drm/tests: Add test for drm_atomic_helper_check_modeset()
[drm/drm-misc.git] / fs / xfs / xfs_inode_item.c
blob912f0b1bc3cb70f3f53a802ad732337e2db819a9
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_trace.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_buf_item.h"
19 #include "xfs_log.h"
20 #include "xfs_log_priv.h"
21 #include "xfs_error.h"
22 #include "xfs_rtbitmap.h"
24 #include <linux/iversion.h>
26 struct kmem_cache *xfs_ili_cache; /* inode log item */
28 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
30 return container_of(lip, struct xfs_inode_log_item, ili_item);
33 static uint64_t
34 xfs_inode_item_sort(
35 struct xfs_log_item *lip)
37 return INODE_ITEM(lip)->ili_inode->i_ino;
40 #ifdef DEBUG_EXPENSIVE
41 static void
42 xfs_inode_item_precommit_check(
43 struct xfs_inode *ip)
45 struct xfs_mount *mp = ip->i_mount;
46 struct xfs_dinode *dip;
47 xfs_failaddr_t fa;
49 dip = kzalloc(mp->m_sb.sb_inodesize, GFP_KERNEL | GFP_NOFS);
50 if (!dip) {
51 ASSERT(dip != NULL);
52 return;
55 xfs_inode_to_disk(ip, dip, 0);
56 xfs_dinode_calc_crc(mp, dip);
57 fa = xfs_dinode_verify(mp, ip->i_ino, dip);
58 if (fa) {
59 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
60 sizeof(*dip), fa);
61 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
62 ASSERT(fa == NULL);
64 kfree(dip);
66 #else
67 # define xfs_inode_item_precommit_check(ip) ((void)0)
68 #endif
71 * Prior to finally logging the inode, we have to ensure that all the
72 * per-modification inode state changes are applied. This includes VFS inode
73 * state updates, format conversions, verifier state synchronisation and
74 * ensuring the inode buffer remains in memory whilst the inode is dirty.
76 * We have to be careful when we grab the inode cluster buffer due to lock
77 * ordering constraints. The unlinked inode modifications (xfs_iunlink_item)
78 * require AGI -> inode cluster buffer lock order. The inode cluster buffer is
79 * not locked until ->precommit, so it happens after everything else has been
80 * modified.
82 * Further, we have AGI -> AGF lock ordering, and with O_TMPFILE handling we
83 * have AGI -> AGF -> iunlink item -> inode cluster buffer lock order. Hence we
84 * cannot safely lock the inode cluster buffer in xfs_trans_log_inode() because
85 * it can be called on a inode (e.g. via bumplink/droplink) before we take the
86 * AGF lock modifying directory blocks.
88 * Rather than force a complete rework of all the transactions to call
89 * xfs_trans_log_inode() once and once only at the end of every transaction, we
90 * move the pinning of the inode cluster buffer to a ->precommit operation. This
91 * matches how the xfs_iunlink_item locks the inode cluster buffer, and it
92 * ensures that the inode cluster buffer locking is always done last in a
93 * transaction. i.e. we ensure the lock order is always AGI -> AGF -> inode
94 * cluster buffer.
96 * If we return the inode number as the precommit sort key then we'll also
97 * guarantee that the order all inode cluster buffer locking is the same all the
98 * inodes and unlink items in the transaction.
100 static int
101 xfs_inode_item_precommit(
102 struct xfs_trans *tp,
103 struct xfs_log_item *lip)
105 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
106 struct xfs_inode *ip = iip->ili_inode;
107 struct inode *inode = VFS_I(ip);
108 unsigned int flags = iip->ili_dirty_flags;
111 * Don't bother with i_lock for the I_DIRTY_TIME check here, as races
112 * don't matter - we either will need an extra transaction in 24 hours
113 * to log the timestamps, or will clear already cleared fields in the
114 * worst case.
116 if (inode->i_state & I_DIRTY_TIME) {
117 spin_lock(&inode->i_lock);
118 inode->i_state &= ~I_DIRTY_TIME;
119 spin_unlock(&inode->i_lock);
123 * If we're updating the inode core or the timestamps and it's possible
124 * to upgrade this inode to bigtime format, do so now.
126 if ((flags & (XFS_ILOG_CORE | XFS_ILOG_TIMESTAMP)) &&
127 xfs_has_bigtime(ip->i_mount) &&
128 !xfs_inode_has_bigtime(ip)) {
129 ip->i_diflags2 |= XFS_DIFLAG2_BIGTIME;
130 flags |= XFS_ILOG_CORE;
134 * Inode verifiers do not check that the extent size hint is an integer
135 * multiple of the rt extent size on a directory with both rtinherit
136 * and extszinherit flags set. If we're logging a directory that is
137 * misconfigured in this way, clear the hint.
