drm/tests: Add test for drm_atomic_helper_check_modeset()
[drm/drm-misc.git] / fs / xfs / xfs_log.c
blob05daad8a8d34dfc635eb6ac0dd2d79cf31b30b94
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
24 struct kmem_cache *xfs_log_ticket_cache;
26 /* Local miscellaneous function prototypes */
27 STATIC struct xlog *
28 xlog_alloc_log(
29 struct xfs_mount *mp,
30 struct xfs_buftarg *log_target,
31 xfs_daddr_t blk_offset,
32 int num_bblks);
33 STATIC void
34 xlog_dealloc_log(
35 struct xlog *log);
37 /* local state machine functions */
38 STATIC void xlog_state_done_syncing(
39 struct xlog_in_core *iclog);
40 STATIC void xlog_state_do_callback(
41 struct xlog *log);
42 STATIC int
43 xlog_state_get_iclog_space(
44 struct xlog *log,
45 int len,
46 struct xlog_in_core **iclog,
47 struct xlog_ticket *ticket,
48 int *logoffsetp);
49 STATIC void
50 xlog_sync(
51 struct xlog *log,
52 struct xlog_in_core *iclog,
53 struct xlog_ticket *ticket);
54 #if defined(DEBUG)
55 STATIC void
56 xlog_verify_iclog(
57 struct xlog *log,
58 struct xlog_in_core *iclog,
59 int count);
60 STATIC void
61 xlog_verify_tail_lsn(
62 struct xlog *log,
63 struct xlog_in_core *iclog);
64 #else
65 #define xlog_verify_iclog(a,b,c)
66 #define xlog_verify_tail_lsn(a,b)
67 #endif
69 STATIC int
70 xlog_iclogs_empty(
71 struct xlog *log);
73 static int
74 xfs_log_cover(struct xfs_mount *);
77 * We need to make sure the buffer pointer returned is naturally aligned for the
78 * biggest basic data type we put into it. We have already accounted for this
79 * padding when sizing the buffer.
81 * However, this padding does not get written into the log, and hence we have to
82 * track the space used by the log vectors separately to prevent log space hangs
83 * due to inaccurate accounting (i.e. a leak) of the used log space through the
84 * CIL context ticket.
86 * We also add space for the xlog_op_header that describes this region in the
87 * log. This prepends the data region we return to the caller to copy their data
88 * into, so do all the static initialisation of the ophdr now. Because the ophdr
89 * is not 8 byte aligned, we have to be careful to ensure that we align the
90 * start of the buffer such that the region we return to the call is 8 byte
91 * aligned and packed against the tail of the ophdr.
93 void *
94 xlog_prepare_iovec(
95 struct xfs_log_vec *lv,
96 struct xfs_log_iovec **vecp,
97 uint type)
99 struct xfs_log_iovec *vec = *vecp;
100 struct xlog_op_header *oph;
101 uint32_t len;
102 void *buf;
104 if (vec) {
105 ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs);
106 vec++;
107 } else {
108 vec = &lv->lv_iovecp[0];
111 len = lv->lv_buf_len + sizeof(struct xlog_op_header);
112 if (!IS_ALIGNED(len, sizeof(uint64_t))) {
113 lv->lv_buf_len = round_up(len, sizeof(uint64_t)) -
114 sizeof(struct xlog_op_header);
117 vec->i_type = type;
118 vec->i_addr = lv->lv_buf + lv->lv_buf_len;
120 oph = vec->i_addr;
121 oph->oh_clientid = XFS_TRANSACTION;
122 oph->oh_res2 = 0;
123 oph->oh_flags = 0;
125 buf = vec->i_addr + sizeof(struct xlog_op_header);
126 ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t)));
128 *vecp = vec;
129 return buf;
132 static inline void
133 xlog_grant_sub_space(
134 struct xlog_grant_head *head,
135 int64_t bytes)
137 atomic64_sub(bytes, &head->grant);
140 static inline void
141 xlog_grant_add_space(
142 struct xlog_grant_head *head,
143 int64_t bytes)
145 atomic64_add(bytes, &head->grant);
148 static void
149 xlog_grant_head_init(
150 struct xlog_grant_head *head)
152 atomic64_set(&head->grant, 0);
153 INIT_LIST_HEAD(&head->waiters);
154 spin_lock_init(&head->lock);
157 void
158 xlog_grant_return_space(
159 struct xlog *log,
160 xfs_lsn_t old_head,
161 xfs_lsn_t new_head)
163 int64_t diff = xlog_lsn_sub(log, new_head, old_head);
165 xlog_grant_sub_space(&log->l_reserve_head, diff);
166 xlog_grant_sub_space(&log->l_write_head, diff);
170 * Return the space in the log between the tail and the head. In the case where
171 * we have overrun available reservation space, return 0. The memory barrier
172 * pairs with the smp_wmb() in xlog_cil_ail_insert() to ensure that grant head
173 * vs tail space updates are seen in the correct order and hence avoid
174 * transients as space is transferred from the grant heads to the AIL on commit
175 * completion.
177 static uint64_t
178 xlog_grant_space_left(
179 struct xlog *log,
180 struct xlog_grant_head *head)
182 int64_t free_bytes;
184 smp_rmb(); /* paired with smp_wmb in xlog_cil_ail_insert() */
185 free_bytes = log->l_logsize - READ_ONCE(log->l_tail_space) -
186 atomic64_read(&head->grant);
187 if (free_bytes > 0)
188 return free_bytes;
189 return 0;
192 STATIC void
193 xlog_grant_head_wake_all(
194 struct xlog_grant_head *head)
196 struct xlog_ticket *tic;
198 spin_lock(&head->lock);
199 list_for_each_entry(tic, &head->waiters, t_queue)
200 wake_up_process(tic->t_task);
201 spin_unlock(&head->lock);
204 static inline int
205 xlog_ticket_reservation(
206 struct xlog *log,
207 struct xlog_grant_head *head,
208 struct xlog_ticket *tic)
210 if (head == &log->l_write_head) {
211 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
212 return tic->t_unit_res;
215 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
216 return tic->t_unit_res * tic->t_cnt;
218 return tic->t_unit_res;
221 STATIC bool
222 xlog_grant_head_wake(
223 struct xlog *log,
224 struct xlog_grant_head *head,
225 int *free_bytes)
227 struct xlog_ticket *tic;
228 int need_bytes;
230 list_for_each_entry(tic, &head->waiters, t_queue) {
231 need_bytes = xlog_ticket_reservation(log, head, tic);
232 if (*free_bytes < need_bytes)
233 return false;
235 *free_bytes -= need_bytes;
236 trace_xfs_log_grant_wake_up(log, tic);
237 wake_up_process(tic->t_task);
240 return true;
243 STATIC int
244 xlog_grant_head_wait(
245 struct xlog *log,
246 struct xlog_grant_head *head,
247 struct xlog_ticket *tic,
248 int need_bytes) __releases(&head->lock)
249 __acquires(&head->lock)
251 list_add_tail(&tic->t_queue, &head->waiters);
253 do {
254 if (xlog_is_shutdown(log))
255 goto shutdown;
257 __set_current_state(TASK_UNINTERRUPTIBLE);
258 spin_unlock(&head->lock);
260 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
262 /* Push on the AIL to free up all the log space. */
263 xfs_ail_push_all(log->l_ailp);
265 trace_xfs_log_grant_sleep(log, tic);
266 schedule();
267 trace_xfs_log_grant_wake(log, tic);
269 spin_lock(&head->lock);
270 if (xlog_is_shutdown(log))
271 goto shutdown;
272 } while (xlog_grant_space_left(log, head) < need_bytes);
274 list_del_init(&tic->t_queue);
275 return 0;
276 shutdown:
277 list_del_init(&tic->t_queue);
278 return -EIO;
282 * Atomically get the log space required for a log ticket.
284 * Once a ticket gets put onto head->waiters, it will only return after the
285 * needed reservation is satisfied.
287 * This function is structured so that it has a lock free fast path. This is
288 * necessary because every new transaction reservation will come through this
289 * path. Hence any lock will be globally hot if we take it unconditionally on
290 * every pass.
292 * As tickets are only ever moved on and off head->waiters under head->lock, we
293 * only need to take that lock if we are going to add the ticket to the queue
294 * and sleep. We can avoid taking the lock if the ticket was never added to
295 * head->waiters because the t_queue list head will be empty and we hold the
296 * only reference to it so it can safely be checked unlocked.
298 STATIC int
299 xlog_grant_head_check(
300 struct xlog *log,
301 struct xlog_grant_head *head,
302 struct xlog_ticket *tic,
303 int *need_bytes)
305 int free_bytes;
306 int error = 0;
308 ASSERT(!xlog_in_recovery(log));
311 * If there are other waiters on the queue then give them a chance at
312 * logspace before us. Wake up the first waiters, if we do not wake
313 * up all the waiters then go to sleep waiting for more free space,
314 * otherwise try to get some space for this transaction.
316 *need_bytes = xlog_ticket_reservation(log, head, tic);
317 free_bytes = xlog_grant_space_left(log, head);
318 if (!list_empty_careful(&head->waiters)) {
319 spin_lock(&head->lock);
320 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
321 free_bytes < *need_bytes) {
322 error = xlog_grant_head_wait(log, head, tic,
323 *need_bytes);
325 spin_unlock(&head->lock);
326 } else if (free_bytes < *need_bytes) {
327 spin_lock(&head->lock);
328 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
329 spin_unlock(&head->lock);
332 return error;
335 bool
336 xfs_log_writable(
337 struct xfs_mount *mp)
340 * Do not write to the log on norecovery mounts, if the data or log
341 * devices are read-only, or if the filesystem is shutdown. Read-only
342 * mounts allow internal writes for log recovery and unmount purposes,
343 * so don't restrict that case.
345 if (xfs_has_norecovery(mp))
346 return false;
347 if (xfs_readonly_buftarg(mp->m_ddev_targp))
348 return false;
349 if (xfs_readonly_buftarg(mp->m_log->l_targ))
350 return false;
351 if (xlog_is_shutdown(mp->m_log))
352 return false;
353 return true;
357 * Replenish the byte reservation required by moving the grant write head.
360 xfs_log_regrant(
361 struct xfs_mount *mp,
362 struct xlog_ticket *tic)
364 struct xlog *log = mp->m_log;
365 int need_bytes;
366 int error = 0;
368 if (xlog_is_shutdown(log))
369 return -EIO;
371 XFS_STATS_INC(mp, xs_try_logspace);
374 * This is a new transaction on the ticket, so we need to change the
375 * transaction ID so that the next transaction has a different TID in
376 * the log. Just add one to the existing tid so that we can see chains
377 * of rolling transactions in the log easily.
379 tic->t_tid++;
380 tic->t_curr_res = tic->t_unit_res;
381 if (tic->t_cnt > 0)
382 return 0;
384 trace_xfs_log_regrant(log, tic);
386 error = xlog_grant_head_check(log, &log->l_write_head, tic,
387 &need_bytes);
388 if (error)
389 goto out_error;
391 xlog_grant_add_space(&log->l_write_head, need_bytes);
392 trace_xfs_log_regrant_exit(log, tic);
393 return 0;
395 out_error:
397 * If we are failing, make sure the ticket doesn't have any current
398 * reservations. We don't want to add this back when the ticket/
399 * transaction gets cancelled.
401 tic->t_curr_res = 0;
402 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
403 return error;
407 * Reserve log space and return a ticket corresponding to the reservation.
409 * Each reservation is going to reserve extra space for a log record header.
410 * When writes happen to the on-disk log, we don't subtract the length of the
411 * log record header from any reservation. By wasting space in each
412 * reservation, we prevent over allocation problems.
415 xfs_log_reserve(
416 struct xfs_mount *mp,
417 int unit_bytes,
418 int cnt,
419 struct xlog_ticket **ticp,
420 bool permanent)
422 struct xlog *log = mp->m_log;
423 struct xlog_ticket *tic;
424 int need_bytes;
425 int error = 0;
427 if (xlog_is_shutdown(log))
428 return -EIO;
430 XFS_STATS_INC(mp, xs_try_logspace);
432 ASSERT(*ticp == NULL);
433 tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent);
434 *ticp = tic;
435 trace_xfs_log_reserve(log, tic);
436 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
437 &need_bytes);
438 if (error)
439 goto out_error;
441 xlog_grant_add_space(&log->l_reserve_head, need_bytes);
442 xlog_grant_add_space(&log->l_write_head, need_bytes);
443 trace_xfs_log_reserve_exit(log, tic);
444 return 0;
446 out_error:
448 * If we are failing, make sure the ticket doesn't have any current
449 * reservations. We don't want to add this back when the ticket/
450 * transaction gets cancelled.
452 tic->t_curr_res = 0;
453 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
454 return error;
458 * Run all the pending iclog callbacks and wake log force waiters and iclog
459 * space waiters so they can process the newly set shutdown state. We really
460 * don't care what order we process callbacks here because the log is shut down
461 * and so state cannot change on disk anymore. However, we cannot wake waiters
462 * until the callbacks have been processed because we may be in unmount and
463 * we must ensure that all AIL operations the callbacks perform have completed
464 * before we tear down the AIL.
466 * We avoid processing actively referenced iclogs so that we don't run callbacks
467 * while the iclog owner might still be preparing the iclog for IO submssion.
468 * These will be caught by xlog_state_iclog_release() and call this function
469 * again to process any callbacks that may have been added to that iclog.
