accel/qaic: Add AIC200 support
[drm/drm-misc.git] / include / linux / pgtable.h
blobadef9d6e9b1baefdbfd8ccd85f1b5c1aa3ad8b59
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PGTABLE_H
3 #define _LINUX_PGTABLE_H
5 #include <linux/pfn.h>
6 #include <asm/pgtable.h>
8 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
9 #define PUD_ORDER (PUD_SHIFT - PAGE_SHIFT)
11 #ifndef __ASSEMBLY__
12 #ifdef CONFIG_MMU
14 #include <linux/mm_types.h>
15 #include <linux/bug.h>
16 #include <linux/errno.h>
17 #include <asm-generic/pgtable_uffd.h>
18 #include <linux/page_table_check.h>
20 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
21 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
22 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
23 #endif
26 * On almost all architectures and configurations, 0 can be used as the
27 * upper ceiling to free_pgtables(): on many architectures it has the same
28 * effect as using TASK_SIZE. However, there is one configuration which
29 * must impose a more careful limit, to avoid freeing kernel pgtables.
31 #ifndef USER_PGTABLES_CEILING
32 #define USER_PGTABLES_CEILING 0UL
33 #endif
36 * This defines the first usable user address. Platforms
37 * can override its value with custom FIRST_USER_ADDRESS
38 * defined in their respective <asm/pgtable.h>.
40 #ifndef FIRST_USER_ADDRESS
41 #define FIRST_USER_ADDRESS 0UL
42 #endif
45 * This defines the generic helper for accessing PMD page
46 * table page. Although platforms can still override this
47 * via their respective <asm/pgtable.h>.
49 #ifndef pmd_pgtable
50 #define pmd_pgtable(pmd) pmd_page(pmd)
51 #endif
53 #define pmd_folio(pmd) page_folio(pmd_page(pmd))
56 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
58 * The pXx_index() functions return the index of the entry in the page
59 * table page which would control the given virtual address
61 * As these functions may be used by the same code for different levels of
62 * the page table folding, they are always available, regardless of
63 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
64 * because in such cases PTRS_PER_PxD equals 1.
67 static inline unsigned long pte_index(unsigned long address)
69 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
72 #ifndef pmd_index
73 static inline unsigned long pmd_index(unsigned long address)
75 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
77 #define pmd_index pmd_index
78 #endif
80 #ifndef pud_index
81 static inline unsigned long pud_index(unsigned long address)
83 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
85 #define pud_index pud_index
86 #endif
88 #ifndef pgd_index
89 /* Must be a compile-time constant, so implement it as a macro */
90 #define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
91 #endif
93 #ifndef kernel_pte_init
94 static inline void kernel_pte_init(void *addr)
97 #define kernel_pte_init kernel_pte_init
98 #endif
100 #ifndef pmd_init
101 static inline void pmd_init(void *addr)
104 #define pmd_init pmd_init
105 #endif
107 #ifndef pud_init
108 static inline void pud_init(void *addr)
111 #define pud_init pud_init
112 #endif
114 #ifndef pte_offset_kernel
115 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
117 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
119 #define pte_offset_kernel pte_offset_kernel
120 #endif
122 #ifdef CONFIG_HIGHPTE
123 #define __pte_map(pmd, address) \
124 ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
125 #define pte_unmap(pte) do { \
126 kunmap_local((pte)); \
127 rcu_read_unlock(); \
128 } while (0)
129 #else
130 static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
132 return pte_offset_kernel(pmd, address);
134 static inline void pte_unmap(pte_t *pte)
136 rcu_read_unlock();
138 #endif
140 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable);
142 /* Find an entry in the second-level page table.. */
143 #ifndef pmd_offset
144 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
146 return pud_pgtable(*pud) + pmd_index(address);
148 #define pmd_offset pmd_offset
149 #endif
151 #ifndef pud_offset
152 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
154 return p4d_pgtable(*p4d) + pud_index(address);
156 #define pud_offset pud_offset
157 #endif
159 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
161 return (pgd + pgd_index(address));
165 * a shortcut to get a pgd_t in a given mm
167 #ifndef pgd_offset
168 #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
169 #endif
172 * a shortcut which implies the use of the kernel's pgd, instead
173 * of a process's
175 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
178 * In many cases it is known that a virtual address is mapped at PMD or PTE
179 * level, so instead of traversing all the page table levels, we can get a
180 * pointer to the PMD entry in user or kernel page table or translate a virtual
181 * address to the pointer in the PTE in the kernel page tables with simple
182 * helpers.