139 if ((ip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
140 (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) &&
141 xfs_extlen_to_rtxmod(ip->i_mount, ip->i_extsize) > 0) {
142 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
143 XFS_DIFLAG_EXTSZINHERIT);
144 ip->i_extsize = 0;
145 flags |= XFS_ILOG_CORE;
149 * Record the specific change for fdatasync optimisation. This allows
150 * fdatasync to skip log forces for inodes that are only timestamp
151 * dirty. Once we've processed the XFS_ILOG_IVERSION flag, convert it
152 * to XFS_ILOG_CORE so that the actual on-disk dirty tracking
153 * (ili_fields) correctly tracks that the version has changed.
155 spin_lock(&iip->ili_lock);
156 iip->ili_fsync_fields |= (flags & ~XFS_ILOG_IVERSION);
157 if (flags & XFS_ILOG_IVERSION)
158 flags = ((flags & ~XFS_ILOG_IVERSION) | XFS_ILOG_CORE);
160 if (!iip->ili_item.li_buf) {
161 struct xfs_buf *bp;
162 int error;
165 * We hold the ILOCK here, so this inode is not going to be
166 * flushed while we are here. Further, because there is no
167 * buffer attached to the item, we know that there is no IO in
168 * progress, so nothing will clear the ili_fields while we read
169 * in the buffer. Hence we can safely drop the spin lock and
170 * read the buffer knowing that the state will not change from
171 * here.
173 spin_unlock(&iip->ili_lock);
174 error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &bp);
175 if (error)
176 return error;
179 * We need an explicit buffer reference for the log item but
180 * don't want the buffer to remain attached to the transaction.
181 * Hold the buffer but release the transaction reference once
182 * we've attached the inode log item to the buffer log item
183 * list.
185 xfs_buf_hold(bp);
186 spin_lock(&iip->ili_lock);
187 iip->ili_item.li_buf = bp;
188 bp->b_flags |= _XBF_INODES;
189 list_add_tail(&iip->ili_item.li_bio_list, &bp->b_li_list);
190 xfs_trans_brelse(tp, bp);
194 * Always OR in the bits from the ili_last_fields field. This is to
195 * coordinate with the xfs_iflush() and xfs_buf_inode_iodone() routines
196 * in the eventual clearing of the ili_fields bits. See the big comment
197 * in xfs_iflush() for an explanation of this coordination mechanism.
199 iip->ili_fields |= (flags | iip->ili_last_fields);
200 spin_unlock(&iip->ili_lock);
202 xfs_inode_item_precommit_check(ip);
205 * We are done with the log item transaction dirty state, so clear it so
206 * that it doesn't pollute future transactions.
208 iip->ili_dirty_flags = 0;
209 return 0;
213 * The logged size of an inode fork is always the current size of the inode
214 * fork. This means that when an inode fork is relogged, the size of the logged
215 * region is determined by the current state, not the combination of the
216 * previously logged state + the current state. This is different relogging
217 * behaviour to most other log items which will retain the size of the
218 * previously logged changes when smaller regions are relogged.
220 * Hence operations that remove data from the inode fork (e.g. shortform
221 * dir/attr remove, extent form extent removal, etc), the size of the relogged
222 * inode gets -smaller- rather than stays the same size as the previously logged
223 * size and this can result in the committing transaction reducing the amount of
224 * space being consumed by the CIL.
226 STATIC void
227 xfs_inode_item_data_fork_size(
228 struct xfs_inode_log_item *iip,
229 int *nvecs,
230 int *nbytes)
232 struct xfs_inode *ip = iip->ili_inode;
234 switch (ip->i_df.if_format) {
235 case XFS_DINODE_FMT_EXTENTS:
236 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
237 ip->i_df.if_nextents > 0 &&
238 ip->i_df.if_bytes > 0) {
239 /* worst case, doesn't subtract delalloc extents */
240 *nbytes += xfs_inode_data_fork_size(ip);
241 *nvecs += 1;
243 break;
244 case XFS_DINODE_FMT_BTREE:
245 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
246 ip->i_df.if_broot_bytes > 0) {
247 *nbytes += ip->i_df.if_broot_bytes;
248 *nvecs += 1;
250 break;
251 case XFS_DINODE_FMT_LOCAL:
252 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
253 ip->i_df.if_bytes > 0) {
254 *nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes);
255 *nvecs += 1;
257 break;
259 case XFS_DINODE_FMT_DEV:
260 break;
261 default:
262 ASSERT(0);
263 break;
267 STATIC void
268 xfs_inode_item_attr_fork_size(
269 struct xfs_inode_log_item *iip,
270 int *nvecs,
271 int *nbytes)
273 struct xfs_inode *ip = iip->ili_inode;
275 switch (ip->i_af.if_format) {
276 case XFS_DINODE_FMT_EXTENTS:
277 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
278 ip->i_af.if_nextents > 0 &&
279 ip->i_af.if_bytes > 0) {
280 /* worst case, doesn't subtract unused space */
281 *nbytes += xfs_inode_attr_fork_size(ip);
282 *nvecs += 1;
284 break;
285 case XFS_DINODE_FMT_BTREE:
286 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
287 ip->i_af.if_broot_bytes > 0) {
288 *nbytes += ip->i_af.if_broot_bytes;
289 *nvecs += 1;
291 break;
292 case XFS_DINODE_FMT_LOCAL:
293 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
294 ip->i_af.if_bytes > 0) {
295 *nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes);
296 *nvecs += 1;
298 break;
299 default:
300 ASSERT(0);
301 break;
306 * This returns the number of iovecs needed to log the given inode item.
