1 /* SPDX-License-Identifier: GPL-2.0-only */
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
43 #include <linux/kvm_types.h>
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54 * used in kvm, other bits are visible for userspace which are defined in
55 * include/linux/kvm_h.
57 #define KVM_MEMSLOT_INVALID (1UL << 16)
60 * Bit 63 of the memslot generation number is an "update in-progress flag",
61 * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
62 * This flag effectively creates a unique generation number that is used to
63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64 * i.e. may (or may not) have come from the previous memslots generation.
66 * This is necessary because the actual memslots update is not atomic with
67 * respect to the generation number update. Updating the generation number
68 * first would allow a vCPU to cache a spte from the old memslots using the
69 * new generation number, and updating the generation number after switching
70 * to the new memslots would allow cache hits using the old generation number
71 * to reference the defunct memslots.
73 * This mechanism is used to prevent getting hits in KVM's caches while a
74 * memslot update is in-progress, and to prevent cache hits *after* updating
75 * the actual generation number against accesses that were inserted into the
76 * cache *before* the memslots were updated.
78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
80 /* Two fragments for cross MMIO pages. */
81 #define KVM_MAX_MMIO_FRAGMENTS 2
83 #ifndef KVM_MAX_NR_ADDRESS_SPACES
84 #define KVM_MAX_NR_ADDRESS_SPACES 1
88 * For the normal pfn, the highest 12 bits should be zero,
89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
90 * mask bit 63 to indicate the noslot pfn.
92 #define KVM_PFN_ERR_MASK (0x7ffULL << 52)
93 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
94 #define KVM_PFN_NOSLOT (0x1ULL << 63)
96 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
97 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
98 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
99 #define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3)
100 #define KVM_PFN_ERR_NEEDS_IO (KVM_PFN_ERR_MASK + 4)
103 * error pfns indicate that the gfn is in slot but faild to
104 * translate it to pfn on host.
106 static inline bool is_error_pfn(kvm_pfn_t pfn
)
108 return !!(pfn
& KVM_PFN_ERR_MASK
);
112 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
113 * by a pending signal. Note, the signal may or may not be fatal.
115 static inline bool is_sigpending_pfn(kvm_pfn_t pfn
)
117 return pfn
== KVM_PFN_ERR_SIGPENDING
;
121 * error_noslot pfns indicate that the gfn can not be
122 * translated to pfn - it is not in slot or failed to
123 * translate it to pfn.
125 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn
)
127 return !!(pfn
& KVM_PFN_ERR_NOSLOT_MASK
);
130 /* noslot pfn indicates that the gfn is not in slot. */
131 static inline bool is_noslot_pfn(kvm_pfn_t pfn
)
133 return pfn
== KVM_PFN_NOSLOT
;
137 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
138 * provide own defines and kvm_is_error_hva
140 #ifndef KVM_HVA_ERR_BAD
142 #define KVM_HVA_ERR_BAD (PAGE_OFFSET)
143 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
145 static inline bool kvm_is_error_hva(unsigned long addr
)
147 return addr
>= PAGE_OFFSET
;
152 static inline bool kvm_is_error_gpa(gpa_t gpa
)
154 return gpa
== INVALID_GPA
;
157 #define KVM_REQUEST_MASK GENMASK(7,0)
158 #define KVM_REQUEST_NO_WAKEUP BIT(8)
159 #define KVM_REQUEST_WAIT BIT(9)
160 #define KVM_REQUEST_NO_ACTION BIT(10)
162 * Architecture-independent vcpu->requests bit members
163 * Bits 3-7 are reserved for more arch-independent bits.
165 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
166 #define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
167 #define KVM_REQ_UNBLOCK 2
168 #define KVM_REQ_DIRTY_RING_SOFT_FULL 3
169 #define KVM_REQUEST_ARCH_BASE 8
172 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
173 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
174 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
175 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous
176 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
177 * guarantee the vCPU received an IPI and has actually exited guest mode.
179 #define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
181 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
182 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
183 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
185 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
187 bool kvm_make_vcpus_request_mask(struct kvm
*kvm
, unsigned int req
,
188 unsigned long *vcpu_bitmap
);
189 bool kvm_make_all_cpus_request(struct kvm
*kvm
, unsigned int req
);
191 #define KVM_USERSPACE_IRQ_SOURCE_ID 0
192 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
194 extern struct mutex kvm_lock
;
195 extern struct list_head vm_list
;
197 struct kvm_io_range
{
200 struct kvm_io_device
*dev
;
203 #define NR_IOBUS_DEVS 1000
208 struct kvm_io_range range
[];
214 KVM_VIRTIO_CCW_NOTIFY_BUS
,
220 int kvm_io_bus_write(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
221 int len
, const void *val
);
222 int kvm_io_bus_write_cookie(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
,
223 gpa_t addr
, int len
, const void *val
, long cookie
);
224 int kvm_io_bus_read(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
226 int kvm_io_bus_register_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
227 int len
, struct kvm_io_device
*dev
);
228 int kvm_io_bus_unregister_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
229 struct kvm_io_device
*dev
);
230 struct kvm_io_device
*kvm_io_bus_get_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
233 #ifdef CONFIG_KVM_ASYNC_PF
234 struct kvm_async_pf
{
235 struct work_struct work
;
236 struct list_head link
;
237 struct list_head queue
;
238 struct kvm_vcpu
*vcpu
;
241 struct kvm_arch_async_pf arch
;
243 bool notpresent_injected
;
246 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu
*vcpu
);
247 void kvm_check_async_pf_completion(struct kvm_vcpu
*vcpu
);
248 bool kvm_setup_async_pf(struct kvm_vcpu
*vcpu
, gpa_t cr2_or_gpa
,
249 unsigned long hva
, struct kvm_arch_async_pf
*arch
);
250 int kvm_async_pf_wakeup_all(struct kvm_vcpu
*vcpu
);
253 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
254 union kvm_mmu_notifier_arg
{
255 unsigned long attributes
;
258 struct kvm_gfn_range
{
259 struct kvm_memory_slot
*slot
;
262 union kvm_mmu_notifier_arg arg
;
265 bool kvm_unmap_gfn_range(struct kvm
*kvm
, struct kvm_gfn_range
*range
);
266 bool kvm_age_gfn(struct kvm
*kvm
, struct kvm_gfn_range
*range
);
267 bool kvm_test_age_gfn(struct kvm
*kvm
, struct kvm_gfn_range
*range
);
274 READING_SHADOW_PAGE_TABLES
,
277 struct kvm_host_map
{
279 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
280 * a 'struct page' for it. When using mem= kernel parameter some memory
281 * can be used as guest memory but they are not managed by host
284 struct page
*pinned_page
;
293 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
294 * directly to check for that.
296 static inline bool kvm_vcpu_mapped(struct kvm_host_map
*map
)
301 static inline bool kvm_vcpu_can_poll(ktime_t cur
, ktime_t stop
)
303 return single_task_running() && !need_resched() && ktime_before(cur
, stop
);
307 * Sometimes a large or cross-page mmio needs to be broken up into separate
308 * exits for userspace servicing.
310 struct kvm_mmio_fragment
{
318 #ifdef CONFIG_PREEMPT_NOTIFIERS
319 struct preempt_notifier preempt_notifier
;
322 int vcpu_id
; /* id given by userspace at creation */
323 int vcpu_idx
; /* index into kvm->vcpu_array */
324 int ____srcu_idx
; /* Don't use this directly. You've been warned. */
325 #ifdef CONFIG_PROVE_RCU
330 unsigned long guest_debug
;
335 #ifndef __KVM_HAVE_ARCH_WQP
342 unsigned int halt_poll_ns
;
345 #ifdef CONFIG_HAS_IOMEM
347 int mmio_read_completed
;
349 int mmio_cur_fragment
;
350 int mmio_nr_fragments
;
351 struct kvm_mmio_fragment mmio_fragments
[KVM_MAX_MMIO_FRAGMENTS
];
354 #ifdef CONFIG_KVM_ASYNC_PF
357 struct list_head queue
;
358 struct list_head done
;
363 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
365 * Cpu relax intercept or pause loop exit optimization
366 * in_spin_loop: set when a vcpu does a pause loop exit
367 * or cpu relax intercepted.
368 * dy_eligible: indicates whether vcpu is eligible for directed yield.
379 struct kvm_vcpu_arch arch
;
380 struct kvm_vcpu_stat stat
;
381 char stats_id
[KVM_STATS_NAME_SIZE
];
382 struct kvm_dirty_ring dirty_ring
;
385 * The most recently used memslot by this vCPU and the slots generation
386 * for which it is valid.
387 * No wraparound protection is needed since generations won't overflow in
388 * thousands of years, even assuming 1M memslot operations per second.
390 struct kvm_memory_slot
*last_used_slot
;
391 u64 last_used_slot_gen
;
395 * Start accounting time towards a guest.
396 * Must be called before entering guest context.
398 static __always_inline
void guest_timing_enter_irqoff(void)
401 * This is running in ioctl context so its safe to assume that it's the
402 * stime pending cputime to flush.
404 instrumentation_begin();
405 vtime_account_guest_enter();
406 instrumentation_end();
410 * Enter guest context and enter an RCU extended quiescent state.
412 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
413 * unsafe to use any code which may directly or indirectly use RCU, tracing
414 * (including IRQ flag tracing), or lockdep. All code in this period must be
415 * non-instrumentable.
