1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (C) 2016 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_btree.h"
21 #include "xfs_refcount_btree.h"
22 #include "xfs_refcount.h"
23 #include "xfs_bmap_btree.h"
24 #include "xfs_trans_space.h"
26 #include "xfs_alloc.h"
27 #include "xfs_quota.h"
28 #include "xfs_reflink.h"
29 #include "xfs_iomap.h"
31 #include "xfs_ag_resv.h"
32 #include "xfs_health.h"
35 * Copy on Write of Shared Blocks
37 * XFS must preserve "the usual" file semantics even when two files share
38 * the same physical blocks. This means that a write to one file must not
39 * alter the blocks in a different file; the way that we'll do that is
40 * through the use of a copy-on-write mechanism. At a high level, that
41 * means that when we want to write to a shared block, we allocate a new
42 * block, write the data to the new block, and if that succeeds we map the
43 * new block into the file.
45 * XFS provides a "delayed allocation" mechanism that defers the allocation
46 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
47 * possible. This reduces fragmentation by enabling the filesystem to ask
48 * for bigger chunks less often, which is exactly what we want for CoW.
50 * The delalloc mechanism begins when the kernel wants to make a block
51 * writable (write_begin or page_mkwrite). If the offset is not mapped, we
52 * create a delalloc mapping, which is a regular in-core extent, but without
53 * a real startblock. (For delalloc mappings, the startblock encodes both
54 * a flag that this is a delalloc mapping, and a worst-case estimate of how
55 * many blocks might be required to put the mapping into the BMBT.) delalloc
56 * mappings are a reservation against the free space in the filesystem;
57 * adjacent mappings can also be combined into fewer larger mappings.
59 * As an optimization, the CoW extent size hint (cowextsz) creates
60 * outsized aligned delalloc reservations in the hope of landing out of
61 * order nearby CoW writes in a single extent on disk, thereby reducing
62 * fragmentation and improving future performance.
64 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
65 * C: ------DDDDDDD--------- (CoW fork)
67 * When dirty pages are being written out (typically in writepage), the
68 * delalloc reservations are converted into unwritten mappings by
69 * allocating blocks and replacing the delalloc mapping with real ones.
70 * A delalloc mapping can be replaced by several unwritten ones if the
71 * free space is fragmented.
73 * D: --RRRRRRSSSRRRRRRRR---
74 * C: ------UUUUUUU---------
76 * We want to adapt the delalloc mechanism for copy-on-write, since the
77 * write paths are similar. The first two steps (creating the reservation
78 * and allocating the blocks) are exactly the same as delalloc except that
79 * the mappings must be stored in a separate CoW fork because we do not want
80 * to disturb the mapping in the data fork until we're sure that the write
81 * succeeded. IO completion in this case is the process of removing the old
82 * mapping from the data fork and moving the new mapping from the CoW fork to
83 * the data fork. This will be discussed shortly.
85 * For now, unaligned directio writes will be bounced back to the page cache.
86 * Block-aligned directio writes will use the same mechanism as buffered
89 * Just prior to submitting the actual disk write requests, we convert
90 * the extents representing the range of the file actually being written
91 * (as opposed to extra pieces created for the cowextsize hint) to real
92 * extents. This will become important in the next step:
94 * D: --RRRRRRSSSRRRRRRRR---
95 * C: ------UUrrUUU---------
97 * CoW remapping must be done after the data block write completes,
98 * because we don't want to destroy the old data fork map until we're sure
99 * the new block has been written. Since the new mappings are kept in a
100 * separate fork, we can simply iterate these mappings to find the ones
101 * that cover the file blocks that we just CoW'd. For each extent, simply
102 * unmap the corresponding range in the data fork, map the new range into
103 * the data fork, and remove the extent from the CoW fork. Because of
104 * the presence of the cowextsize hint, however, we must be careful
105 * only to remap the blocks that we've actually written out -- we must
106 * never remap delalloc reservations nor CoW staging blocks that have
107 * yet to be written. This corresponds exactly to the real extents in
110 * D: --RRRRRRrrSRRRRRRRR---
111 * C: ------UU--UUU---------
113 * Since the remapping operation can be applied to an arbitrary file
114 * range, we record the need for the remap step as a flag in the ioend
115 * instead of declaring a new IO type. This is required for direct io
116 * because we only have ioend for the whole dio, and we have to be able to
117 * remember the presence of unwritten blocks and CoW blocks with a single
118 * ioend structure. Better yet, the more ground we can cover with one
123 * Given an AG extent, find the lowest-numbered run of shared blocks
124 * within that range and return the range in fbno/flen. If
125 * find_end_of_shared is true, return the longest contiguous extent of
126 * shared blocks. If there are no shared extents, fbno and flen will
127 * be set to NULLAGBLOCK and 0, respectively.
130 xfs_reflink_find_shared(
131 struct xfs_perag
*pag
,
132 struct xfs_trans
*tp
,
137 bool find_end_of_shared
)
139 struct xfs_buf
*agbp
;
140 struct xfs_btree_cur
*cur
;
143 error
= xfs_alloc_read_agf(pag
, tp
, 0, &agbp
);
147 cur
= xfs_refcountbt_init_cursor(pag_mount(pag
), tp
, agbp
, pag
);
149 error
= xfs_refcount_find_shared(cur
, agbno
, aglen
, fbno
, flen
,
152 xfs_btree_del_cursor(cur
, error
);
154 xfs_trans_brelse(tp
, agbp
);
159 * Trim the mapping to the next block where there's a change in the
160 * shared/unshared status. More specifically, this means that we
161 * find the lowest-numbered extent of shared blocks that coincides with
162 * the given block mapping. If the shared extent overlaps the start of
163 * the mapping, trim the mapping to the end of the shared extent. If
164 * the shared region intersects the mapping, trim the mapping to the
165 * start of the shared extent. If there are no shared regions that
166 * overlap, just return the original extent.
169 xfs_reflink_trim_around_shared(
170 struct xfs_inode
*ip
,
171 struct xfs_bmbt_irec
*irec
,
174 struct xfs_mount
*mp
= ip
->i_mount
;
175 struct xfs_perag
*pag
;
182 /* Holes, unwritten, and delalloc extents cannot be shared */
183 if (!xfs_is_cow_inode(ip
) || !xfs_bmap_is_written_extent(irec
)) {
188 trace_xfs_reflink_trim_around_shared(ip
, irec
);
190 pag
= xfs_perag_get(mp
, XFS_FSB_TO_AGNO(mp
, irec
->br_startblock
));
191 agbno
= XFS_FSB_TO_AGBNO(mp
, irec
->br_startblock
);
192 aglen
= irec
->br_blockcount
;
194 error
= xfs_reflink_find_shared(pag
, NULL
, agbno
, aglen
, &fbno
, &flen
,
201 if (fbno
== NULLAGBLOCK
) {
202 /* No shared blocks at all. */
208 * The start of this extent is shared. Truncate the
209 * mapping at the end of the shared region so that a
210 * subsequent iteration starts at the start of the
213 irec
->br_blockcount
= flen
;
219 * There's a shared extent midway through this extent.
