1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
22 #include "xfs_health.h"
24 struct kmem_cache
*xfs_log_ticket_cache
;
26 /* Local miscellaneous function prototypes */
30 struct xfs_buftarg
*log_target
,
31 xfs_daddr_t blk_offset
,
37 /* local state machine functions */
38 STATIC
void xlog_state_done_syncing(
39 struct xlog_in_core
*iclog
);
40 STATIC
void xlog_state_do_callback(
43 xlog_state_get_iclog_space(
46 struct xlog_in_core
**iclog
,
47 struct xlog_ticket
*ticket
,
52 struct xlog_in_core
*iclog
,
53 struct xlog_ticket
*ticket
);
58 struct xlog_in_core
*iclog
,
63 struct xlog_in_core
*iclog
);
65 #define xlog_verify_iclog(a,b,c)
66 #define xlog_verify_tail_lsn(a,b)
74 xfs_log_cover(struct xfs_mount
*);
77 * We need to make sure the buffer pointer returned is naturally aligned for the
78 * biggest basic data type we put into it. We have already accounted for this
79 * padding when sizing the buffer.
81 * However, this padding does not get written into the log, and hence we have to
82 * track the space used by the log vectors separately to prevent log space hangs
83 * due to inaccurate accounting (i.e. a leak) of the used log space through the
86 * We also add space for the xlog_op_header that describes this region in the
87 * log. This prepends the data region we return to the caller to copy their data
88 * into, so do all the static initialisation of the ophdr now. Because the ophdr
89 * is not 8 byte aligned, we have to be careful to ensure that we align the
90 * start of the buffer such that the region we return to the call is 8 byte
91 * aligned and packed against the tail of the ophdr.
95 struct xfs_log_vec
*lv
,
96 struct xfs_log_iovec
**vecp
,
99 struct xfs_log_iovec
*vec
= *vecp
;
100 struct xlog_op_header
*oph
;
105 ASSERT(vec
- lv
->lv_iovecp
< lv
->lv_niovecs
);
108 vec
= &lv
->lv_iovecp
[0];
111 len
= lv
->lv_buf_len
+ sizeof(struct xlog_op_header
);
112 if (!IS_ALIGNED(len
, sizeof(uint64_t))) {
113 lv
->lv_buf_len
= round_up(len
, sizeof(uint64_t)) -
114 sizeof(struct xlog_op_header
);
118 vec
->i_addr
= lv
->lv_buf
+ lv
->lv_buf_len
;
121 oph
->oh_clientid
= XFS_TRANSACTION
;
125 buf
= vec
->i_addr
+ sizeof(struct xlog_op_header
);
126 ASSERT(IS_ALIGNED((unsigned long)buf
, sizeof(uint64_t)));
133 xlog_grant_sub_space(
134 struct xlog_grant_head
*head
,
137 atomic64_sub(bytes
, &head
->grant
);
141 xlog_grant_add_space(
142 struct xlog_grant_head
*head
,
145 atomic64_add(bytes
, &head
->grant
);
149 xlog_grant_head_init(
150 struct xlog_grant_head
*head
)
152 atomic64_set(&head
->grant
, 0);
153 INIT_LIST_HEAD(&head
->waiters
);
154 spin_lock_init(&head
->lock
);
158 xlog_grant_return_space(
163 int64_t diff
= xlog_lsn_sub(log
, new_head
, old_head
);
165 xlog_grant_sub_space(&log
->l_reserve_head
, diff
);
166 xlog_grant_sub_space(&log
->l_write_head
, diff
);
170 * Return the space in the log between the tail and the head. In the case where
171 * we have overrun available reservation space, return 0. The memory barrier
172 * pairs with the smp_wmb() in xlog_cil_ail_insert() to ensure that grant head
173 * vs tail space updates are seen in the correct order and hence avoid
174 * transients as space is transferred from the grant heads to the AIL on commit
178 xlog_grant_space_left(
180 struct xlog_grant_head
*head
)
184 smp_rmb(); /* paired with smp_wmb in xlog_cil_ail_insert() */
185 free_bytes
= log
->l_logsize
- READ_ONCE(log
->l_tail_space
) -
186 atomic64_read(&head
->grant
);
193 xlog_grant_head_wake_all(
194 struct xlog_grant_head
*head
)
196 struct xlog_ticket
*tic
;
198 spin_lock(&head
->lock
);
199 list_for_each_entry(tic
, &head
->waiters
, t_queue
)
200 wake_up_process(tic
->t_task
);
201 spin_unlock(&head
->lock
);
205 xlog_ticket_reservation(
207 struct xlog_grant_head
*head
,
208 struct xlog_ticket
*tic
)
210 if (head
== &log
->l_write_head
) {
211 ASSERT(tic
->t_flags
& XLOG_TIC_PERM_RESERV
);
212 return tic
->t_unit_res
;
215 if (tic
->t_flags
& XLOG_TIC_PERM_RESERV
)
216 return tic
->t_unit_res
* tic
->t_cnt
;
218 return tic
->t_unit_res
;
222 xlog_grant_head_wake(
224 struct xlog_grant_head
*head
,
227 struct xlog_ticket
*tic
;
230 list_for_each_entry(tic
, &head
->waiters
, t_queue
) {
231 need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
232 if (*free_bytes
< need_bytes
)
235 *free_bytes
-= need_bytes
;
236 trace_xfs_log_grant_wake_up(log
, tic
);
237 wake_up_process(tic
->t_task
);
244 xlog_grant_head_wait(
246 struct xlog_grant_head
*head
,
247 struct xlog_ticket
*tic
,
248 int need_bytes
) __releases(&head
->lock
)
249 __acquires(&head
->lock
)
251 list_add_tail(&tic
->t_queue
, &head
->waiters
);
254 if (xlog_is_shutdown(log
))
257 __set_current_state(TASK_UNINTERRUPTIBLE
);
258 spin_unlock(&head
->lock
);
260 XFS_STATS_INC(log
->l_mp
, xs_sleep_logspace
);
262 /* Push on the AIL to free up all the log space. */
263 xfs_ail_push_all(log
->l_ailp
);
265 trace_xfs_log_grant_sleep(log
, tic
);
267 trace_xfs_log_grant_wake(log
, tic
);
269 spin_lock(&head
->lock
);
270 if (xlog_is_shutdown(log
))
272 } while (xlog_grant_space_left(log
, head
) < need_bytes
);
274 list_del_init(&tic
->t_queue
);
277 list_del_init(&tic
->t_queue
);
282 * Atomically get the log space required for a log ticket.
284 * Once a ticket gets put onto head->waiters, it will only return after the
285 * needed reservation is satisfied.
287 * This function is structured so that it has a lock free fast path. This is
288 * necessary because every new transaction reservation will come through this
289 * path. Hence any lock will be globally hot if we take it unconditionally on
292 * As tickets are only ever moved on and off head->waiters under head->lock, we
293 * only need to take that lock if we are going to add the ticket to the queue
294 * and sleep. We can avoid taking the lock if the ticket was never added to
295 * head->waiters because the t_queue list head will be empty and we hold the
296 * only reference to it so it can safely be checked unlocked.
299 xlog_grant_head_check(
301 struct xlog_grant_head
*head
,
302 struct xlog_ticket
*tic
,
308 ASSERT(!xlog_in_recovery(log
));
311 * If there are other waiters on the queue then give them a chance at
312 * logspace before us. Wake up the first waiters, if we do not wake
313 * up all the waiters then go to sleep waiting for more free space,
314 * otherwise try to get some space for this transaction.
316 *need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
317 free_bytes
= xlog_grant_space_left(log
, head
);
318 if (!list_empty_careful(&head
->waiters
)) {
319 spin_lock(&head
->lock
);
320 if (!xlog_grant_head_wake(log
, head
, &free_bytes
) ||
321 free_bytes
< *need_bytes
) {
322 error
= xlog_grant_head_wait(log
, head
, tic
,
325 spin_unlock(&head
->lock
);
326 } else if (free_bytes
< *need_bytes
) {
327 spin_lock(&head
->lock
);
328 error
= xlog_grant_head_wait(log
, head
, tic
, *need_bytes
);
329 spin_unlock(&head
->lock
);
337 struct xfs_mount
*mp
)
340 * Do not write to the log on norecovery mounts, if the data or log
341 * devices are read-only, or if the filesystem is shutdown. Read-only
342 * mounts allow internal writes for log recovery and unmount purposes,
343 * so don't restrict that case.
345 if (xfs_has_norecovery(mp
))
347 if (xfs_readonly_buftarg(mp
->m_ddev_targp
))
349 if (xfs_readonly_buftarg(mp
->m_log
->l_targ
))
351 if (xlog_is_shutdown(mp
->m_log
))
357 * Replenish the byte reservation required by moving the grant write head.
361 struct xfs_mount
*mp
,
362 struct xlog_ticket
*tic
)
364 struct xlog
*log
= mp
->m_log
;
368 if (xlog_is_shutdown(log
))
371 XFS_STATS_INC(mp
, xs_try_logspace
);
374 * This is a new transaction on the ticket, so we need to change the
375 * transaction ID so that the next transaction has a different TID in
376 * the log. Just add one to the existing tid so that we can see chains
377 * of rolling transactions in the log easily.
380 tic
->t_curr_res
= tic
->t_unit_res
;
384 trace_xfs_log_regrant(log
, tic
);
386 error
= xlog_grant_head_check(log
, &log
->l_write_head
, tic
,
391 xlog_grant_add_space(&log
->l_write_head
, need_bytes
);
392 trace_xfs_log_regrant_exit(log
, tic
);
397 * If we are failing, make sure the ticket doesn't have any current
398 * reservations. We don't want to add this back when the ticket/
399 * transaction gets cancelled.
402 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
407 * Reserve log space and return a ticket corresponding to the reservation.
409 * Each reservation is going to reserve extra space for a log record header.
410 * When writes happen to the on-disk log, we don't subtract the length of the
411 * log record header from any reservation. By wasting space in each
412 * reservation, we prevent over allocation problems.
416 struct xfs_mount
*mp
,
419 struct xlog_ticket
**ticp
,
422 struct xlog
*log
= mp
->m_log
;
423 struct xlog_ticket
*tic
;
427 if (xlog_is_shutdown(log
))
430 XFS_STATS_INC(mp
, xs_try_logspace
);
432 ASSERT(*ticp
== NULL
);
433 tic
= xlog_ticket_alloc(log
, unit_bytes
, cnt
, permanent
);
435 trace_xfs_log_reserve(log
, tic
);
436 error
= xlog_grant_head_check(log
, &log
->l_reserve_head
, tic
,
441 xlog_grant_add_space(&log
->l_reserve_head
, need_bytes
);
442 xlog_grant_add_space(&log
->l_write_head
, need_bytes
);
443 trace_xfs_log_reserve_exit(log
, tic
);
448 * If we are failing, make sure the ticket doesn't have any current
449 * reservations. We don't want to add this back when the ticket/
450 * transaction gets cancelled.
453 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
458 * Run all the pending iclog callbacks and wake log force waiters and iclog
459 * space waiters so they can process the newly set shutdown state. We really
460 * don't care what order we process callbacks here because the log is shut down
461 * and so state cannot change on disk anymore. However, we cannot wake waiters
462 * until the callbacks have been processed because we may be in unmount and
463 * we must ensure that all AIL operations the callbacks perform have completed
464 * before we tear down the AIL.
466 * We avoid processing actively referenced iclogs so that we don't run callbacks
467 * while the iclog owner might still be preparing the iclog for IO submssion.
468 * These will be caught by xlog_state_iclog_release() and call this function
469 * again to process any callbacks that may have been added to that iclog.
472 xlog_state_shutdown_callbacks(
475 struct xlog_in_core
*iclog
;
478 iclog
= log
->l_iclog
;
480 if (atomic_read(&iclog
->ic_refcnt
)) {
481 /* Reference holder will re-run iclog callbacks. */
484 list_splice_init(&iclog
->ic_callbacks
, &cb_list
);
485 spin_unlock(&log
->l_icloglock
);
487 xlog_cil_process_committed(&cb_list
);
489 spin_lock(&log
->l_icloglock
);
490 wake_up_all(&iclog
->ic_write_wait
);
491 wake_up_all(&iclog
->ic_force_wait
);
492 } while ((iclog
= iclog
->ic_next
) != log
->l_iclog
);
494 wake_up_all(&log
->l_flush_wait
);
498 * Flush iclog to disk if this is the last reference to the given iclog and the
499 * it is in the WANT_SYNC state.
501 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
502 * log tail is updated correctly. NEED_FUA indicates that the iclog will be
503 * written to stable storage, and implies that a commit record is contained
504 * within the iclog. We need to ensure that the log tail does not move beyond
505 * the tail that the first commit record in the iclog ordered against, otherwise
506 * correct recovery of that checkpoint becomes dependent on future operations
507 * performed on this iclog.
509 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
510 * current tail into iclog. Once the iclog tail is set, future operations must
511 * not modify it, otherwise they potentially violate ordering constraints for
512 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
513 * the iclog will get zeroed on activation of the iclog after sync, so we
514 * always capture the tail lsn on the iclog on the first NEED_FUA release
515 * regardless of the number of active reference counts on this iclog.
518 xlog_state_release_iclog(
520 struct xlog_in_core
*iclog
,
521 struct xlog_ticket
*ticket
)
525 lockdep_assert_held(&log
->l_icloglock
);
527 trace_xlog_iclog_release(iclog
, _RET_IP_
);
529 * Grabbing the current log tail needs to be atomic w.r.t. the writing
530 * of the tail LSN into the iclog so we guarantee that the log tail does
531 * not move between the first time we know that the iclog needs to be
532 * made stable and when we eventually submit it.