184 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
186 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
189 static inline pmd_t *pmd_off_k(unsigned long va)
191 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
194 static inline pte_t *virt_to_kpte(unsigned long vaddr)
196 pmd_t *pmd = pmd_off_k(vaddr);
198 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
201 #ifndef pmd_young
202 static inline int pmd_young(pmd_t pmd)
204 return 0;
206 #endif
208 #ifndef pmd_dirty
209 static inline int pmd_dirty(pmd_t pmd)
211 return 0;
213 #endif
216 * A facility to provide lazy MMU batching. This allows PTE updates and
217 * page invalidations to be delayed until a call to leave lazy MMU mode
218 * is issued. Some architectures may benefit from doing this, and it is
219 * beneficial for both shadow and direct mode hypervisors, which may batch
220 * the PTE updates which happen during this window. Note that using this
221 * interface requires that read hazards be removed from the code. A read
222 * hazard could result in the direct mode hypervisor case, since the actual
223 * write to the page tables may not yet have taken place, so reads though
224 * a raw PTE pointer after it has been modified are not guaranteed to be
225 * up to date. This mode can only be entered and left under the protection of
226 * the page table locks for all page tables which may be modified. In the UP
227 * case, this is required so that preemption is disabled, and in the SMP case,
228 * it must synchronize the delayed page table writes properly on other CPUs.
230 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
231 #define arch_enter_lazy_mmu_mode() do {} while (0)
232 #define arch_leave_lazy_mmu_mode() do {} while (0)
233 #define arch_flush_lazy_mmu_mode() do {} while (0)
234 #endif
236 #ifndef pte_batch_hint
238 * pte_batch_hint - Number of pages that can be added to batch without scanning.
239 * @ptep: Page table pointer for the entry.
240 * @pte: Page table entry.
242 * Some architectures know that a set of contiguous ptes all map the same
243 * contiguous memory with the same permissions. In this case, it can provide a
244 * hint to aid pte batching without the core code needing to scan every pte.
246 * An architecture implementation may ignore the PTE accessed state. Further,
247 * the dirty state must apply atomically to all the PTEs described by the hint.
249 * May be overridden by the architecture, else pte_batch_hint is always 1.
251 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
253 return 1;
255 #endif
257 #ifndef pte_advance_pfn
258 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
260 return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
262 #endif
264 #define pte_next_pfn(pte) pte_advance_pfn(pte, 1)
266 #ifndef set_ptes
268 * set_ptes - Map consecutive pages to a contiguous range of addresses.
269 * @mm: Address space to map the pages into.
270 * @addr: Address to map the first page at.
271 * @ptep: Page table pointer for the first entry.
272 * @pte: Page table entry for the first page.
273 * @nr: Number of pages to map.
275 * When nr==1, initial state of pte may be present or not present, and new state
276 * may be present or not present. When nr>1, initial state of all ptes must be
277 * not present, and new state must be present.
279 * May be overridden by the architecture, or the architecture can define
280 * set_pte() and PFN_PTE_SHIFT.
282 * Context: The caller holds the page table lock. The pages all belong
283 * to the same folio. The PTEs are all in the same PMD.
