;
801 xfs_iunlock(ip
, lock_flags
);
805 * This is called to find out where the oldest active copy of the inode log
806 * item in the on disk log resides now that the last log write of it completed
807 * at the given lsn. Since we always re-log all dirty data in an inode, the
808 * latest copy in the on disk log is the only one that matters. Therefore,
809 * simply return the given lsn.
811 * If the inode has been marked stale because the cluster is being freed, we
812 * don't want to (re-)insert this inode into the AIL. There is a race condition
813 * where the cluster buffer may be unpinned before the inode is inserted into
814 * the AIL during transaction committed processing. If the buffer is unpinned
815 * before the inode item has been committed and inserted, then it is possible
816 * for the buffer to be written and IO completes before the inode is inserted
817 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
818 * AIL which will never get removed. It will, however, get reclaimed which
819 * triggers an assert in xfs_inode_free() complaining about freein an inode
822 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
823 * transaction committed code knows that it does not need to do any further
824 * processing on the item.
827 xfs_inode_item_committed(
828 struct xfs_log_item
*lip
,
831 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
832 struct xfs_inode
*ip
= iip
->ili_inode
;
834 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
835 xfs_inode_item_unpin(lip
, 0);
842 xfs_inode_item_committing(
843 struct xfs_log_item
*lip
,
846 INODE_ITEM(lip
)->ili_commit_seq
= seq
;
847 return xfs_inode_item_release(lip
);
850 static const struct xfs_item_ops xfs_inode_item_ops
= {
851 .iop_sort
= xfs_inode_item_sort
,
852 .iop_precommit
= xfs_inode_item_precommit
,
853 .iop_size
= xfs_inode_item_size
,
854 .iop_format
= xfs_inode_item_format
,
855 .iop_pin
= xfs_inode_item_pin
,
856 .iop_unpin
= xfs_inode_item_unpin
,
857 .iop_release
= xfs_inode_item_release
,
858 .iop_committed
= xfs_inode_item_committed
,
859 .iop_push
= xfs_inode_item_push
,
860 .iop_committing
= xfs_inode_item_committing
,
865 * Initialize the inode log item for a newly allocated (in-core) inode.
869 struct xfs_inode
*ip
,
870 struct xfs_mount
*mp
)
872 struct xfs_inode_log_item
*iip
;
874 ASSERT(ip
->i_itemp
== NULL
);
875 iip
= ip
->i_itemp
= kmem_cache_zalloc(xfs_ili_cache
,
876 GFP_KERNEL
| __GFP_NOFAIL
);
879 spin_lock_init(&iip
->ili_lock
);
880 xfs_log_item_init(mp
, &iip
->ili_item
, XFS_LI_INODE
,
881 &xfs_inode_item_ops
);
885 * Free the inode log item and any memory hanging off of it.
888 xfs_inode_item_destroy(
889 struct xfs_inode
*ip
)
891 struct xfs_inode_log_item
*iip
= ip
->i_itemp
;
893 ASSERT(iip
->ili_item
.li_buf
== NULL
);
896 kvfree(iip
->ili_item
.li_lv_shadow
);
897 kmem_cache_free(xfs_ili_cache
, iip
);
902 * We only want to pull the item from the AIL if it is actually there
903 * and its location in the log has not changed since we started the
904 * flush. Thus, we only bother if the inode's lsn has not changed.
907 xfs_iflush_ail_updates(
908 struct xfs_ail
*ailp
,
909 struct list_head
*list
)
911 struct xfs_log_item
*lip
;
912 xfs_lsn_t tail_lsn
= 0;
914 /* this is an opencoded batch version of xfs_trans_ail_delete */
915 spin_lock(&ailp
->ail_lock
);
916 list_for_each_entry(lip
, list
, li_bio_list
) {
919 clear_bit(XFS_LI_FAILED
, &lip
->li_flags
);
920 if (INODE_ITEM(lip
)->ili_flush_lsn
!= lip
->li_lsn
)
924 * dgc: Not sure how this happens, but it happens very
925 * occassionaly via generic/388. xfs_iflush_abort() also
926 * silently handles this same "under writeback but not in AIL at
927 * shutdown" condition via xfs_trans_ail_delete().
929 if (!test_bit(XFS_LI_IN_AIL
, &lip
->li_flags
)) {
930 ASSERT(xlog_is_shutdown(lip
->li_log
));
934 lsn
= xfs_ail_delete_one(ailp
, lip
);
935 if (!tail_lsn
&& lsn
)
938 xfs_ail_update_finish(ailp
, tail_lsn
);
942 * Walk the list of inodes that have completed their IOs. If they are clean
943 * remove them from the list and dissociate them from the buffer. Buffers that
944 * are still dirty remain linked to the buffer and on the list. Caller must
945 * handle them appropriately.