534 if ((iclog
->ic_state
== XLOG_STATE_WANT_SYNC
||
535 (iclog
->ic_flags
& XLOG_ICL_NEED_FUA
)) &&
536 !iclog
->ic_header
.h_tail_lsn
) {
537 iclog
->ic_header
.h_tail_lsn
=
538 cpu_to_be64(atomic64_read(&log
->l_tail_lsn
));
541 last_ref
= atomic_dec_and_test(&iclog
->ic_refcnt
);
543 if (xlog_is_shutdown(log
)) {
545 * If there are no more references to this iclog, process the
546 * pending iclog callbacks that were waiting on the release of
550 xlog_state_shutdown_callbacks(log
);
557 if (iclog
->ic_state
!= XLOG_STATE_WANT_SYNC
) {
558 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
);
562 iclog
->ic_state
= XLOG_STATE_SYNCING
;
563 xlog_verify_tail_lsn(log
, iclog
);
564 trace_xlog_iclog_syncing(iclog
, _RET_IP_
);
566 spin_unlock(&log
->l_icloglock
);
567 xlog_sync(log
, iclog
, ticket
);
568 spin_lock(&log
->l_icloglock
);
573 * Mount a log filesystem
575 * mp - ubiquitous xfs mount point structure
576 * log_target - buftarg of on-disk log device
577 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
578 * num_bblocks - Number of BBSIZE blocks in on-disk log
580 * Return error or zero.
585 struct xfs_buftarg
*log_target
,
586 xfs_daddr_t blk_offset
,
593 if (!xfs_has_norecovery(mp
)) {
594 xfs_notice(mp
, "Mounting V%d Filesystem %pU",
595 XFS_SB_VERSION_NUM(&mp
->m_sb
),
599 "Mounting V%d filesystem %pU in no-recovery mode. Filesystem will be inconsistent.",
600 XFS_SB_VERSION_NUM(&mp
->m_sb
),
602 ASSERT(xfs_is_readonly(mp
));
605 log
= xlog_alloc_log(mp
, log_target
, blk_offset
, num_bblks
);
607 error
= PTR_ERR(log
);
613 * Now that we have set up the log and it's internal geometry
614 * parameters, we can validate the given log space and drop a critical
615 * message via syslog if the log size is too small. A log that is too
616 * small can lead to unexpected situations in transaction log space
617 * reservation stage. The superblock verifier has already validated all
618 * the other log geometry constraints, so we don't have to check those
621 * Note: For v4 filesystems, we can't just reject the mount if the
622 * validation fails. This would mean that people would have to
623 * downgrade their kernel just to remedy the situation as there is no
624 * way to grow the log (short of black magic surgery with xfs_db).
626 * We can, however, reject mounts for V5 format filesystems, as the
627 * mkfs binary being used to make the filesystem should never create a
628 * filesystem with a log that is too small.
630 min_logfsbs
= xfs_log_calc_minimum_size(mp
);
631 if (mp
->m_sb
.sb_logblocks
< min_logfsbs
) {
633 "Log size %d blocks too small, minimum size is %d blocks",
634 mp
->m_sb
.sb_logblocks
, min_logfsbs
);
637 * Log check errors are always fatal on v5; or whenever bad
638 * metadata leads to a crash.
640 if (xfs_has_crc(mp
)) {
641 xfs_crit(mp
, "AAIEEE! Log failed size checks. Abort!");
646 xfs_crit(mp
, "Log size out of supported range.");
648 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
652 * Initialize the AIL now we have a log.
654 error
= xfs_trans_ail_init(mp
);
656 xfs_warn(mp
, "AIL initialisation failed: error %d", error
);
659 log
->l_ailp
= mp
->m_ail
;
662 * skip log recovery on a norecovery mount. pretend it all
665 if (!xfs_has_norecovery(mp
)) {
666 error
= xlog_recover(log
);
668 xfs_warn(mp
, "log mount/recovery failed: error %d",
670 xlog_recover_cancel(log
);
671 goto out_destroy_ail
;
675 error
= xfs_sysfs_init(&log
->l_kobj
, &xfs_log_ktype
, &mp
->m_kobj
,
678 goto out_destroy_ail
;
680 /* Normal transactions can now occur */
681 clear_bit(XLOG_ACTIVE_RECOVERY
, &log
->l_opstate
);
684 * Now the log has been fully initialised and we know were our
685 * space grant counters are, we can initialise the permanent ticket
686 * needed for delayed logging to work.
688 xlog_cil_init_post_recovery(log
);
693 xfs_trans_ail_destroy(mp
);
695 xlog_dealloc_log(log
);
701 * Finish the recovery of the file system. This is separate from the
702 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
703 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
706 * If we finish recovery successfully, start the background log work. If we are
707 * not doing recovery, then we have a RO filesystem and we don't need to start
711 xfs_log_mount_finish(
712 struct xfs_mount
*mp
)
714 struct xlog
*log
= mp
->m_log
;
717 if (xfs_has_norecovery(mp
)) {
718 ASSERT(xfs_is_readonly(mp
));
723 * During the second phase of log recovery, we need iget and
724 * iput to behave like they do for an active filesystem.
725 * xfs_fs_drop_inode needs to be able to prevent the deletion
726 * of inodes before we're done replaying log items on those
727 * inodes. Turn it off immediately after recovery finishes
728 * so that we don't leak the quota inodes if subsequent mount
731 * We let all inodes involved in redo item processing end up on
732 * the LRU instead of being evicted immediately so that if we do
733 * something to an unlinked inode, the irele won't cause
734 * premature truncation and freeing of the inode, which results
735 * in log recovery failure. We have to evict the unreferenced
736 * lru inodes after clearing SB_ACTIVE because we don't
737 * otherwise clean up the lru if there's a subsequent failure in
738 * xfs_mountfs, which leads to us leaking the inodes if nothing
739 * else (e.g. quotacheck) references the inodes before the
740 * mount failure occurs.
742 mp
->m_super
->s_flags
|= SB_ACTIVE
;
743 xfs_log_work_queue(mp
);
744 if (xlog_recovery_needed(log
))
745 error
= xlog_recover_finish(log
);
746 mp
->m_super
->s_flags
&= ~SB_ACTIVE
;
747 evict_inodes(mp
->m_super
);
750 * Drain the buffer LRU after log recovery. This is required for v4
751 * filesystems to avoid leaving around buffers with NULL verifier ops,
752 * but we do it unconditionally to make sure we're always in a clean
753 * cache state after mount.
755 * Don't push in the error case because the AIL may have pending intents
756 * that aren't removed until recovery is cancelled.
758 if (xlog_recovery_needed(log
)) {
760 xfs_log_force(mp
, XFS_LOG_SYNC
);
761 xfs_ail_push_all_sync(mp
->m_ail
);
763 xfs_notice(mp
, "Ending recovery (logdev: %s)",
764 mp
->m_logname
? mp
->m_logname
: "internal");
766 xfs_info(mp
, "Ending clean mount");
768 xfs_buftarg_drain(mp
->m_ddev_targp
);
770 clear_bit(XLOG_RECOVERY_NEEDED
, &log
->l_opstate
);
772 /* Make sure the log is dead if we're returning failure. */
773 ASSERT(!error
|| xlog_is_shutdown(log
));
779 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
783 xfs_log_mount_cancel(
784 struct xfs_mount
*mp
)
786 xlog_recover_cancel(mp
->m_log
);
791 * Flush out the iclog to disk ensuring that device caches are flushed and
792 * the iclog hits stable storage before any completion waiters are woken.
796 struct xlog_in_core
*iclog
)
798 atomic_inc(&iclog
->ic_refcnt
);
799 iclog
->ic_flags
|= XLOG_ICL_NEED_FLUSH
| XLOG_ICL_NEED_FUA
;
800 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
)
801 xlog_state_switch_iclogs(iclog
->ic_log
, iclog
, 0);
802 return xlog_state_release_iclog(iclog
->ic_log
, iclog
, NULL
);
806 * Cycle all the iclogbuf locks to make sure all log IO completion
807 * is done before we tear down these buffers.
810 xlog_wait_iclog_completion(struct xlog
*log
)
813 struct xlog_in_core
*iclog
= log
->l_iclog
;
815 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
816 down(&iclog
->ic_sema
);
818 iclog
= iclog
->ic_next
;
823 * Wait for the iclog and all prior iclogs to be written disk as required by the
824 * log force state machine. Waiting on ic_force_wait ensures iclog completions
825 * have been ordered and callbacks run before we are woken here, hence
826 * guaranteeing that all the iclogs up to this one are on stable storage.
830 struct xlog_in_core
*iclog
)
831 __releases(iclog
->ic_log
->l_icloglock
)
833 struct xlog
*log
= iclog
->ic_log
;
835 trace_xlog_iclog_wait_on(iclog
, _RET_IP_
);
836 if (!xlog_is_shutdown(log
) &&
837 iclog
->ic_state
!= XLOG_STATE_ACTIVE
&&
838 iclog
->ic_state
!= XLOG_STATE_DIRTY
) {
839 XFS_STATS_INC(log
->l_mp
, xs_log_force_sleep
);
840 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
842 spin_unlock(&log
->l_icloglock
);
845 if (xlog_is_shutdown(log
))
851 * Write out an unmount record using the ticket provided. We have to account for
852 * the data space used in the unmount ticket as this write is not done from a
853 * transaction context that has already done the accounting for us.
856 xlog_write_unmount_record(
858 struct xlog_ticket
*ticket
)
861 struct xlog_op_header ophdr
;
862 struct xfs_unmount_log_format ulf
;
865 .oh_clientid
= XFS_LOG
,
866 .oh_tid
= cpu_to_be32(ticket
->t_tid
),
867 .oh_flags
= XLOG_UNMOUNT_TRANS
,
870 .magic
= XLOG_UNMOUNT_TYPE
,
873 struct xfs_log_iovec reg
= {
874 .i_addr
= &unmount_rec
,
875 .i_len
= sizeof(unmount_rec
),
876 .i_type
= XLOG_REG_TYPE_UNMOUNT
,
878 struct xfs_log_vec vec
= {
883 list_add(&vec
.lv_list
, &lv_chain
);
885 BUILD_BUG_ON((sizeof(struct xlog_op_header
) +
886 sizeof(struct xfs_unmount_log_format
)) !=
887 sizeof(unmount_rec
));
889 /* account for space used by record data */
890 ticket
->t_curr_res
-= sizeof(unmount_rec
);
892 return xlog_write(log
, NULL
, &lv_chain
, ticket
, reg
.i_len
);
896 * Mark the filesystem clean by writing an unmount record to the head of the
903 struct xfs_mount
*mp
= log
->l_mp
;
904 struct xlog_in_core
*iclog
;
905 struct xlog_ticket
*tic
= NULL
;
908 error
= xfs_log_reserve(mp
, 600, 1, &tic
, 0);
912 error
= xlog_write_unmount_record(log
, tic
);
914 * At this point, we're umounting anyway, so there's no point in
915 * transitioning log state to shutdown. Just continue...
919 xfs_alert(mp
, "%s: unmount record failed", __func__
);
921 spin_lock(&log
->l_icloglock
);
922 iclog
= log
->l_iclog
;
923 error
= xlog_force_iclog(iclog
);
924 xlog_wait_on_iclog(iclog
);
927 trace_xfs_log_umount_write(log
, tic
);
928 xfs_log_ticket_ungrant(log
, tic
);
933 xfs_log_unmount_verify_iclog(
936 struct xlog_in_core
*iclog
= log
->l_iclog
;
939 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
);
940 ASSERT(iclog
->ic_offset
== 0);
941 } while ((iclog
= iclog
->ic_next
) != log
->l_iclog
);
945 * Unmount record used to have a string "Unmount filesystem--" in the
946 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
947 * We just write the magic number now since that particular field isn't
948 * currently architecture converted and "Unmount" is a bit foo.
949 * As far as I know, there weren't any dependencies on the old behaviour.
952 xfs_log_unmount_write(
953 struct xfs_mount
*mp
)
955 struct xlog
*log
= mp
->m_log
;
957 if (!xfs_log_writable(mp
))
960 xfs_log_force(mp
, XFS_LOG_SYNC
);
962 if (xlog_is_shutdown(log
))
966 * If we think the summary counters are bad, avoid writing the unmount
967 * record to force log recovery at next mount, after which the summary
968 * counters will be recalculated. Refer to xlog_check_unmount_rec for
971 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp
, XFS_SICK_FS_COUNTERS
), mp
,
972 XFS_ERRTAG_FORCE_SUMMARY_RECALC
)) {
973 xfs_alert(mp
, "%s: will fix summary counters at next mount",
978 xfs_log_unmount_verify_iclog(log
);
979 xlog_unmount_write(log
);
983 * Empty the log for unmount/freeze.
985 * To do this, we first need to shut down the background log work so it is not
986 * trying to cover the log as we clean up. We then need to unpin all objects in
987 * the log so we can then flush them out. Once they have completed their IO and
988 * run the callbacks removing themselves from the AIL, we can cover the log.
992 struct xfs_mount
*mp
)
995 * Clear log incompat features since we're quiescing the log. Report
996 * failures, though it's not fatal to have a higher log feature
997 * protection level than the log contents actually require.
999 if (xfs_clear_incompat_log_features(mp
)) {
1002 error
= xfs_sync_sb(mp
, false);
1005 "Failed to clear log incompat features on quiesce");
1008 cancel_delayed_work_sync(&mp
->m_log
->l_work
);
1009 xfs_log_force(mp
, XFS_LOG_SYNC
);
1012 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1013 * will push it, xfs_buftarg_wait() will not wait for it. Further,
1014 * xfs_buf_iowait() cannot be used because it was pushed with the
1015 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1016 * the IO to complete.
1018 xfs_ail_push_all_sync(mp
->m_ail
);
1019 xfs_buftarg_wait(mp
->m_ddev_targp
);
1020 xfs_buf_lock(mp
->m_sb_bp
);
1021 xfs_buf_unlock(mp
->m_sb_bp
);
1023 return xfs_log_cover(mp
);
1028 struct xfs_mount
*mp
)
1030 xfs_log_quiesce(mp
);
1031 xfs_log_unmount_write(mp
);
1035 * Shut down and release the AIL and Log.