308 * We need one iovec for the inode log format structure, one for the
309 * inode core, and possibly one for the inode data/extents/b-tree root
310 * and one for the inode attribute data/extents/b-tree root.
312 STATIC void
313 xfs_inode_item_size(
314 struct xfs_log_item *lip,
315 int *nvecs,
316 int *nbytes)
318 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
319 struct xfs_inode *ip = iip->ili_inode;
321 *nvecs += 2;
322 *nbytes += sizeof(struct xfs_inode_log_format) +
323 xfs_log_dinode_size(ip->i_mount);
325 xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
326 if (xfs_inode_has_attr_fork(ip))
327 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
330 STATIC void
331 xfs_inode_item_format_data_fork(
332 struct xfs_inode_log_item *iip,
333 struct xfs_inode_log_format *ilf,
334 struct xfs_log_vec *lv,
335 struct xfs_log_iovec **vecp)
337 struct xfs_inode *ip = iip->ili_inode;
338 size_t data_bytes;
340 switch (ip->i_df.if_format) {
341 case XFS_DINODE_FMT_EXTENTS:
342 iip->ili_fields &=
343 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
345 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
346 ip->i_df.if_nextents > 0 &&
347 ip->i_df.if_bytes > 0) {
348 struct xfs_bmbt_rec *p;
350 ASSERT(xfs_iext_count(&ip->i_df) > 0);
352 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
353 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
354 xlog_finish_iovec(lv, *vecp, data_bytes);
356 ASSERT(data_bytes <= ip->i_df.if_bytes);
358 ilf->ilf_dsize = data_bytes;
359 ilf->ilf_size++;
360 } else {
361 iip->ili_fields &= ~XFS_ILOG_DEXT;
363 break;
364 case XFS_DINODE_FMT_BTREE:
365 iip->ili_fields &=
366 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
368 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
369 ip->i_df.if_broot_bytes > 0) {
370 ASSERT(ip->i_df.if_broot != NULL);
371 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
372 ip->i_df.if_broot,
373 ip->i_df.if_broot_bytes);
374 ilf->ilf_dsize = ip->i_df.if_broot_bytes;
375 ilf->ilf_size++;
376 } else {
377 ASSERT(!(iip->ili_fields &
378 XFS_ILOG_DBROOT));
379 iip->ili_fields &= ~XFS_ILOG_DBROOT;
381 break;
382 case XFS_DINODE_FMT_LOCAL:
383 iip->ili_fields &=
384 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
385 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
386 ip->i_df.if_bytes > 0) {
387 ASSERT(ip->i_df.if_data != NULL);
388 ASSERT(ip->i_disk_size > 0);
389 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
390 ip->i_df.if_data, ip->i_df.if_bytes);
391 ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes;
392 ilf->ilf_size++;
393 } else {
394 iip->ili_fields &= ~XFS_ILOG_DDATA;
396 break;
397 case XFS_DINODE_FMT_DEV:
398 iip->ili_fields &=
399 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
400 if (iip->ili_fields & XFS_ILOG_DEV)
401 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
402 break;
403 default:
404 ASSERT(0);
405 break;
409 STATIC void
410 xfs_inode_item_format_attr_fork(
411 struct xfs_inode_log_item *iip,
412 struct xfs_inode_log_format *ilf,
413 struct xfs_log_vec *lv,
414 struct xfs_log_iovec **vecp)
416 struct xfs_inode *ip = iip->ili_inode;
417 size_t data_bytes;
419 switch (ip->i_af.if_format) {
420 case XFS_DINODE_FMT_EXTENTS:
421 iip->ili_fields &=
422 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
424 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
425 ip->i_af.if_nextents > 0 &&
426 ip->i_af.if_bytes > 0) {
427 struct xfs_bmbt_rec *p;
429 ASSERT(xfs_iext_count(&ip->i_af) ==
430 ip->i_af.if_nextents);
432 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
433 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
434 xlog_finish_iovec(lv, *vecp, data_bytes);
436 ilf->ilf_asize = data_bytes;
437 ilf->ilf_size++;
438 } else {
439 iip->ili_fields &= ~XFS_ILOG_AEXT;
441 break;
442 case XFS_DINODE_FMT_BTREE:
443 iip->ili_fields &=
444 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
446 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
447 ip->i_af.if_broot_bytes > 0) {
448 ASSERT(ip->i_af.if_broot != NULL);
450 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
451 ip->i_af.if_broot,
452 ip->i_af.if_broot_bytes);
453 ilf->ilf_asize = ip->i_af.if_broot_bytes;
454 ilf->ilf_size++;
455 } else {
456 iip->ili_fields &= ~XFS_ILOG_ABROOT;
458 break;
459 case XFS_DINODE_FMT_LOCAL:
460 iip->ili_fields &=
461 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
463 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
464 ip->i_af.if_bytes > 0) {
465 ASSERT(ip->i_af.if_data != NULL);
466 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
467 ip->i_af.if_data, ip->i_af.if_bytes);
468 ilf->ilf_asize = (unsigned)ip->i_af.if_bytes;
469 ilf->ilf_size++;
470 } else {
471 iip->ili_fields &= ~XFS_ILOG_ADATA;
473 break;
474 default:
475 ASSERT(0);
476 break;
481 * Convert an incore timestamp to a log timestamp. Note that the log format
482 * specifies host endian format!