285 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
286 pte_t *ptep, pte_t pte, unsigned int nr)
288 page_table_check_ptes_set(mm, ptep, pte, nr);
290 arch_enter_lazy_mmu_mode();
291 for (;;) {
292 set_pte(ptep, pte);
293 if (--nr == 0)
294 break;
295 ptep++;
296 pte = pte_next_pfn(pte);
298 arch_leave_lazy_mmu_mode();
300 #endif
301 #define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1)
303 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
304 extern int ptep_set_access_flags(struct vm_area_struct *vma,
305 unsigned long address, pte_t *ptep,
306 pte_t entry, int dirty);
307 #endif
309 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
310 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
311 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
312 unsigned long address, pmd_t *pmdp,
313 pmd_t entry, int dirty);
314 extern int pudp_set_access_flags(struct vm_area_struct *vma,
315 unsigned long address, pud_t *pudp,
316 pud_t entry, int dirty);
317 #else
318 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
319 unsigned long address, pmd_t *pmdp,
320 pmd_t entry, int dirty)
322 BUILD_BUG();
323 return 0;
325 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
326 unsigned long address, pud_t *pudp,
327 pud_t entry, int dirty)
329 BUILD_BUG();
330 return 0;
332 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
333 #endif
335 #ifndef ptep_get
336 static inline pte_t ptep_get(pte_t *ptep)
338 return READ_ONCE(*ptep);
340 #endif
342 #ifndef pmdp_get
343 static inline pmd_t pmdp_get(pmd_t *pmdp)
345 return READ_ONCE(*pmdp);
347 #endif
349 #ifndef pudp_get
350 static inline pud_t pudp_get(pud_t *pudp)
352 return READ_ONCE(*pudp);
354 #endif
356 #ifndef p4dp_get
357 static inline p4d_t p4dp_get(p4d_t *p4dp)
359 return READ_ONCE(*p4dp);
361 #endif
363 #ifndef pgdp_get
364 static inline pgd_t pgdp_get(pgd_t *pgdp)
366 return READ_ONCE(*pgdp);
368 #endif
370 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
371 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
372 unsigned long address,
373 pte_t *ptep)
375 pte_t pte = ptep_get(ptep);
376 int r = 1;
377 if (!pte_young(pte))
378 r = 0;
379 else
380 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
381 return r;
383 #endif
385 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
386 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
387 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
388 unsigned long address,
389 pmd_t *pmdp)
391 pmd_t pmd = *pmdp;
392 int r = 1;
393 if (!pmd_young(pmd))
394 r = 0;
395 else
396 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
397 return r;
399 #else
400 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
401 unsigned long address,
402 pmd_t *pmdp)
404 BUILD_BUG();
405 return 0;
407 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
408 #endif
410 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
411 int ptep_clear_flush_young(struct vm_area_struct *vma,
412 unsigned long address, pte_t *ptep);
413 #endif
415 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
416 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
417 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
418 unsigned long address, pmd_t *pmdp);
419 #else
421 * Despite relevant to THP only, this API is called from generic rmap code
422 * under PageTransHuge(), hence needs a dummy implementation for !THP
424 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
425 unsigned long address, pmd_t *pmdp)
427 BUILD_BUG();
428 return 0;
430 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
431 #endif
433 #ifndef arch_has_hw_nonleaf_pmd_young
435 * Return whether the accessed bit in non-leaf PMD entries is supported on the
436 * local CPU.
438 static inline bool arch_has_hw_nonleaf_pmd_young(void)
440 return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
442 #endif
444 #ifndef arch_has_hw_pte_young
446 * Return whether the accessed bit is supported on the local CPU.
448 * This stub assumes accessing through an old PTE triggers a page fault.
449 * Architectures that automatically set the access bit should overwrite it.
451 static inline bool arch_has_hw_pte_young(void)
453 return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG);
455 #endif
457 #ifndef arch_check_zapped_pte
458 static inline void arch_check_zapped_pte(struct vm_area_struct *vma,
459 pte_t pte)
462 #endif
464 #ifndef arch_check_zapped_pmd
465 static inline void arch_check_zapped_pmd(struct vm_area_struct *vma,
466 pmd_t pmd)
469 #endif
471 #ifndef arch_check_zapped_pud
472 static inline void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud)
475 #endif
477 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
478 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
479 unsigned long address,
480 pte_t *ptep)
482 pte_t pte = ptep_get(ptep);
483 pte_clear(mm, address, ptep);
484 page_table_check_pte_clear(mm, pte);
485 return pte;
487 #endif
489 #ifndef clear_young_dirty_ptes
491 * clear_young_dirty_ptes - Mark PTEs that map consecutive pages of the
492 * same folio as old/clean.
493 * @mm: Address space the pages are mapped into.
494 * @addr: Address the first page is mapped at.
495 * @ptep: Page table pointer for the first entry.
496 * @nr: Number of entries to mark old/clean.
497 * @flags: Flags to modify the PTE batch semantics.
499 * May be overridden by the architecture; otherwise, implemented by
500 * get_and_clear/modify/set for each pte in the range.