1037 * During unmount, we need to ensure we flush all the dirty metadata objects
1038 * from the AIL so that the log is empty before we write the unmount record to
1039 * the log. Once this is done, we can tear down the AIL and the log.
1043 struct xfs_mount
*mp
)
1048 * If shutdown has come from iclog IO context, the log
1049 * cleaning will have been skipped and so we need to wait
1050 * for the iclog to complete shutdown processing before we
1051 * tear anything down.
1053 xlog_wait_iclog_completion(mp
->m_log
);
1055 xfs_buftarg_drain(mp
->m_ddev_targp
);
1057 xfs_trans_ail_destroy(mp
);
1059 xfs_sysfs_del(&mp
->m_log
->l_kobj
);
1061 xlog_dealloc_log(mp
->m_log
);
1066 struct xfs_mount
*mp
,
1067 struct xfs_log_item
*item
,
1069 const struct xfs_item_ops
*ops
)
1071 item
->li_log
= mp
->m_log
;
1072 item
->li_ailp
= mp
->m_ail
;
1073 item
->li_type
= type
;
1077 INIT_LIST_HEAD(&item
->li_ail
);
1078 INIT_LIST_HEAD(&item
->li_cil
);
1079 INIT_LIST_HEAD(&item
->li_bio_list
);
1080 INIT_LIST_HEAD(&item
->li_trans
);
1084 * Wake up processes waiting for log space after we have moved the log tail.
1088 struct xfs_mount
*mp
)
1090 struct xlog
*log
= mp
->m_log
;
1093 if (xlog_is_shutdown(log
))
1096 if (!list_empty_careful(&log
->l_write_head
.waiters
)) {
1097 ASSERT(!xlog_in_recovery(log
));
1099 spin_lock(&log
->l_write_head
.lock
);
1100 free_bytes
= xlog_grant_space_left(log
, &log
->l_write_head
);
1101 xlog_grant_head_wake(log
, &log
->l_write_head
, &free_bytes
);
1102 spin_unlock(&log
->l_write_head
.lock
);
1105 if (!list_empty_careful(&log
->l_reserve_head
.waiters
)) {
1106 ASSERT(!xlog_in_recovery(log
));
1108 spin_lock(&log
->l_reserve_head
.lock
);
1109 free_bytes
= xlog_grant_space_left(log
, &log
->l_reserve_head
);
1110 xlog_grant_head_wake(log
, &log
->l_reserve_head
, &free_bytes
);
1111 spin_unlock(&log
->l_reserve_head
.lock
);
1116 * Determine if we have a transaction that has gone to disk that needs to be
1117 * covered. To begin the transition to the idle state firstly the log needs to
1118 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1119 * we start attempting to cover the log.
1121 * Only if we are then in a state where covering is needed, the caller is
1122 * informed that dummy transactions are required to move the log into the idle
1125 * If there are any items in the AIl or CIL, then we do not want to attempt to
1126 * cover the log as we may be in a situation where there isn't log space
1127 * available to run a dummy transaction and this can lead to deadlocks when the
1128 * tail of the log is pinned by an item that is modified in the CIL. Hence
1129 * there's no point in running a dummy transaction at this point because we
1130 * can't start trying to idle the log until both the CIL and AIL are empty.
1133 xfs_log_need_covered(
1134 struct xfs_mount
*mp
)
1136 struct xlog
*log
= mp
->m_log
;
1137 bool needed
= false;
1139 if (!xlog_cil_empty(log
))
1142 spin_lock(&log
->l_icloglock
);
1143 switch (log
->l_covered_state
) {
1144 case XLOG_STATE_COVER_DONE
:
1145 case XLOG_STATE_COVER_DONE2
:
1146 case XLOG_STATE_COVER_IDLE
:
1148 case XLOG_STATE_COVER_NEED
:
1149 case XLOG_STATE_COVER_NEED2
:
1150 if (xfs_ail_min_lsn(log
->l_ailp
))
1152 if (!xlog_iclogs_empty(log
))
1156 if (log
->l_covered_state
== XLOG_STATE_COVER_NEED
)
1157 log
->l_covered_state
= XLOG_STATE_COVER_DONE
;
1159 log
->l_covered_state
= XLOG_STATE_COVER_DONE2
;
1165 spin_unlock(&log
->l_icloglock
);
1170 * Explicitly cover the log. This is similar to background log covering but
1171 * intended for usage in quiesce codepaths. The caller is responsible to ensure
1172 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1173 * must all be empty.
1177 struct xfs_mount
*mp
)
1182 ASSERT((xlog_cil_empty(mp
->m_log
) && xlog_iclogs_empty(mp
->m_log
) &&
1183 !xfs_ail_min_lsn(mp
->m_log
->l_ailp
)) ||
1184 xlog_is_shutdown(mp
->m_log
));
1186 if (!xfs_log_writable(mp
))
1190 * xfs_log_need_covered() is not idempotent because it progresses the
1191 * state machine if the log requires covering. Therefore, we must call
1192 * this function once and use the result until we've issued an sb sync.
1193 * Do so first to make that abundantly clear.
1195 * Fall into the covering sequence if the log needs covering or the
1196 * mount has lazy superblock accounting to sync to disk. The sb sync
1197 * used for covering accumulates the in-core counters, so covering
1198 * handles this for us.
1200 need_covered
= xfs_log_need_covered(mp
);
1201 if (!need_covered
&& !xfs_has_lazysbcount(mp
))
1205 * To cover the log, commit the superblock twice (at most) in
1206 * independent checkpoints. The first serves as a reference for the
1207 * tail pointer. The sync transaction and AIL push empties the AIL and
1208 * updates the in-core tail to the LSN of the first checkpoint. The
1209 * second commit updates the on-disk tail with the in-core LSN,
1210 * covering the log. Push the AIL one more time to leave it empty, as
1214 error
= xfs_sync_sb(mp
, true);
1217 xfs_ail_push_all_sync(mp
->m_ail
);
1218 } while (xfs_log_need_covered(mp
));
1225 struct work_struct
*work
)
1227 struct xlog_in_core
*iclog
=
1228 container_of(work
, struct xlog_in_core
, ic_end_io_work
);
1229 struct xlog
*log
= iclog
->ic_log
;
1232 error
= blk_status_to_errno(iclog
->ic_bio
.bi_status
);
1234 /* treat writes with injected CRC errors as failed */
1235 if (iclog
->ic_fail_crc
)
1240 * Race to shutdown the filesystem if we see an error.
1242 if (XFS_TEST_ERROR(error
, log
->l_mp
, XFS_ERRTAG_IODONE_IOERR
)) {
1243 xfs_alert(log
->l_mp
, "log I/O error %d", error
);
1244 xlog_force_shutdown(log
, SHUTDOWN_LOG_IO_ERROR
);
1247 xlog_state_done_syncing(iclog
);
1248 bio_uninit(&iclog
->ic_bio
);
1251 * Drop the lock to signal that we are done. Nothing references the
1252 * iclog after this, so an unmount waiting on this lock can now tear it
1253 * down safely. As such, it is unsafe to reference the iclog after the
1254 * unlock as we could race with it being freed.
1256 up(&iclog
->ic_sema
);
1260 * Return size of each in-core log record buffer.
1262 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1264 * If the filesystem blocksize is too large, we may need to choose a
1265 * larger size since the directory code currently logs entire blocks.
1268 xlog_get_iclog_buffer_size(
1269 struct xfs_mount
*mp
,
1272 if (mp
->m_logbufs
<= 0)
1273 mp
->m_logbufs
= XLOG_MAX_ICLOGS
;
1274 if (mp
->m_logbsize
<= 0)
1275 mp
->m_logbsize
= XLOG_BIG_RECORD_BSIZE
;
1277 log
->l_iclog_bufs
= mp
->m_logbufs
;
1278 log
->l_iclog_size
= mp
->m_logbsize
;
1281 * # headers = size / 32k - one header holds cycles from 32k of data.
1283 log
->l_iclog_heads
=
1284 DIV_ROUND_UP(mp
->m_logbsize
, XLOG_HEADER_CYCLE_SIZE
);
1285 log
->l_iclog_hsize
= log
->l_iclog_heads
<< BBSHIFT
;
1290 struct xfs_mount
*mp
)
1292 queue_delayed_work(mp
->m_sync_workqueue
, &mp
->m_log
->l_work
,
1293 msecs_to_jiffies(xfs_syncd_centisecs
* 10));
1297 * Clear the log incompat flags if we have the opportunity.
1299 * This only happens if we're about to log the second dummy transaction as part
1300 * of covering the log.
1303 xlog_clear_incompat(
1306 struct xfs_mount
*mp
= log
->l_mp
;
1308 if (!xfs_sb_has_incompat_log_feature(&mp
->m_sb
,
1309 XFS_SB_FEAT_INCOMPAT_LOG_ALL
))
1312 if (log
->l_covered_state
!= XLOG_STATE_COVER_DONE2
)
1315 xfs_clear_incompat_log_features(mp
);
1319 * Every sync period we need to unpin all items in the AIL and push them to
1320 * disk. If there is nothing dirty, then we might need to cover the log to
1321 * indicate that the filesystem is idle.
1325 struct work_struct
*work
)
1327 struct xlog
*log
= container_of(to_delayed_work(work
),
1328 struct xlog
, l_work
);
1329 struct xfs_mount
*mp
= log
->l_mp
;
1331 /* dgc: errors ignored - not fatal and nowhere to report them */
1332 if (xfs_fs_writable(mp
, SB_FREEZE_WRITE
) && xfs_log_need_covered(mp
)) {
1334 * Dump a transaction into the log that contains no real change.
1335 * This is needed to stamp the current tail LSN into the log
1336 * during the covering operation.
1338 * We cannot use an inode here for this - that will push dirty
1339 * state back up into the VFS and then periodic inode flushing
1340 * will prevent log covering from making progress. Hence we
1341 * synchronously log the superblock instead to ensure the
1342 * superblock is immediately unpinned and can be written back.
1344 xlog_clear_incompat(log
);
1345 xfs_sync_sb(mp
, true);
1347 xfs_log_force(mp
, 0);
1349 /* start pushing all the metadata that is currently dirty */
1350 xfs_ail_push_all(mp
->m_ail
);
1352 /* queue us up again */
1353 xfs_log_work_queue(mp
);
1357 * This routine initializes some of the log structure for a given mount point.
1358 * Its primary purpose is to fill in enough, so recovery can occur. However,
1359 * some other stuff may be filled in too.
1361 STATIC
struct xlog
*
1363 struct xfs_mount
*mp
,
1364 struct xfs_buftarg
*log_target
,
1365 xfs_daddr_t blk_offset
,
1369 xlog_rec_header_t
*head
;
1370 xlog_in_core_t
**iclogp
;
1371 xlog_in_core_t
*iclog
, *prev_iclog
=NULL
;
1373 int error
= -ENOMEM
;
1376 log
= kzalloc(sizeof(struct xlog
), GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
1378 xfs_warn(mp
, "Log allocation failed: No memory!");
1383 log
->l_targ
= log_target
;
1384 log
->l_logsize
= BBTOB(num_bblks
);
1385 log
->l_logBBstart
= blk_offset
;
1386 log
->l_logBBsize
= num_bblks
;
1387 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
1388 set_bit(XLOG_ACTIVE_RECOVERY
, &log
->l_opstate
);
1389 INIT_DELAYED_WORK(&log
->l_work
, xfs_log_worker
);
1390 INIT_LIST_HEAD(&log
->r_dfops
);
1392 log
->l_prev_block
= -1;
1393 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1394 xlog_assign_atomic_lsn(&log
->l_tail_lsn
, 1, 0);
1395 log
->l_curr_cycle
= 1; /* 0 is bad since this is initial value */
1397 if (xfs_has_logv2(mp
) && mp
->m_sb
.sb_logsunit
> 1)
1398 log
->l_iclog_roundoff
= mp
->m_sb
.sb_logsunit
;
1400 log
->l_iclog_roundoff
= BBSIZE
;
1402 xlog_grant_head_init(&log
->l_reserve_head
);
1403 xlog_grant_head_init(&log
->l_write_head
);
1405 error
= -EFSCORRUPTED
;
1406 if (xfs_has_sector(mp
)) {
1407 log2_size
= mp
->m_sb
.sb_logsectlog
;
1408 if (log2_size
< BBSHIFT
) {
1409 xfs_warn(mp
, "Log sector size too small (0x%x < 0x%x)",
1410 log2_size
, BBSHIFT
);
1414 log2_size
-= BBSHIFT
;
1415 if (log2_size
> mp
->m_sectbb_log
) {
1416 xfs_warn(mp
, "Log sector size too large (0x%x > 0x%x)",
1417 log2_size
, mp
->m_sectbb_log
);
1421 /* for larger sector sizes, must have v2 or external log */
1422 if (log2_size
&& log
->l_logBBstart
> 0 &&
1423 !xfs_has_logv2(mp
)) {
1425 "log sector size (0x%x) invalid for configuration.",
1430 log
->l_sectBBsize
= 1 << log2_size
;
1432 xlog_get_iclog_buffer_size(mp
, log
);
1434 spin_lock_init(&log
->l_icloglock
);
1435 init_waitqueue_head(&log
->l_flush_wait
);
1437 iclogp
= &log
->l_iclog
;
1439 * The amount of memory to allocate for the iclog structure is
1440 * rather funky due to the way the structure is defined. It is
1441 * done this way so that we can use different sizes for machines
1442 * with different amounts of memory. See the definition of
1443 * xlog_in_core_t in xfs_log_priv.h for details.