417 static __always_inline
void guest_context_enter_irqoff(void)
420 * KVM does not hold any references to rcu protected data when it
421 * switches CPU into a guest mode. In fact switching to a guest mode
422 * is very similar to exiting to userspace from rcu point of view. In
423 * addition CPU may stay in a guest mode for quite a long time (up to
424 * one time slice). Lets treat guest mode as quiescent state, just like
425 * we do with user-mode execution.
427 if (!context_tracking_guest_enter()) {
428 instrumentation_begin();
429 rcu_virt_note_context_switch();
430 instrumentation_end();
435 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
436 * guest_state_enter_irqoff().
438 static __always_inline
void guest_enter_irqoff(void)
440 guest_timing_enter_irqoff();
441 guest_context_enter_irqoff();
445 * guest_state_enter_irqoff - Fixup state when entering a guest
447 * Entry to a guest will enable interrupts, but the kernel state is interrupts
448 * disabled when this is invoked. Also tell RCU about it.
450 * 1) Trace interrupts on state
451 * 2) Invoke context tracking if enabled to adjust RCU state
452 * 3) Tell lockdep that interrupts are enabled
454 * Invoked from architecture specific code before entering a guest.
455 * Must be called with interrupts disabled and the caller must be
456 * non-instrumentable.
457 * The caller has to invoke guest_timing_enter_irqoff() before this.
459 * Note: this is analogous to exit_to_user_mode().
461 static __always_inline
void guest_state_enter_irqoff(void)
463 instrumentation_begin();
464 trace_hardirqs_on_prepare();
465 lockdep_hardirqs_on_prepare();
466 instrumentation_end();
468 guest_context_enter_irqoff();
469 lockdep_hardirqs_on(CALLER_ADDR0
);
473 * Exit guest context and exit an RCU extended quiescent state.
475 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
476 * unsafe to use any code which may directly or indirectly use RCU, tracing
477 * (including IRQ flag tracing), or lockdep. All code in this period must be
478 * non-instrumentable.
480 static __always_inline
void guest_context_exit_irqoff(void)
483 * Guest mode is treated as a quiescent state, see
484 * guest_context_enter_irqoff() for more details.
486 if (!context_tracking_guest_exit()) {
487 instrumentation_begin();
488 rcu_virt_note_context_switch();
489 instrumentation_end();
494 * Stop accounting time towards a guest.
495 * Must be called after exiting guest context.
497 static __always_inline
void guest_timing_exit_irqoff(void)
499 instrumentation_begin();
500 /* Flush the guest cputime we spent on the guest */
501 vtime_account_guest_exit();
502 instrumentation_end();
506 * Deprecated. Architectures should move to guest_state_exit_irqoff() and
507 * guest_timing_exit_irqoff().
509 static __always_inline
void guest_exit_irqoff(void)
511 guest_context_exit_irqoff();
512 guest_timing_exit_irqoff();
515 static inline void guest_exit(void)
519 local_irq_save(flags
);
521 local_irq_restore(flags
);
525 * guest_state_exit_irqoff - Establish state when returning from guest mode
527 * Entry from a guest disables interrupts, but guest mode is traced as
528 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
530 * 1) Tell lockdep that interrupts are disabled
531 * 2) Invoke context tracking if enabled to reactivate RCU
532 * 3) Trace interrupts off state
534 * Invoked from architecture specific code after exiting a guest.
535 * Must be invoked with interrupts disabled and the caller must be
536 * non-instrumentable.
537 * The caller has to invoke guest_timing_exit_irqoff() after this.
539 * Note: this is analogous to enter_from_user_mode().
541 static __always_inline
void guest_state_exit_irqoff(void)
543 lockdep_hardirqs_off(CALLER_ADDR0
);
544 guest_context_exit_irqoff();
546 instrumentation_begin();
547 trace_hardirqs_off_finish();
548 instrumentation_end();
551 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu
*vcpu
)
554 * The memory barrier ensures a previous write to vcpu->requests cannot
555 * be reordered with the read of vcpu->mode. It pairs with the general
556 * memory barrier following the write of vcpu->mode in VCPU RUN.
558 smp_mb__before_atomic();
559 return cmpxchg(&vcpu
->mode
, IN_GUEST_MODE
, EXITING_GUEST_MODE
);
563 * Some of the bitops functions do not support too long bitmaps.
564 * This number must be determined not to exceed such limits.
566 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
569 * Since at idle each memslot belongs to two memslot sets it has to contain
570 * two embedded nodes for each data structure that it forms a part of.
572 * Two memslot sets (one active and one inactive) are necessary so the VM
573 * continues to run on one memslot set while the other is being modified.
575 * These two memslot sets normally point to the same set of memslots.
576 * They can, however, be desynchronized when performing a memslot management
577 * operation by replacing the memslot to be modified by its copy.
578 * After the operation is complete, both memslot sets once again point to
579 * the same, common set of memslot data.
581 * The memslots themselves are independent of each other so they can be
582 * individually added or deleted.
584 struct kvm_memory_slot
{
585 struct hlist_node id_node
[2];
586 struct interval_tree_node hva_node
[2];
587 struct rb_node gfn_node
[2];
589 unsigned long npages
;
590 unsigned long *dirty_bitmap
;
591 struct kvm_arch_memory_slot arch
;
592 unsigned long userspace_addr
;
597 #ifdef CONFIG_KVM_PRIVATE_MEM
599 struct file __rcu
*file
;
605 static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot
*slot
)
607 return slot
&& (slot
->flags
& KVM_MEM_GUEST_MEMFD
);
610 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot
*slot
)
612 return slot
->flags
& KVM_MEM_LOG_DIRTY_PAGES
;
615 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot
*memslot
)
617 return ALIGN(memslot
->npages
, BITS_PER_LONG
) / 8;
620 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot
*memslot
)
622 unsigned long len
= kvm_dirty_bitmap_bytes(memslot
);
624 return memslot
->dirty_bitmap
+ len
/ sizeof(*memslot
->dirty_bitmap
);
627 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
628 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
631 struct kvm_s390_adapter_int
{
644 struct kvm_xen_evtchn
{
651 struct kvm_kernel_irq_routing_entry
{
654 int (*set
)(struct kvm_kernel_irq_routing_entry
*e
,
655 struct kvm
*kvm
, int irq_source_id
, int level
,
669 struct kvm_s390_adapter_int adapter
;
670 struct kvm_hv_sint hv_sint
;
671 struct kvm_xen_evtchn xen_evtchn
;
673 struct hlist_node link
;
676 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
677 struct kvm_irq_routing_table
{
678 int chip
[KVM_NR_IRQCHIPS
][KVM_IRQCHIP_NUM_PINS
];
681 * Array indexed by gsi. Each entry contains list of irq chips
682 * the gsi is connected to.
684 struct hlist_head map
[] __counted_by(nr_rt_entries
);
688 bool kvm_arch_irqchip_in_kernel(struct kvm
*kvm
);
690 #ifndef KVM_INTERNAL_MEM_SLOTS
691 #define KVM_INTERNAL_MEM_SLOTS 0
694 #define KVM_MEM_SLOTS_NUM SHRT_MAX
695 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
697 #if KVM_MAX_NR_ADDRESS_SPACES == 1
698 static inline int kvm_arch_nr_memslot_as_ids(struct kvm
*kvm
)
700 return KVM_MAX_NR_ADDRESS_SPACES
;
703 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu
*vcpu
)
710 * Arch code must define kvm_arch_has_private_mem if support for private memory
713 #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM)
714 static inline bool kvm_arch_has_private_mem(struct kvm
*kvm
)
720 #ifndef kvm_arch_has_readonly_mem
721 static inline bool kvm_arch_has_readonly_mem(struct kvm
*kvm
)
723 return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM
);
727 struct kvm_memslots
{
729 atomic_long_t last_used_slot
;
730 struct rb_root_cached hva_tree
;
731 struct rb_root gfn_tree
;
733 * The mapping table from slot id to memslot.
735 * 7-bit bucket count matches the size of the old id to index array for
736 * 512 slots, while giving good performance with this slot count.
737 * Higher bucket counts bring only small performance improvements but
738 * always result in higher memory usage (even for lower memslot counts).
740 DECLARE_HASHTABLE(id_hash
, 7);
745 #ifdef KVM_HAVE_MMU_RWLOCK
749 #endif /* KVM_HAVE_MMU_RWLOCK */
751 struct mutex slots_lock
;
754 * Protects the arch-specific fields of struct kvm_memory_slots in
755 * use by the VM. To be used under the slots_lock (above) or in a
756 * kvm->srcu critical section where acquiring the slots_lock would
757 * lead to deadlock with the synchronize_srcu in
758 * kvm_swap_active_memslots().
760 struct mutex slots_arch_lock
;
761 struct mm_struct
*mm
; /* userspace tied to this vm */
762 unsigned long nr_memslot_pages
;
763 /* The two memslot sets - active and inactive (per address space) */
764 struct kvm_memslots __memslots
[KVM_MAX_NR_ADDRESS_SPACES
][2];
765 /* The current active memslot set for each address space */
766 struct kvm_memslots __rcu
*memslots
[KVM_MAX_NR_ADDRESS_SPACES
];
767 struct xarray vcpu_array
;
769 * Protected by slots_lock, but can be read outside if an
770 * incorrect answer is acceptable.
772 atomic_t nr_memslots_dirty_logging
;
774 /* Used to wait for completion of MMU notifiers. */
775 spinlock_t mn_invalidate_lock
;
776 unsigned long mn_active_invalidate_count
;
777 struct rcuwait mn_memslots_update_rcuwait
;
779 /* For management / invalidation of gfn_to_pfn_caches */
781 struct list_head gpc_list
;
784 * created_vcpus is protected by kvm->lock, and is incremented
785 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
786 * incremented after storing the kvm_vcpu pointer in vcpus,
787 * and is accessed atomically.