502 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
503 * some PTEs might be write-protected.
505 * Context: The caller holds the page table lock. The PTEs map consecutive
506 * pages that belong to the same folio. The PTEs are all in the same PMD.
508 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
509 unsigned long addr, pte_t *ptep,
510 unsigned int nr, cydp_t flags)
512 pte_t pte;
514 for (;;) {
515 if (flags == CYDP_CLEAR_YOUNG)
516 ptep_test_and_clear_young(vma, addr, ptep);
517 else {
518 pte = ptep_get_and_clear(vma->vm_mm, addr, ptep);
519 if (flags & CYDP_CLEAR_YOUNG)
520 pte = pte_mkold(pte);
521 if (flags & CYDP_CLEAR_DIRTY)
522 pte = pte_mkclean(pte);
523 set_pte_at(vma->vm_mm, addr, ptep, pte);
525 if (--nr == 0)
526 break;
527 ptep++;
528 addr += PAGE_SIZE;
531 #endif
533 static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
534 pte_t *ptep)
536 ptep_get_and_clear(mm, addr, ptep);
539 #ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
541 * For walking the pagetables without holding any locks. Some architectures
542 * (eg x86-32 PAE) cannot load the entries atomically without using expensive
543 * instructions. We are guaranteed that a PTE will only either go from not
544 * present to present, or present to not present -- it will not switch to a
545 * completely different present page without a TLB flush inbetween; which we
546 * are blocking by holding interrupts off.
548 * Setting ptes from not present to present goes:
550 * ptep->pte_high = h;
551 * smp_wmb();
552 * ptep->pte_low = l;
554 * And present to not present goes:
556 * ptep->pte_low = 0;
557 * smp_wmb();
558 * ptep->pte_high = 0;
560 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
561 * We load pte_high *after* loading pte_low, which ensures we don't see an older
562 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
563 * picked up a changed pte high. We might have gotten rubbish values from
564 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
565 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
566 * operates on present ptes we're safe.
568 static inline pte_t ptep_get_lockless(pte_t *ptep)
570 pte_t pte;
572 do {
573 pte.pte_low = ptep->pte_low;
574 smp_rmb();
575 pte.pte_high = ptep->pte_high;
576 smp_rmb();
577 } while (unlikely(pte.pte_low != ptep->pte_low));
579 return pte;
581 #define ptep_get_lockless ptep_get_lockless
583 #if CONFIG_PGTABLE_LEVELS > 2
584 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
586 pmd_t pmd;
588 do {
589 pmd.pmd_low = pmdp->pmd_low;
590 smp_rmb();
591 pmd.pmd_high = pmdp->pmd_high;
592 smp_rmb();
593 } while (unlikely(pmd.pmd_low != pmdp->pmd_low));
595 return pmd;
597 #define pmdp_get_lockless pmdp_get_lockless
598 #define pmdp_get_lockless_sync() tlb_remove_table_sync_one()
599 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
600 #endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
603 * We require that the PTE can be read atomically.
605 #ifndef ptep_get_lockless
606 static inline pte_t ptep_get_lockless(pte_t *ptep)
608 return ptep_get(ptep);
610 #endif
612 #ifndef pmdp_get_lockless
613 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
615 return pmdp_get(pmdp);
617 static inline void pmdp_get_lockless_sync(void)
620 #endif
622 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
623 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
624 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
625 unsigned long address,
626 pmd_t *pmdp)
628 pmd_t pmd = *pmdp;
630 pmd_clear(pmdp);
631 page_table_check_pmd_clear(mm, pmd);
633 return pmd;
635 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
636 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
637 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
638 unsigned long address,
639 pud_t *pudp)
641 pud_t pud = *pudp;
643 pud_clear(pudp);
644 page_table_check_pud_clear(mm, pud);
646 return pud;
648 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
649 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
651 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
652 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
653 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
654 unsigned long address, pmd_t *pmdp,
655 int full)
657 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
659 #endif
661 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
662 static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
663 unsigned long address, pud_t *pudp,
664 int full)
666 return pudp_huge_get_and_clear(vma->vm_mm, address, pudp);
668 #endif
669 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
671 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
672 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
673 unsigned long address, pte_t *ptep,
674 int full)
676 return ptep_get_and_clear(mm, address, ptep);
678 #endif
680 #ifndef get_and_clear_full_ptes
682 * get_and_clear_full_ptes - Clear present PTEs that map consecutive pages of
683 * the same folio, collecting dirty/accessed bits.