471 static void
472 xlog_state_shutdown_callbacks(
473 struct xlog *log)
475 struct xlog_in_core *iclog;
476 LIST_HEAD(cb_list);
478 iclog = log->l_iclog;
479 do {
480 if (atomic_read(&iclog->ic_refcnt)) {
481 /* Reference holder will re-run iclog callbacks. */
482 continue;
484 list_splice_init(&iclog->ic_callbacks, &cb_list);
485 spin_unlock(&log->l_icloglock);
487 xlog_cil_process_committed(&cb_list);
489 spin_lock(&log->l_icloglock);
490 wake_up_all(&iclog->ic_write_wait);
491 wake_up_all(&iclog->ic_force_wait);
492 } while ((iclog = iclog->ic_next) != log->l_iclog);
494 wake_up_all(&log->l_flush_wait);
498 * Flush iclog to disk if this is the last reference to the given iclog and the
499 * it is in the WANT_SYNC state.
501 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
502 * log tail is updated correctly. NEED_FUA indicates that the iclog will be
503 * written to stable storage, and implies that a commit record is contained
504 * within the iclog. We need to ensure that the log tail does not move beyond
505 * the tail that the first commit record in the iclog ordered against, otherwise
506 * correct recovery of that checkpoint becomes dependent on future operations
507 * performed on this iclog.
509 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
510 * current tail into iclog. Once the iclog tail is set, future operations must
511 * not modify it, otherwise they potentially violate ordering constraints for
512 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
513 * the iclog will get zeroed on activation of the iclog after sync, so we
514 * always capture the tail lsn on the iclog on the first NEED_FUA release
515 * regardless of the number of active reference counts on this iclog.
518 xlog_state_release_iclog(
519 struct xlog *log,
520 struct xlog_in_core *iclog,
521 struct xlog_ticket *ticket)
523 bool last_ref;
525 lockdep_assert_held(&log->l_icloglock);
527 trace_xlog_iclog_release(iclog, _RET_IP_);
529 * Grabbing the current log tail needs to be atomic w.r.t. the writing
530 * of the tail LSN into the iclog so we guarantee that the log tail does
531 * not move between the first time we know that the iclog needs to be
532 * made stable and when we eventually submit it.
534 if ((iclog->ic_state == XLOG_STATE_WANT_SYNC ||
535 (iclog->ic_flags & XLOG_ICL_NEED_FUA)) &&
536 !iclog->ic_header.h_tail_lsn) {
537 iclog->ic_header.h_tail_lsn =
538 cpu_to_be64(atomic64_read(&log->l_tail_lsn));
541 last_ref = atomic_dec_and_test(&iclog->ic_refcnt);
543 if (xlog_is_shutdown(log)) {
545 * If there are no more references to this iclog, process the
546 * pending iclog callbacks that were waiting on the release of
547 * this iclog.
549 if (last_ref)
550 xlog_state_shutdown_callbacks(log);
551 return -EIO;
554 if (!last_ref)
555 return 0;
557 if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
558 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
559 return 0;
562 iclog->ic_state = XLOG_STATE_SYNCING;
563 xlog_verify_tail_lsn(log, iclog);
564 trace_xlog_iclog_syncing(iclog, _RET_IP_);
566 spin_unlock(&log->l_icloglock);
567 xlog_sync(log, iclog, ticket);
568 spin_lock(&log->l_icloglock);
569 return 0;
573 * Mount a log filesystem
575 * mp - ubiquitous xfs mount point structure
576 * log_target - buftarg of on-disk log device
577 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
578 * num_bblocks - Number of BBSIZE blocks in on-disk log
580 * Return error or zero.
583 xfs_log_mount(
584 xfs_mount_t *mp,
585 struct xfs_buftarg *log_target,
586 xfs_daddr_t blk_offset,
587 int num_bblks)
589 struct xlog *log;
590 int error = 0;
591 int min_logfsbs;
593 if (!xfs_has_norecovery(mp)) {
594 xfs_notice(mp, "Mounting V%d Filesystem %pU",
595 XFS_SB_VERSION_NUM(&mp->m_sb),
596 &mp->m_sb.sb_uuid);
597 } else {
598 xfs_notice(mp,
599 "Mounting V%d filesystem %pU in no-recovery mode. Filesystem will be inconsistent.",
600 XFS_SB_VERSION_NUM(&mp->m_sb),
601 &mp->m_sb.sb_uuid);
602 ASSERT(xfs_is_readonly(mp));
605 log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
606 if (IS_ERR(log)) {
607 error = PTR_ERR(log);
608 goto out;
610 mp->m_log = log;
613 * Now that we have set up the log and it's internal geometry
614 * parameters, we can validate the given log space and drop a critical
615 * message via syslog if the log size is too small. A log that is too
616 * small can lead to unexpected situations in transaction log space
617 * reservation stage. The superblock verifier has already validated all
618 * the other log geometry constraints, so we don't have to check those
619 * here.
621 * Note: For v4 filesystems, we can't just reject the mount if the
622 * validation fails. This would mean that people would have to
623 * downgrade their kernel just to remedy the situation as there is no
624 * way to grow the log (short of black magic surgery with xfs_db).
626 * We can, however, reject mounts for V5 format filesystems, as the
627 * mkfs binary being used to make the filesystem should never create a
628 * filesystem with a log that is too small.
630 min_logfsbs = xfs_log_calc_minimum_size(mp);
631 if (mp->m_sb.sb_logblocks < min_logfsbs) {
632 xfs_warn(mp,
633 "Log size %d blocks too small, minimum size is %d blocks",
634 mp->m_sb.sb_logblocks, min_logfsbs);
637 * Log check errors are always fatal on v5; or whenever bad
638 * metadata leads to a crash.
640 if (xfs_has_crc(mp)) {
641 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
642 ASSERT(0);
643 error = -EINVAL;
644 goto out_free_log;
646 xfs_crit(mp, "Log size out of supported range.");
647 xfs_crit(mp,
648 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
652 * Initialize the AIL now we have a log.
654 error = xfs_trans_ail_init(mp);
655 if (error) {
656 xfs_warn(mp, "AIL initialisation failed: error %d", error);
657 goto out_free_log;
659 log->l_ailp = mp->m_ail;
662 * skip log recovery on a norecovery mount. pretend it all
663 * just worked.
665 if (!xfs_has_norecovery(mp)) {
666 error = xlog_recover(log);
667 if (error) {
668 xfs_warn(mp, "log mount/recovery failed: error %d",
669 error);
670 xlog_recover_cancel(log);
671 goto out_destroy_ail;
675 error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
676 "log");
677 if (error)
678 goto out_destroy_ail;
680 /* Normal transactions can now occur */
681 clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
684 * Now the log has been fully initialised and we know were our
685 * space grant counters are, we can initialise the permanent ticket
686 * needed for delayed logging to work.
688 xlog_cil_init_post_recovery(log);
690 return 0;
692 out_destroy_ail:
693 xfs_trans_ail_destroy(mp);
694 out_free_log:
695 xlog_dealloc_log(log);
696 out:
697 return error;
701 * Finish the recovery of the file system. This is separate from the
702 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
703 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
704 * here.
706 * If we finish recovery successfully, start the background log work. If we are
707 * not doing recovery, then we have a RO filesystem and we don't need to start
708 * it.
711 xfs_log_mount_finish(
712 struct xfs_mount *mp)
714 struct xlog *log = mp->m_log;
715 int error = 0;
717 if (xfs_has_norecovery(mp)) {
718 ASSERT(xfs_is_readonly(mp));
719 return 0;
723 * During the second phase of log recovery, we need iget and
724 * iput to behave like they do for an active filesystem.
725 * xfs_fs_drop_inode needs to be able to prevent the deletion
726 * of inodes before we're done replaying log items on those
727 * inodes. Turn it off immediately after recovery finishes
728 * so that we don't leak the quota inodes if subsequent mount
729 * activities fail.
731 * We let all inodes involved in redo item processing end up on
732 * the LRU instead of being evicted immediately so that if we do
733 * something to an unlinked inode, the irele won't cause
734 * premature truncation and freeing of the inode, which results
735 * in log recovery failure. We have to evict the unreferenced
736 * lru inodes after clearing SB_ACTIVE because we don't
737 * otherwise clean up the lru if there's a subsequent failure in
738 * xfs_mountfs, which leads to us leaking the inodes if nothing
739 * else (e.g. quotacheck) references the inodes before the
740 * mount failure occurs.
742 mp->m_super->s_flags |= SB_ACTIVE;
743 xfs_log_work_queue(mp);
744 if (xlog_recovery_needed(log))
745 error = xlog_recover_finish(log);
746 mp->m_super->s_flags &= ~SB_ACTIVE;
747 evict_inodes(mp->m_super);
750 * Drain the buffer LRU after log recovery. This is required for v4
751 * filesystems to avoid leaving around buffers with NULL verifier ops,
752 * but we do it unconditionally to make sure we're always in a clean
753 * cache state after mount.
755 * Don't push in the error case because the AIL may have pending intents
756 * that aren't removed until recovery is cancelled.
758 if (xlog_recovery_needed(log)) {
759 if (!error) {
760 xfs_log_force(mp, XFS_LOG_SYNC);
761 xfs_ail_push_all_sync(mp->m_ail);
763 xfs_notice(mp, "Ending recovery (logdev: %s)",
764 mp->m_logname ? mp->m_logname : "internal");
765 } else {
766 xfs_info(mp, "Ending clean mount");
768 xfs_buftarg_drain(mp->m_ddev_targp);
770 clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
772 /* Make sure the log is dead if we're returning failure. */
773 ASSERT(!error || xlog_is_shutdown(log));
775 return error;
779 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
780 * the log.
782 void
783 xfs_log_mount_cancel(
784 struct xfs_mount *mp)
786 xlog_recover_cancel(mp->m_log);
787 xfs_log_unmount(mp);
791 * Flush out the iclog to disk ensuring that device caches are flushed and
792 * the iclog hits stable storage before any completion waiters are woken.
794 static inline int
795 xlog_force_iclog(
796 struct xlog_in_core *iclog)
798 atomic_inc(&iclog->ic_refcnt);
799 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
800 if (iclog->ic_state == XLOG_STATE_ACTIVE)
801 xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
802 return xlog_state_release_iclog(iclog->ic_log, iclog, NULL);
806 * Cycle all the iclogbuf locks to make sure all log IO completion
807 * is done before we tear down these buffers.
809 static void
810 xlog_wait_iclog_completion(struct xlog *log)
812 int i;
813 struct xlog_in_core *iclog = log->l_iclog;
815 for (i = 0; i < log->l_iclog_bufs; i++) {
816 down(&iclog->ic_sema);
817 up(&iclog->ic_sema);
818 iclog = iclog->ic_next;
823 * Wait for the iclog and all prior iclogs to be written disk as required by the
824 * log force state machine. Waiting on ic_force_wait ensures iclog completions
825 * have been ordered and callbacks run before we are woken here, hence
826 * guaranteeing that all the iclogs up to this one are on stable storage.
829 xlog_wait_on_iclog(
830 struct xlog_in_core *iclog)
831 __releases(iclog->ic_log->l_icloglock)
833 struct xlog *log = iclog->ic_log;
835 trace_xlog_iclog_wait_on(iclog, _RET_IP_);
836 if (!xlog_is_shutdown(log) &&
837 iclog->ic_state != XLOG_STATE_ACTIVE &&
838 iclog->ic_state != XLOG_STATE_DIRTY) {
839 XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
840 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
841 } else {
842 spin_unlock(&log->l_icloglock);
845 if (xlog_is_shutdown(log))
846 return -EIO;
847 return 0;
851 * Write out an unmount record using the ticket provided. We have to account for
852 * the data space used in the unmount ticket as this write is not done from a
853 * transaction context that has already done the accounting for us.
855 static int
856 xlog_write_unmount_record(
857 struct xlog *log,
858 struct xlog_ticket *ticket)
860 struct {
861 struct xlog_op_header ophdr;
862 struct xfs_unmount_log_format ulf;
863 } unmount_rec = {
864 .ophdr = {
865 .oh_clientid = XFS_LOG,
866 .oh_tid = cpu_to_be32(ticket->t_tid),
867 .oh_flags = XLOG_UNMOUNT_TRANS,
869 .ulf = {
870 .magic = XLOG_UNMOUNT_TYPE,
873 struct xfs_log_iovec reg = {
874 .i_addr = &unmount_rec,
875 .i_len = sizeof(unmount_rec),
876 .i_type = XLOG_REG_TYPE_UNMOUNT,
878 struct xfs_log_vec vec = {
879 .lv_niovecs = 1,
880 .lv_iovecp = &reg,
882 LIST_HEAD(lv_chain);
883 list_add(&vec.lv_list, &lv_chain);
885 BUILD_BUG_ON((sizeof(struct xlog_op_header) +
886 sizeof(struct xfs_unmount_log_format)) !=
887 sizeof(unmount_rec));
889 /* account for space used by record data */
890 ticket->t_curr_res -= sizeof(unmount_rec);
892 return xlog_write(log, NULL, &lv_chain, ticket, reg.i_len);
896 * Mark the filesystem clean by writing an unmount record to the head of the
897 * log.
899 static void
900 xlog_unmount_write(
901 struct xlog *log)
903 struct xfs_mount *mp = log->l_mp;
904 struct xlog_in_core *iclog;
905 struct xlog_ticket *tic = NULL;
906 int error;
908 error = xfs_log_reserve(mp, 600, 1, &tic, 0);
909 if (error)
910 goto out_err;
912 error = xlog_write_unmount_record(log, tic);
914 * At this point, we're umounting anyway, so there's no point in
915 * transitioning log state to shutdown. Just continue...