789 atomic_t online_vcpus
;
792 int last_boosted_vcpu
;
793 struct list_head vm_list
;
795 struct kvm_io_bus __rcu
*buses
[KVM_NR_BUSES
];
796 #ifdef CONFIG_HAVE_KVM_IRQCHIP
799 struct list_head items
;
800 /* resampler_list update side is protected by resampler_lock. */
801 struct list_head resampler_list
;
802 struct mutex resampler_lock
;
805 struct list_head ioeventfds
;
806 struct kvm_vm_stat stat
;
807 struct kvm_arch arch
;
808 refcount_t users_count
;
809 #ifdef CONFIG_KVM_MMIO
810 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
811 spinlock_t ring_lock
;
812 struct list_head coalesced_zones
;
815 struct mutex irq_lock
;
816 #ifdef CONFIG_HAVE_KVM_IRQCHIP
818 * Update side is protected by irq_lock.
820 struct kvm_irq_routing_table __rcu
*irq_routing
;
822 struct hlist_head irq_ack_notifier_list
;
825 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
826 struct mmu_notifier mmu_notifier
;
827 unsigned long mmu_invalidate_seq
;
828 long mmu_invalidate_in_progress
;
829 gfn_t mmu_invalidate_range_start
;
830 gfn_t mmu_invalidate_range_end
;
832 struct list_head devices
;
833 u64 manual_dirty_log_protect
;
834 struct dentry
*debugfs_dentry
;
835 struct kvm_stat_data
**debugfs_stat_data
;
836 struct srcu_struct srcu
;
837 struct srcu_struct irq_srcu
;
839 bool override_halt_poll_ns
;
840 unsigned int max_halt_poll_ns
;
842 bool dirty_ring_with_bitmap
;
846 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
847 struct notifier_block pm_notifier
;
849 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
850 /* Protected by slots_locks (for writes) and RCU (for reads) */
851 struct xarray mem_attr_array
;
853 char stats_id
[KVM_STATS_NAME_SIZE
];
856 #define kvm_err(fmt, ...) \
857 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
858 #define kvm_info(fmt, ...) \
859 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
860 #define kvm_debug(fmt, ...) \
861 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
862 #define kvm_debug_ratelimited(fmt, ...) \
863 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
865 #define kvm_pr_unimpl(fmt, ...) \
866 pr_err_ratelimited("kvm [%i]: " fmt, \
867 task_tgid_nr(current), ## __VA_ARGS__)
869 /* The guest did something we don't support. */
870 #define vcpu_unimpl(vcpu, fmt, ...) \
871 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
872 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
874 #define vcpu_debug(vcpu, fmt, ...) \
875 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
876 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \
877 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
879 #define vcpu_err(vcpu, fmt, ...) \
880 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
882 static inline void kvm_vm_dead(struct kvm
*kvm
)
885 kvm_make_all_cpus_request(kvm
, KVM_REQ_VM_DEAD
);
888 static inline void kvm_vm_bugged(struct kvm
*kvm
)
890 kvm
->vm_bugged
= true;
895 #define KVM_BUG(cond, kvm, fmt...) \
897 bool __ret = !!(cond); \
899 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \
900 kvm_vm_bugged(kvm); \
904 #define KVM_BUG_ON(cond, kvm) \
906 bool __ret = !!(cond); \
908 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
909 kvm_vm_bugged(kvm); \
914 * Note, "data corruption" refers to corruption of host kernel data structures,
915 * not guest data. Guest data corruption, suspected or confirmed, that is tied
916 * and contained to a single VM should *never* BUG() and potentially panic the
917 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
918 * is corrupted and that corruption can have a cascading effect to other parts
919 * of the hosts and/or to other VMs.
921 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \
923 bool __ret = !!(cond); \
925 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \
927 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
928 kvm_vm_bugged(kvm); \
932 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu
*vcpu
)
934 #ifdef CONFIG_PROVE_RCU
935 WARN_ONCE(vcpu
->srcu_depth
++,
936 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu
->srcu_depth
- 1);
938 vcpu
->____srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
941 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu
*vcpu
)
943 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->____srcu_idx
);
945 #ifdef CONFIG_PROVE_RCU
946 WARN_ONCE(--vcpu
->srcu_depth
,
947 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu
->srcu_depth
);
951 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm
*kvm
)
953 return !!(kvm
->manual_dirty_log_protect
& KVM_DIRTY_LOG_INITIALLY_SET
);
956 static inline struct kvm_io_bus
*kvm_get_bus(struct kvm
*kvm
, enum kvm_bus idx
)
958 return srcu_dereference_check(kvm
->buses
[idx
], &kvm
->srcu
,
959 lockdep_is_held(&kvm
->slots_lock
) ||
960 !refcount_read(&kvm
->users_count
));
963 static inline struct kvm_vcpu
*kvm_get_vcpu(struct kvm
*kvm
, int i
)
965 int num_vcpus
= atomic_read(&kvm
->online_vcpus
);
966 i
= array_index_nospec(i
, num_vcpus
);
968 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
970 return xa_load(&kvm
->vcpu_array
, i
);
973 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
974 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
975 (atomic_read(&kvm->online_vcpus) - 1))
977 static inline struct kvm_vcpu
*kvm_get_vcpu_by_id(struct kvm
*kvm
, int id
)
979 struct kvm_vcpu
*vcpu
= NULL
;
984 if (id
< KVM_MAX_VCPUS
)
985 vcpu
= kvm_get_vcpu(kvm
, id
);
986 if (vcpu
&& vcpu
->vcpu_id
== id
)
988 kvm_for_each_vcpu(i
, vcpu
, kvm
)
989 if (vcpu
->vcpu_id
== id
)
994 void kvm_destroy_vcpus(struct kvm
*kvm
);
996 void vcpu_load(struct kvm_vcpu
*vcpu
);
997 void vcpu_put(struct kvm_vcpu
*vcpu
);
999 #ifdef __KVM_HAVE_IOAPIC
1000 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm
*kvm
);
1001 void kvm_arch_post_irq_routing_update(struct kvm
*kvm
);
1003 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm
*kvm
)
1006 static inline void kvm_arch_post_irq_routing_update(struct kvm
*kvm
)
1011 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1012 int kvm_irqfd_init(void);
1013 void kvm_irqfd_exit(void);
1015 static inline int kvm_irqfd_init(void)
1020 static inline void kvm_irqfd_exit(void)
1024 int kvm_init(unsigned vcpu_size
, unsigned vcpu_align
, struct module
*module
);
1025 void kvm_exit(void);
1027 void kvm_get_kvm(struct kvm
*kvm
);
1028 bool kvm_get_kvm_safe(struct kvm
*kvm
);
1029 void kvm_put_kvm(struct kvm
*kvm
);
1030 bool file_is_kvm(struct file
*file
);
1031 void kvm_put_kvm_no_destroy(struct kvm
*kvm
);
1033 static inline struct kvm_memslots
*__kvm_memslots(struct kvm
*kvm
, int as_id
)
1035 as_id
= array_index_nospec(as_id
, KVM_MAX_NR_ADDRESS_SPACES
);
1036 return srcu_dereference_check(kvm
->memslots
[as_id
], &kvm
->srcu
,
1037 lockdep_is_held(&kvm
->slots_lock
) ||
1038 !refcount_read(&kvm
->users_count
));
1041 static inline struct kvm_memslots
*kvm_memslots(struct kvm
*kvm
)
1043 return __kvm_memslots(kvm
, 0);
1046 static inline struct kvm_memslots
*kvm_vcpu_memslots(struct kvm_vcpu
*vcpu
)
1048 int as_id
= kvm_arch_vcpu_memslots_id(vcpu
);
1050 return __kvm_memslots(vcpu
->kvm
, as_id
);
1053 static inline bool kvm_memslots_empty(struct kvm_memslots
*slots
)
1055 return RB_EMPTY_ROOT(&slots
->gfn_tree
);
1058 bool kvm_are_all_memslots_empty(struct kvm
*kvm
);
1060 #define kvm_for_each_memslot(memslot, bkt, slots) \
1061 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1062 if (WARN_ON_ONCE(!memslot->npages)) { \
1066 struct kvm_memory_slot
*id_to_memslot(struct kvm_memslots
*slots
, int id
)
1068 struct kvm_memory_slot
*slot
;
1069 int idx
= slots
->node_idx
;
1071 hash_for_each_possible(slots
->id_hash
, slot
, id_node
[idx
], id
) {
1079 /* Iterator used for walking memslots that overlap a gfn range. */
1080 struct kvm_memslot_iter
{
1081 struct kvm_memslots
*slots
;
1082 struct rb_node
*node
;
1083 struct kvm_memory_slot
*slot
;
1086 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter
*iter
)
1088 iter
->node
= rb_next(iter
->node
);
1092 iter
->slot
= container_of(iter
->node
, struct kvm_memory_slot
, gfn_node
[iter
->slots
->node_idx
]);
1095 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter
*iter
,
1096 struct kvm_memslots
*slots
,
1099 int idx
= slots
->node_idx
;
1100 struct rb_node
*tmp
;
1101 struct kvm_memory_slot
*slot
;
1103 iter
->slots
= slots
;
1106 * Find the so called "upper bound" of a key - the first node that has
1107 * its key strictly greater than the searched one (the start gfn in our case).