220 * Truncate the mapping at the start of the shared
221 * extent so that a subsequent iteration starts at the
222 * start of the shared region.
224 irec
->br_blockcount
= fbno
- agbno
;
230 struct xfs_inode
*ip
,
231 struct xfs_bmbt_irec
*imap
,
234 /* We can't update any real extents in always COW mode. */
235 if (xfs_is_always_cow_inode(ip
) &&
236 !isnullstartblock(imap
->br_startblock
)) {
241 /* Trim the mapping to the nearest shared extent boundary. */
242 return xfs_reflink_trim_around_shared(ip
, imap
, shared
);
246 xfs_reflink_convert_cow_locked(
247 struct xfs_inode
*ip
,
248 xfs_fileoff_t offset_fsb
,
249 xfs_filblks_t count_fsb
)
251 struct xfs_iext_cursor icur
;
252 struct xfs_bmbt_irec got
;
253 struct xfs_btree_cur
*dummy_cur
= NULL
;
257 if (!xfs_iext_lookup_extent(ip
, ip
->i_cowfp
, offset_fsb
, &icur
, &got
))
261 if (got
.br_startoff
>= offset_fsb
+ count_fsb
)
263 if (got
.br_state
== XFS_EXT_NORM
)
265 if (WARN_ON_ONCE(isnullstartblock(got
.br_startblock
)))
268 xfs_trim_extent(&got
, offset_fsb
, count_fsb
);
269 if (!got
.br_blockcount
)
272 got
.br_state
= XFS_EXT_NORM
;
273 error
= xfs_bmap_add_extent_unwritten_real(NULL
, ip
,
274 XFS_COW_FORK
, &icur
, &dummy_cur
, &got
,
278 } while (xfs_iext_next_extent(ip
->i_cowfp
, &icur
, &got
));
283 /* Convert all of the unwritten CoW extents in a file's range to real ones. */
285 xfs_reflink_convert_cow(
286 struct xfs_inode
*ip
,
290 struct xfs_mount
*mp
= ip
->i_mount
;
291 xfs_fileoff_t offset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
292 xfs_fileoff_t end_fsb
= XFS_B_TO_FSB(mp
, offset
+ count
);
293 xfs_filblks_t count_fsb
= end_fsb
- offset_fsb
;
298 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
299 error
= xfs_reflink_convert_cow_locked(ip
, offset_fsb
, count_fsb
);
300 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
305 * Find the extent that maps the given range in the COW fork. Even if the extent
306 * is not shared we might have a preallocation for it in the COW fork. If so we
307 * use it that rather than trigger a new allocation.
310 xfs_find_trim_cow_extent(
311 struct xfs_inode
*ip
,
312 struct xfs_bmbt_irec
*imap
,
313 struct xfs_bmbt_irec
*cmap
,
317 xfs_fileoff_t offset_fsb
= imap
->br_startoff
;
318 xfs_filblks_t count_fsb
= imap
->br_blockcount
;
319 struct xfs_iext_cursor icur
;
324 * If we don't find an overlapping extent, trim the range we need to
325 * allocate to fit the hole we found.
327 if (!xfs_iext_lookup_extent(ip
, ip
->i_cowfp
, offset_fsb
, &icur
, cmap
))
328 cmap
->br_startoff
= offset_fsb
+ count_fsb
;
329 if (cmap
->br_startoff
> offset_fsb
) {
330 xfs_trim_extent(imap
, imap
->br_startoff
,
331 cmap
->br_startoff
- imap
->br_startoff
);
332 return xfs_bmap_trim_cow(ip
, imap
, shared
);
336 if (isnullstartblock(cmap
->br_startblock
)) {
337 xfs_trim_extent(imap
, cmap
->br_startoff
, cmap
->br_blockcount
);
341 /* real extent found - no need to allocate */
342 xfs_trim_extent(cmap
, offset_fsb
, count_fsb
);
348 xfs_reflink_convert_unwritten(
349 struct xfs_inode
*ip
,
350 struct xfs_bmbt_irec
*imap
,
351 struct xfs_bmbt_irec
*cmap
,
354 xfs_fileoff_t offset_fsb
= imap
->br_startoff
;
355 xfs_filblks_t count_fsb
= imap
->br_blockcount
;
359 * cmap might larger than imap due to cowextsize hint.
361 xfs_trim_extent(cmap
, offset_fsb
, count_fsb
);
364 * COW fork extents are supposed to remain unwritten until we're ready
365 * to initiate a disk write. For direct I/O we are going to write the
366 * data and need the conversion, but for buffered writes we're done.
368 if (!convert_now
|| cmap
->br_state
== XFS_EXT_NORM
)
371 trace_xfs_reflink_convert_cow(ip
, cmap
);
373 error
= xfs_reflink_convert_cow_locked(ip
, offset_fsb
, count_fsb
);
375 cmap
->br_state
= XFS_EXT_NORM
;
381 xfs_reflink_fill_cow_hole(
382 struct xfs_inode
*ip
,
383 struct xfs_bmbt_irec
*imap
,
384 struct xfs_bmbt_irec
*cmap
,
389 struct xfs_mount
*mp
= ip
->i_mount
;
390 struct xfs_trans
*tp
;
391 xfs_filblks_t resaligned
;
392 xfs_extlen_t resblks
;
397 resaligned
= xfs_aligned_fsb_count(imap
->br_startoff
,
398 imap
->br_blockcount
, xfs_get_cowextsz_hint(ip
));
399 resblks
= XFS_DIOSTRAT_SPACE_RES(mp
, resaligned
);
401 xfs_iunlock(ip
, *lockmode
);
404 error
= xfs_trans_alloc_inode(ip
, &M_RES(mp
)->tr_write
, resblks
, 0,
409 *lockmode
= XFS_ILOCK_EXCL
;
411 error
= xfs_find_trim_cow_extent(ip
, imap
, cmap
, shared
, &found
);
412 if (error
|| !*shared
)
413 goto out_trans_cancel
;
416 xfs_trans_cancel(tp
);
420 /* Allocate the entire reservation as unwritten blocks. */
422 error
= xfs_bmapi_write(tp
, ip
, imap
->br_startoff
, imap
->br_blockcount
,
423 XFS_BMAPI_COWFORK
| XFS_BMAPI_PREALLOC
, 0, cmap
,
426 goto out_trans_cancel
;
428 xfs_inode_set_cowblocks_tag(ip
);
429 error
= xfs_trans_commit(tp
);
434 return xfs_reflink_convert_unwritten(ip
, imap
, cmap
, convert_now
);
437 xfs_trans_cancel(tp
);
442 xfs_reflink_fill_delalloc(
443 struct xfs_inode
*ip
,
444 struct xfs_bmbt_irec
*imap
,
445 struct xfs_bmbt_irec
*cmap
,
450 struct xfs_mount
*mp
= ip
->i_mount
;
451 struct xfs_trans
*tp
;
457 xfs_iunlock(ip
, *lockmode
);
460 error
= xfs_trans_alloc_inode(ip
, &M_RES(mp
)->tr_write
, 0, 0,
465 *lockmode
= XFS_ILOCK_EXCL
;
467 error
= xfs_find_trim_cow_extent(ip
, imap
, cmap
, shared
,
469 if (error
|| !*shared
)
470 goto out_trans_cancel
;
473 xfs_trans_cancel(tp
);
477 ASSERT(isnullstartblock(cmap
->br_startblock
) ||
478 cmap
->br_startblock
== DELAYSTARTBLOCK
);
481 * Replace delalloc reservation with an unwritten extent.