684 * @mm: Address space the pages are mapped into.
685 * @addr: Address the first page is mapped at.
686 * @ptep: Page table pointer for the first entry.
687 * @nr: Number of entries to clear.
688 * @full: Whether we are clearing a full mm.
690 * May be overridden by the architecture; otherwise, implemented as a simple
691 * loop over ptep_get_and_clear_full(), merging dirty/accessed bits into the
692 * returned PTE.
694 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
695 * some PTEs might be write-protected.
697 * Context: The caller holds the page table lock. The PTEs map consecutive
698 * pages that belong to the same folio. The PTEs are all in the same PMD.
700 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
701 unsigned long addr, pte_t *ptep, unsigned int nr, int full)
703 pte_t pte, tmp_pte;
705 pte = ptep_get_and_clear_full(mm, addr, ptep, full);
706 while (--nr) {
707 ptep++;
708 addr += PAGE_SIZE;
709 tmp_pte = ptep_get_and_clear_full(mm, addr, ptep, full);
710 if (pte_dirty(tmp_pte))
711 pte = pte_mkdirty(pte);
712 if (pte_young(tmp_pte))
713 pte = pte_mkyoung(pte);
715 return pte;
717 #endif
719 #ifndef clear_full_ptes
721 * clear_full_ptes - Clear present PTEs that map consecutive pages of the same
722 * folio.
723 * @mm: Address space the pages are mapped into.
724 * @addr: Address the first page is mapped at.
725 * @ptep: Page table pointer for the first entry.
726 * @nr: Number of entries to clear.
727 * @full: Whether we are clearing a full mm.
729 * May be overridden by the architecture; otherwise, implemented as a simple
730 * loop over ptep_get_and_clear_full().
732 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
733 * some PTEs might be write-protected.
735 * Context: The caller holds the page table lock. The PTEs map consecutive
736 * pages that belong to the same folio. The PTEs are all in the same PMD.
738 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
739 pte_t *ptep, unsigned int nr, int full)
741 for (;;) {
742 ptep_get_and_clear_full(mm, addr, ptep, full);
743 if (--nr == 0)
744 break;
745 ptep++;
746 addr += PAGE_SIZE;
749 #endif
752 * If two threads concurrently fault at the same page, the thread that
753 * won the race updates the PTE and its local TLB/Cache. The other thread
754 * gives up, simply does nothing, and continues; on architectures where
755 * software can update TLB, local TLB can be updated here to avoid next page
756 * fault. This function updates TLB only, do nothing with cache or others.
757 * It is the difference with function update_mmu_cache.
759 #ifndef update_mmu_tlb_range
760 static inline void update_mmu_tlb_range(struct vm_area_struct *vma,
761 unsigned long address, pte_t *ptep, unsigned int nr)
764 #endif
766 static inline void update_mmu_tlb(struct vm_area_struct *vma,
767 unsigned long address, pte_t *ptep)
769 update_mmu_tlb_range(vma, address, ptep, 1);
773 * Some architectures may be able to avoid expensive synchronization
774 * primitives when modifications are made to PTE's which are already
775 * not present, or in the process of an address space destruction.
777 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
778 static inline void pte_clear_not_present_full(struct mm_struct *mm,
779 unsigned long address,
780 pte_t *ptep,
781 int full)
783 pte_clear(mm, address, ptep);
785 #endif
787 #ifndef clear_not_present_full_ptes
789 * clear_not_present_full_ptes - Clear multiple not present PTEs which are
790 * consecutive in the pgtable.
791 * @mm: Address space the ptes represent.
792 * @addr: Address of the first pte.
793 * @ptep: Page table pointer for the first entry.
794 * @nr: Number of entries to clear.
795 * @full: Whether we are clearing a full mm.
797 * May be overridden by the architecture; otherwise, implemented as a simple
798 * loop over pte_clear_not_present_full().
800 * Context: The caller holds the page table lock. The PTEs are all not present.
801 * The PTEs are all in the same PMD.