950 struct list_head
*list
)
952 struct xfs_log_item
*lip
, *n
;
954 list_for_each_entry_safe(lip
, n
, list
, li_bio_list
) {
955 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
956 bool drop_buffer
= false;
958 spin_lock(&iip
->ili_lock
);
961 * Remove the reference to the cluster buffer if the inode is
962 * clean in memory and drop the buffer reference once we've
963 * dropped the locks we hold.
965 ASSERT(iip
->ili_item
.li_buf
== bp
);
966 if (!iip
->ili_fields
) {
967 iip
->ili_item
.li_buf
= NULL
;
968 list_del_init(&lip
->li_bio_list
);
971 iip
->ili_last_fields
= 0;
972 iip
->ili_flush_lsn
= 0;
973 clear_bit(XFS_LI_FLUSHING
, &lip
->li_flags
);
974 spin_unlock(&iip
->ili_lock
);
975 xfs_iflags_clear(iip
->ili_inode
, XFS_IFLUSHING
);
982 * Inode buffer IO completion routine. It is responsible for removing inodes
983 * attached to the buffer from the AIL if they have not been re-logged and
984 * completing the inode flush.
987 xfs_buf_inode_iodone(
990 struct xfs_log_item
*lip
, *n
;
991 LIST_HEAD(flushed_inodes
);
992 LIST_HEAD(ail_updates
);
995 * Pull the attached inodes from the buffer one at a time and take the
996 * appropriate action on them.
998 list_for_each_entry_safe(lip
, n
, &bp
->b_li_list
, li_bio_list
) {
999 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
1001 if (xfs_iflags_test(iip
->ili_inode
, XFS_ISTALE
)) {
1002 xfs_iflush_abort(iip
->ili_inode
);
1005 if (!iip
->ili_last_fields
)
1008 /* Do an unlocked check for needing the AIL lock. */
1009 if (iip
->ili_flush_lsn
== lip
->li_lsn
||
1010 test_bit(XFS_LI_FAILED
, &lip
->li_flags
))
1011 list_move_tail(&lip
->li_bio_list
, &ail_updates
);
1013 list_move_tail(&lip
->li_bio_list
, &flushed_inodes
);
1016 if (!list_empty(&ail_updates
)) {
1017 xfs_iflush_ail_updates(bp
->b_mount
->m_ail
, &ail_updates
);
1018 list_splice_tail(&ail_updates
, &flushed_inodes
);
1021 xfs_iflush_finish(bp
, &flushed_inodes
);
1022 if (!list_empty(&flushed_inodes
))
1023 list_splice_tail(&flushed_inodes
, &bp
->b_li_list
);
1027 xfs_buf_inode_io_fail(
1030 struct xfs_log_item
*lip
;
1032 list_for_each_entry(lip
, &bp
->b_li_list
, li_bio_list
) {
1033 set_bit(XFS_LI_FAILED
, &lip
->li_flags
);
1034 clear_bit(XFS_LI_FLUSHING
, &lip
->li_flags
);
1039 * Clear the inode logging fields so no more flushes are attempted. If we are
1040 * on a buffer list, it is now safe to remove it because the buffer is
1041 * guaranteed to be locked. The caller will drop the reference to the buffer
1042 * the log item held.
1045 xfs_iflush_abort_clean(
1046 struct xfs_inode_log_item
*iip
)
1048 iip
->ili_last_fields
= 0;
1049 iip
->ili_fields
= 0;
1050 iip
->ili_fsync_fields
= 0;
1051 iip
->ili_flush_lsn
= 0;
1052 iip
->ili_item
.li_buf
= NULL
;
1053 list_del_init(&iip
->ili_item
.li_bio_list
);
1054 clear_bit(XFS_LI_FLUSHING
, &iip
->ili_item
.li_flags
);
1058 * Abort flushing the inode from a context holding the cluster buffer locked.
1060 * This is the normal runtime method of aborting writeback of an inode that is
1061 * attached to a cluster buffer. It occurs when the inode and the backing
1062 * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster
1063 * flushing or buffer IO completion encounters a log shutdown situation.
1065 * If we need to abort inode writeback and we don't already hold the buffer
1066 * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be
1067 * necessary in a shutdown situation.