484 error
= xfs_bmapi_write(tp
, ip
, cmap
->br_startoff
,
486 XFS_BMAPI_COWFORK
| XFS_BMAPI_PREALLOC
, 0,
489 goto out_trans_cancel
;
491 xfs_inode_set_cowblocks_tag(ip
);
492 error
= xfs_trans_commit(tp
);
495 } while (cmap
->br_startoff
+ cmap
->br_blockcount
<= imap
->br_startoff
);
497 return xfs_reflink_convert_unwritten(ip
, imap
, cmap
, convert_now
);
500 xfs_trans_cancel(tp
);
504 /* Allocate all CoW reservations covering a range of blocks in a file. */
506 xfs_reflink_allocate_cow(
507 struct xfs_inode
*ip
,
508 struct xfs_bmbt_irec
*imap
,
509 struct xfs_bmbt_irec
*cmap
,
517 xfs_assert_ilocked(ip
, XFS_ILOCK_EXCL
);
519 ASSERT(!xfs_is_reflink_inode(ip
));
520 xfs_ifork_init_cow(ip
);
523 error
= xfs_find_trim_cow_extent(ip
, imap
, cmap
, shared
, &found
);
524 if (error
|| !*shared
)
527 /* CoW fork has a real extent */
529 return xfs_reflink_convert_unwritten(ip
, imap
, cmap
,
533 * CoW fork does not have an extent and data extent is shared.
534 * Allocate a real extent in the CoW fork.
536 if (cmap
->br_startoff
> imap
->br_startoff
)
537 return xfs_reflink_fill_cow_hole(ip
, imap
, cmap
, shared
,
538 lockmode
, convert_now
);
541 * CoW fork has a delalloc reservation. Replace it with a real extent.
542 * There may or may not be a data fork mapping.
544 if (isnullstartblock(cmap
->br_startblock
) ||
545 cmap
->br_startblock
== DELAYSTARTBLOCK
)
546 return xfs_reflink_fill_delalloc(ip
, imap
, cmap
, shared
,
547 lockmode
, convert_now
);
549 /* Shouldn't get here. */
551 return -EFSCORRUPTED
;
555 * Cancel CoW reservations for some block range of an inode.
557 * If cancel_real is true this function cancels all COW fork extents for the
558 * inode; if cancel_real is false, real extents are not cleared.
560 * Caller must have already joined the inode to the current transaction. The
561 * inode will be joined to the transaction returned to the caller.
564 xfs_reflink_cancel_cow_blocks(
565 struct xfs_inode
*ip
,
566 struct xfs_trans
**tpp
,
567 xfs_fileoff_t offset_fsb
,
568 xfs_fileoff_t end_fsb
,
571 struct xfs_ifork
*ifp
= xfs_ifork_ptr(ip
, XFS_COW_FORK
);
572 struct xfs_bmbt_irec got
, del
;
573 struct xfs_iext_cursor icur
;
576 if (!xfs_inode_has_cow_data(ip
))
578 if (!xfs_iext_lookup_extent_before(ip
, ifp
, &end_fsb
, &icur
, &got
))
581 /* Walk backwards until we're out of the I/O range... */
582 while (got
.br_startoff
+ got
.br_blockcount
> offset_fsb
) {
584 xfs_trim_extent(&del
, offset_fsb
, end_fsb
- offset_fsb
);
586 /* Extent delete may have bumped ext forward */
587 if (!del
.br_blockcount
) {
588 xfs_iext_prev(ifp
, &icur
);
592 trace_xfs_reflink_cancel_cow(ip
, &del
);
594 if (isnullstartblock(del
.br_startblock
)) {
595 xfs_bmap_del_extent_delay(ip
, XFS_COW_FORK
, &icur
, &got
,
597 } else if (del
.br_state
== XFS_EXT_UNWRITTEN
|| cancel_real
) {
598 ASSERT((*tpp
)->t_highest_agno
== NULLAGNUMBER
);
600 /* Free the CoW orphan record. */
601 xfs_refcount_free_cow_extent(*tpp
, del
.br_startblock
,
604 error
= xfs_free_extent_later(*tpp
, del
.br_startblock
,
605 del
.br_blockcount
, NULL
,
606 XFS_AG_RESV_NONE
, 0);
610 /* Roll the transaction */
611 error
= xfs_defer_finish(tpp
);
615 /* Remove the mapping from the CoW fork. */
616 xfs_bmap_del_extent_cow(ip
, &icur
, &got
, &del
);
618 /* Remove the quota reservation */
619 xfs_quota_unreserve_blkres(ip
, del
.br_blockcount
);
621 /* Didn't do anything, push cursor back. */
622 xfs_iext_prev(ifp
, &icur
);
625 if (!xfs_iext_get_extent(ifp
, &icur
, &got
))
629 /* clear tag if cow fork is emptied */
631 xfs_inode_clear_cowblocks_tag(ip
);
636 * Cancel CoW reservations for some byte range of an inode.
638 * If cancel_real is true this function cancels all COW fork extents for the
639 * inode; if cancel_real is false, real extents are not cleared.