1445 ASSERT(log
->l_iclog_size
>= 4096);
1446 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
1447 size_t bvec_size
= howmany(log
->l_iclog_size
, PAGE_SIZE
) *
1448 sizeof(struct bio_vec
);
1450 iclog
= kzalloc(sizeof(*iclog
) + bvec_size
,
1451 GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
1453 goto out_free_iclog
;
1456 iclog
->ic_prev
= prev_iclog
;
1459 iclog
->ic_data
= kvzalloc(log
->l_iclog_size
,
1460 GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
1461 if (!iclog
->ic_data
)
1462 goto out_free_iclog
;
1463 head
= &iclog
->ic_header
;
1464 memset(head
, 0, sizeof(xlog_rec_header_t
));
1465 head
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1466 head
->h_version
= cpu_to_be32(
1467 xfs_has_logv2(log
->l_mp
) ? 2 : 1);
1468 head
->h_size
= cpu_to_be32(log
->l_iclog_size
);
1470 head
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1471 memcpy(&head
->h_fs_uuid
, &mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1473 iclog
->ic_size
= log
->l_iclog_size
- log
->l_iclog_hsize
;
1474 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
1475 iclog
->ic_log
= log
;
1476 atomic_set(&iclog
->ic_refcnt
, 0);
1477 INIT_LIST_HEAD(&iclog
->ic_callbacks
);
1478 iclog
->ic_datap
= (void *)iclog
->ic_data
+ log
->l_iclog_hsize
;
1480 init_waitqueue_head(&iclog
->ic_force_wait
);
1481 init_waitqueue_head(&iclog
->ic_write_wait
);
1482 INIT_WORK(&iclog
->ic_end_io_work
, xlog_ioend_work
);
1483 sema_init(&iclog
->ic_sema
, 1);
1485 iclogp
= &iclog
->ic_next
;
1487 *iclogp
= log
->l_iclog
; /* complete ring */
1488 log
->l_iclog
->ic_prev
= prev_iclog
; /* re-write 1st prev ptr */
1490 log
->l_ioend_workqueue
= alloc_workqueue("xfs-log/%s",
1491 XFS_WQFLAGS(WQ_FREEZABLE
| WQ_MEM_RECLAIM
|
1493 0, mp
->m_super
->s_id
);
1494 if (!log
->l_ioend_workqueue
)
1495 goto out_free_iclog
;
1497 error
= xlog_cil_init(log
);
1499 goto out_destroy_workqueue
;
1502 out_destroy_workqueue
:
1503 destroy_workqueue(log
->l_ioend_workqueue
);
1505 for (iclog
= log
->l_iclog
; iclog
; iclog
= prev_iclog
) {
1506 prev_iclog
= iclog
->ic_next
;
1507 kvfree(iclog
->ic_data
);
1509 if (prev_iclog
== log
->l_iclog
)
1515 return ERR_PTR(error
);
1516 } /* xlog_alloc_log */
1519 * Stamp cycle number in every block
1524 struct xlog_in_core
*iclog
,
1528 int size
= iclog
->ic_offset
+ roundoff
;
1532 cycle_lsn
= CYCLE_LSN_DISK(iclog
->ic_header
.h_lsn
);
1534 dp
= iclog
->ic_datap
;
1535 for (i
= 0; i
< BTOBB(size
); i
++) {
1536 if (i
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
))
1538 iclog
->ic_header
.h_cycle_data
[i
] = *(__be32
*)dp
;
1539 *(__be32
*)dp
= cycle_lsn
;
1543 if (xfs_has_logv2(log
->l_mp
)) {
1544 xlog_in_core_2_t
*xhdr
= iclog
->ic_data
;
1546 for ( ; i
< BTOBB(size
); i
++) {
1547 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1548 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1549 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
] = *(__be32
*)dp
;
1550 *(__be32
*)dp
= cycle_lsn
;
1554 for (i
= 1; i
< log
->l_iclog_heads
; i
++)
1555 xhdr
[i
].hic_xheader
.xh_cycle
= cycle_lsn
;
1560 * Calculate the checksum for a log buffer.
1562 * This is a little more complicated than it should be because the various
1563 * headers and the actual data are non-contiguous.
1568 struct xlog_rec_header
*rhead
,
1574 /* first generate the crc for the record header ... */
1575 crc
= xfs_start_cksum_update((char *)rhead
,
1576 sizeof(struct xlog_rec_header
),
1577 offsetof(struct xlog_rec_header
, h_crc
));
1579 /* ... then for additional cycle data for v2 logs ... */
1580 if (xfs_has_logv2(log
->l_mp
)) {
1581 union xlog_in_core2
*xhdr
= (union xlog_in_core2
*)rhead
;
1585 xheads
= DIV_ROUND_UP(size
, XLOG_HEADER_CYCLE_SIZE
);
1587 for (i
= 1; i
< xheads
; i
++) {
1588 crc
= crc32c(crc
, &xhdr
[i
].hic_xheader
,
1589 sizeof(struct xlog_rec_ext_header
));
1593 /* ... and finally for the payload */
1594 crc
= crc32c(crc
, dp
, size
);
1596 return xfs_end_cksum(crc
);
1603 struct xlog_in_core
*iclog
= bio
->bi_private
;
1605 queue_work(iclog
->ic_log
->l_ioend_workqueue
,
1606 &iclog
->ic_end_io_work
);
1610 xlog_map_iclog_data(
1616 struct page
*page
= kmem_to_page(data
);
1617 unsigned int off
= offset_in_page(data
);
1618 size_t len
= min_t(size_t, count
, PAGE_SIZE
- off
);
1620 if (bio_add_page(bio
, page
, len
, off
) != len
)
1633 struct xlog_in_core
*iclog
,
1637 ASSERT(bno
< log
->l_logBBsize
);
1638 trace_xlog_iclog_write(iclog
, _RET_IP_
);
1641 * We lock the iclogbufs here so that we can serialise against I/O
1642 * completion during unmount. We might be processing a shutdown
1643 * triggered during unmount, and that can occur asynchronously to the
1644 * unmount thread, and hence we need to ensure that completes before
1645 * tearing down the iclogbufs. Hence we need to hold the buffer lock
1646 * across the log IO to archieve that.
1648 down(&iclog
->ic_sema
);
1649 if (xlog_is_shutdown(log
)) {
1651 * It would seem logical to return EIO here, but we rely on
1652 * the log state machine to propagate I/O errors instead of
1653 * doing it here. We kick of the state machine and unlock
1654 * the buffer manually, the code needs to be kept in sync
1655 * with the I/O completion path.
1661 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1662 * IOs coming immediately after this one. This prevents the block layer
1663 * writeback throttle from throttling log writes behind background
1664 * metadata writeback and causing priority inversions.
1666 bio_init(&iclog
->ic_bio
, log
->l_targ
->bt_bdev
, iclog
->ic_bvec
,
1667 howmany(count
, PAGE_SIZE
),
1668 REQ_OP_WRITE
| REQ_META
| REQ_SYNC
| REQ_IDLE
);
1669 iclog
->ic_bio
.bi_iter
.bi_sector
= log
->l_logBBstart
+ bno
;
1670 iclog
->ic_bio
.bi_end_io
= xlog_bio_end_io
;
1671 iclog
->ic_bio
.bi_private
= iclog
;
1673 if (iclog
->ic_flags
& XLOG_ICL_NEED_FLUSH
) {
1674 iclog
->ic_bio
.bi_opf
|= REQ_PREFLUSH
;
1676 * For external log devices, we also need to flush the data
1677 * device cache first to ensure all metadata writeback covered
1678 * by the LSN in this iclog is on stable storage. This is slow,
1679 * but it *must* complete before we issue the external log IO.
1681 * If the flush fails, we cannot conclude that past metadata
1682 * writeback from the log succeeded. Repeating the flush is
1683 * not possible, hence we must shut down with log IO error to
1684 * avoid shutdown re-entering this path and erroring out again.
1686 if (log
->l_targ
!= log
->l_mp
->m_ddev_targp
&&
1687 blkdev_issue_flush(log
->l_mp
->m_ddev_targp
->bt_bdev
))
1690 if (iclog
->ic_flags
& XLOG_ICL_NEED_FUA
)
1691 iclog
->ic_bio
.bi_opf
|= REQ_FUA
;
1693 iclog
->ic_flags
&= ~(XLOG_ICL_NEED_FLUSH
| XLOG_ICL_NEED_FUA
);
1695 if (xlog_map_iclog_data(&iclog
->ic_bio
, iclog
->ic_data
, count
))
1698 if (is_vmalloc_addr(iclog
->ic_data
))
1699 flush_kernel_vmap_range(iclog
->ic_data
, count
);
1702 * If this log buffer would straddle the end of the log we will have
1703 * to split it up into two bios, so that we can continue at the start.
1705 if (bno
+ BTOBB(count
) > log
->l_logBBsize
) {
1708 split
= bio_split(&iclog
->ic_bio
, log
->l_logBBsize
- bno
,
1709 GFP_NOIO
, &fs_bio_set
);
1710 bio_chain(split
, &iclog
->ic_bio
);
1713 /* restart at logical offset zero for the remainder */
1714 iclog
->ic_bio
.bi_iter
.bi_sector
= log
->l_logBBstart
;
1717 submit_bio(&iclog
->ic_bio
);
1720 xlog_force_shutdown(log
, SHUTDOWN_LOG_IO_ERROR
);
1722 xlog_state_done_syncing(iclog
);
1723 up(&iclog
->ic_sema
);
1727 * We need to bump cycle number for the part of the iclog that is
1728 * written to the start of the log. Watch out for the header magic
1729 * number case, though.
1738 unsigned int split_offset
= BBTOB(log
->l_logBBsize
- bno
);
1741 for (i
= split_offset
; i
< count
; i
+= BBSIZE
) {
1742 uint32_t cycle
= get_unaligned_be32(data
+ i
);
1744 if (++cycle
== XLOG_HEADER_MAGIC_NUM
)
1746 put_unaligned_be32(cycle
, data
+ i
);
1751 xlog_calc_iclog_size(
1753 struct xlog_in_core
*iclog
,
1756 uint32_t count_init
, count
;
1758 /* Add for LR header */
1759 count_init
= log
->l_iclog_hsize
+ iclog
->ic_offset
;
1760 count
= roundup(count_init
, log
->l_iclog_roundoff
);
1762 *roundoff
= count
- count_init
;
1764 ASSERT(count
>= count_init
);
1765 ASSERT(*roundoff
< log
->l_iclog_roundoff
);
1770 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1771 * fashion. Previously, we should have moved the current iclog
1772 * ptr in the log to point to the next available iclog. This allows further
1773 * write to continue while this code syncs out an iclog ready to go.
1774 * Before an in-core log can be written out, the data section must be scanned
1775 * to save away the 1st word of each BBSIZE block into the header. We replace
1776 * it with the current cycle count. Each BBSIZE block is tagged with the
1777 * cycle count because there in an implicit assumption that drives will
1778 * guarantee that entire 512 byte blocks get written at once. In other words,
1779 * we can't have part of a 512 byte block written and part not written. By
1780 * tagging each block, we will know which blocks are valid when recovering
1781 * after an unclean shutdown.
1783 * This routine is single threaded on the iclog. No other thread can be in
1784 * this routine with the same iclog. Changing contents of iclog can there-
1785 * fore be done without grabbing the state machine lock. Updating the global
1786 * log will require grabbing the lock though.
1788 * The entire log manager uses a logical block numbering scheme. Only
1789 * xlog_write_iclog knows about the fact that the log may not start with
1790 * block zero on a given device.
1795 struct xlog_in_core
*iclog
,
1796 struct xlog_ticket
*ticket
)
1798 unsigned int count
; /* byte count of bwrite */
1799 unsigned int roundoff
; /* roundoff to BB or stripe */
1803 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
1804 trace_xlog_iclog_sync(iclog
, _RET_IP_
);
1806 count
= xlog_calc_iclog_size(log
, iclog
, &roundoff
);
1809 * If we have a ticket, account for the roundoff via the ticket
1810 * reservation to avoid touching the hot grant heads needlessly.
1811 * Otherwise, we have to move grant heads directly.
1814 ticket
->t_curr_res
-= roundoff
;
1816 xlog_grant_add_space(&log
->l_reserve_head
, roundoff
);
1817 xlog_grant_add_space(&log
->l_write_head
, roundoff
);
1820 /* put cycle number in every block */
1821 xlog_pack_data(log
, iclog
, roundoff
);
1823 /* real byte length */
1824 size
= iclog
->ic_offset
;
1825 if (xfs_has_logv2(log
->l_mp
))
1827 iclog
->ic_header
.h_len
= cpu_to_be32(size
);
1829 XFS_STATS_INC(log
->l_mp
, xs_log_writes
);
1830 XFS_STATS_ADD(log
->l_mp
, xs_log_blocks
, BTOBB(count
));
1832 bno
= BLOCK_LSN(be64_to_cpu(iclog
->ic_header
.h_lsn
));
1834 /* Do we need to split this write into 2 parts? */
1835 if (bno
+ BTOBB(count
) > log
->l_logBBsize
)
1836 xlog_split_iclog(log
, &iclog
->ic_header
, bno
, count
);
1838 /* calculcate the checksum */
1839 iclog
->ic_header
.h_crc
= xlog_cksum(log
, &iclog
->ic_header
,
1840 iclog
->ic_datap
, size
);
1842 * Intentionally corrupt the log record CRC based on the error injection
1843 * frequency, if defined. This facilitates testing log recovery in the
1844 * event of torn writes. Hence, set the IOABORT state to abort the log
1845 * write on I/O completion and shutdown the fs. The subsequent mount
1846 * detects the bad CRC and attempts to recover.
1849 if (XFS_TEST_ERROR(false, log
->l_mp
, XFS_ERRTAG_LOG_BAD_CRC
)) {
1850 iclog
->ic_header
.h_crc
&= cpu_to_le32(0xAAAAAAAA);
1851 iclog
->ic_fail_crc
= true;
1853 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1854 be64_to_cpu(iclog
->ic_header
.h_lsn
));
1857 xlog_verify_iclog(log
, iclog
, count
);
1858 xlog_write_iclog(log
, iclog
, bno
, count
);
1862 * Deallocate a log structure
1868 xlog_in_core_t
*iclog
, *next_iclog
;
1872 * Destroy the CIL after waiting for iclog IO completion because an
1873 * iclog EIO error will try to shut down the log, which accesses the
1874 * CIL to wake up the waiters.