917 out_err:
918 if (error)
919 xfs_alert(mp, "%s: unmount record failed", __func__);
921 spin_lock(&log->l_icloglock);
922 iclog = log->l_iclog;
923 error = xlog_force_iclog(iclog);
924 xlog_wait_on_iclog(iclog);
926 if (tic) {
927 trace_xfs_log_umount_write(log, tic);
928 xfs_log_ticket_ungrant(log, tic);
932 static void
933 xfs_log_unmount_verify_iclog(
934 struct xlog *log)
936 struct xlog_in_core *iclog = log->l_iclog;
938 do {
939 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
940 ASSERT(iclog->ic_offset == 0);
941 } while ((iclog = iclog->ic_next) != log->l_iclog);
945 * Unmount record used to have a string "Unmount filesystem--" in the
946 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
947 * We just write the magic number now since that particular field isn't
948 * currently architecture converted and "Unmount" is a bit foo.
949 * As far as I know, there weren't any dependencies on the old behaviour.
951 static void
952 xfs_log_unmount_write(
953 struct xfs_mount *mp)
955 struct xlog *log = mp->m_log;
957 if (!xfs_log_writable(mp))
958 return;
960 xfs_log_force(mp, XFS_LOG_SYNC);
962 if (xlog_is_shutdown(log))
963 return;
966 * If we think the summary counters are bad, avoid writing the unmount
967 * record to force log recovery at next mount, after which the summary
968 * counters will be recalculated. Refer to xlog_check_unmount_rec for
969 * more details.
971 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
972 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
973 xfs_alert(mp, "%s: will fix summary counters at next mount",
974 __func__);
975 return;
978 xfs_log_unmount_verify_iclog(log);
979 xlog_unmount_write(log);
983 * Empty the log for unmount/freeze.
985 * To do this, we first need to shut down the background log work so it is not
986 * trying to cover the log as we clean up. We then need to unpin all objects in
987 * the log so we can then flush them out. Once they have completed their IO and
988 * run the callbacks removing themselves from the AIL, we can cover the log.
991 xfs_log_quiesce(
992 struct xfs_mount *mp)
995 * Clear log incompat features since we're quiescing the log. Report
996 * failures, though it's not fatal to have a higher log feature
997 * protection level than the log contents actually require.
999 if (xfs_clear_incompat_log_features(mp)) {
1000 int error;
1002 error = xfs_sync_sb(mp, false);
1003 if (error)
1004 xfs_warn(mp,
1005 "Failed to clear log incompat features on quiesce");
1008 cancel_delayed_work_sync(&mp->m_log->l_work);
1009 xfs_log_force(mp, XFS_LOG_SYNC);
1012 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1013 * will push it, xfs_buftarg_wait() will not wait for it. Further,
1014 * xfs_buf_iowait() cannot be used because it was pushed with the
1015 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1016 * the IO to complete.
1018 xfs_ail_push_all_sync(mp->m_ail);
1019 xfs_buftarg_wait(mp->m_ddev_targp);
1020 xfs_buf_lock(mp->m_sb_bp);
1021 xfs_buf_unlock(mp->m_sb_bp);
1023 return xfs_log_cover(mp);
1026 void
1027 xfs_log_clean(
1028 struct xfs_mount *mp)
1030 xfs_log_quiesce(mp);
1031 xfs_log_unmount_write(mp);
1035 * Shut down and release the AIL and Log.
1037 * During unmount, we need to ensure we flush all the dirty metadata objects
1038 * from the AIL so that the log is empty before we write the unmount record to
1039 * the log. Once this is done, we can tear down the AIL and the log.
1041 void
1042 xfs_log_unmount(
1043 struct xfs_mount *mp)
1045 xfs_log_clean(mp);
1048 * If shutdown has come from iclog IO context, the log
1049 * cleaning will have been skipped and so we need to wait
1050 * for the iclog to complete shutdown processing before we
1051 * tear anything down.
1053 xlog_wait_iclog_completion(mp->m_log);
1055 xfs_buftarg_drain(mp->m_ddev_targp);
1057 xfs_trans_ail_destroy(mp);
1059 xfs_sysfs_del(&mp->m_log->l_kobj);
1061 xlog_dealloc_log(mp->m_log);
1064 void
1065 xfs_log_item_init(
1066 struct xfs_mount *mp,
1067 struct xfs_log_item *item,
1068 int type,
1069 const struct xfs_item_ops *ops)
1071 item->li_log = mp->m_log;
1072 item->li_ailp = mp->m_ail;
1073 item->li_type = type;
1074 item->li_ops = ops;
1075 item->li_lv = NULL;
1077 INIT_LIST_HEAD(&item->li_ail);
1078 INIT_LIST_HEAD(&item->li_cil);
1079 INIT_LIST_HEAD(&item->li_bio_list);
1080 INIT_LIST_HEAD(&item->li_trans);
1084 * Wake up processes waiting for log space after we have moved the log tail.
1086 void
1087 xfs_log_space_wake(
1088 struct xfs_mount *mp)
1090 struct xlog *log = mp->m_log;
1091 int free_bytes;
1093 if (xlog_is_shutdown(log))
1094 return;
1096 if (!list_empty_careful(&log->l_write_head.waiters)) {
1097 ASSERT(!xlog_in_recovery(log));
1099 spin_lock(&log->l_write_head.lock);
1100 free_bytes = xlog_grant_space_left(log, &log->l_write_head);
1101 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1102 spin_unlock(&log->l_write_head.lock);
1105 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1106 ASSERT(!xlog_in_recovery(log));
1108 spin_lock(&log->l_reserve_head.lock);
1109 free_bytes = xlog_grant_space_left(log, &log->l_reserve_head);
1110 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1111 spin_unlock(&log->l_reserve_head.lock);
1116 * Determine if we have a transaction that has gone to disk that needs to be
1117 * covered. To begin the transition to the idle state firstly the log needs to
1118 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1119 * we start attempting to cover the log.
1121 * Only if we are then in a state where covering is needed, the caller is
1122 * informed that dummy transactions are required to move the log into the idle
1123 * state.
1125 * If there are any items in the AIl or CIL, then we do not want to attempt to
1126 * cover the log as we may be in a situation where there isn't log space
1127 * available to run a dummy transaction and this can lead to deadlocks when the
1128 * tail of the log is pinned by an item that is modified in the CIL. Hence
1129 * there's no point in running a dummy transaction at this point because we
1130 * can't start trying to idle the log until both the CIL and AIL are empty.
1132 static bool
1133 xfs_log_need_covered(
1134 struct xfs_mount *mp)
1136 struct xlog *log = mp->m_log;
1137 bool needed = false;
1139 if (!xlog_cil_empty(log))
1140 return false;
1142 spin_lock(&log->l_icloglock);
1143 switch (log->l_covered_state) {
1144 case XLOG_STATE_COVER_DONE:
1145 case XLOG_STATE_COVER_DONE2:
1146 case XLOG_STATE_COVER_IDLE:
1147 break;
1148 case XLOG_STATE_COVER_NEED:
1149 case XLOG_STATE_COVER_NEED2:
1150 if (xfs_ail_min_lsn(log->l_ailp))
1151 break;
1152 if (!xlog_iclogs_empty(log))
1153 break;
1155 needed = true;
1156 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1157 log->l_covered_state = XLOG_STATE_COVER_DONE;
1158 else
1159 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1160 break;
1161 default:
1162 needed = true;
1163 break;
1165 spin_unlock(&log->l_icloglock);
1166 return needed;
1170 * Explicitly cover the log. This is similar to background log covering but
1171 * intended for usage in quiesce codepaths. The caller is responsible to ensure
1172 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1173 * must all be empty.
1175 static int
1176 xfs_log_cover(
1177 struct xfs_mount *mp)
1179 int error = 0;
1180 bool need_covered;
1182 ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1183 !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1184 xlog_is_shutdown(mp->m_log));
1186 if (!xfs_log_writable(mp))
1187 return 0;
1190 * xfs_log_need_covered() is not idempotent because it progresses the
1191 * state machine if the log requires covering. Therefore, we must call
1192 * this function once and use the result until we've issued an sb sync.
1193 * Do so first to make that abundantly clear.
1195 * Fall into the covering sequence if the log needs covering or the
1196 * mount has lazy superblock accounting to sync to disk. The sb sync
1197 * used for covering accumulates the in-core counters, so covering
1198 * handles this for us.
1200 need_covered = xfs_log_need_covered(mp);
1201 if (!need_covered && !xfs_has_lazysbcount(mp))
1202 return 0;
1205 * To cover the log, commit the superblock twice (at most) in
1206 * independent checkpoints. The first serves as a reference for the
1207 * tail pointer. The sync transaction and AIL push empties the AIL and
1208 * updates the in-core tail to the LSN of the first checkpoint. The
1209 * second commit updates the on-disk tail with the in-core LSN,
1210 * covering the log. Push the AIL one more time to leave it empty, as
1211 * we found it.
1213 do {
1214 error = xfs_sync_sb(mp, true);
1215 if (error)
1216 break;
1217 xfs_ail_push_all_sync(mp->m_ail);
1218 } while (xfs_log_need_covered(mp));
1220 return error;
1223 static void
1224 xlog_ioend_work(
1225 struct work_struct *work)
1227 struct xlog_in_core *iclog =
1228 container_of(work, struct xlog_in_core, ic_end_io_work);
1229 struct xlog *log = iclog->ic_log;
1230 int error;
1232 error = blk_status_to_errno(iclog->ic_bio.bi_status);
1233 #ifdef DEBUG
1234 /* treat writes with injected CRC errors as failed */
1235 if (iclog->ic_fail_crc)
1236 error = -EIO;
1237 #endif
1240 * Race to shutdown the filesystem if we see an error.
1242 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1243 xfs_alert(log->l_mp, "log I/O error %d", error);
1244 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1247 xlog_state_done_syncing(iclog);
1248 bio_uninit(&iclog->ic_bio);
1251 * Drop the lock to signal that we are done. Nothing references the
1252 * iclog after this, so an unmount waiting on this lock can now tear it
1253 * down safely. As such, it is unsafe to reference the iclog after the
1254 * unlock as we could race with it being freed.
1256 up(&iclog->ic_sema);
1260 * Return size of each in-core log record buffer.
1262 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1264 * If the filesystem blocksize is too large, we may need to choose a
1265 * larger size since the directory code currently logs entire blocks.
1267 STATIC void
1268 xlog_get_iclog_buffer_size(
1269 struct xfs_mount *mp,
1270 struct xlog *log)
1272 if (mp->m_logbufs <= 0)
1273 mp->m_logbufs = XLOG_MAX_ICLOGS;
1274 if (mp->m_logbsize <= 0)
1275 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1277 log->l_iclog_bufs = mp->m_logbufs;
1278 log->l_iclog_size = mp->m_logbsize;
1281 * # headers = size / 32k - one header holds cycles from 32k of data.
1283 log->l_iclog_heads =
1284 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1285 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1288 void
1289 xfs_log_work_queue(
1290 struct xfs_mount *mp)
1292 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1293 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1297 * Clear the log incompat flags if we have the opportunity.
1299 * This only happens if we're about to log the second dummy transaction as part
1300 * of covering the log.
1302 static inline void
1303 xlog_clear_incompat(
1304 struct xlog *log)
1306 struct xfs_mount *mp = log->l_mp;
1308 if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1309 XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1310 return;
1312 if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1313 return;
1315 xfs_clear_incompat_log_features(mp);
1319 * Every sync period we need to unpin all items in the AIL and push them to
1320 * disk. If there is nothing dirty, then we might need to cover the log to
1321 * indicate that the filesystem is idle.
1323 static void
1324 xfs_log_worker(
1325 struct work_struct *work)
1327 struct xlog *log = container_of(to_delayed_work(work),
1328 struct xlog, l_work);
1329 struct xfs_mount *mp = log->l_mp;
1331 /* dgc: errors ignored - not fatal and nowhere to report them */
1332 if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1334 * Dump a transaction into the log that contains no real change.
1335 * This is needed to stamp the current tail LSN into the log
1336 * during the covering operation.
1338 * We cannot use an inode here for this - that will push dirty
1339 * state back up into the VFS and then periodic inode flushing
1340 * will prevent log covering from making progress. Hence we
1341 * synchronously log the superblock instead to ensure the
1342 * superblock is immediately unpinned and can be written back.
1344 xlog_clear_incompat(log);
1345 xfs_sync_sb(mp, true);
1346 } else
1347 xfs_log_force(mp, 0);
1349 /* start pushing all the metadata that is currently dirty */
1350 xfs_ail_push_all(mp->m_ail);
1352 /* queue us up again */
1353 xfs_log_work_queue(mp);
1357 * This routine initializes some of the log structure for a given mount point.
1358 * Its primary purpose is to fill in enough, so recovery can occur. However,
1359 * some other stuff may be filled in too.
1361 STATIC struct xlog *
1362 xlog_alloc_log(
1363 struct xfs_mount *mp,
1364 struct xfs_buftarg *log_target,
1365 xfs_daddr_t blk_offset,
1366 int num_bblks)
1368 struct xlog *log;
1369 xlog_rec_header_t *head;
1370 xlog_in_core_t **iclogp;
1371 xlog_in_core_t *iclog, *prev_iclog=NULL;
1372 int i;
1373 int error = -ENOMEM;
1374 uint log2_size = 0;
1376 log = kzalloc(sizeof(struct xlog), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1377 if (!log) {
1378 xfs_warn(mp, "Log allocation failed: No memory!");
1379 goto out;
1382 log->l_mp = mp;
1383 log->l_targ = log_target;
1384 log->l_logsize = BBTOB(num_bblks);
1385 log->l_logBBstart = blk_offset;
1386 log->l_logBBsize = num_bblks;
1387 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1388 set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1389 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1390 INIT_LIST_HEAD(&log->r_dfops);
1392 log->l_prev_block = -1;
1393 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1394 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1395 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1397 if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1)
1398 log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1399 else
1400 log->l_iclog_roundoff = BBSIZE;
1402 xlog_grant_head_init(&log->l_reserve_head);
1403 xlog_grant_head_init(&log->l_write_head);
1405 error = -EFSCORRUPTED;
1406 if (xfs_has_sector(mp)) {
1407 log2_size = mp->m_sb.sb_logsectlog;
1408 if (log2_size < BBSHIFT) {
1409 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1410 log2_size, BBSHIFT);
1411 goto out_free_log;
1414 log2_size -= BBSHIFT;
1415 if (log2_size > mp->m_sectbb_log) {
1416 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1417 log2_size, mp->m_sectbb_log);
1418 goto out_free_log;
1421 /* for larger sector sizes, must have v2 or external log */
1422 if (log2_size && log->l_logBBstart > 0 &&
1423 !xfs_has_logv2(mp)) {
1424 xfs_warn(mp,
1425 "log sector size (0x%x) invalid for configuration.",
1426 log2_size);
1427 goto out_free_log;
1430 log->l_sectBBsize = 1 << log2_size;
1432 xlog_get_iclog_buffer_size(mp, log);
1434 spin_lock_init(&log->l_icloglock);
1435 init_waitqueue_head(&log->l_flush_wait);
1437 iclogp = &log->l_iclog;
1439 * The amount of memory to allocate for the iclog structure is
1440 * rather funky due to the way the structure is defined. It is
1441 * done this way so that we can use different sizes for machines
1442 * with different amounts of memory. See the definition of
1443 * xlog_in_core_t in xfs_log_priv.h for details.