642 xfs_reflink_cancel_cow_range(
643 struct xfs_inode
*ip
,
648 struct xfs_trans
*tp
;
649 xfs_fileoff_t offset_fsb
;
650 xfs_fileoff_t end_fsb
;
653 trace_xfs_reflink_cancel_cow_range(ip
, offset
, count
);
656 offset_fsb
= XFS_B_TO_FSBT(ip
->i_mount
, offset
);
657 if (count
== NULLFILEOFF
)
658 end_fsb
= NULLFILEOFF
;
660 end_fsb
= XFS_B_TO_FSB(ip
->i_mount
, offset
+ count
);
662 /* Start a rolling transaction to remove the mappings */
663 error
= xfs_trans_alloc(ip
->i_mount
, &M_RES(ip
->i_mount
)->tr_write
,
668 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
669 xfs_trans_ijoin(tp
, ip
, 0);
671 /* Scrape out the old CoW reservations */
672 error
= xfs_reflink_cancel_cow_blocks(ip
, &tp
, offset_fsb
, end_fsb
,
677 error
= xfs_trans_commit(tp
);
679 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
683 xfs_trans_cancel(tp
);
684 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
686 trace_xfs_reflink_cancel_cow_range_error(ip
, error
, _RET_IP_
);
691 * Remap part of the CoW fork into the data fork.
693 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
694 * into the data fork; this function will remap what it can (at the end of the
695 * range) and update @end_fsb appropriately. Each remap gets its own
696 * transaction because we can end up merging and splitting bmbt blocks for
697 * every remap operation and we'd like to keep the block reservation
698 * requirements as low as possible.
701 xfs_reflink_end_cow_extent(
702 struct xfs_inode
*ip
,
703 xfs_fileoff_t
*offset_fsb
,
704 xfs_fileoff_t end_fsb
)
706 struct xfs_iext_cursor icur
;
707 struct xfs_bmbt_irec got
, del
, data
;
708 struct xfs_mount
*mp
= ip
->i_mount
;
709 struct xfs_trans
*tp
;
710 struct xfs_ifork
*ifp
= xfs_ifork_ptr(ip
, XFS_COW_FORK
);
711 unsigned int resblks
;
715 resblks
= XFS_EXTENTADD_SPACE_RES(mp
, XFS_DATA_FORK
);
716 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_write
, resblks
, 0,
717 XFS_TRANS_RESERVE
, &tp
);
722 * Lock the inode. We have to ijoin without automatic unlock because
723 * the lead transaction is the refcountbt record deletion; the data
724 * fork update follows as a deferred log item.
726 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
727 xfs_trans_ijoin(tp
, ip
, 0);
730 * In case of racing, overlapping AIO writes no COW extents might be
731 * left by the time I/O completes for the loser of the race. In that
734 if (!xfs_iext_lookup_extent(ip
, ifp
, *offset_fsb
, &icur
, &got
) ||
735 got
.br_startoff
>= end_fsb
) {
736 *offset_fsb
= end_fsb
;
741 * Only remap real extents that contain data. With AIO, speculative
742 * preallocations can leak into the range we are called upon, and we
743 * need to skip them. Preserve @got for the eventual CoW fork
744 * deletion; from now on @del represents the mapping that we're
745 * actually remapping.
747 while (!xfs_bmap_is_written_extent(&got
)) {
748 if (!xfs_iext_next_extent(ifp
, &icur
, &got
) ||
749 got
.br_startoff
>= end_fsb
) {
750 *offset_fsb
= end_fsb
;
755 xfs_trim_extent(&del
, *offset_fsb
, end_fsb
- *offset_fsb
);
757 error
= xfs_iext_count_extend(tp
, ip
, XFS_DATA_FORK
,
758 XFS_IEXT_REFLINK_END_COW_CNT
);
762 /* Grab the corresponding mapping in the data fork. */
764 error
= xfs_bmapi_read(ip
, del
.br_startoff
, del
.br_blockcount
, &data
,
769 /* We can only remap the smaller of the two extent sizes. */
770 data
.br_blockcount
= min(data
.br_blockcount
, del
.br_blockcount
);
771 del
.br_blockcount
= data
.br_blockcount
;
773 trace_xfs_reflink_cow_remap_from(ip
, &del
);
774 trace_xfs_reflink_cow_remap_to(ip
, &data
);
776 if (xfs_bmap_is_real_extent(&data
)) {
778 * If the extent we're remapping is backed by storage (written
779 * or not), unmap the extent and drop its refcount.
781 xfs_bmap_unmap_extent(tp
, ip
, XFS_DATA_FORK
, &data
);
782 xfs_refcount_decrease_extent(tp
, &data
);
783 xfs_trans_mod_dquot_byino(tp
, ip
, XFS_TRANS_DQ_BCOUNT
,
784 -data
.br_blockcount
);
785 } else if (data
.br_startblock
== DELAYSTARTBLOCK
) {
789 * If the extent we're remapping is a delalloc reservation,
790 * we can use the regular bunmapi function to release the
791 * incore state. Dropping the delalloc reservation takes care
792 * of the quota reservation for us.
794 error
= xfs_bunmapi(NULL
, ip
, data
.br_startoff
,
795 data
.br_blockcount
, 0, 1, &done
);
801 /* Free the CoW orphan record. */
802 xfs_refcount_free_cow_extent(tp
, del
.br_startblock
, del
.br_blockcount
);
804 /* Map the new blocks into the data fork. */
805 xfs_bmap_map_extent(tp
, ip
, XFS_DATA_FORK
, &del
);
807 /* Charge this new data fork mapping to the on-disk quota. */
808 xfs_trans_mod_dquot_byino(tp
, ip
, XFS_TRANS_DQ_DELBCOUNT
,
809 (long)del
.br_blockcount
);
811 /* Remove the mapping from the CoW fork. */
812 xfs_bmap_del_extent_cow(ip
, &icur
, &got
, &del
);
814 error
= xfs_trans_commit(tp
);
815 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
819 /* Update the caller about how much progress we made. */
820 *offset_fsb
= del
.br_startoff
+ del
.br_blockcount
;
824 xfs_trans_cancel(tp
);
825 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
830 * Remap parts of a file's data fork after a successful CoW.
834 struct xfs_inode
*ip
,
838 xfs_fileoff_t offset_fsb
;
839 xfs_fileoff_t end_fsb
;
842 trace_xfs_reflink_end_cow(ip
, offset
, count
);
844 offset_fsb
= XFS_B_TO_FSBT(ip
->i_mount
, offset
);
845 end_fsb
= XFS_B_TO_FSB(ip
->i_mount
, offset
+ count
);
848 * Walk forwards until we've remapped the I/O range. The loop function
849 * repeatedly cycles the ILOCK to allocate one transaction per remapped
852 * If we're being called by writeback then the pages will still
853 * have PageWriteback set, which prevents races with reflink remapping
854 * and truncate. Reflink remapping prevents races with writeback by
855 * taking the iolock and mmaplock before flushing the pages and
856 * remapping, which means there won't be any further writeback or page
857 * cache dirtying until the reflink completes.
859 * We should never have two threads issuing writeback for the same file
860 * region. There are also have post-eof checks in the writeback
861 * preparation code so that we don't bother writing out pages that are
862 * about to be truncated.