1876 xlog_cil_destroy(log
);
1878 iclog
= log
->l_iclog
;
1879 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
1880 next_iclog
= iclog
->ic_next
;
1881 kvfree(iclog
->ic_data
);
1886 log
->l_mp
->m_log
= NULL
;
1887 destroy_workqueue(log
->l_ioend_workqueue
);
1892 * Update counters atomically now that memcpy is done.
1895 xlog_state_finish_copy(
1897 struct xlog_in_core
*iclog
,
1901 lockdep_assert_held(&log
->l_icloglock
);
1903 be32_add_cpu(&iclog
->ic_header
.h_num_logops
, record_cnt
);
1904 iclog
->ic_offset
+= copy_bytes
;
1908 * print out info relating to regions written which consume
1913 struct xfs_mount
*mp
,
1914 struct xlog_ticket
*ticket
)
1916 xfs_warn(mp
, "ticket reservation summary:");
1917 xfs_warn(mp
, " unit res = %d bytes", ticket
->t_unit_res
);
1918 xfs_warn(mp
, " current res = %d bytes", ticket
->t_curr_res
);
1919 xfs_warn(mp
, " original count = %d", ticket
->t_ocnt
);
1920 xfs_warn(mp
, " remaining count = %d", ticket
->t_cnt
);
1924 * Print a summary of the transaction.
1928 struct xfs_trans
*tp
)
1930 struct xfs_mount
*mp
= tp
->t_mountp
;
1931 struct xfs_log_item
*lip
;
1933 /* dump core transaction and ticket info */
1934 xfs_warn(mp
, "transaction summary:");
1935 xfs_warn(mp
, " log res = %d", tp
->t_log_res
);
1936 xfs_warn(mp
, " log count = %d", tp
->t_log_count
);
1937 xfs_warn(mp
, " flags = 0x%x", tp
->t_flags
);
1939 xlog_print_tic_res(mp
, tp
->t_ticket
);
1941 /* dump each log item */
1942 list_for_each_entry(lip
, &tp
->t_items
, li_trans
) {
1943 struct xfs_log_vec
*lv
= lip
->li_lv
;
1944 struct xfs_log_iovec
*vec
;
1947 xfs_warn(mp
, "log item: ");
1948 xfs_warn(mp
, " type = 0x%x", lip
->li_type
);
1949 xfs_warn(mp
, " flags = 0x%lx", lip
->li_flags
);
1952 xfs_warn(mp
, " niovecs = %d", lv
->lv_niovecs
);
1953 xfs_warn(mp
, " size = %d", lv
->lv_size
);
1954 xfs_warn(mp
, " bytes = %d", lv
->lv_bytes
);
1955 xfs_warn(mp
, " buf len = %d", lv
->lv_buf_len
);
1957 /* dump each iovec for the log item */
1958 vec
= lv
->lv_iovecp
;
1959 for (i
= 0; i
< lv
->lv_niovecs
; i
++) {
1960 int dumplen
= min(vec
->i_len
, 32);
1962 xfs_warn(mp
, " iovec[%d]", i
);
1963 xfs_warn(mp
, " type = 0x%x", vec
->i_type
);
1964 xfs_warn(mp
, " len = %d", vec
->i_len
);
1965 xfs_warn(mp
, " first %d bytes of iovec[%d]:", dumplen
, i
);
1966 xfs_hex_dump(vec
->i_addr
, dumplen
);
1975 struct xlog_in_core
*iclog
,
1976 uint32_t *log_offset
,
1980 uint32_t *record_cnt
,
1983 ASSERT(*log_offset
< iclog
->ic_log
->l_iclog_size
);
1984 ASSERT(*log_offset
% sizeof(int32_t) == 0);
1985 ASSERT(write_len
% sizeof(int32_t) == 0);
1987 memcpy(iclog
->ic_datap
+ *log_offset
, data
, write_len
);
1988 *log_offset
+= write_len
;
1989 *bytes_left
-= write_len
;
1991 *data_cnt
+= write_len
;
1995 * Write log vectors into a single iclog which is guaranteed by the caller
1996 * to have enough space to write the entire log vector into.
2000 struct xfs_log_vec
*lv
,
2001 struct xlog_ticket
*ticket
,
2002 struct xlog_in_core
*iclog
,
2003 uint32_t *log_offset
,
2005 uint32_t *record_cnt
,
2010 ASSERT(*log_offset
+ *len
<= iclog
->ic_size
||
2011 iclog
->ic_state
== XLOG_STATE_WANT_SYNC
);
2014 * Ordered log vectors have no regions to write so this
2015 * loop will naturally skip them.
2017 for (index
= 0; index
< lv
->lv_niovecs
; index
++) {
2018 struct xfs_log_iovec
*reg
= &lv
->lv_iovecp
[index
];
2019 struct xlog_op_header
*ophdr
= reg
->i_addr
;
2021 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2022 xlog_write_iovec(iclog
, log_offset
, reg
->i_addr
,
2023 reg
->i_len
, len
, record_cnt
, data_cnt
);
2028 xlog_write_get_more_iclog_space(
2029 struct xlog_ticket
*ticket
,
2030 struct xlog_in_core
**iclogp
,
2031 uint32_t *log_offset
,
2033 uint32_t *record_cnt
,
2036 struct xlog_in_core
*iclog
= *iclogp
;
2037 struct xlog
*log
= iclog
->ic_log
;
2040 spin_lock(&log
->l_icloglock
);
2041 ASSERT(iclog
->ic_state
== XLOG_STATE_WANT_SYNC
);
2042 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2043 error
= xlog_state_release_iclog(log
, iclog
, ticket
);
2044 spin_unlock(&log
->l_icloglock
);
2048 error
= xlog_state_get_iclog_space(log
, len
, &iclog
, ticket
,
2059 * Write log vectors into a single iclog which is smaller than the current chain
2060 * length. We write until we cannot fit a full record into the remaining space
2061 * and then stop. We return the log vector that is to be written that cannot
2062 * wholly fit in the iclog.
2066 struct xfs_log_vec
*lv
,
2067 struct xlog_ticket
*ticket
,
2068 struct xlog_in_core
**iclogp
,
2069 uint32_t *log_offset
,
2071 uint32_t *record_cnt
,
2074 struct xlog_in_core
*iclog
= *iclogp
;
2075 struct xlog_op_header
*ophdr
;
2080 /* walk the logvec, copying until we run out of space in the iclog */
2081 for (index
= 0; index
< lv
->lv_niovecs
; index
++) {
2082 struct xfs_log_iovec
*reg
= &lv
->lv_iovecp
[index
];
2083 uint32_t reg_offset
= 0;
2086 * The first region of a continuation must have a non-zero
2087 * length otherwise log recovery will just skip over it and
2088 * start recovering from the next opheader it finds. Because we
2089 * mark the next opheader as a continuation, recovery will then
2090 * incorrectly add the continuation to the previous region and
2091 * that breaks stuff.
2093 * Hence if there isn't space for region data after the
2094 * opheader, then we need to start afresh with a new iclog.
2096 if (iclog
->ic_size
- *log_offset
<=
2097 sizeof(struct xlog_op_header
)) {
2098 error
= xlog_write_get_more_iclog_space(ticket
,
2099 &iclog
, log_offset
, *len
, record_cnt
,
2105 ophdr
= reg
->i_addr
;
2106 rlen
= min_t(uint32_t, reg
->i_len
, iclog
->ic_size
- *log_offset
);
2108 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2109 ophdr
->oh_len
= cpu_to_be32(rlen
- sizeof(struct xlog_op_header
));
2110 if (rlen
!= reg
->i_len
)
2111 ophdr
->oh_flags
|= XLOG_CONTINUE_TRANS
;
2113 xlog_write_iovec(iclog
, log_offset
, reg
->i_addr
,
2114 rlen
, len
, record_cnt
, data_cnt
);
2116 /* If we wrote the whole region, move to the next. */
2117 if (rlen
== reg
->i_len
)
2121 * We now have a partially written iovec, but it can span
2122 * multiple iclogs so we loop here. First we release the iclog
2123 * we currently have, then we get a new iclog and add a new
2124 * opheader. Then we continue copying from where we were until
2125 * we either complete the iovec or fill the iclog. If we
2126 * complete the iovec, then we increment the index and go right
2127 * back to the top of the outer loop. if we fill the iclog, we
2128 * run the inner loop again.
2130 * This is complicated by the tail of a region using all the
2131 * space in an iclog and hence requiring us to release the iclog
2132 * and get a new one before returning to the outer loop. We must
2133 * always guarantee that we exit this inner loop with at least
2134 * space for log transaction opheaders left in the current
2135 * iclog, hence we cannot just terminate the loop at the end
2136 * of the of the continuation. So we loop while there is no
2137 * space left in the current iclog, and check for the end of the
2138 * continuation after getting a new iclog.
2142 * Ensure we include the continuation opheader in the
2143 * space we need in the new iclog by adding that size
2144 * to the length we require. This continuation opheader
2145 * needs to be accounted to the ticket as the space it
2146 * consumes hasn't been accounted to the lv we are
2149 error
= xlog_write_get_more_iclog_space(ticket
,
2151 *len
+ sizeof(struct xlog_op_header
),
2152 record_cnt
, data_cnt
);
2156 ophdr
= iclog
->ic_datap
+ *log_offset
;
2157 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2158 ophdr
->oh_clientid
= XFS_TRANSACTION
;
2160 ophdr
->oh_flags
= XLOG_WAS_CONT_TRANS
;
2162 ticket
->t_curr_res
-= sizeof(struct xlog_op_header
);
2163 *log_offset
+= sizeof(struct xlog_op_header
);
2164 *data_cnt
+= sizeof(struct xlog_op_header
);
2167 * If rlen fits in the iclog, then end the region
2168 * continuation. Otherwise we're going around again.
2171 rlen
= reg
->i_len
- reg_offset
;
2172 if (rlen
<= iclog
->ic_size
- *log_offset
)
2173 ophdr
->oh_flags
|= XLOG_END_TRANS
;
2175 ophdr
->oh_flags
|= XLOG_CONTINUE_TRANS
;
2177 rlen
= min_t(uint32_t, rlen
, iclog
->ic_size
- *log_offset
);
2178 ophdr
->oh_len
= cpu_to_be32(rlen
);
2180 xlog_write_iovec(iclog
, log_offset
,
2181 reg
->i_addr
+ reg_offset
,
2182 rlen
, len
, record_cnt
, data_cnt
);
2184 } while (ophdr
->oh_flags
& XLOG_CONTINUE_TRANS
);
2188 * No more iovecs remain in this logvec so return the next log vec to
2189 * the caller so it can go back to fast path copying.
2196 * Write some region out to in-core log
2198 * This will be called when writing externally provided regions or when
2199 * writing out a commit record for a given transaction.
2201 * General algorithm:
2202 * 1. Find total length of this write. This may include adding to the
2203 * lengths passed in.
2204 * 2. Check whether we violate the tickets reservation.
2205 * 3. While writing to this iclog
2206 * A. Reserve as much space in this iclog as can get
2207 * B. If this is first write, save away start lsn
2208 * C. While writing this region:
2209 * 1. If first write of transaction, write start record
2210 * 2. Write log operation header (header per region)
2211 * 3. Find out if we can fit entire region into this iclog
2212 * 4. Potentially, verify destination memcpy ptr
2213 * 5. Memcpy (partial) region
2214 * 6. If partial copy, release iclog; otherwise, continue
2215 * copying more regions into current iclog
2216 * 4. Mark want sync bit (in simulation mode)
2217 * 5. Release iclog for potential flush to on-disk log.
2220 * 1. Panic if reservation is overrun. This should never happen since
2221 * reservation amounts are generated internal to the filesystem.
2223 * 1. Tickets are single threaded data structures.
2224 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2225 * syncing routine. When a single log_write region needs to span
2226 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2227 * on all log operation writes which don't contain the end of the
2228 * region. The XLOG_END_TRANS bit is used for the in-core log
2229 * operation which contains the end of the continued log_write region.
2230 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2231 * we don't really know exactly how much space will be used. As a result,
2232 * we don't update ic_offset until the end when we know exactly how many
2233 * bytes have been written out.
2238 struct xfs_cil_ctx
*ctx
,
2239 struct list_head
*lv_chain
,
2240 struct xlog_ticket
*ticket
,
2244 struct xlog_in_core
*iclog
= NULL
;
2245 struct xfs_log_vec
*lv
;
2246 uint32_t record_cnt
= 0;
2247 uint32_t data_cnt
= 0;
2251 if (ticket
->t_curr_res
< 0) {
2252 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
2253 "ctx ticket reservation ran out. Need to up reservation");
2254 xlog_print_tic_res(log
->l_mp
, ticket
);
2255 xlog_force_shutdown(log
, SHUTDOWN_LOG_IO_ERROR
);
2258 error
= xlog_state_get_iclog_space(log
, len
, &iclog
, ticket
,
2263 ASSERT(log_offset
<= iclog
->ic_size
- 1);
2266 * If we have a context pointer, pass it the first iclog we are
2267 * writing to so it can record state needed for iclog write
2271 xlog_cil_set_ctx_write_state(ctx
, iclog
);
2273 list_for_each_entry(lv
, lv_chain
, lv_list
) {
2275 * If the entire log vec does not fit in the iclog, punt it to
2276 * the partial copy loop which can handle this case.
2278 if (lv
->lv_niovecs
&&
2279 lv
->lv_bytes
> iclog
->ic_size
- log_offset
) {
2280 error
= xlog_write_partial(lv
, ticket
, &iclog
,
2281 &log_offset
, &len
, &record_cnt
,
2285 * We have no iclog to release, so just return
2286 * the error immediately.
2291 xlog_write_full(lv
, ticket
, iclog
, &log_offset
,
2292 &len
, &record_cnt
, &data_cnt
);
2298 * We've already been guaranteed that the last writes will fit inside
2299 * the current iclog, and hence it will already have the space used by
2300 * those writes accounted to it. Hence we do not need to update the
2301 * iclog with the number of bytes written here.