1445 ASSERT(log->l_iclog_size >= 4096);
1446 for (i = 0; i < log->l_iclog_bufs; i++) {
1447 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1448 sizeof(struct bio_vec);
1450 iclog = kzalloc(sizeof(*iclog) + bvec_size,
1451 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1452 if (!iclog)
1453 goto out_free_iclog;
1455 *iclogp = iclog;
1456 iclog->ic_prev = prev_iclog;
1457 prev_iclog = iclog;
1459 iclog->ic_data = kvzalloc(log->l_iclog_size,
1460 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1461 if (!iclog->ic_data)
1462 goto out_free_iclog;
1463 head = &iclog->ic_header;
1464 memset(head, 0, sizeof(xlog_rec_header_t));
1465 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1466 head->h_version = cpu_to_be32(
1467 xfs_has_logv2(log->l_mp) ? 2 : 1);
1468 head->h_size = cpu_to_be32(log->l_iclog_size);
1469 /* new fields */
1470 head->h_fmt = cpu_to_be32(XLOG_FMT);
1471 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1473 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1474 iclog->ic_state = XLOG_STATE_ACTIVE;
1475 iclog->ic_log = log;
1476 atomic_set(&iclog->ic_refcnt, 0);
1477 INIT_LIST_HEAD(&iclog->ic_callbacks);
1478 iclog->ic_datap = (void *)iclog->ic_data + log->l_iclog_hsize;
1480 init_waitqueue_head(&iclog->ic_force_wait);
1481 init_waitqueue_head(&iclog->ic_write_wait);
1482 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1483 sema_init(&iclog->ic_sema, 1);
1485 iclogp = &iclog->ic_next;
1487 *iclogp = log->l_iclog; /* complete ring */
1488 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1490 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1491 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1492 WQ_HIGHPRI),
1493 0, mp->m_super->s_id);
1494 if (!log->l_ioend_workqueue)
1495 goto out_free_iclog;
1497 error = xlog_cil_init(log);
1498 if (error)
1499 goto out_destroy_workqueue;
1500 return log;
1502 out_destroy_workqueue:
1503 destroy_workqueue(log->l_ioend_workqueue);
1504 out_free_iclog:
1505 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1506 prev_iclog = iclog->ic_next;
1507 kvfree(iclog->ic_data);
1508 kfree(iclog);
1509 if (prev_iclog == log->l_iclog)
1510 break;
1512 out_free_log:
1513 kfree(log);
1514 out:
1515 return ERR_PTR(error);
1516 } /* xlog_alloc_log */
1519 * Stamp cycle number in every block
1521 STATIC void
1522 xlog_pack_data(
1523 struct xlog *log,
1524 struct xlog_in_core *iclog,
1525 int roundoff)
1527 int i, j, k;
1528 int size = iclog->ic_offset + roundoff;
1529 __be32 cycle_lsn;
1530 char *dp;
1532 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1534 dp = iclog->ic_datap;
1535 for (i = 0; i < BTOBB(size); i++) {
1536 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1537 break;
1538 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1539 *(__be32 *)dp = cycle_lsn;
1540 dp += BBSIZE;
1543 if (xfs_has_logv2(log->l_mp)) {
1544 xlog_in_core_2_t *xhdr = iclog->ic_data;
1546 for ( ; i < BTOBB(size); i++) {
1547 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1548 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1549 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1550 *(__be32 *)dp = cycle_lsn;
1551 dp += BBSIZE;
1554 for (i = 1; i < log->l_iclog_heads; i++)
1555 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1560 * Calculate the checksum for a log buffer.
1562 * This is a little more complicated than it should be because the various
1563 * headers and the actual data are non-contiguous.
1565 __le32
1566 xlog_cksum(
1567 struct xlog *log,
1568 struct xlog_rec_header *rhead,
1569 char *dp,
1570 int size)
1572 uint32_t crc;
1574 /* first generate the crc for the record header ... */
1575 crc = xfs_start_cksum_update((char *)rhead,
1576 sizeof(struct xlog_rec_header),
1577 offsetof(struct xlog_rec_header, h_crc));
1579 /* ... then for additional cycle data for v2 logs ... */
1580 if (xfs_has_logv2(log->l_mp)) {
1581 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1582 int i;
1583 int xheads;
1585 xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1587 for (i = 1; i < xheads; i++) {
1588 crc = crc32c(crc, &xhdr[i].hic_xheader,
1589 sizeof(struct xlog_rec_ext_header));
1593 /* ... and finally for the payload */
1594 crc = crc32c(crc, dp, size);
1596 return xfs_end_cksum(crc);
1599 static void
1600 xlog_bio_end_io(
1601 struct bio *bio)
1603 struct xlog_in_core *iclog = bio->bi_private;
1605 queue_work(iclog->ic_log->l_ioend_workqueue,
1606 &iclog->ic_end_io_work);
1609 static int
1610 xlog_map_iclog_data(
1611 struct bio *bio,
1612 void *data,
1613 size_t count)
1615 do {
1616 struct page *page = kmem_to_page(data);
1617 unsigned int off = offset_in_page(data);
1618 size_t len = min_t(size_t, count, PAGE_SIZE - off);
1620 if (bio_add_page(bio, page, len, off) != len)
1621 return -EIO;
1623 data += len;
1624 count -= len;
1625 } while (count);
1627 return 0;
1630 STATIC void
1631 xlog_write_iclog(
1632 struct xlog *log,
1633 struct xlog_in_core *iclog,
1634 uint64_t bno,
1635 unsigned int count)
1637 ASSERT(bno < log->l_logBBsize);
1638 trace_xlog_iclog_write(iclog, _RET_IP_);
1641 * We lock the iclogbufs here so that we can serialise against I/O
1642 * completion during unmount. We might be processing a shutdown
1643 * triggered during unmount, and that can occur asynchronously to the
1644 * unmount thread, and hence we need to ensure that completes before
1645 * tearing down the iclogbufs. Hence we need to hold the buffer lock
1646 * across the log IO to archieve that.
1648 down(&iclog->ic_sema);
1649 if (xlog_is_shutdown(log)) {
1651 * It would seem logical to return EIO here, but we rely on
1652 * the log state machine to propagate I/O errors instead of
1653 * doing it here. We kick of the state machine and unlock
1654 * the buffer manually, the code needs to be kept in sync
1655 * with the I/O completion path.
1657 goto sync;
1661 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1662 * IOs coming immediately after this one. This prevents the block layer
1663 * writeback throttle from throttling log writes behind background
1664 * metadata writeback and causing priority inversions.
1666 bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec,
1667 howmany(count, PAGE_SIZE),
1668 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE);
1669 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1670 iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1671 iclog->ic_bio.bi_private = iclog;
1673 if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1674 iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1676 * For external log devices, we also need to flush the data
1677 * device cache first to ensure all metadata writeback covered
1678 * by the LSN in this iclog is on stable storage. This is slow,
1679 * but it *must* complete before we issue the external log IO.
1681 * If the flush fails, we cannot conclude that past metadata
1682 * writeback from the log succeeded. Repeating the flush is
1683 * not possible, hence we must shut down with log IO error to
1684 * avoid shutdown re-entering this path and erroring out again.
1686 if (log->l_targ != log->l_mp->m_ddev_targp &&
1687 blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev))
1688 goto shutdown;
1690 if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1691 iclog->ic_bio.bi_opf |= REQ_FUA;
1693 iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1695 if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count))
1696 goto shutdown;
1698 if (is_vmalloc_addr(iclog->ic_data))
1699 flush_kernel_vmap_range(iclog->ic_data, count);
1702 * If this log buffer would straddle the end of the log we will have
1703 * to split it up into two bios, so that we can continue at the start.
1705 if (bno + BTOBB(count) > log->l_logBBsize) {
1706 struct bio *split;
1708 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1709 GFP_NOIO, &fs_bio_set);
1710 bio_chain(split, &iclog->ic_bio);
1711 submit_bio(split);
1713 /* restart at logical offset zero for the remainder */
1714 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1717 submit_bio(&iclog->ic_bio);
1718 return;
1719 shutdown:
1720 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1721 sync:
1722 xlog_state_done_syncing(iclog);
1723 up(&iclog->ic_sema);
1727 * We need to bump cycle number for the part of the iclog that is
1728 * written to the start of the log. Watch out for the header magic
1729 * number case, though.
1731 static void
1732 xlog_split_iclog(
1733 struct xlog *log,
1734 void *data,
1735 uint64_t bno,
1736 unsigned int count)
1738 unsigned int split_offset = BBTOB(log->l_logBBsize - bno);
1739 unsigned int i;
1741 for (i = split_offset; i < count; i += BBSIZE) {
1742 uint32_t cycle = get_unaligned_be32(data + i);
1744 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1745 cycle++;
1746 put_unaligned_be32(cycle, data + i);
1750 static int
1751 xlog_calc_iclog_size(
1752 struct xlog *log,
1753 struct xlog_in_core *iclog,
1754 uint32_t *roundoff)
1756 uint32_t count_init, count;
1758 /* Add for LR header */
1759 count_init = log->l_iclog_hsize + iclog->ic_offset;
1760 count = roundup(count_init, log->l_iclog_roundoff);
1762 *roundoff = count - count_init;
1764 ASSERT(count >= count_init);
1765 ASSERT(*roundoff < log->l_iclog_roundoff);
1766 return count;
1770 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1771 * fashion. Previously, we should have moved the current iclog
1772 * ptr in the log to point to the next available iclog. This allows further
1773 * write to continue while this code syncs out an iclog ready to go.
1774 * Before an in-core log can be written out, the data section must be scanned
1775 * to save away the 1st word of each BBSIZE block into the header. We replace
1776 * it with the current cycle count. Each BBSIZE block is tagged with the
1777 * cycle count because there in an implicit assumption that drives will
1778 * guarantee that entire 512 byte blocks get written at once. In other words,
1779 * we can't have part of a 512 byte block written and part not written. By
1780 * tagging each block, we will know which blocks are valid when recovering
1781 * after an unclean shutdown.
1783 * This routine is single threaded on the iclog. No other thread can be in
1784 * this routine with the same iclog. Changing contents of iclog can there-
1785 * fore be done without grabbing the state machine lock. Updating the global
1786 * log will require grabbing the lock though.
1788 * The entire log manager uses a logical block numbering scheme. Only
1789 * xlog_write_iclog knows about the fact that the log may not start with
1790 * block zero on a given device.
1792 STATIC void
1793 xlog_sync(
1794 struct xlog *log,
1795 struct xlog_in_core *iclog,
1796 struct xlog_ticket *ticket)
1798 unsigned int count; /* byte count of bwrite */
1799 unsigned int roundoff; /* roundoff to BB or stripe */
1800 uint64_t bno;
1801 unsigned int size;
1803 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1804 trace_xlog_iclog_sync(iclog, _RET_IP_);
1806 count = xlog_calc_iclog_size(log, iclog, &roundoff);
1809 * If we have a ticket, account for the roundoff via the ticket
1810 * reservation to avoid touching the hot grant heads needlessly.
1811 * Otherwise, we have to move grant heads directly.
1813 if (ticket) {
1814 ticket->t_curr_res -= roundoff;
1815 } else {
1816 xlog_grant_add_space(&log->l_reserve_head, roundoff);
1817 xlog_grant_add_space(&log->l_write_head, roundoff);
1820 /* put cycle number in every block */
1821 xlog_pack_data(log, iclog, roundoff);
1823 /* real byte length */
1824 size = iclog->ic_offset;
1825 if (xfs_has_logv2(log->l_mp))
1826 size += roundoff;
1827 iclog->ic_header.h_len = cpu_to_be32(size);
1829 XFS_STATS_INC(log->l_mp, xs_log_writes);
1830 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1832 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1834 /* Do we need to split this write into 2 parts? */
1835 if (bno + BTOBB(count) > log->l_logBBsize)
1836 xlog_split_iclog(log, &iclog->ic_header, bno, count);
1838 /* calculcate the checksum */
1839 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1840 iclog->ic_datap, size);
1842 * Intentionally corrupt the log record CRC based on the error injection
1843 * frequency, if defined. This facilitates testing log recovery in the
1844 * event of torn writes. Hence, set the IOABORT state to abort the log
1845 * write on I/O completion and shutdown the fs. The subsequent mount
1846 * detects the bad CRC and attempts to recover.