864 * If we're being called as part of directio write completion, the dio
865 * count is still elevated, which reflink and truncate will wait for.
866 * Reflink remapping takes the iolock and mmaplock and waits for
867 * pending dio to finish, which should prevent any directio until the
868 * remap completes. Multiple concurrent directio writes to the same
869 * region are handled by end_cow processing only occurring for the
870 * threads which succeed; the outcome of multiple overlapping direct
871 * writes is not well defined anyway.
873 * It's possible that a buffered write and a direct write could collide
874 * here (the buffered write stumbles in after the dio flushes and
875 * invalidates the page cache and immediately queues writeback), but we
876 * have never supported this 100%. If either disk write succeeds the
877 * blocks will be remapped.
879 while (end_fsb
> offset_fsb
&& !error
)
880 error
= xfs_reflink_end_cow_extent(ip
, &offset_fsb
, end_fsb
);
883 trace_xfs_reflink_end_cow_error(ip
, error
, _RET_IP_
);
888 * Free all CoW staging blocks that are still referenced by the ondisk refcount
889 * metadata. The ondisk metadata does not track which inode created the
890 * staging extent, so callers must ensure that there are no cached inodes with
891 * live CoW staging extents.
894 xfs_reflink_recover_cow(
895 struct xfs_mount
*mp
)
897 struct xfs_perag
*pag
= NULL
;
900 if (!xfs_has_reflink(mp
))
903 while ((pag
= xfs_perag_next(mp
, pag
))) {
904 error
= xfs_refcount_recover_cow_leftovers(mp
, pag
);
915 * Reflinking (Block) Ranges of Two Files Together
917 * First, ensure that the reflink flag is set on both inodes. The flag is an
918 * optimization to avoid unnecessary refcount btree lookups in the write path.
920 * Now we can iteratively remap the range of extents (and holes) in src to the
921 * corresponding ranges in dest. Let drange and srange denote the ranges of
922 * logical blocks in dest and src touched by the reflink operation.
924 * While the length of drange is greater than zero,
925 * - Read src's bmbt at the start of srange ("imap")
926 * - If imap doesn't exist, make imap appear to start at the end of srange
928 * - If imap starts before srange, advance imap to start at srange.
929 * - If imap goes beyond srange, truncate imap to end at the end of srange.
930 * - Punch (imap start - srange start + imap len) blocks from dest at
931 * offset (drange start).
932 * - If imap points to a real range of pblks,
933 * > Increase the refcount of the imap's pblks
934 * > Map imap's pblks into dest at the offset
935 * (drange start + imap start - srange start)
936 * - Advance drange and srange by (imap start - srange start + imap len)
938 * Finally, if the reflink made dest longer, update both the in-core and
939 * on-disk file sizes.
941 * ASCII Art Demonstration:
943 * Let's say we want to reflink this source file:
945 * ----SSSSSSS-SSSSS----SSSSSS (src file)
946 * <-------------------->
948 * into this destination file:
950 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
951 * <-------------------->
952 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
953 * Observe that the range has different logical offsets in either file.
955 * Consider that the first extent in the source file doesn't line up with our
956 * reflink range. Unmapping and remapping are separate operations, so we can
957 * unmap more blocks from the destination file than we remap.
959 * ----SSSSSSS-SSSSS----SSSSSS
961 * --DDDDD---------DDDDD--DDD
964 * Now remap the source extent into the destination file:
966 * ----SSSSSSS-SSSSS----SSSSSS
968 * --DDDDD--SSSSSSSDDDDD--DDD
971 * Do likewise with the second hole and extent in our range. Holes in the
972 * unmap range don't affect our operation.
974 * ----SSSSSSS-SSSSS----SSSSSS
976 * --DDDDD--SSSSSSS-SSSSS-DDD
979 * Finally, unmap and remap part of the third extent. This will increase the
980 * size of the destination file.
982 * ----SSSSSSS-SSSSS----SSSSSS
984 * --DDDDD--SSSSSSS-SSSSS----SSS
987 * Once we update the destination file's i_size, we're done.
991 * Ensure the reflink bit is set in both inodes.
994 xfs_reflink_set_inode_flag(
995 struct xfs_inode
*src
,
996 struct xfs_inode
*dest
)
998 struct xfs_mount
*mp
= src
->i_mount
;
1000 struct xfs_trans
*tp
;
1002 if (xfs_is_reflink_inode(src
) && xfs_is_reflink_inode(dest
))
1005 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_ichange
, 0, 0, 0, &tp
);
1009 /* Lock both files against IO */
1010 if (src
->i_ino
== dest
->i_ino
)
1011 xfs_ilock(src
, XFS_ILOCK_EXCL
);
1013 xfs_lock_two_inodes(src
, XFS_ILOCK_EXCL
, dest
, XFS_ILOCK_EXCL
);
1015 if (!xfs_is_reflink_inode(src
)) {
1016 trace_xfs_reflink_set_inode_flag(src
);
1017 xfs_trans_ijoin(tp
, src
, XFS_ILOCK_EXCL
);
1018 src
->i_diflags2
|= XFS_DIFLAG2_REFLINK
;
1019 xfs_trans_log_inode(tp
, src
, XFS_ILOG_CORE
);
1020 xfs_ifork_init_cow(src
);
1022 xfs_iunlock(src
, XFS_ILOCK_EXCL
);
1024 if (src
->i_ino
== dest
->i_ino
)
1027 if (!xfs_is_reflink_inode(dest
)) {
1028 trace_xfs_reflink_set_inode_flag(dest
);
1029 xfs_trans_ijoin(tp
, dest
, XFS_ILOCK_EXCL
);
1030 dest
->i_diflags2
|= XFS_DIFLAG2_REFLINK
;
1031 xfs_trans_log_inode(tp
, dest
, XFS_ILOG_CORE
);
1032 xfs_ifork_init_cow(dest
);
1034 xfs_iunlock(dest
, XFS_ILOCK_EXCL
);
1037 error
= xfs_trans_commit(tp
);
1043 trace_xfs_reflink_set_inode_flag_error(dest
, error
, _RET_IP_
);
1048 * Update destination inode size & cowextsize hint, if necessary.