2303 spin_lock(&log
->l_icloglock
);
2304 xlog_state_finish_copy(log
, iclog
, record_cnt
, 0);
2305 error
= xlog_state_release_iclog(log
, iclog
, ticket
);
2306 spin_unlock(&log
->l_icloglock
);
2312 xlog_state_activate_iclog(
2313 struct xlog_in_core
*iclog
,
2314 int *iclogs_changed
)
2316 ASSERT(list_empty_careful(&iclog
->ic_callbacks
));
2317 trace_xlog_iclog_activate(iclog
, _RET_IP_
);
2320 * If the number of ops in this iclog indicate it just contains the
2321 * dummy transaction, we can change state into IDLE (the second time
2322 * around). Otherwise we should change the state into NEED a dummy.
2323 * We don't need to cover the dummy.
2325 if (*iclogs_changed
== 0 &&
2326 iclog
->ic_header
.h_num_logops
== cpu_to_be32(XLOG_COVER_OPS
)) {
2327 *iclogs_changed
= 1;
2330 * We have two dirty iclogs so start over. This could also be
2331 * num of ops indicating this is not the dummy going out.
2333 *iclogs_changed
= 2;
2336 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
2337 iclog
->ic_offset
= 0;
2338 iclog
->ic_header
.h_num_logops
= 0;
2339 memset(iclog
->ic_header
.h_cycle_data
, 0,
2340 sizeof(iclog
->ic_header
.h_cycle_data
));
2341 iclog
->ic_header
.h_lsn
= 0;
2342 iclog
->ic_header
.h_tail_lsn
= 0;
2346 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2347 * ACTIVE after iclog I/O has completed.
2350 xlog_state_activate_iclogs(
2352 int *iclogs_changed
)
2354 struct xlog_in_core
*iclog
= log
->l_iclog
;
2357 if (iclog
->ic_state
== XLOG_STATE_DIRTY
)
2358 xlog_state_activate_iclog(iclog
, iclogs_changed
);
2360 * The ordering of marking iclogs ACTIVE must be maintained, so
2361 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2363 else if (iclog
->ic_state
!= XLOG_STATE_ACTIVE
)
2365 } while ((iclog
= iclog
->ic_next
) != log
->l_iclog
);
2374 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2375 * wrote the first covering record (DONE). We go to IDLE if we just
2376 * wrote the second covering record (DONE2) and remain in IDLE until a
2377 * non-covering write occurs.
2379 switch (prev_state
) {
2380 case XLOG_STATE_COVER_IDLE
:
2381 if (iclogs_changed
== 1)
2382 return XLOG_STATE_COVER_IDLE
;
2384 case XLOG_STATE_COVER_NEED
:
2385 case XLOG_STATE_COVER_NEED2
:
2387 case XLOG_STATE_COVER_DONE
:
2388 if (iclogs_changed
== 1)
2389 return XLOG_STATE_COVER_NEED2
;
2391 case XLOG_STATE_COVER_DONE2
:
2392 if (iclogs_changed
== 1)
2393 return XLOG_STATE_COVER_IDLE
;
2399 return XLOG_STATE_COVER_NEED
;
2403 xlog_state_clean_iclog(
2405 struct xlog_in_core
*dirty_iclog
)
2407 int iclogs_changed
= 0;
2409 trace_xlog_iclog_clean(dirty_iclog
, _RET_IP_
);
2411 dirty_iclog
->ic_state
= XLOG_STATE_DIRTY
;
2413 xlog_state_activate_iclogs(log
, &iclogs_changed
);
2414 wake_up_all(&dirty_iclog
->ic_force_wait
);
2416 if (iclogs_changed
) {
2417 log
->l_covered_state
= xlog_covered_state(log
->l_covered_state
,
2423 xlog_get_lowest_lsn(
2426 struct xlog_in_core
*iclog
= log
->l_iclog
;
2427 xfs_lsn_t lowest_lsn
= 0, lsn
;
2430 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
2431 iclog
->ic_state
== XLOG_STATE_DIRTY
)
2434 lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
2435 if ((lsn
&& !lowest_lsn
) || XFS_LSN_CMP(lsn
, lowest_lsn
) < 0)
2437 } while ((iclog
= iclog
->ic_next
) != log
->l_iclog
);
2443 * Return true if we need to stop processing, false to continue to the next
2444 * iclog. The caller will need to run callbacks if the iclog is returned in the
2445 * XLOG_STATE_CALLBACK state.
2448 xlog_state_iodone_process_iclog(
2450 struct xlog_in_core
*iclog
)
2452 xfs_lsn_t lowest_lsn
;
2453 xfs_lsn_t header_lsn
;
2455 switch (iclog
->ic_state
) {
2456 case XLOG_STATE_ACTIVE
:
2457 case XLOG_STATE_DIRTY
:
2459 * Skip all iclogs in the ACTIVE & DIRTY states:
2462 case XLOG_STATE_DONE_SYNC
:
2464 * Now that we have an iclog that is in the DONE_SYNC state, do
2465 * one more check here to see if we have chased our tail around.
2466 * If this is not the lowest lsn iclog, then we will leave it
2467 * for another completion to process.
2469 header_lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
2470 lowest_lsn
= xlog_get_lowest_lsn(log
);
2471 if (lowest_lsn
&& XFS_LSN_CMP(lowest_lsn
, header_lsn
) < 0)
2474 * If there are no callbacks on this iclog, we can mark it clean
2475 * immediately and return. Otherwise we need to run the
2478 if (list_empty(&iclog
->ic_callbacks
)) {
2479 xlog_state_clean_iclog(log
, iclog
);
2482 trace_xlog_iclog_callback(iclog
, _RET_IP_
);
2483 iclog
->ic_state
= XLOG_STATE_CALLBACK
;
2487 * Can only perform callbacks in order. Since this iclog is not
2488 * in the DONE_SYNC state, we skip the rest and just try to
2496 * Loop over all the iclogs, running attached callbacks on them. Return true if
2497 * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2498 * to handle transient shutdown state here at all because
2499 * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2500 * cleanup of the callbacks.
2503 xlog_state_do_iclog_callbacks(
2505 __releases(&log
->l_icloglock
)
2506 __acquires(&log
->l_icloglock
)
2508 struct xlog_in_core
*first_iclog
= log
->l_iclog
;
2509 struct xlog_in_core
*iclog
= first_iclog
;
2510 bool ran_callback
= false;
2515 if (xlog_state_iodone_process_iclog(log
, iclog
))
2517 if (iclog
->ic_state
!= XLOG_STATE_CALLBACK
) {
2518 iclog
= iclog
->ic_next
;
2521 list_splice_init(&iclog
->ic_callbacks
, &cb_list
);
2522 spin_unlock(&log
->l_icloglock
);
2524 trace_xlog_iclog_callbacks_start(iclog
, _RET_IP_
);
2525 xlog_cil_process_committed(&cb_list
);
2526 trace_xlog_iclog_callbacks_done(iclog
, _RET_IP_
);
2527 ran_callback
= true;
2529 spin_lock(&log
->l_icloglock
);
2530 xlog_state_clean_iclog(log
, iclog
);
2531 iclog
= iclog
->ic_next
;
2532 } while (iclog
!= first_iclog
);
2534 return ran_callback
;
2539 * Loop running iclog completion callbacks until there are no more iclogs in a
2540 * state that can run callbacks.
2543 xlog_state_do_callback(
2549 spin_lock(&log
->l_icloglock
);
2550 while (xlog_state_do_iclog_callbacks(log
)) {
2551 if (xlog_is_shutdown(log
))
2554 if (++repeats
> 5000) {
2555 flushcnt
+= repeats
;
2558 "%s: possible infinite loop (%d iterations)",
2559 __func__
, flushcnt
);
2563 if (log
->l_iclog
->ic_state
== XLOG_STATE_ACTIVE
)
2564 wake_up_all(&log
->l_flush_wait
);
2566 spin_unlock(&log
->l_icloglock
);
2571 * Finish transitioning this iclog to the dirty state.
2573 * Callbacks could take time, so they are done outside the scope of the
2574 * global state machine log lock.
2577 xlog_state_done_syncing(
2578 struct xlog_in_core
*iclog
)
2580 struct xlog
*log
= iclog
->ic_log
;
2582 spin_lock(&log
->l_icloglock
);
2583 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
2584 trace_xlog_iclog_sync_done(iclog
, _RET_IP_
);
2587 * If we got an error, either on the first buffer, or in the case of
2588 * split log writes, on the second, we shut down the file system and
2589 * no iclogs should ever be attempted to be written to disk again.
2591 if (!xlog_is_shutdown(log
)) {
2592 ASSERT(iclog
->ic_state
== XLOG_STATE_SYNCING
);
2593 iclog
->ic_state
= XLOG_STATE_DONE_SYNC
;
2597 * Someone could be sleeping prior to writing out the next
2598 * iclog buffer, we wake them all, one will get to do the
2599 * I/O, the others get to wait for the result.
2601 wake_up_all(&iclog
->ic_write_wait
);
2602 spin_unlock(&log
->l_icloglock
);
2603 xlog_state_do_callback(log
);
2607 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2608 * sleep. We wait on the flush queue on the head iclog as that should be
2609 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2610 * we will wait here and all new writes will sleep until a sync completes.
2612 * The in-core logs are used in a circular fashion. They are not used
2613 * out-of-order even when an iclog past the head is free.
2616 * * log_offset where xlog_write() can start writing into the in-core
2618 * * in-core log pointer to which xlog_write() should write.
2619 * * boolean indicating this is a continued write to an in-core log.
2620 * If this is the last write, then the in-core log's offset field
2621 * needs to be incremented, depending on the amount of data which
2625 xlog_state_get_iclog_space(
2628 struct xlog_in_core
**iclogp
,
2629 struct xlog_ticket
*ticket
,
2633 xlog_rec_header_t
*head
;
2634 xlog_in_core_t
*iclog
;
2637 spin_lock(&log
->l_icloglock
);
2638 if (xlog_is_shutdown(log
)) {
2639 spin_unlock(&log
->l_icloglock
);
2643 iclog
= log
->l_iclog
;
2644 if (iclog
->ic_state
!= XLOG_STATE_ACTIVE
) {
2645 XFS_STATS_INC(log
->l_mp
, xs_log_noiclogs
);
2647 /* Wait for log writes to have flushed */
2648 xlog_wait(&log
->l_flush_wait
, &log
->l_icloglock
);
2652 head
= &iclog
->ic_header
;
2654 atomic_inc(&iclog
->ic_refcnt
); /* prevents sync */
2655 log_offset
= iclog
->ic_offset
;
2657 trace_xlog_iclog_get_space(iclog
, _RET_IP_
);
2659 /* On the 1st write to an iclog, figure out lsn. This works
2660 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2661 * committing to. If the offset is set, that's how many blocks
2664 if (log_offset
== 0) {
2665 ticket
->t_curr_res
-= log
->l_iclog_hsize
;
2666 head
->h_cycle
= cpu_to_be32(log
->l_curr_cycle
);
2667 head
->h_lsn
= cpu_to_be64(
2668 xlog_assign_lsn(log
->l_curr_cycle
, log
->l_curr_block
));
2669 ASSERT(log
->l_curr_block
>= 0);
2672 /* If there is enough room to write everything, then do it. Otherwise,
2673 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2674 * bit is on, so this will get flushed out. Don't update ic_offset
2675 * until you know exactly how many bytes get copied. Therefore, wait
2676 * until later to update ic_offset.
2678 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2679 * can fit into remaining data section.
2681 if (iclog
->ic_size
- iclog
->ic_offset
< 2*sizeof(xlog_op_header_t
)) {
2684 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
2687 * If we are the only one writing to this iclog, sync it to
2688 * disk. We need to do an atomic compare and decrement here to
2689 * avoid racing with concurrent atomic_dec_and_lock() calls in
2690 * xlog_state_release_iclog() when there is more than one
2691 * reference to the iclog.
2693 if (!atomic_add_unless(&iclog
->ic_refcnt
, -1, 1))
2694 error
= xlog_state_release_iclog(log
, iclog
, ticket
);
2695 spin_unlock(&log
->l_icloglock
);
2701 /* Do we have enough room to write the full amount in the remainder
2702 * of this iclog? Or must we continue a write on the next iclog and
2703 * mark this iclog as completely taken? In the case where we switch
2704 * iclogs (to mark it taken), this particular iclog will release/sync
2705 * to disk in xlog_write().
2707 if (len
<= iclog
->ic_size
- iclog
->ic_offset
)
2708 iclog
->ic_offset
+= len
;
2710 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
2713 ASSERT(iclog
->ic_offset
<= iclog
->ic_size
);
2714 spin_unlock(&log
->l_icloglock
);
2716 *logoffsetp
= log_offset
;
2721 * The first cnt-1 times a ticket goes through here we don't need to move the
2722 * grant write head because the permanent reservation has reserved cnt times the
2723 * unit amount. Release part of current permanent unit reservation and reset
2724 * current reservation to be one units worth. Also move grant reservation head
2728 xfs_log_ticket_regrant(
2730 struct xlog_ticket
*ticket
)
2732 trace_xfs_log_ticket_regrant(log
, ticket
);
2734 if (ticket
->t_cnt
> 0)
2737 xlog_grant_sub_space(&log
->l_reserve_head
, ticket
->t_curr_res
);
2738 xlog_grant_sub_space(&log
->l_write_head
, ticket
->t_curr_res
);
2739 ticket
->t_curr_res
= ticket
->t_unit_res
;
2741 trace_xfs_log_ticket_regrant_sub(log
, ticket
);
2743 /* just return if we still have some of the pre-reserved space */
2744 if (!ticket
->t_cnt
) {
2745 xlog_grant_add_space(&log
->l_reserve_head
, ticket
->t_unit_res
);
2746 trace_xfs_log_ticket_regrant_exit(log
, ticket
);
2748 ticket
->t_curr_res
= ticket
->t_unit_res
;
2751 xfs_log_ticket_put(ticket
);
2755 * Give back the space left from a reservation.