1071 struct xfs_inode
*ip
)
1073 struct xfs_inode_log_item
*iip
= ip
->i_itemp
;
1077 /* clean inode, nothing to do */
1078 xfs_iflags_clear(ip
, XFS_IFLUSHING
);
1083 * Remove the inode item from the AIL before we clear its internal
1084 * state. Whilst the inode is in the AIL, it should have a valid buffer
1085 * pointer for push operations to access - it is only safe to remove the
1086 * inode from the buffer once it has been removed from the AIL.
1088 * We also clear the failed bit before removing the item from the AIL
1089 * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer
1090 * references the inode item owns and needs to hold until we've fully
1091 * aborted the inode log item and detached it from the buffer.
1093 clear_bit(XFS_LI_FAILED
, &iip
->ili_item
.li_flags
);
1094 xfs_trans_ail_delete(&iip
->ili_item
, 0);
1097 * Grab the inode buffer so can we release the reference the inode log
1100 spin_lock(&iip
->ili_lock
);
1101 bp
= iip
->ili_item
.li_buf
;
1102 xfs_iflush_abort_clean(iip
);
1103 spin_unlock(&iip
->ili_lock
);
1105 xfs_iflags_clear(ip
, XFS_IFLUSHING
);
1111 * Abort an inode flush in the case of a shutdown filesystem. This can be called
1112 * from anywhere with just an inode reference and does not require holding the
1113 * inode cluster buffer locked. If the inode is attached to a cluster buffer,
1114 * it will grab and lock it safely, then abort the inode flush.
1117 xfs_iflush_shutdown_abort(
1118 struct xfs_inode
*ip
)
1120 struct xfs_inode_log_item
*iip
= ip
->i_itemp
;
1124 /* clean inode, nothing to do */
1125 xfs_iflags_clear(ip
, XFS_IFLUSHING
);
1129 spin_lock(&iip
->ili_lock
);
1130 bp
= iip
->ili_item
.li_buf
;
1132 spin_unlock(&iip
->ili_lock
);
1133 xfs_iflush_abort(ip
);
1138 * We have to take a reference to the buffer so that it doesn't get
1139 * freed when we drop the ili_lock and then wait to lock the buffer.
1140 * We'll clean up the extra reference after we pick up the ili_lock
1144 spin_unlock(&iip
->ili_lock
);
1147 spin_lock(&iip
->ili_lock
);
1148 if (!iip
->ili_item
.li_buf
) {
1150 * Raced with another removal, hold the only reference
1151 * to bp now. Inode should not be in the AIL now, so just clean
1154 ASSERT(list_empty(&iip
->ili_item
.li_bio_list
));
1155 ASSERT(!test_bit(XFS_LI_IN_AIL
, &iip
->ili_item
.li_flags
));
1156 xfs_iflush_abort_clean(iip
);
1157 spin_unlock(&iip
->ili_lock
);
1158 xfs_iflags_clear(ip
, XFS_IFLUSHING
);
1164 * Got two references to bp. The first will get dropped by
1165 * xfs_iflush_abort() when the item is removed from the buffer list, but
1166 * we can't drop our reference until _abort() returns because we have to
1167 * unlock the buffer as well. Hence we abort and then unlock and release
1168 * our reference to the buffer.
1170 ASSERT(iip
->ili_item
.li_buf
== bp
);
1171 spin_unlock(&iip
->ili_lock
);
1172 xfs_iflush_abort(ip
);
1178 * convert an xfs_inode_log_format struct from the old 32 bit version
1179 * (which can have different field alignments) to the native 64 bit version
1182 xfs_inode_item_format_convert(
1183 struct xfs_log_iovec
*buf
,
1184 struct xfs_inode_log_format
*in_f
)
1186 struct xfs_inode_log_format_32
*in_f32
= buf
->i_addr
;
1188 if (buf
->i_len
!= sizeof(*in_f32
)) {
1189 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_LOW
, NULL
);
1190 return -EFSCORRUPTED
;
1193 in_f
->ilf_type
= in_f32
->ilf_type
;
1194 in_f
->ilf_size
= in_f32
->ilf_size
;
1195 in_f
->ilf_fields
= in_f32
->ilf_fields
;
1196 in_f
->ilf_asize
= in_f32
->ilf_asize
;
1197 in_f
->ilf_dsize
= in_f32
->ilf_dsize
;
1198 in_f
->ilf_ino
= in_f32
->ilf_ino
;
1199 memcpy(&in_f
->ilf_u
, &in_f32
->ilf_u
, sizeof(in_f
->ilf_u
));
1200 in_f
->ilf_blkno
= in_f32
->ilf_blkno
;
1201 in_f
->ilf_len
= in_f32
->ilf_len
;
1202 in_f
->ilf_boffset
= in_f32
->ilf_boffset
;