1051 xfs_reflink_update_dest(
1052 struct xfs_inode
*dest
,
1054 xfs_extlen_t cowextsize
,
1055 unsigned int remap_flags
)
1057 struct xfs_mount
*mp
= dest
->i_mount
;
1058 struct xfs_trans
*tp
;
1061 if (newlen
<= i_size_read(VFS_I(dest
)) && cowextsize
== 0)
1064 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_ichange
, 0, 0, 0, &tp
);
1068 xfs_ilock(dest
, XFS_ILOCK_EXCL
);
1069 xfs_trans_ijoin(tp
, dest
, XFS_ILOCK_EXCL
);
1071 if (newlen
> i_size_read(VFS_I(dest
))) {
1072 trace_xfs_reflink_update_inode_size(dest
, newlen
);
1073 i_size_write(VFS_I(dest
), newlen
);
1074 dest
->i_disk_size
= newlen
;
1078 dest
->i_cowextsize
= cowextsize
;
1079 dest
->i_diflags2
|= XFS_DIFLAG2_COWEXTSIZE
;
1082 xfs_trans_log_inode(tp
, dest
, XFS_ILOG_CORE
);
1084 error
= xfs_trans_commit(tp
);
1090 trace_xfs_reflink_update_inode_size_error(dest
, error
, _RET_IP_
);
1095 * Do we have enough reserve in this AG to handle a reflink? The refcount
1096 * btree already reserved all the space it needs, but the rmap btree can grow
1097 * infinitely, so we won't allow more reflinks when the AG is down to the
1101 xfs_reflink_ag_has_free_space(
1102 struct xfs_mount
*mp
,
1103 xfs_agnumber_t agno
)
1105 struct xfs_perag
*pag
;
1108 if (!xfs_has_rmapbt(mp
))
1111 pag
= xfs_perag_get(mp
, agno
);
1112 if (xfs_ag_resv_critical(pag
, XFS_AG_RESV_RMAPBT
) ||
1113 xfs_ag_resv_critical(pag
, XFS_AG_RESV_METADATA
))
1120 * Remap the given extent into the file. The dmap blockcount will be set to
1121 * the number of blocks that were actually remapped.
1124 xfs_reflink_remap_extent(
1125 struct xfs_inode
*ip
,
1126 struct xfs_bmbt_irec
*dmap
,
1127 xfs_off_t new_isize
)
1129 struct xfs_bmbt_irec smap
;
1130 struct xfs_mount
*mp
= ip
->i_mount
;
1131 struct xfs_trans
*tp
;
1134 unsigned int resblks
;
1135 bool quota_reserved
= true;
1137 bool dmap_written
= xfs_bmap_is_written_extent(dmap
);
1143 * Start a rolling transaction to switch the mappings.
1145 * Adding a written extent to the extent map can cause a bmbt split,
1146 * and removing a mapped extent from the extent can cause a bmbt split.
1147 * The two operations cannot both cause a split since they operate on
1148 * the same index in the bmap btree, so we only need a reservation for
1149 * one bmbt split if either thing is happening. However, we haven't
1150 * locked the inode yet, so we reserve assuming this is the case.
1152 * The first allocation call tries to reserve enough space to handle
1153 * mapping dmap into a sparse part of the file plus the bmbt split. We
1154 * haven't locked the inode or read the existing mapping yet, so we do
1155 * not know for sure that we need the space. This should succeed most
1158 * If the first attempt fails, try again but reserving only enough
1159 * space to handle a bmbt split. This is the hard minimum requirement,
1160 * and we revisit quota reservations later when we know more about what
1163 resblks
= XFS_EXTENTADD_SPACE_RES(mp
, XFS_DATA_FORK
);
1164 error
= xfs_trans_alloc_inode(ip
, &M_RES(mp
)->tr_write
,
1165 resblks
+ dmap
->br_blockcount
, 0, false, &tp
);
1166 if (error
== -EDQUOT
|| error
== -ENOSPC
) {
1167 quota_reserved
= false;
1168 error
= xfs_trans_alloc_inode(ip
, &M_RES(mp
)->tr_write
,
1169 resblks
, 0, false, &tp
);
1175 * Read what's currently mapped in the destination file into smap.
1176 * If smap isn't a hole, we will have to remove it before we can add
1177 * dmap to the destination file.
1180 error
= xfs_bmapi_read(ip
, dmap
->br_startoff
, dmap
->br_blockcount
,
1184 ASSERT(nimaps
== 1 && smap
.br_startoff
== dmap
->br_startoff
);
1185 smap_real
= xfs_bmap_is_real_extent(&smap
);
1188 * We can only remap as many blocks as the smaller of the two extent
1189 * maps, because we can only remap one extent at a time.
1191 dmap
->br_blockcount
= min(dmap
->br_blockcount
, smap
.br_blockcount
);
1192 ASSERT(dmap
->br_blockcount
== smap
.br_blockcount
);
1194 trace_xfs_reflink_remap_extent_dest(ip
, &smap
);
1197 * Two extents mapped to the same physical block must not have
1198 * different states; that's filesystem corruption. Move on to the next
1199 * extent if they're both holes or both the same physical extent.
1201 if (dmap
->br_startblock
== smap
.br_startblock
) {
1202 if (dmap
->br_state
!= smap
.br_state
) {
1203 xfs_bmap_mark_sick(ip
, XFS_DATA_FORK
);
1204 error
= -EFSCORRUPTED
;
1209 /* If both extents are unwritten, leave them alone. */
1210 if (dmap
->br_state
== XFS_EXT_UNWRITTEN
&&
1211 smap
.br_state
== XFS_EXT_UNWRITTEN
)
1214 /* No reflinking if the AG of the dest mapping is low on space. */
1216 error
= xfs_reflink_ag_has_free_space(mp
,
1217 XFS_FSB_TO_AGNO(mp
, dmap
->br_startblock
));
1223 * Increase quota reservation if we think the quota block counter for
1224 * this file could increase.
1226 * If we are mapping a written extent into the file, we need to have
1227 * enough quota block count reservation to handle the blocks in that
1228 * extent. We log only the delta to the quota block counts, so if the
1229 * extent we're unmapping also has blocks allocated to it, we don't
1230 * need a quota reservation for the extent itself.
1232 * Note that if we're replacing a delalloc reservation with a written
1233 * extent, we have to take the full quota reservation because removing
1234 * the delalloc reservation gives the block count back to the quota
1235 * count. This is suboptimal, but the VFS flushed the dest range
1236 * before we started. That should have removed all the delalloc
1237 * reservations, but we code defensively.
1239 * xfs_trans_alloc_inode above already tried to grab an even larger
1240 * quota reservation, and kicked off a blockgc scan if it couldn't.
1241 * If we can't get a potentially smaller quota reservation now, we're
1244 if (!quota_reserved
&& !smap_real
&& dmap_written
) {
1245 error
= xfs_trans_reserve_quota_nblks(tp
, ip
,
1246 dmap
->br_blockcount
, 0, false);
1257 error
= xfs_iext_count_extend(tp
, ip
, XFS_DATA_FORK
, iext_delta
);
1263 * If the extent we're unmapping is backed by storage (written
1264 * or not), unmap the extent and drop its refcount.