484 static inline xfs_log_timestamp_t
485 xfs_inode_to_log_dinode_ts(
486 struct xfs_inode *ip,
487 const struct timespec64 tv)
489 struct xfs_log_legacy_timestamp *lits;
490 xfs_log_timestamp_t its;
492 if (xfs_inode_has_bigtime(ip))
493 return xfs_inode_encode_bigtime(tv);
495 lits = (struct xfs_log_legacy_timestamp *)&its;
496 lits->t_sec = tv.tv_sec;
497 lits->t_nsec = tv.tv_nsec;
499 return its;
503 * The legacy DMAPI fields are only present in the on-disk and in-log inodes,
504 * but not in the in-memory one. But we are guaranteed to have an inode buffer
505 * in memory when logging an inode, so we can just copy it from the on-disk
506 * inode to the in-log inode here so that recovery of file system with these
507 * fields set to non-zero values doesn't lose them. For all other cases we zero
508 * the fields.
510 static void
511 xfs_copy_dm_fields_to_log_dinode(
512 struct xfs_inode *ip,
513 struct xfs_log_dinode *to)
515 struct xfs_dinode *dip;
517 dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf,
518 ip->i_imap.im_boffset);
520 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) {
521 to->di_dmevmask = be32_to_cpu(dip->di_dmevmask);
522 to->di_dmstate = be16_to_cpu(dip->di_dmstate);
523 } else {
524 to->di_dmevmask = 0;
525 to->di_dmstate = 0;
529 static inline void
530 xfs_inode_to_log_dinode_iext_counters(
531 struct xfs_inode *ip,
532 struct xfs_log_dinode *to)
534 if (xfs_inode_has_large_extent_counts(ip)) {
535 to->di_big_nextents = xfs_ifork_nextents(&ip->i_df);
536 to->di_big_anextents = xfs_ifork_nextents(&ip->i_af);
537 to->di_nrext64_pad = 0;
538 } else {
539 to->di_nextents = xfs_ifork_nextents(&ip->i_df);
540 to->di_anextents = xfs_ifork_nextents(&ip->i_af);
544 static void
545 xfs_inode_to_log_dinode(
546 struct xfs_inode *ip,
547 struct xfs_log_dinode *to,
548 xfs_lsn_t lsn)
550 struct inode *inode = VFS_I(ip);
552 to->di_magic = XFS_DINODE_MAGIC;
553 to->di_format = xfs_ifork_format(&ip->i_df);
554 to->di_uid = i_uid_read(inode);
555 to->di_gid = i_gid_read(inode);
556 to->di_projid_lo = ip->i_projid & 0xffff;
557 to->di_projid_hi = ip->i_projid >> 16;
559 to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode_get_atime(inode));
560 to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode_get_mtime(inode));
561 to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode_get_ctime(inode));
562 to->di_nlink = inode->i_nlink;
563 to->di_gen = inode->i_generation;
564 to->di_mode = inode->i_mode;
566 to->di_size = ip->i_disk_size;
567 to->di_nblocks = ip->i_nblocks;
568 to->di_extsize = ip->i_extsize;
569 to->di_forkoff = ip->i_forkoff;
570 to->di_aformat = xfs_ifork_format(&ip->i_af);
571 to->di_flags = ip->i_diflags;
573 xfs_copy_dm_fields_to_log_dinode(ip, to);
575 /* log a dummy value to ensure log structure is fully initialised */
576 to->di_next_unlinked = NULLAGINO;
578 if (xfs_has_v3inodes(ip->i_mount)) {
579 to->di_version = 3;
580 to->di_changecount = inode_peek_iversion(inode);
581 to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime);
582 to->di_flags2 = ip->i_diflags2;
583 to->di_cowextsize = ip->i_cowextsize;
584 to->di_ino = ip->i_ino;
585 to->di_lsn = lsn;
586 memset(to->di_pad2, 0, sizeof(to->di_pad2));
587 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
588 to->di_v3_pad = 0;
590 /* dummy value for initialisation */
591 to->di_crc = 0;
593 if (xfs_is_metadir_inode(ip))
594 to->di_metatype = ip->i_metatype;
595 else
596 to->di_metatype = 0;
597 } else {
598 to->di_version = 2;
599 to->di_flushiter = ip->i_flushiter;
600 memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad));
601 to->di_metatype = 0;
604 xfs_inode_to_log_dinode_iext_counters(ip, to);
608 * Format the inode core. Current timestamp data is only in the VFS inode
609 * fields, so we need to grab them from there. Hence rather than just copying
610 * the XFS inode core structure, format the fields directly into the iovec.