1110 for (tmp
= slots
->gfn_tree
.rb_node
; tmp
; ) {
1111 slot
= container_of(tmp
, struct kvm_memory_slot
, gfn_node
[idx
]);
1112 if (start
< slot
->base_gfn
) {
1116 tmp
= tmp
->rb_right
;
1121 * Find the slot with the lowest gfn that can possibly intersect with
1122 * the range, so we'll ideally have slot start <= range start
1126 * A NULL previous node means that the very first slot
1127 * already has a higher start gfn.
1128 * In this case slot start > range start.
1130 tmp
= rb_prev(iter
->node
);
1134 /* a NULL node below means no slots */
1135 iter
->node
= rb_last(&slots
->gfn_tree
);
1139 iter
->slot
= container_of(iter
->node
, struct kvm_memory_slot
, gfn_node
[idx
]);
1142 * It is possible in the slot start < range start case that the
1143 * found slot ends before or at range start (slot end <= range start)
1144 * and so it does not overlap the requested range.
1146 * In such non-overlapping case the next slot (if it exists) will
1147 * already have slot start > range start, otherwise the logic above
1148 * would have found it instead of the current slot.
1150 if (iter
->slot
->base_gfn
+ iter
->slot
->npages
<= start
)
1151 kvm_memslot_iter_next(iter
);
1155 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter
*iter
, gfn_t end
)
1161 * If this slot starts beyond or at the end of the range so does
1164 return iter
->slot
->base_gfn
< end
;
1167 /* Iterate over each memslot at least partially intersecting [start, end) range */
1168 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \
1169 for (kvm_memslot_iter_start(iter, slots, start); \
1170 kvm_memslot_iter_is_valid(iter, end); \
1171 kvm_memslot_iter_next(iter))
1173 struct kvm_memory_slot
*gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
);
1174 struct kvm_memslots
*kvm_vcpu_memslots(struct kvm_vcpu
*vcpu
);
1175 struct kvm_memory_slot
*kvm_vcpu_gfn_to_memslot(struct kvm_vcpu
*vcpu
, gfn_t gfn
);
1178 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1179 * - create a new memory slot
1180 * - delete an existing memory slot
1181 * - modify an existing memory slot
1182 * -- move it in the guest physical memory space
1183 * -- just change its flags
1185 * Since flags can be changed by some of these operations, the following
1186 * differentiation is the best we can do for __kvm_set_memory_region():
1188 enum kvm_mr_change
{
1195 int kvm_set_memory_region(struct kvm
*kvm
,
1196 const struct kvm_userspace_memory_region2
*mem
);
1197 int __kvm_set_memory_region(struct kvm
*kvm
,
1198 const struct kvm_userspace_memory_region2
*mem
);
1199 void kvm_arch_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*slot
);
1200 void kvm_arch_memslots_updated(struct kvm
*kvm
, u64 gen
);
1201 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
1202 const struct kvm_memory_slot
*old
,
1203 struct kvm_memory_slot
*new,
1204 enum kvm_mr_change change
);
1205 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
1206 struct kvm_memory_slot
*old
,
1207 const struct kvm_memory_slot
*new,
1208 enum kvm_mr_change change
);
1209 /* flush all memory translations */
1210 void kvm_arch_flush_shadow_all(struct kvm
*kvm
);
1211 /* flush memory translations pointing to 'slot' */
1212 void kvm_arch_flush_shadow_memslot(struct kvm
*kvm
,
1213 struct kvm_memory_slot
*slot
);
1215 int kvm_prefetch_pages(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1216 struct page
**pages
, int nr_pages
);
1218 struct page
*__gfn_to_page(struct kvm
*kvm
, gfn_t gfn
, bool write
);
1219 static inline struct page
*gfn_to_page(struct kvm
*kvm
, gfn_t gfn
)
1221 return __gfn_to_page(kvm
, gfn
, true);
1224 unsigned long gfn_to_hva(struct kvm
*kvm
, gfn_t gfn
);
1225 unsigned long gfn_to_hva_prot(struct kvm
*kvm
, gfn_t gfn
, bool *writable
);
1226 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
);
1227 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1230 static inline void kvm_release_page_unused(struct page
*page
)
1238 void kvm_release_page_clean(struct page
*page
);
1239 void kvm_release_page_dirty(struct page
*page
);
1241 static inline void kvm_release_faultin_page(struct kvm
*kvm
, struct page
*page
,
1242 bool unused
, bool dirty
)
1244 lockdep_assert_once(lockdep_is_held(&kvm
->mmu_lock
) || unused
);
1250 * If the page that KVM got from the *primary MMU* is writable, and KVM
1251 * installed or reused a SPTE, mark the page/folio dirty. Note, this
1252 * may mark a folio dirty even if KVM created a read-only SPTE, e.g. if
1253 * the GFN is write-protected. Folios can't be safely marked dirty
1254 * outside of mmu_lock as doing so could race with writeback on the
1255 * folio. As a result, KVM can't mark folios dirty in the fast page
1256 * fault handler, and so KVM must (somewhat) speculatively mark the
1257 * folio dirty if KVM could locklessly make the SPTE writable.
1260 kvm_release_page_unused(page
);
1262 kvm_release_page_dirty(page
);
1264 kvm_release_page_clean(page
);
1267 kvm_pfn_t
__kvm_faultin_pfn(const struct kvm_memory_slot
*slot
, gfn_t gfn
,
1268 unsigned int foll
, bool *writable
,
1269 struct page
**refcounted_page
);
1271 static inline kvm_pfn_t
kvm_faultin_pfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
1272 bool write
, bool *writable
,
1273 struct page
**refcounted_page
)
1275 return __kvm_faultin_pfn(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
,
1276 write
? FOLL_WRITE
: 0, writable
, refcounted_page
);
1279 int kvm_read_guest_page(struct kvm
*kvm
, gfn_t gfn
, void *data
, int offset
,
1281 int kvm_read_guest(struct kvm
*kvm
, gpa_t gpa
, void *data
, unsigned long len
);
1282 int kvm_read_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1283 void *data
, unsigned long len
);
1284 int kvm_read_guest_offset_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1285 void *data
, unsigned int offset
,
1287 int kvm_write_guest_page(struct kvm
*kvm
, gfn_t gfn
, const void *data
,
1288 int offset
, int len
);
1289 int kvm_write_guest(struct kvm
*kvm
, gpa_t gpa
, const void *data
,
1291 int kvm_write_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1292 void *data
, unsigned long len
);
1293 int kvm_write_guest_offset_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1294 void *data
, unsigned int offset
,
1296 int kvm_gfn_to_hva_cache_init(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1297 gpa_t gpa
, unsigned long len
);
1299 #define __kvm_get_guest(kvm, gfn, offset, v) \
1301 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1302 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1303 int __ret = -EFAULT; \
1305 if (!kvm_is_error_hva(__addr)) \
1306 __ret = get_user(v, __uaddr); \
1310 #define kvm_get_guest(kvm, gpa, v) \
1312 gpa_t __gpa = gpa; \
1313 struct kvm *__kvm = kvm; \
1315 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
1316 offset_in_page(__gpa), v); \
1319 #define __kvm_put_guest(kvm, gfn, offset, v) \
1321 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1322 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1323 int __ret = -EFAULT; \
1325 if (!kvm_is_error_hva(__addr)) \
1326 __ret = put_user(v, __uaddr); \
1328 mark_page_dirty(kvm, gfn); \
1332 #define kvm_put_guest(kvm, gpa, v) \
1334 gpa_t __gpa = gpa; \
1335 struct kvm *__kvm = kvm; \
1337 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
1338 offset_in_page(__gpa), v); \
1341 int kvm_clear_guest(struct kvm
*kvm
, gpa_t gpa
, unsigned long len
);
1342 bool kvm_is_visible_gfn(struct kvm
*kvm
, gfn_t gfn
);
1343 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
);
1344 unsigned long kvm_host_page_size(struct kvm_vcpu
*vcpu
, gfn_t gfn
);
1345 void mark_page_dirty_in_slot(struct kvm
*kvm
, const struct kvm_memory_slot
*memslot
, gfn_t gfn
);
1346 void mark_page_dirty(struct kvm
*kvm
, gfn_t gfn
);
1348 int __kvm_vcpu_map(struct kvm_vcpu
*vcpu
, gpa_t gpa
, struct kvm_host_map
*map
,
1350 void kvm_vcpu_unmap(struct kvm_vcpu
*vcpu
, struct kvm_host_map
*map
);
1352 static inline int kvm_vcpu_map(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
1353 struct kvm_host_map
*map
)
1355 return __kvm_vcpu_map(vcpu
, gpa
, map
, true);
1358 static inline int kvm_vcpu_map_readonly(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
1359 struct kvm_host_map
*map
)
1361 return __kvm_vcpu_map(vcpu
, gpa
, map
, false);
1364 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu
*vcpu
, gfn_t gfn
);
1365 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool *writable
);
1366 int kvm_vcpu_read_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
, void *data
, int offset
,
1368 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu
*vcpu
, gpa_t gpa
, void *data
,
1370 int kvm_vcpu_read_guest(struct kvm_vcpu
*vcpu
, gpa_t gpa
, void *data
,
1372 int kvm_vcpu_write_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
, const void *data
,
1373 int offset
, int len
);
1374 int kvm_vcpu_write_guest(struct kvm_vcpu
*vcpu
, gpa_t gpa
, const void *data
,
1376 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu
*vcpu
, gfn_t gfn
);
1379 * kvm_gpc_init - initialize gfn_to_pfn_cache.