1266 xfs_bmap_unmap_extent(tp
, ip
, XFS_DATA_FORK
, &smap
);
1267 xfs_refcount_decrease_extent(tp
, &smap
);
1268 qdelta
-= smap
.br_blockcount
;
1269 } else if (smap
.br_startblock
== DELAYSTARTBLOCK
) {
1273 * If the extent we're unmapping is a delalloc reservation,
1274 * we can use the regular bunmapi function to release the
1275 * incore state. Dropping the delalloc reservation takes care
1276 * of the quota reservation for us.
1278 error
= xfs_bunmapi(NULL
, ip
, smap
.br_startoff
,
1279 smap
.br_blockcount
, 0, 1, &done
);
1286 * If the extent we're sharing is backed by written storage, increase
1287 * its refcount and map it into the file.
1290 xfs_refcount_increase_extent(tp
, dmap
);
1291 xfs_bmap_map_extent(tp
, ip
, XFS_DATA_FORK
, dmap
);
1292 qdelta
+= dmap
->br_blockcount
;
1295 xfs_trans_mod_dquot_byino(tp
, ip
, XFS_TRANS_DQ_BCOUNT
, qdelta
);
1297 /* Update dest isize if needed. */
1298 newlen
= XFS_FSB_TO_B(mp
, dmap
->br_startoff
+ dmap
->br_blockcount
);
1299 newlen
= min_t(xfs_off_t
, newlen
, new_isize
);
1300 if (newlen
> i_size_read(VFS_I(ip
))) {
1301 trace_xfs_reflink_update_inode_size(ip
, newlen
);
1302 i_size_write(VFS_I(ip
), newlen
);
1303 ip
->i_disk_size
= newlen
;
1304 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1307 /* Commit everything and unlock. */
1308 error
= xfs_trans_commit(tp
);
1312 xfs_trans_cancel(tp
);
1314 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1317 trace_xfs_reflink_remap_extent_error(ip
, error
, _RET_IP_
);
1321 /* Remap a range of one file to the other. */
1323 xfs_reflink_remap_blocks(
1324 struct xfs_inode
*src
,
1326 struct xfs_inode
*dest
,
1331 struct xfs_bmbt_irec imap
;
1332 struct xfs_mount
*mp
= src
->i_mount
;
1333 xfs_fileoff_t srcoff
= XFS_B_TO_FSBT(mp
, pos_in
);
1334 xfs_fileoff_t destoff
= XFS_B_TO_FSBT(mp
, pos_out
);
1336 xfs_filblks_t remapped_len
= 0;
1337 xfs_off_t new_isize
= pos_out
+ remap_len
;
1341 len
= min_t(xfs_filblks_t
, XFS_B_TO_FSB(mp
, remap_len
),
1344 trace_xfs_reflink_remap_blocks(src
, srcoff
, len
, dest
, destoff
);
1347 unsigned int lock_mode
;
1349 /* Read extent from the source file */
1351 lock_mode
= xfs_ilock_data_map_shared(src
);
1352 error
= xfs_bmapi_read(src
, srcoff
, len
, &imap
, &nimaps
, 0);
1353 xfs_iunlock(src
, lock_mode
);
1357 * The caller supposedly flushed all dirty pages in the source
1358 * file range, which means that writeback should have allocated
1359 * or deleted all delalloc reservations in that range. If we
1360 * find one, that's a good sign that something is seriously
1363 ASSERT(nimaps
== 1 && imap
.br_startoff
== srcoff
);
1364 if (imap
.br_startblock
== DELAYSTARTBLOCK
) {
1365 ASSERT(imap
.br_startblock
!= DELAYSTARTBLOCK
);
1366 xfs_bmap_mark_sick(src
, XFS_DATA_FORK
);
1367 error
= -EFSCORRUPTED
;
1371 trace_xfs_reflink_remap_extent_src(src
, &imap
);
1373 /* Remap into the destination file at the given offset. */
1374 imap
.br_startoff
= destoff
;
1375 error
= xfs_reflink_remap_extent(dest
, &imap
, new_isize
);
1379 if (fatal_signal_pending(current
)) {
1384 /* Advance drange/srange */
1385 srcoff
+= imap
.br_blockcount
;
1386 destoff
+= imap
.br_blockcount
;
1387 len
-= imap
.br_blockcount
;
1388 remapped_len
+= imap
.br_blockcount
;
1393 trace_xfs_reflink_remap_blocks_error(dest
, error
, _RET_IP_
);
1394 *remapped
= min_t(loff_t
, remap_len
,
1395 XFS_FSB_TO_B(src
->i_mount
, remapped_len
));
1400 * If we're reflinking to a point past the destination file's EOF, we must
1401 * zero any speculative post-EOF preallocations that sit between the old EOF
1402 * and the destination file offset.
1405 xfs_reflink_zero_posteof(
1406 struct xfs_inode
*ip
,
1409 loff_t isize
= i_size_read(VFS_I(ip
));
1414 trace_xfs_zero_eof(ip
, isize
, pos
- isize
);
1415 return xfs_zero_range(ip
, isize
, pos
- isize
, NULL
);
1419 * Prepare two files for range cloning. Upon a successful return both inodes
1420 * will have the iolock and mmaplock held, the page cache of the out file will
1421 * be truncated, and any leases on the out file will have been broken. This
1422 * function borrows heavily from xfs_file_aio_write_checks.
1424 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1425 * checked that the bytes beyond EOF physically match. Hence we cannot use the
1426 * EOF block in the source dedupe range because it's not a complete block match,
1427 * hence can introduce a corruption into the file that has it's block replaced.
1429 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1430 * "block aligned" for the purposes of cloning entire files. However, if the
1431 * source file range includes the EOF block and it lands within the existing EOF
1432 * of the destination file, then we can expose stale data from beyond the source
1433 * file EOF in the destination file.
1435 * XFS doesn't support partial block sharing, so in both cases we have check
1436 * these cases ourselves. For dedupe, we can simply round the length to dedupe
1437 * down to the previous whole block and ignore the partial EOF block. While this
1438 * means we can't dedupe the last block of a file, this is an acceptible
1439 * tradeoff for simplicity on implementation.
1441 * For cloning, we want to share the partial EOF block if it is also the new EOF
1442 * block of the destination file. If the partial EOF block lies inside the
1443 * existing destination EOF, then we have to abort the clone to avoid exposing
1444 * stale data in the destination file. Hence we reject these clone attempts with
1445 * -EINVAL in this case.