612 static void
613 xfs_inode_item_format_core(
614 struct xfs_inode *ip,
615 struct xfs_log_vec *lv,
616 struct xfs_log_iovec **vecp)
618 struct xfs_log_dinode *dic;
620 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
621 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
622 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
626 * This is called to fill in the vector of log iovecs for the given inode
627 * log item. It fills the first item with an inode log format structure,
628 * the second with the on-disk inode structure, and a possible third and/or
629 * fourth with the inode data/extents/b-tree root and inode attributes
630 * data/extents/b-tree root.
632 * Note: Always use the 64 bit inode log format structure so we don't
633 * leave an uninitialised hole in the format item on 64 bit systems. Log
634 * recovery on 32 bit systems handles this just fine, so there's no reason
635 * for not using an initialising the properly padded structure all the time.
637 STATIC void
638 xfs_inode_item_format(
639 struct xfs_log_item *lip,
640 struct xfs_log_vec *lv)
642 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
643 struct xfs_inode *ip = iip->ili_inode;
644 struct xfs_log_iovec *vecp = NULL;
645 struct xfs_inode_log_format *ilf;
647 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
648 ilf->ilf_type = XFS_LI_INODE;
649 ilf->ilf_ino = ip->i_ino;
650 ilf->ilf_blkno = ip->i_imap.im_blkno;
651 ilf->ilf_len = ip->i_imap.im_len;
652 ilf->ilf_boffset = ip->i_imap.im_boffset;
653 ilf->ilf_fields = XFS_ILOG_CORE;
654 ilf->ilf_size = 2; /* format + core */
657 * make sure we don't leak uninitialised data into the log in the case
658 * when we don't log every field in the inode.
660 ilf->ilf_dsize = 0;
661 ilf->ilf_asize = 0;
662 ilf->ilf_pad = 0;
663 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
665 xlog_finish_iovec(lv, vecp, sizeof(*ilf));
667 xfs_inode_item_format_core(ip, lv, &vecp);
668 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
669 if (xfs_inode_has_attr_fork(ip)) {
670 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
671 } else {
672 iip->ili_fields &=
673 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
676 /* update the format with the exact fields we actually logged */
677 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
681 * This is called to pin the inode associated with the inode log
682 * item in memory so it cannot be written out.
684 STATIC void
685 xfs_inode_item_pin(
686 struct xfs_log_item *lip)
688 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
690 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
691 ASSERT(lip->li_buf);
693 trace_xfs_inode_pin(ip, _RET_IP_);
694 atomic_inc(&ip->i_pincount);
699 * This is called to unpin the inode associated with the inode log
700 * item which was previously pinned with a call to xfs_inode_item_pin().
702 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
704 * Note that unpin can race with inode cluster buffer freeing marking the buffer
705 * stale. In that case, flush completions are run from the buffer unpin call,
706 * which may happen before the inode is unpinned. If we lose the race, there
707 * will be no buffer attached to the log item, but the inode will be marked
708 * XFS_ISTALE.
710 STATIC void
711 xfs_inode_item_unpin(
712 struct xfs_log_item *lip,
713 int remove)
715 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
717 trace_xfs_inode_unpin(ip, _RET_IP_);
718 ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
719 ASSERT(atomic_read(&ip->i_pincount) > 0);
720 if (atomic_dec_and_test(&ip->i_pincount))
721 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
724 STATIC uint
725 xfs_inode_item_push(
726 struct xfs_log_item *lip,
727 struct list_head *buffer_list)
728 __releases(&lip->li_ailp->ail_lock)
729 __acquires(&lip->li_ailp->ail_lock)
731 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
732 struct xfs_inode *ip = iip->ili_inode;
733 struct xfs_buf *bp = lip->li_buf;
734 uint rval = XFS_ITEM_SUCCESS;
735 int error;
737 if (!bp || (ip->i_flags & XFS_ISTALE)) {
739 * Inode item/buffer is being aborted due to cluster
740 * buffer deletion. Trigger a log force to have that operation
741 * completed and items removed from the AIL before the next push
742 * attempt.