1381 * @gpc: struct gfn_to_pfn_cache object.
1382 * @kvm: pointer to kvm instance.
1384 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1385 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by
1386 * the caller before init).
1388 void kvm_gpc_init(struct gfn_to_pfn_cache
*gpc
, struct kvm
*kvm
);
1391 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1394 * @gpc: struct gfn_to_pfn_cache object.
1395 * @gpa: guest physical address to map.
1396 * @len: sanity check; the range being access must fit a single page.
1398 * @return: 0 for success.
1399 * -EINVAL for a mapping which would cross a page boundary.
1400 * -EFAULT for an untranslatable guest physical address.
1402 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1403 * invalidations to be processed. Callers are required to use kvm_gpc_check()
1404 * to ensure that the cache is valid before accessing the target page.
1406 int kvm_gpc_activate(struct gfn_to_pfn_cache
*gpc
, gpa_t gpa
, unsigned long len
);
1409 * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA.
1411 * @gpc: struct gfn_to_pfn_cache object.
1412 * @hva: userspace virtual address to map.
1413 * @len: sanity check; the range being access must fit a single page.
1415 * @return: 0 for success.
1416 * -EINVAL for a mapping which would cross a page boundary.
1417 * -EFAULT for an untranslatable guest physical address.
1419 * The semantics of this function are the same as those of kvm_gpc_activate(). It
1420 * merely bypasses a layer of address translation.
1422 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache
*gpc
, unsigned long hva
, unsigned long len
);
1425 * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1427 * @gpc: struct gfn_to_pfn_cache object.
1428 * @len: sanity check; the range being access must fit a single page.
1430 * @return: %true if the cache is still valid and the address matches.
1431 * %false if the cache is not valid.
1433 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1434 * while calling this function, and then continue to hold the lock until the
1435 * access is complete.
1437 * Callers in IN_GUEST_MODE may do so without locking, although they should
1438 * still hold a read lock on kvm->scru for the memslot checks.
1440 bool kvm_gpc_check(struct gfn_to_pfn_cache
*gpc
, unsigned long len
);
1443 * kvm_gpc_refresh - update a previously initialized cache.
1445 * @gpc: struct gfn_to_pfn_cache object.
1446 * @len: sanity check; the range being access must fit a single page.
1448 * @return: 0 for success.
1449 * -EINVAL for a mapping which would cross a page boundary.
1450 * -EFAULT for an untranslatable guest physical address.
1452 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1453 * return from this function does not mean the page can be immediately
1454 * accessed because it may have raced with an invalidation. Callers must
1455 * still lock and check the cache status, as this function does not return
1456 * with the lock still held to permit access.
1458 int kvm_gpc_refresh(struct gfn_to_pfn_cache
*gpc
, unsigned long len
);
1461 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1463 * @gpc: struct gfn_to_pfn_cache object.
1465 * This removes a cache from the VM's list to be processed on MMU notifier
1468 void kvm_gpc_deactivate(struct gfn_to_pfn_cache
*gpc
);
1470 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache
*gpc
)
1472 return gpc
->active
&& !kvm_is_error_gpa(gpc
->gpa
);
1475 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache
*gpc
)
1477 return gpc
->active
&& kvm_is_error_gpa(gpc
->gpa
);
1480 void kvm_sigset_activate(struct kvm_vcpu
*vcpu
);
1481 void kvm_sigset_deactivate(struct kvm_vcpu
*vcpu
);
1483 void kvm_vcpu_halt(struct kvm_vcpu
*vcpu
);
1484 bool kvm_vcpu_block(struct kvm_vcpu
*vcpu
);
1485 void kvm_arch_vcpu_blocking(struct kvm_vcpu
*vcpu
);
1486 void kvm_arch_vcpu_unblocking(struct kvm_vcpu
*vcpu
);
1487 bool kvm_vcpu_wake_up(struct kvm_vcpu
*vcpu
);
1488 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
);
1489 int kvm_vcpu_yield_to(struct kvm_vcpu
*target
);
1490 void kvm_vcpu_on_spin(struct kvm_vcpu
*vcpu
, bool yield_to_kernel_mode
);
1492 void kvm_flush_remote_tlbs(struct kvm
*kvm
);
1493 void kvm_flush_remote_tlbs_range(struct kvm
*kvm
, gfn_t gfn
, u64 nr_pages
);
1494 void kvm_flush_remote_tlbs_memslot(struct kvm
*kvm
,
1495 const struct kvm_memory_slot
*memslot
);
1497 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1498 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache
*mc
, int min
);
1499 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache
*mc
, int capacity
, int min
);
1500 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache
*mc
);
1501 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache
*mc
);
1502 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache
*mc
);
1505 void kvm_mmu_invalidate_begin(struct kvm
*kvm
);
1506 void kvm_mmu_invalidate_range_add(struct kvm
*kvm
, gfn_t start
, gfn_t end
);
1507 void kvm_mmu_invalidate_end(struct kvm
*kvm
);
1508 bool kvm_mmu_unmap_gfn_range(struct kvm
*kvm
, struct kvm_gfn_range
*range
);
1510 long kvm_arch_dev_ioctl(struct file
*filp
,
1511 unsigned int ioctl
, unsigned long arg
);
1512 long kvm_arch_vcpu_ioctl(struct file
*filp
,
1513 unsigned int ioctl
, unsigned long arg
);
1514 vm_fault_t
kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
);
1516 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
);
1518 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm
*kvm
,
1519 struct kvm_memory_slot
*slot
,
1521 unsigned long mask
);
1522 void kvm_arch_sync_dirty_log(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
);
1524 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1525 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
);
1526 int kvm_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
,
1527 int *is_dirty
, struct kvm_memory_slot
**memslot
);
1530 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_level
,
1532 int kvm_vm_ioctl_enable_cap(struct kvm
*kvm
,
1533 struct kvm_enable_cap
*cap
);
1534 int kvm_arch_vm_ioctl(struct file
*filp
, unsigned int ioctl
, unsigned long arg
);
1535 long kvm_arch_vm_compat_ioctl(struct file
*filp
, unsigned int ioctl
,
1538 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
);
1539 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
);
1541 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
1542 struct kvm_translation
*tr
);
1544 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
);
1545 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
);
1546 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
1547 struct kvm_sregs
*sregs
);
1548 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
1549 struct kvm_sregs
*sregs
);
1550 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
1551 struct kvm_mp_state
*mp_state
);
1552 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
1553 struct kvm_mp_state
*mp_state
);
1554 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
1555 struct kvm_guest_debug
*dbg
);
1556 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
);
1558 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
);
1559 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
);
1560 int kvm_arch_vcpu_precreate(struct kvm
*kvm
, unsigned int id
);
1561 int kvm_arch_vcpu_create(struct kvm_vcpu
*vcpu
);
1562 void kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
);
1563 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
);
1565 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1566 int kvm_arch_pm_notifier(struct kvm
*kvm
, unsigned long state
);
1569 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1570 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu
*vcpu
, struct dentry
*debugfs_dentry
);
1572 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu
*vcpu
) {}
1575 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1577 * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under
1578 * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of
1579 * kvm_usage_count, i.e. at the beginning of the generic hardware enabling
1580 * sequence, and at the end of the generic hardware disabling sequence.
1582 void kvm_arch_enable_virtualization(void);
1583 void kvm_arch_disable_virtualization(void);
1585 * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to
1586 * do the actual twiddling of hardware bits. The hooks are called on all
1587 * online CPUs when KVM enables/disabled virtualization, and on a single CPU
1588 * when that CPU is onlined/offlined (including for Resume/Suspend).
1590 int kvm_arch_enable_virtualization_cpu(void);
1591 void kvm_arch_disable_virtualization_cpu(void);
1593 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
);
1594 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu
*vcpu
);
1595 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
);
1596 bool kvm_arch_dy_runnable(struct kvm_vcpu
*vcpu
);
1597 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu
*vcpu
);
1598 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu
*vcpu
);
1599 int kvm_arch_post_init_vm(struct kvm
*kvm
);
1600 void kvm_arch_pre_destroy_vm(struct kvm
*kvm
);
1601 void kvm_arch_create_vm_debugfs(struct kvm
*kvm
);
1603 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1605 * All architectures that want to use vzalloc currently also
1606 * need their own kvm_arch_alloc_vm implementation.
1608 static inline struct kvm
*kvm_arch_alloc_vm(void)
1610 return kzalloc(sizeof(struct kvm
), GFP_KERNEL_ACCOUNT
);
1614 static inline void __kvm_arch_free_vm(struct kvm
*kvm
)
1619 #ifndef __KVM_HAVE_ARCH_VM_FREE
1620 static inline void kvm_arch_free_vm(struct kvm
*kvm
)
1622 __kvm_arch_free_vm(kvm
);
1626 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1627 static inline int kvm_arch_flush_remote_tlbs(struct kvm
*kvm
)
1632 int kvm_arch_flush_remote_tlbs(struct kvm
*kvm
);
1635 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1636 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm
*kvm
,
1637 gfn_t gfn
, u64 nr_pages
)
1642 int kvm_arch_flush_remote_tlbs_range(struct kvm
*kvm
, gfn_t gfn
, u64 nr_pages
);
1645 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1646 void kvm_arch_register_noncoherent_dma(struct kvm
*kvm
);
1647 void kvm_arch_unregister_noncoherent_dma(struct kvm
*kvm
);
1648 bool kvm_arch_has_noncoherent_dma(struct kvm
*kvm
);
1650 static inline void kvm_arch_register_noncoherent_dma(struct kvm
*kvm
)
1654 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm
*kvm
)
1658 static inline bool kvm_arch_has_noncoherent_dma(struct kvm
*kvm
)
1663 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1664 void kvm_arch_start_assignment(struct kvm
*kvm
);
1665 void kvm_arch_end_assignment(struct kvm
*kvm
);
1666 bool kvm_arch_has_assigned_device(struct kvm
*kvm
);
1668 static inline void kvm_arch_start_assignment(struct kvm
*kvm
)
1672 static inline void kvm_arch_end_assignment(struct kvm
*kvm
)
1676 static __always_inline
bool kvm_arch_has_assigned_device(struct kvm
*kvm
)
1682 static inline struct rcuwait
*kvm_arch_vcpu_get_wait(struct kvm_vcpu
*vcpu
)
1684 #ifdef __KVM_HAVE_ARCH_WQP
1685 return vcpu
->arch
.waitp
;
1692 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns
1693 * true if the vCPU was blocking and was awakened, false otherwise.