1448 xfs_reflink_remap_prep(
1449 struct file
*file_in
,
1451 struct file
*file_out
,
1454 unsigned int remap_flags
)
1456 struct inode
*inode_in
= file_inode(file_in
);
1457 struct xfs_inode
*src
= XFS_I(inode_in
);
1458 struct inode
*inode_out
= file_inode(file_out
);
1459 struct xfs_inode
*dest
= XFS_I(inode_out
);
1462 /* Lock both files against IO */
1463 ret
= xfs_ilock2_io_mmap(src
, dest
);
1467 /* Check file eligibility and prepare for block sharing. */
1469 /* Don't reflink realtime inodes */
1470 if (XFS_IS_REALTIME_INODE(src
) || XFS_IS_REALTIME_INODE(dest
))
1473 /* Don't share DAX file data with non-DAX file. */
1474 if (IS_DAX(inode_in
) != IS_DAX(inode_out
))
1477 if (!IS_DAX(inode_in
))
1478 ret
= generic_remap_file_range_prep(file_in
, pos_in
, file_out
,
1479 pos_out
, len
, remap_flags
);
1481 ret
= dax_remap_file_range_prep(file_in
, pos_in
, file_out
,
1482 pos_out
, len
, remap_flags
, &xfs_read_iomap_ops
);
1483 if (ret
|| *len
== 0)
1486 /* Attach dquots to dest inode before changing block map */
1487 ret
= xfs_qm_dqattach(dest
);
1492 * Zero existing post-eof speculative preallocations in the destination
1495 ret
= xfs_reflink_zero_posteof(dest
, pos_out
);
1499 /* Set flags and remap blocks. */
1500 ret
= xfs_reflink_set_inode_flag(src
, dest
);
1505 * If pos_out > EOF, we may have dirtied blocks between EOF and
1506 * pos_out. In that case, we need to extend the flush and unmap to cover
1507 * from EOF to the end of the copy length.
1509 if (pos_out
> XFS_ISIZE(dest
)) {
1510 loff_t flen
= *len
+ (pos_out
- XFS_ISIZE(dest
));
1511 ret
= xfs_flush_unmap_range(dest
, XFS_ISIZE(dest
), flen
);
1513 ret
= xfs_flush_unmap_range(dest
, pos_out
, *len
);
1518 xfs_iflags_set(src
, XFS_IREMAPPING
);
1519 if (inode_in
!= inode_out
)
1520 xfs_ilock_demote(src
, XFS_IOLOCK_EXCL
| XFS_MMAPLOCK_EXCL
);
1524 xfs_iunlock2_io_mmap(src
, dest
);
1528 /* Does this inode need the reflink flag? */
1530 xfs_reflink_inode_has_shared_extents(
1531 struct xfs_trans
*tp
,
1532 struct xfs_inode
*ip
,
1535 struct xfs_bmbt_irec got
;
1536 struct xfs_mount
*mp
= ip
->i_mount
;
1537 struct xfs_ifork
*ifp
;
1538 struct xfs_iext_cursor icur
;
1542 ifp
= xfs_ifork_ptr(ip
, XFS_DATA_FORK
);
1543 error
= xfs_iread_extents(tp
, ip
, XFS_DATA_FORK
);
1547 *has_shared
= false;
1548 found
= xfs_iext_lookup_extent(ip
, ifp
, 0, &icur
, &got
);
1550 struct xfs_perag
*pag
;
1551 xfs_agblock_t agbno
;
1556 if (isnullstartblock(got
.br_startblock
) ||
1557 got
.br_state
!= XFS_EXT_NORM
)
1560 pag
= xfs_perag_get(mp
, XFS_FSB_TO_AGNO(mp
, got
.br_startblock
));
1561 agbno
= XFS_FSB_TO_AGBNO(mp
, got
.br_startblock
);
1562 aglen
= got
.br_blockcount
;
1563 error
= xfs_reflink_find_shared(pag
, tp
, agbno
, aglen
,
1564 &rbno
, &rlen
, false);
1569 /* Is there still a shared block here? */
1570 if (rbno
!= NULLAGBLOCK
) {
1575 found
= xfs_iext_next_extent(ifp
, &icur
, &got
);
1582 * Clear the inode reflink flag if there are no shared extents.
1584 * The caller is responsible for joining the inode to the transaction passed in.
1585 * The inode will be joined to the transaction that is returned to the caller.
1588 xfs_reflink_clear_inode_flag(
1589 struct xfs_inode
*ip
,
1590 struct xfs_trans
**tpp
)
1595 ASSERT(xfs_is_reflink_inode(ip
));
1597 if (!xfs_can_free_cowblocks(ip
))
1600 error
= xfs_reflink_inode_has_shared_extents(*tpp
, ip
, &needs_flag
);
1601 if (error
|| needs_flag
)
1605 * We didn't find any shared blocks so turn off the reflink flag.
1606 * First, get rid of any leftover CoW mappings.
1608 error
= xfs_reflink_cancel_cow_blocks(ip
, tpp
, 0, XFS_MAX_FILEOFF
,
1613 /* Clear the inode flag. */
1614 trace_xfs_reflink_unset_inode_flag(ip
);
1615 ip
->i_diflags2
&= ~XFS_DIFLAG2_REFLINK
;
1616 xfs_inode_clear_cowblocks_tag(ip
);
1617 xfs_trans_log_inode(*tpp
, ip
, XFS_ILOG_CORE
);
1623 * Clear the inode reflink flag if there are no shared extents and the size
1627 xfs_reflink_try_clear_inode_flag(
1628 struct xfs_inode
*ip
)
1630 struct xfs_mount
*mp
= ip
->i_mount
;
1631 struct xfs_trans
*tp
;
1634 /* Start a rolling transaction to remove the mappings */
1635 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_write
, 0, 0, 0, &tp
);
1639 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1640 xfs_trans_ijoin(tp
, ip
, 0);
1642 error
= xfs_reflink_clear_inode_flag(ip
, &tp
);
1646 error
= xfs_trans_commit(tp
);
1650 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1653 xfs_trans_cancel(tp
);
1655 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1660 * Pre-COW all shared blocks within a given byte range of a file and turn off
1661 * the reflink flag if we unshare all of the file's blocks.
1664 xfs_reflink_unshare(
1665 struct xfs_inode
*ip
,
1669 struct inode
*inode
= VFS_I(ip
);
1672 if (!xfs_is_reflink_inode(ip
))
1675 trace_xfs_reflink_unshare(ip
, offset
, len
);
1677 inode_dio_wait(inode
);
1680 error
= dax_file_unshare(inode
, offset
, len
,
1681 &xfs_dax_write_iomap_ops
);
1683 error
= iomap_file_unshare(inode
, offset
, len
,
1684 &xfs_buffered_write_iomap_ops
);
1688 error
= filemap_write_and_wait_range(inode
->i_mapping
, offset
,
1693 /* Turn off the reflink flag if possible. */
1694 error
= xfs_reflink_try_clear_inode_flag(ip
);
1700 trace_xfs_reflink_unshare_error(ip
, error
, _RET_IP_
);