2757 * All the information we need to make a correct determination of space left
2758 * is present. For non-permanent reservations, things are quite easy. The
2759 * count should have been decremented to zero. We only need to deal with the
2760 * space remaining in the current reservation part of the ticket. If the
2761 * ticket contains a permanent reservation, there may be left over space which
2762 * needs to be released. A count of N means that N-1 refills of the current
2763 * reservation can be done before we need to ask for more space. The first
2764 * one goes to fill up the first current reservation. Once we run out of
2765 * space, the count will stay at zero and the only space remaining will be
2766 * in the current reservation field.
2769 xfs_log_ticket_ungrant(
2771 struct xlog_ticket
*ticket
)
2775 trace_xfs_log_ticket_ungrant(log
, ticket
);
2777 if (ticket
->t_cnt
> 0)
2780 trace_xfs_log_ticket_ungrant_sub(log
, ticket
);
2783 * If this is a permanent reservation ticket, we may be able to free
2784 * up more space based on the remaining count.
2786 bytes
= ticket
->t_curr_res
;
2787 if (ticket
->t_cnt
> 0) {
2788 ASSERT(ticket
->t_flags
& XLOG_TIC_PERM_RESERV
);
2789 bytes
+= ticket
->t_unit_res
*ticket
->t_cnt
;
2792 xlog_grant_sub_space(&log
->l_reserve_head
, bytes
);
2793 xlog_grant_sub_space(&log
->l_write_head
, bytes
);
2795 trace_xfs_log_ticket_ungrant_exit(log
, ticket
);
2797 xfs_log_space_wake(log
->l_mp
);
2798 xfs_log_ticket_put(ticket
);
2802 * This routine will mark the current iclog in the ring as WANT_SYNC and move
2803 * the current iclog pointer to the next iclog in the ring.
2806 xlog_state_switch_iclogs(
2808 struct xlog_in_core
*iclog
,
2811 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
);
2812 assert_spin_locked(&log
->l_icloglock
);
2813 trace_xlog_iclog_switch(iclog
, _RET_IP_
);
2816 eventual_size
= iclog
->ic_offset
;
2817 iclog
->ic_state
= XLOG_STATE_WANT_SYNC
;
2818 iclog
->ic_header
.h_prev_block
= cpu_to_be32(log
->l_prev_block
);
2819 log
->l_prev_block
= log
->l_curr_block
;
2820 log
->l_prev_cycle
= log
->l_curr_cycle
;
2822 /* roll log?: ic_offset changed later */
2823 log
->l_curr_block
+= BTOBB(eventual_size
)+BTOBB(log
->l_iclog_hsize
);
2825 /* Round up to next log-sunit */
2826 if (log
->l_iclog_roundoff
> BBSIZE
) {
2827 uint32_t sunit_bb
= BTOBB(log
->l_iclog_roundoff
);
2828 log
->l_curr_block
= roundup(log
->l_curr_block
, sunit_bb
);
2831 if (log
->l_curr_block
>= log
->l_logBBsize
) {
2833 * Rewind the current block before the cycle is bumped to make
2834 * sure that the combined LSN never transiently moves forward
2835 * when the log wraps to the next cycle. This is to support the
2836 * unlocked sample of these fields from xlog_valid_lsn(). Most
2837 * other cases should acquire l_icloglock.
2839 log
->l_curr_block
-= log
->l_logBBsize
;
2840 ASSERT(log
->l_curr_block
>= 0);
2842 log
->l_curr_cycle
++;
2843 if (log
->l_curr_cycle
== XLOG_HEADER_MAGIC_NUM
)
2844 log
->l_curr_cycle
++;
2846 ASSERT(iclog
== log
->l_iclog
);
2847 log
->l_iclog
= iclog
->ic_next
;
2851 * Force the iclog to disk and check if the iclog has been completed before
2852 * xlog_force_iclog() returns. This can happen on synchronous (e.g.
2853 * pmem) or fast async storage because we drop the icloglock to issue the IO.
2854 * If completion has already occurred, tell the caller so that it can avoid an
2855 * unnecessary wait on the iclog.
2858 xlog_force_and_check_iclog(
2859 struct xlog_in_core
*iclog
,
2862 xfs_lsn_t lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
2866 error
= xlog_force_iclog(iclog
);
2871 * If the iclog has already been completed and reused the header LSN
2872 * will have been rewritten by completion
2874 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) != lsn
)
2880 * Write out all data in the in-core log as of this exact moment in time.
2882 * Data may be written to the in-core log during this call. However,
2883 * we don't guarantee this data will be written out. A change from past
2884 * implementation means this routine will *not* write out zero length LRs.
2886 * Basically, we try and perform an intelligent scan of the in-core logs.
2887 * If we determine there is no flushable data, we just return. There is no
2888 * flushable data if:
2890 * 1. the current iclog is active and has no data; the previous iclog
2891 * is in the active or dirty state.
2892 * 2. the current iclog is drity, and the previous iclog is in the
2893 * active or dirty state.
2897 * 1. the current iclog is not in the active nor dirty state.
2898 * 2. the current iclog dirty, and the previous iclog is not in the
2899 * active nor dirty state.
2900 * 3. the current iclog is active, and there is another thread writing
2901 * to this particular iclog.
2902 * 4. a) the current iclog is active and has no other writers
2903 * b) when we return from flushing out this iclog, it is still
2904 * not in the active nor dirty state.
2908 struct xfs_mount
*mp
,
2911 struct xlog
*log
= mp
->m_log
;
2912 struct xlog_in_core
*iclog
;
2914 XFS_STATS_INC(mp
, xs_log_force
);
2915 trace_xfs_log_force(mp
, 0, _RET_IP_
);
2917 xlog_cil_force(log
);
2919 spin_lock(&log
->l_icloglock
);
2920 if (xlog_is_shutdown(log
))
2923 iclog
= log
->l_iclog
;
2924 trace_xlog_iclog_force(iclog
, _RET_IP_
);
2926 if (iclog
->ic_state
== XLOG_STATE_DIRTY
||
2927 (iclog
->ic_state
== XLOG_STATE_ACTIVE
&&
2928 atomic_read(&iclog
->ic_refcnt
) == 0 && iclog
->ic_offset
== 0)) {
2930 * If the head is dirty or (active and empty), then we need to
2931 * look at the previous iclog.
2933 * If the previous iclog is active or dirty we are done. There
2934 * is nothing to sync out. Otherwise, we attach ourselves to the
2935 * previous iclog and go to sleep.
2937 iclog
= iclog
->ic_prev
;
2938 } else if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
2939 if (atomic_read(&iclog
->ic_refcnt
) == 0) {
2940 /* We have exclusive access to this iclog. */
2943 if (xlog_force_and_check_iclog(iclog
, &completed
))
2950 * Someone else is still writing to this iclog, so we
2951 * need to ensure that when they release the iclog it
2952 * gets synced immediately as we may be waiting on it.
2954 xlog_state_switch_iclogs(log
, iclog
, 0);
2959 * The iclog we are about to wait on may contain the checkpoint pushed
2960 * by the above xlog_cil_force() call, but it may not have been pushed
2961 * to disk yet. Like the ACTIVE case above, we need to make sure caches
2962 * are flushed when this iclog is written.
2964 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
)
2965 iclog
->ic_flags
|= XLOG_ICL_NEED_FLUSH
| XLOG_ICL_NEED_FUA
;
2967 if (flags
& XFS_LOG_SYNC
)
2968 return xlog_wait_on_iclog(iclog
);
2970 spin_unlock(&log
->l_icloglock
);
2973 spin_unlock(&log
->l_icloglock
);
2978 * Force the log to a specific LSN.
2980 * If an iclog with that lsn can be found:
2981 * If it is in the DIRTY state, just return.
2982 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
2983 * state and go to sleep or return.
2984 * If it is in any other state, go to sleep or return.
2986 * Synchronous forces are implemented with a wait queue. All callers trying
2987 * to force a given lsn to disk must wait on the queue attached to the
2988 * specific in-core log. When given in-core log finally completes its write
2989 * to disk, that thread will wake up all threads waiting on the queue.
2999 struct xlog_in_core
*iclog
;
3002 spin_lock(&log
->l_icloglock
);
3003 if (xlog_is_shutdown(log
))
3006 iclog
= log
->l_iclog
;
3007 while (be64_to_cpu(iclog
->ic_header
.h_lsn
) != lsn
) {
3008 trace_xlog_iclog_force_lsn(iclog
, _RET_IP_
);
3009 iclog
= iclog
->ic_next
;
3010 if (iclog
== log
->l_iclog
)
3014 switch (iclog
->ic_state
) {
3015 case XLOG_STATE_ACTIVE
:
3017 * We sleep here if we haven't already slept (e.g. this is the
3018 * first time we've looked at the correct iclog buf) and the
3019 * buffer before us is going to be sync'ed. The reason for this
3020 * is that if we are doing sync transactions here, by waiting
3021 * for the previous I/O to complete, we can allow a few more
3022 * transactions into this iclog before we close it down.
3024 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3025 * refcnt so we can release the log (which drops the ref count).
3026 * The state switch keeps new transaction commits from using
3027 * this buffer. When the current commits finish writing into
3028 * the buffer, the refcount will drop to zero and the buffer
3031 if (!already_slept
&&
3032 (iclog
->ic_prev
->ic_state
== XLOG_STATE_WANT_SYNC
||
3033 iclog
->ic_prev
->ic_state
== XLOG_STATE_SYNCING
)) {
3034 xlog_wait(&iclog
->ic_prev
->ic_write_wait
,
3038 if (xlog_force_and_check_iclog(iclog
, &completed
))
3045 case XLOG_STATE_WANT_SYNC
:
3047 * This iclog may contain the checkpoint pushed by the
3048 * xlog_cil_force_seq() call, but there are other writers still
3049 * accessing it so it hasn't been pushed to disk yet. Like the
3050 * ACTIVE case above, we need to make sure caches are flushed
3051 * when this iclog is written.
3053 iclog
->ic_flags
|= XLOG_ICL_NEED_FLUSH
| XLOG_ICL_NEED_FUA
;
3057 * The entire checkpoint was written by the CIL force and is on
3058 * its way to disk already. It will be stable when it
3059 * completes, so we don't need to manipulate caches here at all.
3060 * We just need to wait for completion if necessary.
3065 if (flags
& XFS_LOG_SYNC
)
3066 return xlog_wait_on_iclog(iclog
);
3068 spin_unlock(&log
->l_icloglock
);
3071 spin_unlock(&log
->l_icloglock
);
3076 * Force the log to a specific checkpoint sequence.
3078 * First force the CIL so that all the required changes have been flushed to the
3079 * iclogs. If the CIL force completed it will return a commit LSN that indicates
3080 * the iclog that needs to be flushed to stable storage. If the caller needs
3081 * a synchronous log force, we will wait on the iclog with the LSN returned by
3082 * xlog_cil_force_seq() to be completed.
3086 struct xfs_mount
*mp
,
3091 struct xlog
*log
= mp
->m_log
;
3096 XFS_STATS_INC(mp
, xs_log_force
);
3097 trace_xfs_log_force(mp
, seq
, _RET_IP_
);
3099 lsn
= xlog_cil_force_seq(log
, seq
);
3100 if (lsn
== NULLCOMMITLSN
)
3103 ret
= xlog_force_lsn(log
, lsn
, flags
, log_flushed
, false);
3104 if (ret
== -EAGAIN
) {
3105 XFS_STATS_INC(mp
, xs_log_force_sleep
);
3106 ret
= xlog_force_lsn(log
, lsn
, flags
, log_flushed
, true);
3112 * Free a used ticket when its refcount falls to zero.
3116 xlog_ticket_t
*ticket
)
3118 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3119 if (atomic_dec_and_test(&ticket
->t_ref
))
3120 kmem_cache_free(xfs_log_ticket_cache
, ticket
);
3125 xlog_ticket_t
*ticket
)
3127 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3128 atomic_inc(&ticket
->t_ref
);
3133 * Figure out the total log space unit (in bytes) that would be
3134 * required for a log ticket.
3146 * Permanent reservations have up to 'cnt'-1 active log operations
3147 * in the log. A unit in this case is the amount of space for one
3148 * of these log operations. Normal reservations have a cnt of 1
3149 * and their unit amount is the total amount of space required.
3151 * The following lines of code account for non-transaction data
3152 * which occupy space in the on-disk log.
3154 * Normal form of a transaction is:
3155 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3156 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3158 * We need to account for all the leadup data and trailer data
3159 * around the transaction data.
3160 * And then we need to account for the worst case in terms of using
3162 * The worst case will happen if:
3163 * - the placement of the transaction happens to be such that the
3164 * roundoff is at its maximum
3165 * - the transaction data is synced before the commit record is synced
3166 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3167 * Therefore the commit record is in its own Log Record.
3168 * This can happen as the commit record is called with its
3169 * own region to xlog_write().
3170 * This then means that in the worst case, roundoff can happen for
3171 * the commit-rec as well.
3172 * The commit-rec is smaller than padding in this scenario and so it is
3173 * not added separately.
3176 /* for trans header */
3177 unit_bytes
+= sizeof(xlog_op_header_t
);
3178 unit_bytes
+= sizeof(xfs_trans_header_t
);
3181 unit_bytes
+= sizeof(xlog_op_header_t
);
3184 * for LR headers - the space for data in an iclog is the size minus
3185 * the space used for the headers. If we use the iclog size, then we
3186 * undercalculate the number of headers required.
3188 * Furthermore - the addition of op headers for split-recs might
3189 * increase the space required enough to require more log and op
3190 * headers, so take that into account too.
3192 * IMPORTANT: This reservation makes the assumption that if this
3193 * transaction is the first in an iclog and hence has the LR headers
3194 * accounted to it, then the remaining space in the iclog is
3195 * exclusively for this transaction. i.e. if the transaction is larger
3196 * than the iclog, it will be the only thing in that iclog.