1848 #ifdef DEBUG
1849 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1850 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1851 iclog->ic_fail_crc = true;
1852 xfs_warn(log->l_mp,
1853 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1854 be64_to_cpu(iclog->ic_header.h_lsn));
1856 #endif
1857 xlog_verify_iclog(log, iclog, count);
1858 xlog_write_iclog(log, iclog, bno, count);
1862 * Deallocate a log structure
1864 STATIC void
1865 xlog_dealloc_log(
1866 struct xlog *log)
1868 xlog_in_core_t *iclog, *next_iclog;
1869 int i;
1872 * Destroy the CIL after waiting for iclog IO completion because an
1873 * iclog EIO error will try to shut down the log, which accesses the
1874 * CIL to wake up the waiters.
1876 xlog_cil_destroy(log);
1878 iclog = log->l_iclog;
1879 for (i = 0; i < log->l_iclog_bufs; i++) {
1880 next_iclog = iclog->ic_next;
1881 kvfree(iclog->ic_data);
1882 kfree(iclog);
1883 iclog = next_iclog;
1886 log->l_mp->m_log = NULL;
1887 destroy_workqueue(log->l_ioend_workqueue);
1888 kfree(log);
1892 * Update counters atomically now that memcpy is done.
1894 static inline void
1895 xlog_state_finish_copy(
1896 struct xlog *log,
1897 struct xlog_in_core *iclog,
1898 int record_cnt,
1899 int copy_bytes)
1901 lockdep_assert_held(&log->l_icloglock);
1903 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1904 iclog->ic_offset += copy_bytes;
1908 * print out info relating to regions written which consume
1909 * the reservation
1911 void
1912 xlog_print_tic_res(
1913 struct xfs_mount *mp,
1914 struct xlog_ticket *ticket)
1916 xfs_warn(mp, "ticket reservation summary:");
1917 xfs_warn(mp, " unit res = %d bytes", ticket->t_unit_res);
1918 xfs_warn(mp, " current res = %d bytes", ticket->t_curr_res);
1919 xfs_warn(mp, " original count = %d", ticket->t_ocnt);
1920 xfs_warn(mp, " remaining count = %d", ticket->t_cnt);
1924 * Print a summary of the transaction.
1926 void
1927 xlog_print_trans(
1928 struct xfs_trans *tp)
1930 struct xfs_mount *mp = tp->t_mountp;
1931 struct xfs_log_item *lip;
1933 /* dump core transaction and ticket info */
1934 xfs_warn(mp, "transaction summary:");
1935 xfs_warn(mp, " log res = %d", tp->t_log_res);
1936 xfs_warn(mp, " log count = %d", tp->t_log_count);
1937 xfs_warn(mp, " flags = 0x%x", tp->t_flags);
1939 xlog_print_tic_res(mp, tp->t_ticket);
1941 /* dump each log item */
1942 list_for_each_entry(lip, &tp->t_items, li_trans) {
1943 struct xfs_log_vec *lv = lip->li_lv;
1944 struct xfs_log_iovec *vec;
1945 int i;
1947 xfs_warn(mp, "log item: ");
1948 xfs_warn(mp, " type = 0x%x", lip->li_type);
1949 xfs_warn(mp, " flags = 0x%lx", lip->li_flags);
1950 if (!lv)
1951 continue;
1952 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs);
1953 xfs_warn(mp, " size = %d", lv->lv_size);
1954 xfs_warn(mp, " bytes = %d", lv->lv_bytes);
1955 xfs_warn(mp, " buf len = %d", lv->lv_buf_len);
1957 /* dump each iovec for the log item */
1958 vec = lv->lv_iovecp;
1959 for (i = 0; i < lv->lv_niovecs; i++) {
1960 int dumplen = min(vec->i_len, 32);
1962 xfs_warn(mp, " iovec[%d]", i);
1963 xfs_warn(mp, " type = 0x%x", vec->i_type);
1964 xfs_warn(mp, " len = %d", vec->i_len);
1965 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i);
1966 xfs_hex_dump(vec->i_addr, dumplen);
1968 vec++;
1973 static inline void
1974 xlog_write_iovec(
1975 struct xlog_in_core *iclog,
1976 uint32_t *log_offset,
1977 void *data,
1978 uint32_t write_len,
1979 int *bytes_left,
1980 uint32_t *record_cnt,
1981 uint32_t *data_cnt)
1983 ASSERT(*log_offset < iclog->ic_log->l_iclog_size);
1984 ASSERT(*log_offset % sizeof(int32_t) == 0);
1985 ASSERT(write_len % sizeof(int32_t) == 0);
1987 memcpy(iclog->ic_datap + *log_offset, data, write_len);
1988 *log_offset += write_len;
1989 *bytes_left -= write_len;
1990 (*record_cnt)++;
1991 *data_cnt += write_len;
1995 * Write log vectors into a single iclog which is guaranteed by the caller
1996 * to have enough space to write the entire log vector into.
1998 static void
1999 xlog_write_full(
2000 struct xfs_log_vec *lv,
2001 struct xlog_ticket *ticket,
2002 struct xlog_in_core *iclog,
2003 uint32_t *log_offset,
2004 uint32_t *len,
2005 uint32_t *record_cnt,
2006 uint32_t *data_cnt)
2008 int index;
2010 ASSERT(*log_offset + *len <= iclog->ic_size ||
2011 iclog->ic_state == XLOG_STATE_WANT_SYNC);
2014 * Ordered log vectors have no regions to write so this
2015 * loop will naturally skip them.
2017 for (index = 0; index < lv->lv_niovecs; index++) {
2018 struct xfs_log_iovec *reg = &lv->lv_iovecp[index];
2019 struct xlog_op_header *ophdr = reg->i_addr;
2021 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2022 xlog_write_iovec(iclog, log_offset, reg->i_addr,
2023 reg->i_len, len, record_cnt, data_cnt);
2027 static int
2028 xlog_write_get_more_iclog_space(
2029 struct xlog_ticket *ticket,
2030 struct xlog_in_core **iclogp,
2031 uint32_t *log_offset,
2032 uint32_t len,
2033 uint32_t *record_cnt,
2034 uint32_t *data_cnt)
2036 struct xlog_in_core *iclog = *iclogp;
2037 struct xlog *log = iclog->ic_log;
2038 int error;
2040 spin_lock(&log->l_icloglock);
2041 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC);
2042 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2043 error = xlog_state_release_iclog(log, iclog, ticket);
2044 spin_unlock(&log->l_icloglock);
2045 if (error)
2046 return error;
2048 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2049 log_offset);
2050 if (error)
2051 return error;
2052 *record_cnt = 0;
2053 *data_cnt = 0;
2054 *iclogp = iclog;
2055 return 0;
2059 * Write log vectors into a single iclog which is smaller than the current chain
2060 * length. We write until we cannot fit a full record into the remaining space
2061 * and then stop. We return the log vector that is to be written that cannot
2062 * wholly fit in the iclog.
2064 static int
2065 xlog_write_partial(
2066 struct xfs_log_vec *lv,
2067 struct xlog_ticket *ticket,
2068 struct xlog_in_core **iclogp,
2069 uint32_t *log_offset,
2070 uint32_t *len,
2071 uint32_t *record_cnt,
2072 uint32_t *data_cnt)
2074 struct xlog_in_core *iclog = *iclogp;
2075 struct xlog_op_header *ophdr;
2076 int index = 0;
2077 uint32_t rlen;
2078 int error;
2080 /* walk the logvec, copying until we run out of space in the iclog */
2081 for (index = 0; index < lv->lv_niovecs; index++) {
2082 struct xfs_log_iovec *reg = &lv->lv_iovecp[index];
2083 uint32_t reg_offset = 0;
2086 * The first region of a continuation must have a non-zero
2087 * length otherwise log recovery will just skip over it and
2088 * start recovering from the next opheader it finds. Because we
2089 * mark the next opheader as a continuation, recovery will then
2090 * incorrectly add the continuation to the previous region and
2091 * that breaks stuff.
2093 * Hence if there isn't space for region data after the
2094 * opheader, then we need to start afresh with a new iclog.
2096 if (iclog->ic_size - *log_offset <=
2097 sizeof(struct xlog_op_header)) {
2098 error = xlog_write_get_more_iclog_space(ticket,
2099 &iclog, log_offset, *len, record_cnt,
2100 data_cnt);
2101 if (error)
2102 return error;
2105 ophdr = reg->i_addr;
2106 rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset);
2108 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2109 ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header));
2110 if (rlen != reg->i_len)
2111 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2113 xlog_write_iovec(iclog, log_offset, reg->i_addr,
2114 rlen, len, record_cnt, data_cnt);
2116 /* If we wrote the whole region, move to the next. */
2117 if (rlen == reg->i_len)
2118 continue;
2121 * We now have a partially written iovec, but it can span
2122 * multiple iclogs so we loop here. First we release the iclog
2123 * we currently have, then we get a new iclog and add a new
2124 * opheader. Then we continue copying from where we were until
2125 * we either complete the iovec or fill the iclog. If we
2126 * complete the iovec, then we increment the index and go right
2127 * back to the top of the outer loop. if we fill the iclog, we
2128 * run the inner loop again.
2130 * This is complicated by the tail of a region using all the
2131 * space in an iclog and hence requiring us to release the iclog
2132 * and get a new one before returning to the outer loop. We must
2133 * always guarantee that we exit this inner loop with at least
2134 * space for log transaction opheaders left in the current
2135 * iclog, hence we cannot just terminate the loop at the end
2136 * of the of the continuation. So we loop while there is no
2137 * space left in the current iclog, and check for the end of the
2138 * continuation after getting a new iclog.
2140 do {
2142 * Ensure we include the continuation opheader in the
2143 * space we need in the new iclog by adding that size
2144 * to the length we require. This continuation opheader
2145 * needs to be accounted to the ticket as the space it
2146 * consumes hasn't been accounted to the lv we are
2147 * writing.
2149 error = xlog_write_get_more_iclog_space(ticket,
2150 &iclog, log_offset,
2151 *len + sizeof(struct xlog_op_header),
2152 record_cnt, data_cnt);
2153 if (error)
2154 return error;
2156 ophdr = iclog->ic_datap + *log_offset;
2157 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2158 ophdr->oh_clientid = XFS_TRANSACTION;
2159 ophdr->oh_res2 = 0;
2160 ophdr->oh_flags = XLOG_WAS_CONT_TRANS;
2162 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2163 *log_offset += sizeof(struct xlog_op_header);
2164 *data_cnt += sizeof(struct xlog_op_header);
2167 * If rlen fits in the iclog, then end the region
2168 * continuation. Otherwise we're going around again.
2170 reg_offset += rlen;
2171 rlen = reg->i_len - reg_offset;
2172 if (rlen <= iclog->ic_size - *log_offset)
2173 ophdr->oh_flags |= XLOG_END_TRANS;
2174 else
2175 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2177 rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset);
2178 ophdr->oh_len = cpu_to_be32(rlen);
2180 xlog_write_iovec(iclog, log_offset,
2181 reg->i_addr + reg_offset,
2182 rlen, len, record_cnt, data_cnt);
2184 } while (ophdr->oh_flags & XLOG_CONTINUE_TRANS);
2188 * No more iovecs remain in this logvec so return the next log vec to
2189 * the caller so it can go back to fast path copying.
2191 *iclogp = iclog;
2192 return 0;
2196 * Write some region out to in-core log
2198 * This will be called when writing externally provided regions or when
2199 * writing out a commit record for a given transaction.
2201 * General algorithm:
2202 * 1. Find total length of this write. This may include adding to the
2203 * lengths passed in.
2204 * 2. Check whether we violate the tickets reservation.
2205 * 3. While writing to this iclog
2206 * A. Reserve as much space in this iclog as can get
2207 * B. If this is first write, save away start lsn
2208 * C. While writing this region:
2209 * 1. If first write of transaction, write start record
2210 * 2. Write log operation header (header per region)
2211 * 3. Find out if we can fit entire region into this iclog
2212 * 4. Potentially, verify destination memcpy ptr
2213 * 5. Memcpy (partial) region
2214 * 6. If partial copy, release iclog; otherwise, continue
2215 * copying more regions into current iclog
2216 * 4. Mark want sync bit (in simulation mode)
2217 * 5. Release iclog for potential flush to on-disk log.
2219 * ERRORS:
2220 * 1. Panic if reservation is overrun. This should never happen since
2221 * reservation amounts are generated internal to the filesystem.
2222 * NOTES:
2223 * 1. Tickets are single threaded data structures.
2224 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2225 * syncing routine. When a single log_write region needs to span
2226 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2227 * on all log operation writes which don't contain the end of the
2228 * region. The XLOG_END_TRANS bit is used for the in-core log
2229 * operation which contains the end of the continued log_write region.
2230 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2231 * we don't really know exactly how much space will be used. As a result,
2232 * we don't update ic_offset until the end when we know exactly how many
2233 * bytes have been written out.
2236 xlog_write(
2237 struct xlog *log,
2238 struct xfs_cil_ctx *ctx,
2239 struct list_head *lv_chain,
2240 struct xlog_ticket *ticket,
2241 uint32_t len)
2244 struct xlog_in_core *iclog = NULL;
2245 struct xfs_log_vec *lv;
2246 uint32_t record_cnt = 0;
2247 uint32_t data_cnt = 0;
2248 int error = 0;
2249 int log_offset;
2251 if (ticket->t_curr_res < 0) {
2252 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2253 "ctx ticket reservation ran out. Need to up reservation");
2254 xlog_print_tic_res(log->l_mp, ticket);
2255 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
2258 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2259 &log_offset);
2260 if (error)
2261 return error;
2263 ASSERT(log_offset <= iclog->ic_size - 1);
2266 * If we have a context pointer, pass it the first iclog we are
2267 * writing to so it can record state needed for iclog write
2268 * ordering.