1695 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu
*vcpu
)
1697 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu
));
1700 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu
*vcpu
)
1702 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu
));
1705 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1707 * returns true if the virtual interrupt controller is initialized and
1708 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1709 * controller is dynamically instantiated and this is not always true.
1711 bool kvm_arch_intc_initialized(struct kvm
*kvm
);
1713 static inline bool kvm_arch_intc_initialized(struct kvm
*kvm
)
1719 #ifdef CONFIG_GUEST_PERF_EVENTS
1720 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu
*vcpu
);
1722 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler
)(void));
1723 void kvm_unregister_perf_callbacks(void);
1725 static inline void kvm_register_perf_callbacks(void *ign
) {}
1726 static inline void kvm_unregister_perf_callbacks(void) {}
1727 #endif /* CONFIG_GUEST_PERF_EVENTS */
1729 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
);
1730 void kvm_arch_destroy_vm(struct kvm
*kvm
);
1731 void kvm_arch_sync_events(struct kvm
*kvm
);
1733 int kvm_cpu_has_pending_timer(struct kvm_vcpu
*vcpu
);
1735 struct kvm_irq_ack_notifier
{
1736 struct hlist_node link
;
1738 void (*irq_acked
)(struct kvm_irq_ack_notifier
*kian
);
1741 int kvm_irq_map_gsi(struct kvm
*kvm
,
1742 struct kvm_kernel_irq_routing_entry
*entries
, int gsi
);
1743 int kvm_irq_map_chip_pin(struct kvm
*kvm
, unsigned irqchip
, unsigned pin
);
1745 int kvm_set_irq(struct kvm
*kvm
, int irq_source_id
, u32 irq
, int level
,
1747 int kvm_set_msi(struct kvm_kernel_irq_routing_entry
*irq_entry
, struct kvm
*kvm
,
1748 int irq_source_id
, int level
, bool line_status
);
1749 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry
*e
,
1750 struct kvm
*kvm
, int irq_source_id
,
1751 int level
, bool line_status
);
1752 bool kvm_irq_has_notifier(struct kvm
*kvm
, unsigned irqchip
, unsigned pin
);
1753 void kvm_notify_acked_gsi(struct kvm
*kvm
, int gsi
);
1754 void kvm_notify_acked_irq(struct kvm
*kvm
, unsigned irqchip
, unsigned pin
);
1755 void kvm_register_irq_ack_notifier(struct kvm
*kvm
,
1756 struct kvm_irq_ack_notifier
*kian
);
1757 void kvm_unregister_irq_ack_notifier(struct kvm
*kvm
,
1758 struct kvm_irq_ack_notifier
*kian
);
1759 int kvm_request_irq_source_id(struct kvm
*kvm
);
1760 void kvm_free_irq_source_id(struct kvm
*kvm
, int irq_source_id
);
1761 bool kvm_arch_irqfd_allowed(struct kvm
*kvm
, struct kvm_irqfd
*args
);
1764 * Returns a pointer to the memslot if it contains gfn.
1765 * Otherwise returns NULL.
1767 static inline struct kvm_memory_slot
*
1768 try_get_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1773 if (gfn
>= slot
->base_gfn
&& gfn
< slot
->base_gfn
+ slot
->npages
)
1780 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1782 * With "approx" set returns the memslot also when the address falls
1783 * in a hole. In that case one of the memslots bordering the hole is
1786 static inline struct kvm_memory_slot
*
1787 search_memslots(struct kvm_memslots
*slots
, gfn_t gfn
, bool approx
)
1789 struct kvm_memory_slot
*slot
;
1790 struct rb_node
*node
;
1791 int idx
= slots
->node_idx
;
1794 for (node
= slots
->gfn_tree
.rb_node
; node
; ) {
1795 slot
= container_of(node
, struct kvm_memory_slot
, gfn_node
[idx
]);
1796 if (gfn
>= slot
->base_gfn
) {
1797 if (gfn
< slot
->base_gfn
+ slot
->npages
)
1799 node
= node
->rb_right
;
1801 node
= node
->rb_left
;
1804 return approx
? slot
: NULL
;
1807 static inline struct kvm_memory_slot
*
1808 ____gfn_to_memslot(struct kvm_memslots
*slots
, gfn_t gfn
, bool approx
)
1810 struct kvm_memory_slot
*slot
;
1812 slot
= (struct kvm_memory_slot
*)atomic_long_read(&slots
->last_used_slot
);
1813 slot
= try_get_memslot(slot
, gfn
);
1817 slot
= search_memslots(slots
, gfn
, approx
);
1819 atomic_long_set(&slots
->last_used_slot
, (unsigned long)slot
);
1827 * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1828 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline
1829 * because that would bloat other code too much.
1831 static inline struct kvm_memory_slot
*
1832 __gfn_to_memslot(struct kvm_memslots
*slots
, gfn_t gfn
)
1834 return ____gfn_to_memslot(slots
, gfn
, false);
1837 static inline unsigned long
1838 __gfn_to_hva_memslot(const struct kvm_memory_slot
*slot
, gfn_t gfn
)
1841 * The index was checked originally in search_memslots. To avoid
1842 * that a malicious guest builds a Spectre gadget out of e.g. page
1843 * table walks, do not let the processor speculate loads outside
1844 * the guest's registered memslots.
1846 unsigned long offset
= gfn
- slot
->base_gfn
;
1847 offset
= array_index_nospec(offset
, slot
->npages
);
1848 return slot
->userspace_addr
+ offset
* PAGE_SIZE
;
1851 static inline int memslot_id(struct kvm
*kvm
, gfn_t gfn
)
1853 return gfn_to_memslot(kvm
, gfn
)->id
;
1857 hva_to_gfn_memslot(unsigned long hva
, struct kvm_memory_slot
*slot
)
1859 gfn_t gfn_offset
= (hva
- slot
->userspace_addr
) >> PAGE_SHIFT
;
1861 return slot
->base_gfn
+ gfn_offset
;
1864 static inline gpa_t
gfn_to_gpa(gfn_t gfn
)
1866 return (gpa_t
)gfn
<< PAGE_SHIFT
;
1869 static inline gfn_t
gpa_to_gfn(gpa_t gpa
)
1871 return (gfn_t
)(gpa
>> PAGE_SHIFT
);
1874 static inline hpa_t
pfn_to_hpa(kvm_pfn_t pfn
)
1876 return (hpa_t
)pfn
<< PAGE_SHIFT
;
1879 static inline bool kvm_is_gpa_in_memslot(struct kvm
*kvm
, gpa_t gpa
)
1881 unsigned long hva
= gfn_to_hva(kvm
, gpa_to_gfn(gpa
));
1883 return !kvm_is_error_hva(hva
);
1886 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache
*gpc
)
1888 lockdep_assert_held(&gpc
->lock
);
1893 mark_page_dirty_in_slot(gpc
->kvm
, gpc
->memslot
, gpa_to_gfn(gpc
->gpa
));
1896 enum kvm_stat_kind
{
1901 struct kvm_stat_data
{
1903 const struct _kvm_stats_desc
*desc
;
1904 enum kvm_stat_kind kind
;
1907 struct _kvm_stats_desc
{
1908 struct kvm_stats_desc desc
;
1909 char name
[KVM_STATS_NAME_SIZE
];
1912 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \
1913 .flags = type | unit | base | \
1914 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \
1915 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \
1916 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \
1921 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1924 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1925 .offset = offsetof(struct kvm_vm_stat, generic.stat) \
1929 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1932 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1933 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1937 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1940 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1941 .offset = offsetof(struct kvm_vm_stat, stat) \
1945 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1948 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1949 .offset = offsetof(struct kvm_vcpu_stat, stat) \
1953 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1954 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \
1955 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1957 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \
1958 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \
1959 unit, base, exponent, 1, 0)
1960 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \
1961 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \
1962 unit, base, exponent, 1, 0)
1963 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \
1964 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \
1965 unit, base, exponent, 1, 0)
1966 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \
1967 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \
1968 unit, base, exponent, sz, bsz)
1969 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \
1970 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \
1971 unit, base, exponent, sz, 0)
1973 /* Cumulative counter, read/write */
1974 #define STATS_DESC_COUNTER(SCOPE, name) \
1975 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \
1976 KVM_STATS_BASE_POW10, 0)
1977 /* Instantaneous counter, read only */
1978 #define STATS_DESC_ICOUNTER(SCOPE, name) \
1979 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \
1980 KVM_STATS_BASE_POW10, 0)
1981 /* Peak counter, read/write */
1982 #define STATS_DESC_PCOUNTER(SCOPE, name) \
1983 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \
1984 KVM_STATS_BASE_POW10, 0)
1986 /* Instantaneous boolean value, read only */
1987 #define STATS_DESC_IBOOLEAN(SCOPE, name) \
1988 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1989 KVM_STATS_BASE_POW10, 0)
1990 /* Peak (sticky) boolean value, read/write */
1991 #define STATS_DESC_PBOOLEAN(SCOPE, name) \