744 return XFS_ITEM_PINNED;
747 if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp))
748 return XFS_ITEM_PINNED;
750 if (xfs_iflags_test(ip, XFS_IFLUSHING))
751 return XFS_ITEM_FLUSHING;
753 if (!xfs_buf_trylock(bp))
754 return XFS_ITEM_LOCKED;
756 spin_unlock(&lip->li_ailp->ail_lock);
759 * We need to hold a reference for flushing the cluster buffer as it may
760 * fail the buffer without IO submission. In which case, we better get a
761 * reference for that completion because otherwise we don't get a
762 * reference for IO until we queue the buffer for delwri submission.
764 xfs_buf_hold(bp);
765 error = xfs_iflush_cluster(bp);
766 if (!error) {
767 if (!xfs_buf_delwri_queue(bp, buffer_list))
768 rval = XFS_ITEM_FLUSHING;
769 xfs_buf_relse(bp);
770 } else {
772 * Release the buffer if we were unable to flush anything. On
773 * any other error, the buffer has already been released.
775 if (error == -EAGAIN)
776 xfs_buf_relse(bp);
777 rval = XFS_ITEM_LOCKED;
780 spin_lock(&lip->li_ailp->ail_lock);
781 return rval;
785 * Unlock the inode associated with the inode log item.
787 STATIC void
788 xfs_inode_item_release(
789 struct xfs_log_item *lip)
791 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
792 struct xfs_inode *ip = iip->ili_inode;
793 unsigned short lock_flags;
795 ASSERT(ip->i_itemp != NULL);
796 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
798 lock_flags = iip->ili_lock_flags;
799 iip->ili_lock_flags = 0;
800 if (lock_flags)
801 xfs_iunlock(ip, lock_flags);
805 * This is called to find out where the oldest active copy of the inode log
806 * item in the on disk log resides now that the last log write of it completed
807 * at the given lsn. Since we always re-log all dirty data in an inode, the
808 * latest copy in the on disk log is the only one that matters. Therefore,
809 * simply return the given lsn.
811 * If the inode has been marked stale because the cluster is being freed, we
812 * don't want to (re-)insert this inode into the AIL. There is a race condition
813 * where the cluster buffer may be unpinned before the inode is inserted into
814 * the AIL during transaction committed processing. If the buffer is unpinned
815 * before the inode item has been committed and inserted, then it is possible
816 * for the buffer to be written and IO completes before the inode is inserted
817 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
818 * AIL which will never get removed. It will, however, get reclaimed which
819 * triggers an assert in xfs_inode_free() complaining about freein an inode
820 * still in the AIL.
822 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
823 * transaction committed code knows that it does not need to do any further
824 * processing on the item.
826 STATIC xfs_lsn_t
827 xfs_inode_item_committed(
828 struct xfs_log_item *lip,
829 xfs_lsn_t lsn)
831 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
832 struct xfs_inode *ip = iip->ili_inode;
834 if (xfs_iflags_test(ip, XFS_ISTALE)) {
835 xfs_inode_item_unpin(lip, 0);
836 return -1;
838 return lsn;
841 STATIC void
842 xfs_inode_item_committing(
843 struct xfs_log_item *lip,
844 xfs_csn_t seq)
846 INODE_ITEM(lip)->ili_commit_seq = seq;
847 return xfs_inode_item_release(lip);
850 static const struct xfs_item_ops xfs_inode_item_ops = {
851 .iop_sort = xfs_inode_item_sort,
852 .iop_precommit = xfs_inode_item_precommit,
853 .iop_size = xfs_inode_item_size,
854 .iop_format = xfs_inode_item_format,
855 .iop_pin = xfs_inode_item_pin,
856 .iop_unpin = xfs_inode_item_unpin,
857 .iop_release = xfs_inode_item_release,
858 .iop_committed = xfs_inode_item_committed,
859 .iop_push = xfs_inode_item_push,
860 .iop_committing = xfs_inode_item_committing,
865 * Initialize the inode log item for a newly allocated (in-core) inode.
867 void
868 xfs_inode_item_init(
869 struct xfs_inode *ip,
870 struct xfs_mount *mp)
872 struct xfs_inode_log_item *iip;
874 ASSERT(ip->i_itemp == NULL);
875 iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache,
876 GFP_KERNEL | __GFP_NOFAIL);
878 iip->ili_inode = ip;
879 spin_lock_init(&iip->ili_lock);
880 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
881 &xfs_inode_item_ops);
885 * Free the inode log item and any memory hanging off of it.
887 void
888 xfs_inode_item_destroy(
889 struct xfs_inode *ip)
891 struct xfs_inode_log_item *iip = ip->i_itemp;
893 ASSERT(iip->ili_item.li_buf == NULL);
895 ip->i_itemp = NULL;
896 kvfree(iip->ili_item.li_lv_shadow);
897 kmem_cache_free(xfs_ili_cache, iip);
902 * We only want to pull the item from the AIL if it is actually there
903 * and its location in the log has not changed since we started the
904 * flush. Thus, we only bother if the inode's lsn has not changed.