2270 if (ctx)
2271 xlog_cil_set_ctx_write_state(ctx, iclog);
2273 list_for_each_entry(lv, lv_chain, lv_list) {
2275 * If the entire log vec does not fit in the iclog, punt it to
2276 * the partial copy loop which can handle this case.
2278 if (lv->lv_niovecs &&
2279 lv->lv_bytes > iclog->ic_size - log_offset) {
2280 error = xlog_write_partial(lv, ticket, &iclog,
2281 &log_offset, &len, &record_cnt,
2282 &data_cnt);
2283 if (error) {
2285 * We have no iclog to release, so just return
2286 * the error immediately.
2288 return error;
2290 } else {
2291 xlog_write_full(lv, ticket, iclog, &log_offset,
2292 &len, &record_cnt, &data_cnt);
2295 ASSERT(len == 0);
2298 * We've already been guaranteed that the last writes will fit inside
2299 * the current iclog, and hence it will already have the space used by
2300 * those writes accounted to it. Hence we do not need to update the
2301 * iclog with the number of bytes written here.
2303 spin_lock(&log->l_icloglock);
2304 xlog_state_finish_copy(log, iclog, record_cnt, 0);
2305 error = xlog_state_release_iclog(log, iclog, ticket);
2306 spin_unlock(&log->l_icloglock);
2308 return error;
2311 static void
2312 xlog_state_activate_iclog(
2313 struct xlog_in_core *iclog,
2314 int *iclogs_changed)
2316 ASSERT(list_empty_careful(&iclog->ic_callbacks));
2317 trace_xlog_iclog_activate(iclog, _RET_IP_);
2320 * If the number of ops in this iclog indicate it just contains the
2321 * dummy transaction, we can change state into IDLE (the second time
2322 * around). Otherwise we should change the state into NEED a dummy.
2323 * We don't need to cover the dummy.
2325 if (*iclogs_changed == 0 &&
2326 iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2327 *iclogs_changed = 1;
2328 } else {
2330 * We have two dirty iclogs so start over. This could also be
2331 * num of ops indicating this is not the dummy going out.
2333 *iclogs_changed = 2;
2336 iclog->ic_state = XLOG_STATE_ACTIVE;
2337 iclog->ic_offset = 0;
2338 iclog->ic_header.h_num_logops = 0;
2339 memset(iclog->ic_header.h_cycle_data, 0,
2340 sizeof(iclog->ic_header.h_cycle_data));
2341 iclog->ic_header.h_lsn = 0;
2342 iclog->ic_header.h_tail_lsn = 0;
2346 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2347 * ACTIVE after iclog I/O has completed.
2349 static void
2350 xlog_state_activate_iclogs(
2351 struct xlog *log,
2352 int *iclogs_changed)
2354 struct xlog_in_core *iclog = log->l_iclog;
2356 do {
2357 if (iclog->ic_state == XLOG_STATE_DIRTY)
2358 xlog_state_activate_iclog(iclog, iclogs_changed);
2360 * The ordering of marking iclogs ACTIVE must be maintained, so
2361 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2363 else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2364 break;
2365 } while ((iclog = iclog->ic_next) != log->l_iclog);
2368 static int
2369 xlog_covered_state(
2370 int prev_state,
2371 int iclogs_changed)
2374 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2375 * wrote the first covering record (DONE). We go to IDLE if we just
2376 * wrote the second covering record (DONE2) and remain in IDLE until a
2377 * non-covering write occurs.
2379 switch (prev_state) {
2380 case XLOG_STATE_COVER_IDLE:
2381 if (iclogs_changed == 1)
2382 return XLOG_STATE_COVER_IDLE;
2383 fallthrough;
2384 case XLOG_STATE_COVER_NEED:
2385 case XLOG_STATE_COVER_NEED2:
2386 break;
2387 case XLOG_STATE_COVER_DONE:
2388 if (iclogs_changed == 1)
2389 return XLOG_STATE_COVER_NEED2;
2390 break;
2391 case XLOG_STATE_COVER_DONE2:
2392 if (iclogs_changed == 1)
2393 return XLOG_STATE_COVER_IDLE;
2394 break;
2395 default:
2396 ASSERT(0);
2399 return XLOG_STATE_COVER_NEED;
2402 STATIC void
2403 xlog_state_clean_iclog(
2404 struct xlog *log,
2405 struct xlog_in_core *dirty_iclog)
2407 int iclogs_changed = 0;
2409 trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2411 dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2413 xlog_state_activate_iclogs(log, &iclogs_changed);
2414 wake_up_all(&dirty_iclog->ic_force_wait);
2416 if (iclogs_changed) {
2417 log->l_covered_state = xlog_covered_state(log->l_covered_state,
2418 iclogs_changed);
2422 STATIC xfs_lsn_t
2423 xlog_get_lowest_lsn(
2424 struct xlog *log)
2426 struct xlog_in_core *iclog = log->l_iclog;
2427 xfs_lsn_t lowest_lsn = 0, lsn;
2429 do {
2430 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2431 iclog->ic_state == XLOG_STATE_DIRTY)
2432 continue;
2434 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2435 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2436 lowest_lsn = lsn;
2437 } while ((iclog = iclog->ic_next) != log->l_iclog);
2439 return lowest_lsn;
2443 * Return true if we need to stop processing, false to continue to the next
2444 * iclog. The caller will need to run callbacks if the iclog is returned in the
2445 * XLOG_STATE_CALLBACK state.
2447 static bool
2448 xlog_state_iodone_process_iclog(
2449 struct xlog *log,
2450 struct xlog_in_core *iclog)
2452 xfs_lsn_t lowest_lsn;
2453 xfs_lsn_t header_lsn;
2455 switch (iclog->ic_state) {
2456 case XLOG_STATE_ACTIVE:
2457 case XLOG_STATE_DIRTY:
2459 * Skip all iclogs in the ACTIVE & DIRTY states:
2461 return false;
2462 case XLOG_STATE_DONE_SYNC:
2464 * Now that we have an iclog that is in the DONE_SYNC state, do
2465 * one more check here to see if we have chased our tail around.
2466 * If this is not the lowest lsn iclog, then we will leave it
2467 * for another completion to process.
2469 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2470 lowest_lsn = xlog_get_lowest_lsn(log);
2471 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2472 return false;
2474 * If there are no callbacks on this iclog, we can mark it clean
2475 * immediately and return. Otherwise we need to run the
2476 * callbacks.
2478 if (list_empty(&iclog->ic_callbacks)) {
2479 xlog_state_clean_iclog(log, iclog);
2480 return false;
2482 trace_xlog_iclog_callback(iclog, _RET_IP_);
2483 iclog->ic_state = XLOG_STATE_CALLBACK;
2484 return false;
2485 default:
2487 * Can only perform callbacks in order. Since this iclog is not
2488 * in the DONE_SYNC state, we skip the rest and just try to
2489 * clean up.
2491 return true;
2496 * Loop over all the iclogs, running attached callbacks on them. Return true if
2497 * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2498 * to handle transient shutdown state here at all because
2499 * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2500 * cleanup of the callbacks.
2502 static bool
2503 xlog_state_do_iclog_callbacks(
2504 struct xlog *log)
2505 __releases(&log->l_icloglock)
2506 __acquires(&log->l_icloglock)
2508 struct xlog_in_core *first_iclog = log->l_iclog;
2509 struct xlog_in_core *iclog = first_iclog;
2510 bool ran_callback = false;
2512 do {
2513 LIST_HEAD(cb_list);
2515 if (xlog_state_iodone_process_iclog(log, iclog))
2516 break;
2517 if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2518 iclog = iclog->ic_next;
2519 continue;
2521 list_splice_init(&iclog->ic_callbacks, &cb_list);
2522 spin_unlock(&log->l_icloglock);
2524 trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2525 xlog_cil_process_committed(&cb_list);
2526 trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2527 ran_callback = true;
2529 spin_lock(&log->l_icloglock);
2530 xlog_state_clean_iclog(log, iclog);
2531 iclog = iclog->ic_next;
2532 } while (iclog != first_iclog);
2534 return ran_callback;
2539 * Loop running iclog completion callbacks until there are no more iclogs in a
2540 * state that can run callbacks.
2542 STATIC void
2543 xlog_state_do_callback(
2544 struct xlog *log)
2546 int flushcnt = 0;
2547 int repeats = 0;
2549 spin_lock(&log->l_icloglock);
2550 while (xlog_state_do_iclog_callbacks(log)) {
2551 if (xlog_is_shutdown(log))
2552 break;
2554 if (++repeats > 5000) {
2555 flushcnt += repeats;
2556 repeats = 0;
2557 xfs_warn(log->l_mp,
2558 "%s: possible infinite loop (%d iterations)",
2559 __func__, flushcnt);
2563 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE)
2564 wake_up_all(&log->l_flush_wait);
2566 spin_unlock(&log->l_icloglock);
2571 * Finish transitioning this iclog to the dirty state.
2573 * Callbacks could take time, so they are done outside the scope of the
2574 * global state machine log lock.
2576 STATIC void
2577 xlog_state_done_syncing(
2578 struct xlog_in_core *iclog)
2580 struct xlog *log = iclog->ic_log;
2582 spin_lock(&log->l_icloglock);
2583 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2584 trace_xlog_iclog_sync_done(iclog, _RET_IP_);
2587 * If we got an error, either on the first buffer, or in the case of
2588 * split log writes, on the second, we shut down the file system and
2589 * no iclogs should ever be attempted to be written to disk again.
2591 if (!xlog_is_shutdown(log)) {
2592 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2593 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2597 * Someone could be sleeping prior to writing out the next
2598 * iclog buffer, we wake them all, one will get to do the
2599 * I/O, the others get to wait for the result.
2601 wake_up_all(&iclog->ic_write_wait);
2602 spin_unlock(&log->l_icloglock);
2603 xlog_state_do_callback(log);
2607 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2608 * sleep. We wait on the flush queue on the head iclog as that should be
2609 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2610 * we will wait here and all new writes will sleep until a sync completes.
2612 * The in-core logs are used in a circular fashion. They are not used
2613 * out-of-order even when an iclog past the head is free.
2615 * return:
2616 * * log_offset where xlog_write() can start writing into the in-core
2617 * log's data space.
2618 * * in-core log pointer to which xlog_write() should write.
2619 * * boolean indicating this is a continued write to an in-core log.
2620 * If this is the last write, then the in-core log's offset field
2621 * needs to be incremented, depending on the amount of data which
2622 * is copied.
2624 STATIC int
2625 xlog_state_get_iclog_space(
2626 struct xlog *log,
2627 int len,
2628 struct xlog_in_core **iclogp,
2629 struct xlog_ticket *ticket,
2630 int *logoffsetp)
2632 int log_offset;
2633 xlog_rec_header_t *head;
2634 xlog_in_core_t *iclog;
2636 restart:
2637 spin_lock(&log->l_icloglock);
2638 if (xlog_is_shutdown(log)) {
2639 spin_unlock(&log->l_icloglock);
2640 return -EIO;
2643 iclog = log->l_iclog;
2644 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2645 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2647 /* Wait for log writes to have flushed */
2648 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2649 goto restart;
2652 head = &iclog->ic_header;
2654 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2655 log_offset = iclog->ic_offset;
2657 trace_xlog_iclog_get_space(iclog, _RET_IP_);
2659 /* On the 1st write to an iclog, figure out lsn. This works
2660 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2661 * committing to. If the offset is set, that's how many blocks
2662 * must be written.
2664 if (log_offset == 0) {
2665 ticket->t_curr_res -= log->l_iclog_hsize;
2666 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2667 head->h_lsn = cpu_to_be64(
2668 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2669 ASSERT(log->l_curr_block >= 0);
2672 /* If there is enough room to write everything, then do it. Otherwise,
2673 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2674 * bit is on, so this will get flushed out. Don't update ic_offset
2675 * until you know exactly how many bytes get copied. Therefore, wait
2676 * until later to update ic_offset.
2678 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2679 * can fit into remaining data section.
2681 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2682 int error = 0;
2684 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2687 * If we are the only one writing to this iclog, sync it to
2688 * disk. We need to do an atomic compare and decrement here to
2689 * avoid racing with concurrent atomic_dec_and_lock() calls in
2690 * xlog_state_release_iclog() when there is more than one
2691 * reference to the iclog.
2693 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2694 error = xlog_state_release_iclog(log, iclog, ticket);
2695 spin_unlock(&log->l_icloglock);
2696 if (error)
2697 return error;
2698 goto restart;
2701 /* Do we have enough room to write the full amount in the remainder
2702 * of this iclog? Or must we continue a write on the next iclog and
2703 * mark this iclog as completely taken? In the case where we switch
2704 * iclogs (to mark it taken), this particular iclog will release/sync
2705 * to disk in xlog_write().
2707 if (len <= iclog->ic_size - iclog->ic_offset)
2708 iclog->ic_offset += len;
2709 else
2710 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2711 *iclogp = iclog;
2713 ASSERT(iclog->ic_offset <= iclog->ic_size);
2714 spin_unlock(&log->l_icloglock);
2716 *logoffsetp = log_offset;
2717 return 0;
2721 * The first cnt-1 times a ticket goes through here we don't need to move the
2722 * grant write head because the permanent reservation has reserved cnt times the
2723 * unit amount. Release part of current permanent unit reservation and reset
2724 * current reservation to be one units worth. Also move grant reservation head
2725 * forward.