1992 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1993 KVM_STATS_BASE_POW10, 0)
1995 /* Cumulative time in nanosecond */
1996 #define STATS_DESC_TIME_NSEC(SCOPE, name) \
1997 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1998 KVM_STATS_BASE_POW10, -9)
1999 /* Linear histogram for time in nanosecond */
2000 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \
2001 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
2002 KVM_STATS_BASE_POW10, -9, sz, bsz)
2003 /* Logarithmic histogram for time in nanosecond */
2004 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \
2005 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
2006 KVM_STATS_BASE_POW10, -9, sz)
2008 #define KVM_GENERIC_VM_STATS() \
2009 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \
2010 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
2012 #define KVM_GENERIC_VCPU_STATS() \
2013 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \
2014 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \
2015 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \
2016 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \
2017 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \
2018 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \
2019 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \
2020 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \
2021 HALT_POLL_HIST_COUNT), \
2022 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \
2023 HALT_POLL_HIST_COUNT), \
2024 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \
2025 HALT_POLL_HIST_COUNT), \
2026 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
2028 ssize_t
kvm_stats_read(char *id
, const struct kvm_stats_header
*header
,
2029 const struct _kvm_stats_desc
*desc
,
2030 void *stats
, size_t size_stats
,
2031 char __user
*user_buffer
, size_t size
, loff_t
*offset
);
2034 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
2037 * @data: start address of the stats data
2038 * @size: the number of bucket of the stats data
2039 * @value: the new value used to update the linear histogram's bucket
2040 * @bucket_size: the size (width) of a bucket
2042 static inline void kvm_stats_linear_hist_update(u64
*data
, size_t size
,
2043 u64 value
, size_t bucket_size
)
2045 size_t index
= div64_u64(value
, bucket_size
);
2047 index
= min(index
, size
- 1);
2052 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
2055 * @data: start address of the stats data
2056 * @size: the number of bucket of the stats data
2057 * @value: the new value used to update the logarithmic histogram's bucket
2059 static inline void kvm_stats_log_hist_update(u64
*data
, size_t size
, u64 value
)
2061 size_t index
= fls64(value
);
2063 index
= min(index
, size
- 1);
2067 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \
2068 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
2069 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \
2070 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
2073 extern const struct kvm_stats_header kvm_vm_stats_header
;
2074 extern const struct _kvm_stats_desc kvm_vm_stats_desc
[];
2075 extern const struct kvm_stats_header kvm_vcpu_stats_header
;
2076 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc
[];
2078 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
2079 static inline int mmu_invalidate_retry(struct kvm
*kvm
, unsigned long mmu_seq
)
2081 if (unlikely(kvm
->mmu_invalidate_in_progress
))
2084 * Ensure the read of mmu_invalidate_in_progress happens before
2085 * the read of mmu_invalidate_seq. This interacts with the
2086 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
2087 * that the caller either sees the old (non-zero) value of
2088 * mmu_invalidate_in_progress or the new (incremented) value of
2089 * mmu_invalidate_seq.
2091 * PowerPC Book3s HV KVM calls this under a per-page lock rather
2092 * than under kvm->mmu_lock, for scalability, so can't rely on
2093 * kvm->mmu_lock to keep things ordered.
2096 if (kvm
->mmu_invalidate_seq
!= mmu_seq
)
2101 static inline int mmu_invalidate_retry_gfn(struct kvm
*kvm
,
2102 unsigned long mmu_seq
,
2105 lockdep_assert_held(&kvm
->mmu_lock
);
2107 * If mmu_invalidate_in_progress is non-zero, then the range maintained
2108 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2109 * that might be being invalidated. Note that it may include some false
2110 * positives, due to shortcuts when handing concurrent invalidations.
2112 if (unlikely(kvm
->mmu_invalidate_in_progress
)) {
2114 * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2115 * but before updating the range is a KVM bug.
2117 if (WARN_ON_ONCE(kvm
->mmu_invalidate_range_start
== INVALID_GPA
||
2118 kvm
->mmu_invalidate_range_end
== INVALID_GPA
))
2121 if (gfn
>= kvm
->mmu_invalidate_range_start
&&
2122 gfn
< kvm
->mmu_invalidate_range_end
)
2126 if (kvm
->mmu_invalidate_seq
!= mmu_seq
)
2132 * This lockless version of the range-based retry check *must* be paired with a
2133 * call to the locked version after acquiring mmu_lock, i.e. this is safe to
2134 * use only as a pre-check to avoid contending mmu_lock. This version *will*
2135 * get false negatives and false positives.
2137 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm
*kvm
,
2138 unsigned long mmu_seq
,
2142 * Use READ_ONCE() to ensure the in-progress flag and sequence counter
2143 * are always read from memory, e.g. so that checking for retry in a
2144 * loop won't result in an infinite retry loop. Don't force loads for
2145 * start+end, as the key to avoiding infinite retry loops is observing
2146 * the 1=>0 transition of in-progress, i.e. getting false negatives
2147 * due to stale start+end values is acceptable.
2149 if (unlikely(READ_ONCE(kvm
->mmu_invalidate_in_progress
)) &&
2150 gfn
>= kvm
->mmu_invalidate_range_start
&&
2151 gfn
< kvm
->mmu_invalidate_range_end
)
2154 return READ_ONCE(kvm
->mmu_invalidate_seq
) != mmu_seq
;
2158 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2160 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
2162 bool kvm_arch_can_set_irq_routing(struct kvm
*kvm
);
2163 int kvm_set_irq_routing(struct kvm
*kvm
,
2164 const struct kvm_irq_routing_entry
*entries
,
2167 int kvm_init_irq_routing(struct kvm
*kvm
);
2168 int kvm_set_routing_entry(struct kvm
*kvm
,
2169 struct kvm_kernel_irq_routing_entry
*e
,
2170 const struct kvm_irq_routing_entry
*ue
);
2171 void kvm_free_irq_routing(struct kvm
*kvm
);
2175 static inline void kvm_free_irq_routing(struct kvm
*kvm
) {}
2177 static inline int kvm_init_irq_routing(struct kvm
*kvm
)
2184 int kvm_send_userspace_msi(struct kvm
*kvm
, struct kvm_msi
*msi
);
2186 void kvm_eventfd_init(struct kvm
*kvm
);
2187 int kvm_ioeventfd(struct kvm
*kvm
, struct kvm_ioeventfd
*args
);
2189 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2190 int kvm_irqfd(struct kvm
*kvm
, struct kvm_irqfd
*args
);
2191 void kvm_irqfd_release(struct kvm
*kvm
);
2192 bool kvm_notify_irqfd_resampler(struct kvm
*kvm
,
2193 unsigned int irqchip
,
2195 void kvm_irq_routing_update(struct kvm
*);
2197 static inline int kvm_irqfd(struct kvm
*kvm
, struct kvm_irqfd
*args
)
2202 static inline void kvm_irqfd_release(struct kvm
*kvm
) {}
2204 static inline bool kvm_notify_irqfd_resampler(struct kvm
*kvm
,
2205 unsigned int irqchip
,
2210 #endif /* CONFIG_HAVE_KVM_IRQCHIP */
2212 void kvm_arch_irq_routing_update(struct kvm
*kvm
);
2214 static inline void __kvm_make_request(int req
, struct kvm_vcpu
*vcpu
)
2217 * Ensure the rest of the request is published to kvm_check_request's
2218 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
2221 set_bit(req
& KVM_REQUEST_MASK
, (void *)&vcpu
->requests
);
2224 static __always_inline
void kvm_make_request(int req
, struct kvm_vcpu
*vcpu
)
2227 * Request that don't require vCPU action should never be logged in
2228 * vcpu->requests. The vCPU won't clear the request, so it will stay
2229 * logged indefinitely and prevent the vCPU from entering the guest.
2231 BUILD_BUG_ON(!__builtin_constant_p(req
) ||
2232 (req
& KVM_REQUEST_NO_ACTION
));
2234 __kvm_make_request(req
, vcpu
);
2237 static inline bool kvm_request_pending(struct kvm_vcpu
*vcpu
)
2239 return READ_ONCE(vcpu
->requests
);
2242 static inline bool kvm_test_request(int req
, struct kvm_vcpu
*vcpu
)
2244 return test_bit(req
& KVM_REQUEST_MASK
, (void *)&vcpu
->requests
);
2247 static inline void kvm_clear_request(int req
, struct kvm_vcpu
*vcpu
)
2249 clear_bit(req
& KVM_REQUEST_MASK
, (void *)&vcpu
->requests
);
2252 static inline bool kvm_check_request(int req
, struct kvm_vcpu
*vcpu
)
2254 if (kvm_test_request(req
, vcpu
)) {
2255 kvm_clear_request(req
, vcpu
);
2258 * Ensure the rest of the request is visible to kvm_check_request's
2259 * caller. Paired with the smp_wmb in kvm_make_request.