906 static void
907 xfs_iflush_ail_updates(
908 struct xfs_ail *ailp,
909 struct list_head *list)
911 struct xfs_log_item *lip;
912 xfs_lsn_t tail_lsn = 0;
914 /* this is an opencoded batch version of xfs_trans_ail_delete */
915 spin_lock(&ailp->ail_lock);
916 list_for_each_entry(lip, list, li_bio_list) {
917 xfs_lsn_t lsn;
919 clear_bit(XFS_LI_FAILED, &lip->li_flags);
920 if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
921 continue;
924 * dgc: Not sure how this happens, but it happens very
925 * occassionaly via generic/388. xfs_iflush_abort() also
926 * silently handles this same "under writeback but not in AIL at
927 * shutdown" condition via xfs_trans_ail_delete().
929 if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
930 ASSERT(xlog_is_shutdown(lip->li_log));
931 continue;
934 lsn = xfs_ail_delete_one(ailp, lip);
935 if (!tail_lsn && lsn)
936 tail_lsn = lsn;
938 xfs_ail_update_finish(ailp, tail_lsn);
942 * Walk the list of inodes that have completed their IOs. If they are clean
943 * remove them from the list and dissociate them from the buffer. Buffers that
944 * are still dirty remain linked to the buffer and on the list. Caller must
945 * handle them appropriately.
947 static void
948 xfs_iflush_finish(
949 struct xfs_buf *bp,
950 struct list_head *list)
952 struct xfs_log_item *lip, *n;
954 list_for_each_entry_safe(lip, n, list, li_bio_list) {
955 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
956 bool drop_buffer = false;
958 spin_lock(&iip->ili_lock);
961 * Remove the reference to the cluster buffer if the inode is
962 * clean in memory and drop the buffer reference once we've
963 * dropped the locks we hold.
965 ASSERT(iip->ili_item.li_buf == bp);
966 if (!iip->ili_fields) {
967 iip->ili_item.li_buf = NULL;
968 list_del_init(&lip->li_bio_list);
969 drop_buffer = true;
971 iip->ili_last_fields = 0;
972 iip->ili_flush_lsn = 0;
973 clear_bit(XFS_LI_FLUSHING, &lip->li_flags);
974 spin_unlock(&iip->ili_lock);
975 xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
976 if (drop_buffer)
977 xfs_buf_rele(bp);
982 * Inode buffer IO completion routine. It is responsible for removing inodes
983 * attached to the buffer from the AIL if they have not been re-logged and
984 * completing the inode flush.
986 void
987 xfs_buf_inode_iodone(
988 struct xfs_buf *bp)
990 struct xfs_log_item *lip, *n;
991 LIST_HEAD(flushed_inodes);
992 LIST_HEAD(ail_updates);
995 * Pull the attached inodes from the buffer one at a time and take the
996 * appropriate action on them.
998 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
999 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
1001 if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
1002 xfs_iflush_abort(iip->ili_inode);
1003 continue;
1005 if (!iip->ili_last_fields)
1006 continue;
1008 /* Do an unlocked check for needing the AIL lock. */
1009 if (iip->ili_flush_lsn == lip->li_lsn ||
1010 test_bit(XFS_LI_FAILED, &lip->li_flags))
1011 list_move_tail(&lip->li_bio_list, &ail_updates);
1012 else
1013 list_move_tail(&lip->li_bio_list, &flushed_inodes);
1016 if (!list_empty(&ail_updates)) {
1017 xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
1018 list_splice_tail(&ail_updates, &flushed_inodes);
1021 xfs_iflush_finish(bp, &flushed_inodes);
1022 if (!list_empty(&flushed_inodes))
1023 list_splice_tail(&flushed_inodes, &bp->b_li_list);
1026 void
1027 xfs_buf_inode_io_fail(
1028 struct xfs_buf *bp)
1030 struct xfs_log_item *lip;
1032 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
1033 set_bit(XFS_LI_FAILED, &lip->li_flags);
1034 clear_bit(XFS_LI_FLUSHING, &lip->li_flags);
1039 * Clear the inode logging fields so no more flushes are attempted. If we are
1040 * on a buffer list, it is now safe to remove it because the buffer is
1041 * guaranteed to be locked. The caller will drop the reference to the buffer
1042 * the log item held.
1044 static void
1045 xfs_iflush_abort_clean(
1046 struct xfs_inode_log_item *iip)
1048 iip->ili_last_fields = 0;
1049 iip->ili_fields = 0;
1050 iip->ili_fsync_fields = 0;
1051 iip->ili_flush_lsn = 0;
1052 iip->ili_item.li_buf = NULL;
1053 list_del_init(&iip->ili_item.li_bio_list);
1054 clear_bit(XFS_LI_FLUSHING, &iip->ili_item.li_flags);
1058 * Abort flushing the inode from a context holding the cluster buffer locked.
1060 * This is the normal runtime method of aborting writeback of an inode that is
1061 * attached to a cluster buffer. It occurs when the inode and the backing
1062 * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster
1063 * flushing or buffer IO completion encounters a log shutdown situation.