3197 * Fundamentally, this means we must pass the entire log vector to
3198 * xlog_write to guarantee this.
3200 iclog_space
= log
->l_iclog_size
- log
->l_iclog_hsize
;
3201 num_headers
= howmany(unit_bytes
, iclog_space
);
3203 /* for split-recs - ophdrs added when data split over LRs */
3204 unit_bytes
+= sizeof(xlog_op_header_t
) * num_headers
;
3206 /* add extra header reservations if we overrun */
3207 while (!num_headers
||
3208 howmany(unit_bytes
, iclog_space
) > num_headers
) {
3209 unit_bytes
+= sizeof(xlog_op_header_t
);
3212 unit_bytes
+= log
->l_iclog_hsize
* num_headers
;
3214 /* for commit-rec LR header - note: padding will subsume the ophdr */
3215 unit_bytes
+= log
->l_iclog_hsize
;
3217 /* roundoff padding for transaction data and one for commit record */
3218 unit_bytes
+= 2 * log
->l_iclog_roundoff
;
3221 *niclogs
= num_headers
;
3226 xfs_log_calc_unit_res(
3227 struct xfs_mount
*mp
,
3230 return xlog_calc_unit_res(mp
->m_log
, unit_bytes
, NULL
);
3234 * Allocate and initialise a new log ticket.
3236 struct xlog_ticket
*
3243 struct xlog_ticket
*tic
;
3246 tic
= kmem_cache_zalloc(xfs_log_ticket_cache
,
3247 GFP_KERNEL
| __GFP_NOFAIL
);
3249 unit_res
= xlog_calc_unit_res(log
, unit_bytes
, &tic
->t_iclog_hdrs
);
3251 atomic_set(&tic
->t_ref
, 1);
3252 tic
->t_task
= current
;
3253 INIT_LIST_HEAD(&tic
->t_queue
);
3254 tic
->t_unit_res
= unit_res
;
3255 tic
->t_curr_res
= unit_res
;
3258 tic
->t_tid
= get_random_u32();
3260 tic
->t_flags
|= XLOG_TIC_PERM_RESERV
;
3267 xlog_verify_dump_tail(
3269 struct xlog_in_core
*iclog
)
3271 xfs_alert(log
->l_mp
,
3272 "ran out of log space tail 0x%llx/0x%llx, head lsn 0x%llx, head 0x%x/0x%x, prev head 0x%x/0x%x",
3273 iclog
? be64_to_cpu(iclog
->ic_header
.h_tail_lsn
) : -1,
3274 atomic64_read(&log
->l_tail_lsn
),
3275 log
->l_ailp
->ail_head_lsn
,
3276 log
->l_curr_cycle
, log
->l_curr_block
,
3277 log
->l_prev_cycle
, log
->l_prev_block
);
3278 xfs_alert(log
->l_mp
,
3279 "write grant 0x%llx, reserve grant 0x%llx, tail_space 0x%llx, size 0x%x, iclog flags 0x%x",
3280 atomic64_read(&log
->l_write_head
.grant
),
3281 atomic64_read(&log
->l_reserve_head
.grant
),
3282 log
->l_tail_space
, log
->l_logsize
,
3283 iclog
? iclog
->ic_flags
: -1);
3286 /* Check if the new iclog will fit in the log. */
3288 xlog_verify_tail_lsn(
3290 struct xlog_in_core
*iclog
)
3292 xfs_lsn_t tail_lsn
= be64_to_cpu(iclog
->ic_header
.h_tail_lsn
);
3295 if (CYCLE_LSN(tail_lsn
) == log
->l_prev_cycle
) {
3296 blocks
= log
->l_logBBsize
-
3297 (log
->l_prev_block
- BLOCK_LSN(tail_lsn
));
3298 if (blocks
< BTOBB(iclog
->ic_offset
) +
3299 BTOBB(log
->l_iclog_hsize
)) {
3300 xfs_emerg(log
->l_mp
,
3301 "%s: ran out of log space", __func__
);
3302 xlog_verify_dump_tail(log
, iclog
);
3307 if (CYCLE_LSN(tail_lsn
) + 1 != log
->l_prev_cycle
) {
3308 xfs_emerg(log
->l_mp
, "%s: head has wrapped tail.", __func__
);
3309 xlog_verify_dump_tail(log
, iclog
);
3312 if (BLOCK_LSN(tail_lsn
) == log
->l_prev_block
) {
3313 xfs_emerg(log
->l_mp
, "%s: tail wrapped", __func__
);
3314 xlog_verify_dump_tail(log
, iclog
);
3318 blocks
= BLOCK_LSN(tail_lsn
) - log
->l_prev_block
;
3319 if (blocks
< BTOBB(iclog
->ic_offset
) + 1) {
3320 xfs_emerg(log
->l_mp
, "%s: ran out of iclog space", __func__
);
3321 xlog_verify_dump_tail(log
, iclog
);
3326 * Perform a number of checks on the iclog before writing to disk.
3328 * 1. Make sure the iclogs are still circular
3329 * 2. Make sure we have a good magic number
3330 * 3. Make sure we don't have magic numbers in the data
3331 * 4. Check fields of each log operation header for:
3332 * A. Valid client identifier
3333 * B. tid ptr value falls in valid ptr space (user space code)
3334 * C. Length in log record header is correct according to the
3335 * individual operation headers within record.
3336 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3337 * log, check the preceding blocks of the physical log to make sure all
3338 * the cycle numbers agree with the current cycle number.
3343 struct xlog_in_core
*iclog
,
3346 xlog_op_header_t
*ophead
;
3347 xlog_in_core_t
*icptr
;
3348 xlog_in_core_2_t
*xhdr
;
3349 void *base_ptr
, *ptr
, *p
;
3350 ptrdiff_t field_offset
;
3352 int len
, i
, j
, k
, op_len
;
3355 /* check validity of iclog pointers */
3356 spin_lock(&log
->l_icloglock
);
3357 icptr
= log
->l_iclog
;
3358 for (i
= 0; i
< log
->l_iclog_bufs
; i
++, icptr
= icptr
->ic_next
)
3361 if (icptr
!= log
->l_iclog
)
3362 xfs_emerg(log
->l_mp
, "%s: corrupt iclog ring", __func__
);
3363 spin_unlock(&log
->l_icloglock
);
3365 /* check log magic numbers */
3366 if (iclog
->ic_header
.h_magicno
!= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3367 xfs_emerg(log
->l_mp
, "%s: invalid magic num", __func__
);
3369 base_ptr
= ptr
= &iclog
->ic_header
;
3370 p
= &iclog
->ic_header
;
3371 for (ptr
+= BBSIZE
; ptr
< base_ptr
+ count
; ptr
+= BBSIZE
) {
3372 if (*(__be32
*)ptr
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3373 xfs_emerg(log
->l_mp
, "%s: unexpected magic num",
3378 len
= be32_to_cpu(iclog
->ic_header
.h_num_logops
);
3379 base_ptr
= ptr
= iclog
->ic_datap
;
3381 xhdr
= iclog
->ic_data
;
3382 for (i
= 0; i
< len
; i
++) {
3385 /* clientid is only 1 byte */
3386 p
= &ophead
->oh_clientid
;
3387 field_offset
= p
- base_ptr
;
3388 if (field_offset
& 0x1ff) {
3389 clientid
= ophead
->oh_clientid
;
3391 idx
= BTOBBT((void *)&ophead
->oh_clientid
- iclog
->ic_datap
);
3392 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3393 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3394 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3395 clientid
= xlog_get_client_id(
3396 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3398 clientid
= xlog_get_client_id(
3399 iclog
->ic_header
.h_cycle_data
[idx
]);
3402 if (clientid
!= XFS_TRANSACTION
&& clientid
!= XFS_LOG
) {
3404 "%s: op %d invalid clientid %d op "PTR_FMT
" offset 0x%lx",
3405 __func__
, i
, clientid
, ophead
,
3406 (unsigned long)field_offset
);
3410 p
= &ophead
->oh_len
;
3411 field_offset
= p
- base_ptr
;
3412 if (field_offset
& 0x1ff) {
3413 op_len
= be32_to_cpu(ophead
->oh_len
);
3415 idx
= BTOBBT((void *)&ophead
->oh_len
- iclog
->ic_datap
);
3416 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3417 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3418 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3419 op_len
= be32_to_cpu(xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3421 op_len
= be32_to_cpu(iclog
->ic_header
.h_cycle_data
[idx
]);
3424 ptr
+= sizeof(xlog_op_header_t
) + op_len
;
3430 * Perform a forced shutdown on the log.
3432 * This can be called from low level log code to trigger a shutdown, or from the
3433 * high level mount shutdown code when the mount shuts down.
3435 * Our main objectives here are to make sure that:
3436 * a. if the shutdown was not due to a log IO error, flush the logs to
3437 * disk. Anything modified after this is ignored.
3438 * b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3439 * parties to find out. Nothing new gets queued after this is done.
3440 * c. Tasks sleeping on log reservations, pinned objects and
3441 * other resources get woken up.
3442 * d. The mount is also marked as shut down so that log triggered shutdowns
3443 * still behave the same as if they called xfs_forced_shutdown().
3445 * Return true if the shutdown cause was a log IO error and we actually shut the
3449 xlog_force_shutdown(
3451 uint32_t shutdown_flags
)
3453 bool log_error
= (shutdown_flags
& SHUTDOWN_LOG_IO_ERROR
);
3459 * Ensure that there is only ever one log shutdown being processed.
3460 * If we allow the log force below on a second pass after shutting
3461 * down the log, we risk deadlocking the CIL push as it may require
3462 * locks on objects the current shutdown context holds (e.g. taking
3463 * buffer locks to abort buffers on last unpin of buf log items).
3465 if (test_and_set_bit(XLOG_SHUTDOWN_STARTED
, &log
->l_opstate
))
3469 * Flush all the completed transactions to disk before marking the log
3470 * being shut down. We need to do this first as shutting down the log
3471 * before the force will prevent the log force from flushing the iclogs
3474 * When we are in recovery, there are no transactions to flush, and
3475 * we don't want to touch the log because we don't want to perturb the
3476 * current head/tail for future recovery attempts. Hence we need to
3477 * avoid a log force in this case.
3479 * If we are shutting down due to a log IO error, then we must avoid
3480 * trying to write the log as that may just result in more IO errors and
3481 * an endless shutdown/force loop.
3483 if (!log_error
&& !xlog_in_recovery(log
))
3484 xfs_log_force(log
->l_mp
, XFS_LOG_SYNC
);
3487 * Atomically set the shutdown state. If the shutdown state is already
3488 * set, there someone else is performing the shutdown and so we are done
3489 * here. This should never happen because we should only ever get called
3490 * once by the first shutdown caller.
3492 * Much of the log state machine transitions assume that shutdown state
3493 * cannot change once they hold the log->l_icloglock. Hence we need to
3494 * hold that lock here, even though we use the atomic test_and_set_bit()
3495 * operation to set the shutdown state.
3497 spin_lock(&log
->l_icloglock
);
3498 if (test_and_set_bit(XLOG_IO_ERROR
, &log
->l_opstate
)) {
3499 spin_unlock(&log
->l_icloglock
);
3503 spin_unlock(&log
->l_icloglock
);
3506 * If this log shutdown also sets the mount shutdown state, issue a
3507 * shutdown warning message.
3509 if (!xfs_set_shutdown(log
->l_mp
)) {
3510 xfs_alert_tag(log
->l_mp
, XFS_PTAG_SHUTDOWN_LOGERROR
,
3511 "Filesystem has been shut down due to log error (0x%x).",
3513 xfs_alert(log
->l_mp
,
3514 "Please unmount the filesystem and rectify the problem(s).");
3515 if (xfs_error_level
>= XFS_ERRLEVEL_HIGH
)
3520 * We don't want anybody waiting for log reservations after this. That
3521 * means we have to wake up everybody queued up on reserveq as well as
3522 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3523 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3524 * action is protected by the grant locks.
3526 xlog_grant_head_wake_all(&log
->l_reserve_head
);
3527 xlog_grant_head_wake_all(&log
->l_write_head
);
3530 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3531 * as if the log writes were completed. The abort handling in the log
3532 * item committed callback functions will do this again under lock to
3535 spin_lock(&log
->l_cilp
->xc_push_lock
);
3536 wake_up_all(&log
->l_cilp
->xc_start_wait
);
3537 wake_up_all(&log
->l_cilp
->xc_commit_wait
);
3538 spin_unlock(&log
->l_cilp
->xc_push_lock
);
3540 spin_lock(&log
->l_icloglock
);
3541 xlog_state_shutdown_callbacks(log
);
3542 spin_unlock(&log
->l_icloglock
);
3544 wake_up_var(&log
->l_opstate
);
3552 xlog_in_core_t
*iclog
;
3554 iclog
= log
->l_iclog
;
3556 /* endianness does not matter here, zero is zero in
3559 if (iclog
->ic_header
.h_num_logops
)
3561 iclog
= iclog
->ic_next
;
3562 } while (iclog
!= log
->l_iclog
);
3567 * Verify that an LSN stamped into a piece of metadata is valid. This is
3568 * intended for use in read verifiers on v5 superblocks.
3572 struct xfs_mount
*mp
,
3575 struct xlog
*log
= mp
->m_log
;
3579 * norecovery mode skips mount-time log processing and unconditionally
3580 * resets the in-core LSN. We can't validate in this mode, but
3581 * modifications are not allowed anyways so just return true.
3583 if (xfs_has_norecovery(mp
))
3587 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3588 * handled by recovery and thus safe to ignore here.
3590 if (lsn
== NULLCOMMITLSN
)
3593 valid
= xlog_valid_lsn(mp
->m_log
, lsn
);
3595 /* warn the user about what's gone wrong before verifier failure */
3597 spin_lock(&log
->l_icloglock
);
3599 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3600 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3601 CYCLE_LSN(lsn
), BLOCK_LSN(lsn
),
3602 log
->l_curr_cycle
, log
->l_curr_block
);
3603 spin_unlock(&log
->l_icloglock
);