2261 smp_mb__after_atomic();
2268 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2269 extern bool kvm_rebooting
;
2272 extern unsigned int halt_poll_ns
;
2273 extern unsigned int halt_poll_ns_grow
;
2274 extern unsigned int halt_poll_ns_grow_start
;
2275 extern unsigned int halt_poll_ns_shrink
;
2278 const struct kvm_device_ops
*ops
;
2281 struct list_head vm_node
;
2284 /* create, destroy, and name are mandatory */
2285 struct kvm_device_ops
{
2289 * create is called holding kvm->lock and any operations not suitable
2290 * to do while holding the lock should be deferred to init (see
2293 int (*create
)(struct kvm_device
*dev
, u32 type
);
2296 * init is called after create if create is successful and is called
2297 * outside of holding kvm->lock.
2299 void (*init
)(struct kvm_device
*dev
);
2302 * Destroy is responsible for freeing dev.
2304 * Destroy may be called before or after destructors are called
2305 * on emulated I/O regions, depending on whether a reference is
2306 * held by a vcpu or other kvm component that gets destroyed
2307 * after the emulated I/O.
2309 void (*destroy
)(struct kvm_device
*dev
);
2312 * Release is an alternative method to free the device. It is
2313 * called when the device file descriptor is closed. Once
2314 * release is called, the destroy method will not be called
2315 * anymore as the device is removed from the device list of
2316 * the VM. kvm->lock is held.
2318 void (*release
)(struct kvm_device
*dev
);
2320 int (*set_attr
)(struct kvm_device
*dev
, struct kvm_device_attr
*attr
);
2321 int (*get_attr
)(struct kvm_device
*dev
, struct kvm_device_attr
*attr
);
2322 int (*has_attr
)(struct kvm_device
*dev
, struct kvm_device_attr
*attr
);
2323 long (*ioctl
)(struct kvm_device
*dev
, unsigned int ioctl
,
2325 int (*mmap
)(struct kvm_device
*dev
, struct vm_area_struct
*vma
);
2328 struct kvm_device
*kvm_device_from_filp(struct file
*filp
);
2329 int kvm_register_device_ops(const struct kvm_device_ops
*ops
, u32 type
);
2330 void kvm_unregister_device_ops(u32 type
);
2332 extern struct kvm_device_ops kvm_mpic_ops
;
2333 extern struct kvm_device_ops kvm_arm_vgic_v2_ops
;
2334 extern struct kvm_device_ops kvm_arm_vgic_v3_ops
;
2336 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2338 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu
*vcpu
, bool val
)
2340 vcpu
->spin_loop
.in_spin_loop
= val
;
2342 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu
*vcpu
, bool val
)
2344 vcpu
->spin_loop
.dy_eligible
= val
;
2347 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2349 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu
*vcpu
, bool val
)
2353 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu
*vcpu
, bool val
)
2356 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2358 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot
*memslot
)
2360 return (memslot
&& memslot
->id
< KVM_USER_MEM_SLOTS
&&
2361 !(memslot
->flags
& KVM_MEMSLOT_INVALID
));
2364 struct kvm_vcpu
*kvm_get_running_vcpu(void);
2365 struct kvm_vcpu
* __percpu
*kvm_get_running_vcpus(void);
2367 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2368 bool kvm_arch_has_irq_bypass(void);
2369 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer
*,
2370 struct irq_bypass_producer
*);
2371 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer
*,
2372 struct irq_bypass_producer
*);
2373 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer
*);
2374 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer
*);
2375 int kvm_arch_update_irqfd_routing(struct kvm
*kvm
, unsigned int host_irq
,
2376 uint32_t guest_irq
, bool set
);
2377 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry
*,
2378 struct kvm_kernel_irq_routing_entry
*);
2379 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2381 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2382 /* If we wakeup during the poll time, was it a sucessful poll? */
2383 static inline bool vcpu_valid_wakeup(struct kvm_vcpu
*vcpu
)
2385 return vcpu
->valid_wakeup
;
2389 static inline bool vcpu_valid_wakeup(struct kvm_vcpu
*vcpu
)
2393 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2395 #ifdef CONFIG_HAVE_KVM_NO_POLL
2396 /* Callback that tells if we must not poll */
2397 bool kvm_arch_no_poll(struct kvm_vcpu
*vcpu
);
2399 static inline bool kvm_arch_no_poll(struct kvm_vcpu
*vcpu
)
2403 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2405 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2406 long kvm_arch_vcpu_async_ioctl(struct file
*filp
,
2407 unsigned int ioctl
, unsigned long arg
);
2409 static inline long kvm_arch_vcpu_async_ioctl(struct file
*filp
,
2413 return -ENOIOCTLCMD
;
2415 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2417 void kvm_arch_guest_memory_reclaimed(struct kvm
*kvm
);
2419 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2420 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu
*vcpu
);
2422 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu
*vcpu
)
2426 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2428 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2429 static inline void kvm_handle_signal_exit(struct kvm_vcpu
*vcpu
)
2431 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
2432 vcpu
->stat
.signal_exits
++;
2434 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2437 * If more than one page is being (un)accounted, @virt must be the address of
2438 * the first page of a block of pages what were allocated together (i.e
2439 * accounted together).
2441 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2444 static inline void kvm_account_pgtable_pages(void *virt
, int nr
)
2446 mod_lruvec_page_state(virt_to_page(virt
), NR_SECONDARY_PAGETABLE
, nr
);
2450 * This defines how many reserved entries we want to keep before we
2451 * kick the vcpu to the userspace to avoid dirty ring full. This
2452 * value can be tuned to higher if e.g. PML is enabled on the host.
2454 #define KVM_DIRTY_RING_RSVD_ENTRIES 64
2456 /* Max number of entries allowed for each kvm dirty ring */
2457 #define KVM_DIRTY_RING_MAX_ENTRIES 65536
2459 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu
*vcpu
,
2460 gpa_t gpa
, gpa_t size
,
2461 bool is_write
, bool is_exec
,
2464 vcpu
->run
->exit_reason
= KVM_EXIT_MEMORY_FAULT
;
2465 vcpu
->run
->memory_fault
.gpa
= gpa
;
2466 vcpu
->run
->memory_fault
.size
= size
;
2468 /* RWX flags are not (yet) defined or communicated to userspace. */
2469 vcpu
->run
->memory_fault
.flags
= 0;
2471 vcpu
->run
->memory_fault
.flags
|= KVM_MEMORY_EXIT_FLAG_PRIVATE
;
2474 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2475 static inline unsigned long kvm_get_memory_attributes(struct kvm
*kvm
, gfn_t gfn
)
2477 return xa_to_value(xa_load(&kvm
->mem_attr_array
, gfn
));
2480 bool kvm_range_has_memory_attributes(struct kvm
*kvm
, gfn_t start
, gfn_t end
,
2481 unsigned long mask
, unsigned long attrs
);
2482 bool kvm_arch_pre_set_memory_attributes(struct kvm
*kvm
,
2483 struct kvm_gfn_range
*range
);
2484 bool kvm_arch_post_set_memory_attributes(struct kvm
*kvm
,
2485 struct kvm_gfn_range
*range
);
2487 static inline bool kvm_mem_is_private(struct kvm
*kvm
, gfn_t gfn
)
2489 return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM
) &&
2490 kvm_get_memory_attributes(kvm
, gfn
) & KVM_MEMORY_ATTRIBUTE_PRIVATE
;
2493 static inline bool kvm_mem_is_private(struct kvm
*kvm
, gfn_t gfn
)
2497 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2499 #ifdef CONFIG_KVM_PRIVATE_MEM
2500 int kvm_gmem_get_pfn(struct kvm
*kvm
, struct kvm_memory_slot
*slot
,
2501 gfn_t gfn
, kvm_pfn_t
*pfn
, struct page
**page
,
2504 static inline int kvm_gmem_get_pfn(struct kvm
*kvm
,
2505 struct kvm_memory_slot
*slot
, gfn_t gfn
,
2506 kvm_pfn_t
*pfn
, struct page
**page
,
2512 #endif /* CONFIG_KVM_PRIVATE_MEM */
2514 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
2515 int kvm_arch_gmem_prepare(struct kvm
*kvm
, gfn_t gfn
, kvm_pfn_t pfn
, int max_order
);
2518 #ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM
2520 * kvm_gmem_populate() - Populate/prepare a GPA range with guest data
2522 * @kvm: KVM instance
2523 * @gfn: starting GFN to be populated
2524 * @src: userspace-provided buffer containing data to copy into GFN range
2525 * (passed to @post_populate, and incremented on each iteration
2527 * @npages: number of pages to copy from userspace-buffer
2528 * @post_populate: callback to issue for each gmem page that backs the GPA
2530 * @opaque: opaque data to pass to @post_populate callback
2532 * This is primarily intended for cases where a gmem-backed GPA range needs
2533 * to be initialized with userspace-provided data prior to being mapped into
2534 * the guest as a private page. This should be called with the slots->lock
2535 * held so that caller-enforced invariants regarding the expected memory
2536 * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES.
2538 * Returns the number of pages that were populated.
2540 typedef int (*kvm_gmem_populate_cb
)(struct kvm
*kvm
, gfn_t gfn
, kvm_pfn_t pfn
,
2541 void __user
*src
, int order
, void *opaque
);
2543 long kvm_gmem_populate(struct kvm
*kvm
, gfn_t gfn
, void __user
*src
, long npages
,
2544 kvm_gmem_populate_cb post_populate
, void *opaque
);
2547 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
2548 void kvm_arch_gmem_invalidate(kvm_pfn_t start
, kvm_pfn_t end
);
2551 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
2552 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu
*vcpu
,
2553 struct kvm_pre_fault_memory
*range
);