1065 * If we need to abort inode writeback and we don't already hold the buffer
1066 * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be
1067 * necessary in a shutdown situation.
1069 void
1070 xfs_iflush_abort(
1071 struct xfs_inode *ip)
1073 struct xfs_inode_log_item *iip = ip->i_itemp;
1074 struct xfs_buf *bp;
1076 if (!iip) {
1077 /* clean inode, nothing to do */
1078 xfs_iflags_clear(ip, XFS_IFLUSHING);
1079 return;
1083 * Remove the inode item from the AIL before we clear its internal
1084 * state. Whilst the inode is in the AIL, it should have a valid buffer
1085 * pointer for push operations to access - it is only safe to remove the
1086 * inode from the buffer once it has been removed from the AIL.
1088 * We also clear the failed bit before removing the item from the AIL
1089 * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer
1090 * references the inode item owns and needs to hold until we've fully
1091 * aborted the inode log item and detached it from the buffer.
1093 clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
1094 xfs_trans_ail_delete(&iip->ili_item, 0);
1097 * Grab the inode buffer so can we release the reference the inode log
1098 * item holds on it.
1100 spin_lock(&iip->ili_lock);
1101 bp = iip->ili_item.li_buf;
1102 xfs_iflush_abort_clean(iip);
1103 spin_unlock(&iip->ili_lock);
1105 xfs_iflags_clear(ip, XFS_IFLUSHING);
1106 if (bp)
1107 xfs_buf_rele(bp);
1111 * Abort an inode flush in the case of a shutdown filesystem. This can be called
1112 * from anywhere with just an inode reference and does not require holding the
1113 * inode cluster buffer locked. If the inode is attached to a cluster buffer,
1114 * it will grab and lock it safely, then abort the inode flush.
1116 void
1117 xfs_iflush_shutdown_abort(
1118 struct xfs_inode *ip)
1120 struct xfs_inode_log_item *iip = ip->i_itemp;
1121 struct xfs_buf *bp;
1123 if (!iip) {
1124 /* clean inode, nothing to do */
1125 xfs_iflags_clear(ip, XFS_IFLUSHING);
1126 return;
1129 spin_lock(&iip->ili_lock);
1130 bp = iip->ili_item.li_buf;
1131 if (!bp) {
1132 spin_unlock(&iip->ili_lock);
1133 xfs_iflush_abort(ip);
1134 return;
1138 * We have to take a reference to the buffer so that it doesn't get
1139 * freed when we drop the ili_lock and then wait to lock the buffer.
1140 * We'll clean up the extra reference after we pick up the ili_lock
1141 * again.
1143 xfs_buf_hold(bp);
1144 spin_unlock(&iip->ili_lock);
1145 xfs_buf_lock(bp);
1147 spin_lock(&iip->ili_lock);
1148 if (!iip->ili_item.li_buf) {
1150 * Raced with another removal, hold the only reference
1151 * to bp now. Inode should not be in the AIL now, so just clean
1152 * up and return;
1154 ASSERT(list_empty(&iip->ili_item.li_bio_list));
1155 ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags));
1156 xfs_iflush_abort_clean(iip);
1157 spin_unlock(&iip->ili_lock);
1158 xfs_iflags_clear(ip, XFS_IFLUSHING);
1159 xfs_buf_relse(bp);
1160 return;
1164 * Got two references to bp. The first will get dropped by
1165 * xfs_iflush_abort() when the item is removed from the buffer list, but
1166 * we can't drop our reference until _abort() returns because we have to
1167 * unlock the buffer as well. Hence we abort and then unlock and release
1168 * our reference to the buffer.
1170 ASSERT(iip->ili_item.li_buf == bp);
1171 spin_unlock(&iip->ili_lock);
1172 xfs_iflush_abort(ip);
1173 xfs_buf_relse(bp);
1178 * convert an xfs_inode_log_format struct from the old 32 bit version
1179 * (which can have different field alignments) to the native 64 bit version
1182 xfs_inode_item_format_convert(
1183 struct xfs_log_iovec *buf,
1184 struct xfs_inode_log_format *in_f)
1186 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr;
1188 if (buf->i_len != sizeof(*in_f32)) {
1189 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
1190 return -EFSCORRUPTED;
1193 in_f->ilf_type = in_f32->ilf_type;
1194 in_f->ilf_size = in_f32->ilf_size;
1195 in_f->ilf_fields = in_f32->ilf_fields;
1196 in_f->ilf_asize = in_f32->ilf_asize;
1197 in_f->ilf_dsize = in_f32->ilf_dsize;
1198 in_f->ilf_ino = in_f32->ilf_ino;
1199 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
1200 in_f->ilf_blkno = in_f32->ilf_blkno;
1201 in_f->ilf_len = in_f32->ilf_len;
1202 in_f->ilf_boffset = in_f32->ilf_boffset;
1203 return 0;