2727 void
2728 xfs_log_ticket_regrant(
2729 struct xlog *log,
2730 struct xlog_ticket *ticket)
2732 trace_xfs_log_ticket_regrant(log, ticket);
2734 if (ticket->t_cnt > 0)
2735 ticket->t_cnt--;
2737 xlog_grant_sub_space(&log->l_reserve_head, ticket->t_curr_res);
2738 xlog_grant_sub_space(&log->l_write_head, ticket->t_curr_res);
2739 ticket->t_curr_res = ticket->t_unit_res;
2741 trace_xfs_log_ticket_regrant_sub(log, ticket);
2743 /* just return if we still have some of the pre-reserved space */
2744 if (!ticket->t_cnt) {
2745 xlog_grant_add_space(&log->l_reserve_head, ticket->t_unit_res);
2746 trace_xfs_log_ticket_regrant_exit(log, ticket);
2748 ticket->t_curr_res = ticket->t_unit_res;
2751 xfs_log_ticket_put(ticket);
2755 * Give back the space left from a reservation.
2757 * All the information we need to make a correct determination of space left
2758 * is present. For non-permanent reservations, things are quite easy. The
2759 * count should have been decremented to zero. We only need to deal with the
2760 * space remaining in the current reservation part of the ticket. If the
2761 * ticket contains a permanent reservation, there may be left over space which
2762 * needs to be released. A count of N means that N-1 refills of the current
2763 * reservation can be done before we need to ask for more space. The first
2764 * one goes to fill up the first current reservation. Once we run out of
2765 * space, the count will stay at zero and the only space remaining will be
2766 * in the current reservation field.
2768 void
2769 xfs_log_ticket_ungrant(
2770 struct xlog *log,
2771 struct xlog_ticket *ticket)
2773 int bytes;
2775 trace_xfs_log_ticket_ungrant(log, ticket);
2777 if (ticket->t_cnt > 0)
2778 ticket->t_cnt--;
2780 trace_xfs_log_ticket_ungrant_sub(log, ticket);
2783 * If this is a permanent reservation ticket, we may be able to free
2784 * up more space based on the remaining count.
2786 bytes = ticket->t_curr_res;
2787 if (ticket->t_cnt > 0) {
2788 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2789 bytes += ticket->t_unit_res*ticket->t_cnt;
2792 xlog_grant_sub_space(&log->l_reserve_head, bytes);
2793 xlog_grant_sub_space(&log->l_write_head, bytes);
2795 trace_xfs_log_ticket_ungrant_exit(log, ticket);
2797 xfs_log_space_wake(log->l_mp);
2798 xfs_log_ticket_put(ticket);
2802 * This routine will mark the current iclog in the ring as WANT_SYNC and move
2803 * the current iclog pointer to the next iclog in the ring.
2805 void
2806 xlog_state_switch_iclogs(
2807 struct xlog *log,
2808 struct xlog_in_core *iclog,
2809 int eventual_size)
2811 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2812 assert_spin_locked(&log->l_icloglock);
2813 trace_xlog_iclog_switch(iclog, _RET_IP_);
2815 if (!eventual_size)
2816 eventual_size = iclog->ic_offset;
2817 iclog->ic_state = XLOG_STATE_WANT_SYNC;
2818 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2819 log->l_prev_block = log->l_curr_block;
2820 log->l_prev_cycle = log->l_curr_cycle;
2822 /* roll log?: ic_offset changed later */
2823 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2825 /* Round up to next log-sunit */
2826 if (log->l_iclog_roundoff > BBSIZE) {
2827 uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
2828 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2831 if (log->l_curr_block >= log->l_logBBsize) {
2833 * Rewind the current block before the cycle is bumped to make
2834 * sure that the combined LSN never transiently moves forward
2835 * when the log wraps to the next cycle. This is to support the
2836 * unlocked sample of these fields from xlog_valid_lsn(). Most
2837 * other cases should acquire l_icloglock.
2839 log->l_curr_block -= log->l_logBBsize;
2840 ASSERT(log->l_curr_block >= 0);
2841 smp_wmb();
2842 log->l_curr_cycle++;
2843 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2844 log->l_curr_cycle++;
2846 ASSERT(iclog == log->l_iclog);
2847 log->l_iclog = iclog->ic_next;
2851 * Force the iclog to disk and check if the iclog has been completed before
2852 * xlog_force_iclog() returns. This can happen on synchronous (e.g.
2853 * pmem) or fast async storage because we drop the icloglock to issue the IO.
2854 * If completion has already occurred, tell the caller so that it can avoid an
2855 * unnecessary wait on the iclog.
2857 static int
2858 xlog_force_and_check_iclog(
2859 struct xlog_in_core *iclog,
2860 bool *completed)
2862 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2863 int error;
2865 *completed = false;
2866 error = xlog_force_iclog(iclog);
2867 if (error)
2868 return error;
2871 * If the iclog has already been completed and reused the header LSN
2872 * will have been rewritten by completion
2874 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
2875 *completed = true;
2876 return 0;
2880 * Write out all data in the in-core log as of this exact moment in time.
2882 * Data may be written to the in-core log during this call. However,
2883 * we don't guarantee this data will be written out. A change from past
2884 * implementation means this routine will *not* write out zero length LRs.
2886 * Basically, we try and perform an intelligent scan of the in-core logs.
2887 * If we determine there is no flushable data, we just return. There is no
2888 * flushable data if:
2890 * 1. the current iclog is active and has no data; the previous iclog
2891 * is in the active or dirty state.
2892 * 2. the current iclog is drity, and the previous iclog is in the
2893 * active or dirty state.
2895 * We may sleep if:
2897 * 1. the current iclog is not in the active nor dirty state.
2898 * 2. the current iclog dirty, and the previous iclog is not in the
2899 * active nor dirty state.
2900 * 3. the current iclog is active, and there is another thread writing
2901 * to this particular iclog.
2902 * 4. a) the current iclog is active and has no other writers
2903 * b) when we return from flushing out this iclog, it is still
2904 * not in the active nor dirty state.
2907 xfs_log_force(
2908 struct xfs_mount *mp,
2909 uint flags)
2911 struct xlog *log = mp->m_log;
2912 struct xlog_in_core *iclog;
2914 XFS_STATS_INC(mp, xs_log_force);
2915 trace_xfs_log_force(mp, 0, _RET_IP_);
2917 xlog_cil_force(log);
2919 spin_lock(&log->l_icloglock);
2920 if (xlog_is_shutdown(log))
2921 goto out_error;
2923 iclog = log->l_iclog;
2924 trace_xlog_iclog_force(iclog, _RET_IP_);
2926 if (iclog->ic_state == XLOG_STATE_DIRTY ||
2927 (iclog->ic_state == XLOG_STATE_ACTIVE &&
2928 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
2930 * If the head is dirty or (active and empty), then we need to
2931 * look at the previous iclog.
2933 * If the previous iclog is active or dirty we are done. There
2934 * is nothing to sync out. Otherwise, we attach ourselves to the
2935 * previous iclog and go to sleep.
2937 iclog = iclog->ic_prev;
2938 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
2939 if (atomic_read(&iclog->ic_refcnt) == 0) {
2940 /* We have exclusive access to this iclog. */
2941 bool completed;
2943 if (xlog_force_and_check_iclog(iclog, &completed))
2944 goto out_error;
2946 if (completed)
2947 goto out_unlock;
2948 } else {
2950 * Someone else is still writing to this iclog, so we
2951 * need to ensure that when they release the iclog it
2952 * gets synced immediately as we may be waiting on it.
2954 xlog_state_switch_iclogs(log, iclog, 0);
2959 * The iclog we are about to wait on may contain the checkpoint pushed
2960 * by the above xlog_cil_force() call, but it may not have been pushed
2961 * to disk yet. Like the ACTIVE case above, we need to make sure caches
2962 * are flushed when this iclog is written.
2964 if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
2965 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
2967 if (flags & XFS_LOG_SYNC)
2968 return xlog_wait_on_iclog(iclog);
2969 out_unlock:
2970 spin_unlock(&log->l_icloglock);
2971 return 0;
2972 out_error:
2973 spin_unlock(&log->l_icloglock);
2974 return -EIO;
2978 * Force the log to a specific LSN.
2980 * If an iclog with that lsn can be found:
2981 * If it is in the DIRTY state, just return.
2982 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
2983 * state and go to sleep or return.
2984 * If it is in any other state, go to sleep or return.
2986 * Synchronous forces are implemented with a wait queue. All callers trying
2987 * to force a given lsn to disk must wait on the queue attached to the
2988 * specific in-core log. When given in-core log finally completes its write
2989 * to disk, that thread will wake up all threads waiting on the queue.
2991 static int
2992 xlog_force_lsn(
2993 struct xlog *log,
2994 xfs_lsn_t lsn,
2995 uint flags,
2996 int *log_flushed,
2997 bool already_slept)
2999 struct xlog_in_core *iclog;
3000 bool completed;
3002 spin_lock(&log->l_icloglock);
3003 if (xlog_is_shutdown(log))
3004 goto out_error;
3006 iclog = log->l_iclog;
3007 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3008 trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
3009 iclog = iclog->ic_next;
3010 if (iclog == log->l_iclog)
3011 goto out_unlock;
3014 switch (iclog->ic_state) {
3015 case XLOG_STATE_ACTIVE:
3017 * We sleep here if we haven't already slept (e.g. this is the
3018 * first time we've looked at the correct iclog buf) and the
3019 * buffer before us is going to be sync'ed. The reason for this
3020 * is that if we are doing sync transactions here, by waiting
3021 * for the previous I/O to complete, we can allow a few more
3022 * transactions into this iclog before we close it down.
3024 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3025 * refcnt so we can release the log (which drops the ref count).
3026 * The state switch keeps new transaction commits from using
3027 * this buffer. When the current commits finish writing into
3028 * the buffer, the refcount will drop to zero and the buffer
3029 * will go out then.
3031 if (!already_slept &&
3032 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3033 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3034 xlog_wait(&iclog->ic_prev->ic_write_wait,
3035 &log->l_icloglock);
3036 return -EAGAIN;
3038 if (xlog_force_and_check_iclog(iclog, &completed))
3039 goto out_error;
3040 if (log_flushed)
3041 *log_flushed = 1;
3042 if (completed)
3043 goto out_unlock;
3044 break;
3045 case XLOG_STATE_WANT_SYNC:
3047 * This iclog may contain the checkpoint pushed by the
3048 * xlog_cil_force_seq() call, but there are other writers still
3049 * accessing it so it hasn't been pushed to disk yet. Like the
3050 * ACTIVE case above, we need to make sure caches are flushed
3051 * when this iclog is written.
3053 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3054 break;
3055 default:
3057 * The entire checkpoint was written by the CIL force and is on
3058 * its way to disk already. It will be stable when it
3059 * completes, so we don't need to manipulate caches here at all.
3060 * We just need to wait for completion if necessary.
3062 break;
3065 if (flags & XFS_LOG_SYNC)
3066 return xlog_wait_on_iclog(iclog);
3067 out_unlock:
3068 spin_unlock(&log->l_icloglock);
3069 return 0;
3070 out_error:
3071 spin_unlock(&log->l_icloglock);
3072 return -EIO;
3076 * Force the log to a specific checkpoint sequence.
3078 * First force the CIL so that all the required changes have been flushed to the
3079 * iclogs. If the CIL force completed it will return a commit LSN that indicates
3080 * the iclog that needs to be flushed to stable storage. If the caller needs
3081 * a synchronous log force, we will wait on the iclog with the LSN returned by
3082 * xlog_cil_force_seq() to be completed.
3085 xfs_log_force_seq(
3086 struct xfs_mount *mp,
3087 xfs_csn_t seq,
3088 uint flags,
3089 int *log_flushed)
3091 struct xlog *log = mp->m_log;
3092 xfs_lsn_t lsn;
3093 int ret;
3094 ASSERT(seq != 0);
3096 XFS_STATS_INC(mp, xs_log_force);
3097 trace_xfs_log_force(mp, seq, _RET_IP_);
3099 lsn = xlog_cil_force_seq(log, seq);
3100 if (lsn == NULLCOMMITLSN)
3101 return 0;
3103 ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3104 if (ret == -EAGAIN) {
3105 XFS_STATS_INC(mp, xs_log_force_sleep);
3106 ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3108 return ret;
3112 * Free a used ticket when its refcount falls to zero.
3114 void
3115 xfs_log_ticket_put(
3116 xlog_ticket_t *ticket)
3118 ASSERT(atomic_read(&ticket->t_ref) > 0);
3119 if (atomic_dec_and_test(&ticket->t_ref))
3120 kmem_cache_free(xfs_log_ticket_cache, ticket);
3123 xlog_ticket_t *
3124 xfs_log_ticket_get(
3125 xlog_ticket_t *ticket)
3127 ASSERT(atomic_read(&ticket->t_ref) > 0);
3128 atomic_inc(&ticket->t_ref);
3129 return ticket;
3133 * Figure out the total log space unit (in bytes) that would be
3134 * required for a log ticket.
3136 static int
3137 xlog_calc_unit_res(
3138 struct xlog *log,
3139 int unit_bytes,
3140 int *niclogs)
3142 int iclog_space;
3143 uint num_headers;
3146 * Permanent reservations have up to 'cnt'-1 active log operations
3147 * in the log. A unit in this case is the amount of space for one
3148 * of these log operations. Normal reservations have a cnt of 1
3149 * and their unit amount is the total amount of space required.
3151 * The following lines of code account for non-transaction data
3152 * which occupy space in the on-disk log.
3154 * Normal form of a transaction is:
3155 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3156 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3158 * We need to account for all the leadup data and trailer data
3159 * around the transaction data.
3160 * And then we need to account for the worst case in terms of using
3161 * more space.
3162 * The worst case will happen if:
3163 * - the placement of the transaction happens to be such that the
3164 * roundoff is at its maximum
3165 * - the transaction data is synced before the commit record is synced
3166 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3167 * Therefore the commit record is in its own Log Record.
3168 * This can happen as the commit record is called with its
3169 * own region to xlog_write().
3170 * This then means that in the worst case, roundoff can happen for
3171 * the commit-rec as well.
3172 * The commit-rec is smaller than padding in this scenario and so it is
3173 * not added separately.
3176 /* for trans header */
3177 unit_bytes += sizeof(xlog_op_header_t);
3178 unit_bytes += sizeof(xfs_trans_header_t);
3180 /* for start-rec */
3181 unit_bytes += sizeof(xlog_op_header_t);
3184 * for LR headers - the space for data in an iclog is the size minus
3185 * the space used for the headers. If we use the iclog size, then we
3186 * undercalculate the number of headers required.
3188 * Furthermore - the addition of op headers for split-recs might
3189 * increase the space required enough to require more log and op
3190 * headers, so take that into account too.
3192 * IMPORTANT: This reservation makes the assumption that if this
3193 * transaction is the first in an iclog and hence has the LR headers
3194 * accounted to it, then the remaining space in the iclog is
3195 * exclusively for this transaction. i.e. if the transaction is larger
3196 * than the iclog, it will be the only thing in that iclog.
3197 * Fundamentally, this means we must pass the entire log vector to
3198 * xlog_write to guarantee this.
3200 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3201 num_headers = howmany(unit_bytes, iclog_space);
3203 /* for split-recs - ophdrs added when data split over LRs */
3204 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3206 /* add extra header reservations if we overrun */
3207 while (!num_headers ||
3208 howmany(unit_bytes, iclog_space) > num_headers) {
3209 unit_bytes += sizeof(xlog_op_header_t);
3210 num_headers++;
3212 unit_bytes += log->l_iclog_hsize * num_headers;
3214 /* for commit-rec LR header - note: padding will subsume the ophdr */
3215 unit_bytes += log->l_iclog_hsize;
3217 /* roundoff padding for transaction data and one for commit record */
3218 unit_bytes += 2 * log->l_iclog_roundoff;
3220 if (niclogs)
3221 *niclogs = num_headers;
3222 return unit_bytes;
3226 xfs_log_calc_unit_res(
3227 struct xfs_mount *mp,
3228 int unit_bytes)
3230 return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL);
3234 * Allocate and initialise a new log ticket.
3236 struct xlog_ticket *
3237 xlog_ticket_alloc(
3238 struct xlog *log,
3239 int unit_bytes,
3240 int cnt,
3241 bool permanent)
3243 struct xlog_ticket *tic;
3244 int unit_res;
3246 tic = kmem_cache_zalloc(xfs_log_ticket_cache,
3247 GFP_KERNEL | __GFP_NOFAIL);
3249 unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs);
3251 atomic_set(&tic->t_ref, 1);
3252 tic->t_task = current;
3253 INIT_LIST_HEAD(&tic->t_queue);
3254 tic->t_unit_res = unit_res;
3255 tic->t_curr_res = unit_res;
3256 tic->t_cnt = cnt;
3257 tic->t_ocnt = cnt;
3258 tic->t_tid = get_random_u32();
3259 if (permanent)
3260 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3262 return tic;
3265 #if defined(DEBUG)
3266 static void
3267 xlog_verify_dump_tail(
3268 struct xlog *log,
3269 struct xlog_in_core *iclog)
3271 xfs_alert(log->l_mp,
3272 "ran out of log space tail 0x%llx/0x%llx, head lsn 0x%llx, head 0x%x/0x%x, prev head 0x%x/0x%x",
3273 iclog ? be64_to_cpu(iclog->ic_header.h_tail_lsn) : -1,
3274 atomic64_read(&log->l_tail_lsn),
3275 log->l_ailp->ail_head_lsn,
3276 log->l_curr_cycle, log->l_curr_block,
3277 log->l_prev_cycle, log->l_prev_block);
3278 xfs_alert(log->l_mp,
3279 "write grant 0x%llx, reserve grant 0x%llx, tail_space 0x%llx, size 0x%x, iclog flags 0x%x",
3280 atomic64_read(&log->l_write_head.grant),
3281 atomic64_read(&log->l_reserve_head.grant),
3282 log->l_tail_space, log->l_logsize,
3283 iclog ? iclog->ic_flags : -1);
3286 /* Check if the new iclog will fit in the log. */
3287 STATIC void
3288 xlog_verify_tail_lsn(
3289 struct xlog *log,
3290 struct xlog_in_core *iclog)
3292 xfs_lsn_t tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3293 int blocks;
3295 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3296 blocks = log->l_logBBsize -
3297 (log->l_prev_block - BLOCK_LSN(tail_lsn));
3298 if (blocks < BTOBB(iclog->ic_offset) +
3299 BTOBB(log->l_iclog_hsize)) {
3300 xfs_emerg(log->l_mp,
3301 "%s: ran out of log space", __func__);
3302 xlog_verify_dump_tail(log, iclog);
3304 return;
3307 if (CYCLE_LSN(tail_lsn) + 1 != log->l_prev_cycle) {
3308 xfs_emerg(log->l_mp, "%s: head has wrapped tail.", __func__);
3309 xlog_verify_dump_tail(log, iclog);
3310 return;
3312 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) {
3313 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3314 xlog_verify_dump_tail(log, iclog);
3315 return;
3318 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3319 if (blocks < BTOBB(iclog->ic_offset) + 1) {
3320 xfs_emerg(log->l_mp, "%s: ran out of iclog space", __func__);
3321 xlog_verify_dump_tail(log, iclog);
3326 * Perform a number of checks on the iclog before writing to disk.
3328 * 1. Make sure the iclogs are still circular
3329 * 2. Make sure we have a good magic number
3330 * 3. Make sure we don't have magic numbers in the data
3331 * 4. Check fields of each log operation header for:
3332 * A. Valid client identifier
3333 * B. tid ptr value falls in valid ptr space (user space code)
3334 * C. Length in log record header is correct according to the
3335 * individual operation headers within record.
3336 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3337 * log, check the preceding blocks of the physical log to make sure all
3338 * the cycle numbers agree with the current cycle number.
3340 STATIC void
3341 xlog_verify_iclog(
3342 struct xlog *log,
3343 struct xlog_in_core *iclog,
3344 int count)
3346 xlog_op_header_t *ophead;
3347 xlog_in_core_t *icptr;
3348 xlog_in_core_2_t *xhdr;
3349 void *base_ptr, *ptr, *p;
3350 ptrdiff_t field_offset;
3351 uint8_t clientid;
3352 int len, i, j, k, op_len;
3353 int idx;
3355 /* check validity of iclog pointers */
3356 spin_lock(&log->l_icloglock);
3357 icptr = log->l_iclog;
3358 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3359 ASSERT(icptr);
3361 if (icptr != log->l_iclog)
3362 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3363 spin_unlock(&log->l_icloglock);
3365 /* check log magic numbers */
3366 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3367 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3369 base_ptr = ptr = &iclog->ic_header;
3370 p = &iclog->ic_header;
3371 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3372 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3373 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3374 __func__);
3377 /* check fields */
3378 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3379 base_ptr = ptr = iclog->ic_datap;
3380 ophead = ptr;
3381 xhdr = iclog->ic_data;
3382 for (i = 0; i < len; i++) {
3383 ophead = ptr;
3385 /* clientid is only 1 byte */
3386 p = &ophead->oh_clientid;
3387 field_offset = p - base_ptr;
3388 if (field_offset & 0x1ff) {
3389 clientid = ophead->oh_clientid;
3390 } else {
3391 idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap);
3392 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3393 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3394 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3395 clientid = xlog_get_client_id(
3396 xhdr[j].hic_xheader.xh_cycle_data[k]);
3397 } else {
3398 clientid = xlog_get_client_id(
3399 iclog->ic_header.h_cycle_data[idx]);
3402 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) {
3403 xfs_warn(log->l_mp,
3404 "%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx",
3405 __func__, i, clientid, ophead,
3406 (unsigned long)field_offset);
3409 /* check length */
3410 p = &ophead->oh_len;
3411 field_offset = p - base_ptr;
3412 if (field_offset & 0x1ff) {
3413 op_len = be32_to_cpu(ophead->oh_len);
3414 } else {
3415 idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap);
3416 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3417 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3418 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3419 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3420 } else {
3421 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3424 ptr += sizeof(xlog_op_header_t) + op_len;
3427 #endif
3430 * Perform a forced shutdown on the log.
3432 * This can be called from low level log code to trigger a shutdown, or from the
3433 * high level mount shutdown code when the mount shuts down.
3435 * Our main objectives here are to make sure that:
3436 * a. if the shutdown was not due to a log IO error, flush the logs to
3437 * disk. Anything modified after this is ignored.
3438 * b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3439 * parties to find out. Nothing new gets queued after this is done.
3440 * c. Tasks sleeping on log reservations, pinned objects and
3441 * other resources get woken up.
3442 * d. The mount is also marked as shut down so that log triggered shutdowns
3443 * still behave the same as if they called xfs_forced_shutdown().
3445 * Return true if the shutdown cause was a log IO error and we actually shut the
3446 * log down.
3448 bool
3449 xlog_force_shutdown(
3450 struct xlog *log,
3451 uint32_t shutdown_flags)
3453 bool log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
3455 if (!log)
3456 return false;
3459 * Ensure that there is only ever one log shutdown being processed.
3460 * If we allow the log force below on a second pass after shutting
3461 * down the log, we risk deadlocking the CIL push as it may require
3462 * locks on objects the current shutdown context holds (e.g. taking
3463 * buffer locks to abort buffers on last unpin of buf log items).
3465 if (test_and_set_bit(XLOG_SHUTDOWN_STARTED, &log->l_opstate))
3466 return false;
3469 * Flush all the completed transactions to disk before marking the log
3470 * being shut down. We need to do this first as shutting down the log
3471 * before the force will prevent the log force from flushing the iclogs
3472 * to disk.
3474 * When we are in recovery, there are no transactions to flush, and
3475 * we don't want to touch the log because we don't want to perturb the
3476 * current head/tail for future recovery attempts. Hence we need to
3477 * avoid a log force in this case.
3479 * If we are shutting down due to a log IO error, then we must avoid
3480 * trying to write the log as that may just result in more IO errors and
3481 * an endless shutdown/force loop.
3483 if (!log_error && !xlog_in_recovery(log))
3484 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3487 * Atomically set the shutdown state. If the shutdown state is already
3488 * set, there someone else is performing the shutdown and so we are done
3489 * here. This should never happen because we should only ever get called
3490 * once by the first shutdown caller.
3492 * Much of the log state machine transitions assume that shutdown state
3493 * cannot change once they hold the log->l_icloglock. Hence we need to
3494 * hold that lock here, even though we use the atomic test_and_set_bit()
3495 * operation to set the shutdown state.
3497 spin_lock(&log->l_icloglock);
3498 if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3499 spin_unlock(&log->l_icloglock);
3500 ASSERT(0);
3501 return false;
3503 spin_unlock(&log->l_icloglock);
3506 * If this log shutdown also sets the mount shutdown state, issue a
3507 * shutdown warning message.
3509 if (!xfs_set_shutdown(log->l_mp)) {
3510 xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR,
3511 "Filesystem has been shut down due to log error (0x%x).",
3512 shutdown_flags);
3513 xfs_alert(log->l_mp,
3514 "Please unmount the filesystem and rectify the problem(s).");
3515 if (xfs_error_level >= XFS_ERRLEVEL_HIGH)
3516 xfs_stack_trace();
3520 * We don't want anybody waiting for log reservations after this. That
3521 * means we have to wake up everybody queued up on reserveq as well as
3522 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3523 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3524 * action is protected by the grant locks.
3526 xlog_grant_head_wake_all(&log->l_reserve_head);
3527 xlog_grant_head_wake_all(&log->l_write_head);
3530 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3531 * as if the log writes were completed. The abort handling in the log
3532 * item committed callback functions will do this again under lock to
3533 * avoid races.
3535 spin_lock(&log->l_cilp->xc_push_lock);
3536 wake_up_all(&log->l_cilp->xc_start_wait);
3537 wake_up_all(&log->l_cilp->xc_commit_wait);
3538 spin_unlock(&log->l_cilp->xc_push_lock);
3540 spin_lock(&log->l_icloglock);
3541 xlog_state_shutdown_callbacks(log);
3542 spin_unlock(&log->l_icloglock);
3544 wake_up_var(&log->l_opstate);
3545 return log_error;
3548 STATIC int
3549 xlog_iclogs_empty(
3550 struct xlog *log)
3552 xlog_in_core_t *iclog;
3554 iclog = log->l_iclog;
3555 do {
3556 /* endianness does not matter here, zero is zero in
3557 * any language.
3559 if (iclog->ic_header.h_num_logops)
3560 return 0;
3561 iclog = iclog->ic_next;
3562 } while (iclog != log->l_iclog);
3563 return 1;
3567 * Verify that an LSN stamped into a piece of metadata is valid. This is
3568 * intended for use in read verifiers on v5 superblocks.
3570 bool
3571 xfs_log_check_lsn(
3572 struct xfs_mount *mp,
3573 xfs_lsn_t lsn)
3575 struct xlog *log = mp->m_log;
3576 bool valid;
3579 * norecovery mode skips mount-time log processing and unconditionally
3580 * resets the in-core LSN. We can't validate in this mode, but
3581 * modifications are not allowed anyways so just return true.
3583 if (xfs_has_norecovery(mp))
3584 return true;
3587 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3588 * handled by recovery and thus safe to ignore here.
3590 if (lsn == NULLCOMMITLSN)
3591 return true;
3593 valid = xlog_valid_lsn(mp->m_log, lsn);
3595 /* warn the user about what's gone wrong before verifier failure */
3596 if (!valid) {
3597 spin_lock(&log->l_icloglock);
3598 xfs_warn(mp,
3599 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3600 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3601 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3602 log->l_curr_cycle, log->l_curr_block);
3603 spin_unlock(&log->l_icloglock);
3606 return valid;