803 static inline void clear_not_present_full_ptes(struct mm_struct *mm,
804 unsigned long addr, pte_t *ptep, unsigned int nr, int full)
806 for (;;) {
807 pte_clear_not_present_full(mm, addr, ptep, full);
808 if (--nr == 0)
809 break;
810 ptep++;
811 addr += PAGE_SIZE;
814 #endif
816 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
817 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
818 unsigned long address,
819 pte_t *ptep);
820 #endif
822 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
823 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
824 unsigned long address,
825 pmd_t *pmdp);
826 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
827 unsigned long address,
828 pud_t *pudp);
829 #endif
831 #ifndef pte_mkwrite
832 static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
834 return pte_mkwrite_novma(pte);
836 #endif
838 #if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite)
839 static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
841 return pmd_mkwrite_novma(pmd);
843 #endif
845 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
846 struct mm_struct;
847 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
849 pte_t old_pte = ptep_get(ptep);
850 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
852 #endif
854 #ifndef wrprotect_ptes
856 * wrprotect_ptes - Write-protect PTEs that map consecutive pages of the same
857 * folio.
858 * @mm: Address space the pages are mapped into.
859 * @addr: Address the first page is mapped at.
860 * @ptep: Page table pointer for the first entry.
861 * @nr: Number of entries to write-protect.
863 * May be overridden by the architecture; otherwise, implemented as a simple
864 * loop over ptep_set_wrprotect().
866 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
867 * some PTEs might be write-protected.
869 * Context: The caller holds the page table lock. The PTEs map consecutive
870 * pages that belong to the same folio. The PTEs are all in the same PMD.
872 static inline void wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
873 pte_t *ptep, unsigned int nr)
875 for (;;) {
876 ptep_set_wrprotect(mm, addr, ptep);
877 if (--nr == 0)
878 break;
879 ptep++;
880 addr += PAGE_SIZE;
883 #endif
886 * On some architectures hardware does not set page access bit when accessing
887 * memory page, it is responsibility of software setting this bit. It brings
888 * out extra page fault penalty to track page access bit. For optimization page
889 * access bit can be set during all page fault flow on these arches.
890 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
891 * where software maintains page access bit.
893 #ifndef pte_sw_mkyoung
894 static inline pte_t pte_sw_mkyoung(pte_t pte)
896 return pte;
898 #define pte_sw_mkyoung pte_sw_mkyoung
899 #endif
901 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
903 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
904 unsigned long address, pmd_t *pmdp)
906 pmd_t old_pmd = *pmdp;
907 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
909 #else
910 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
911 unsigned long address, pmd_t *pmdp)
913 BUILD_BUG();
915 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
916 #endif
917 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
918 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
919 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
920 static inline void pudp_set_wrprotect(struct mm_struct *mm,
921 unsigned long address, pud_t *pudp)
923 pud_t old_pud = *pudp;
925 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
927 #else
928 static inline void pudp_set_wrprotect(struct mm_struct *mm,
929 unsigned long address, pud_t *pudp)
931 BUILD_BUG();
933 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
934 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
935 #endif
937 #ifndef pmdp_collapse_flush
938 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
939 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
940 unsigned long address, pmd_t *pmdp);
941 #else
942 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
943 unsigned long address,
944 pmd_t *pmdp)
946 BUILD_BUG();
947 return *pmdp;
949 #define pmdp_collapse_flush pmdp_collapse_flush
950 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
951 #endif
953 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
954 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
955 pgtable_t pgtable);
956 #endif
958 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
959 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
960 #endif
962 #ifndef arch_needs_pgtable_deposit
963 #define arch_needs_pgtable_deposit() (false)
964 #endif
966 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
968 * This is an implementation of pmdp_establish() that is only suitable for an
969 * architecture that doesn't have hardware dirty/accessed bits. In this case we
970 * can't race with CPU which sets these bits and non-atomic approach is fine.
972 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
973 unsigned long address, pmd_t *pmdp, pmd_t pmd)
975 pmd_t old_pmd = *pmdp;
976 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
977 return old_pmd;
979 #endif
981 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
982 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
983 pmd_t *pmdp);
984 #endif
986 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
989 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
990 * hugepage mapping in the page tables. This function is similar to
991 * pmdp_invalidate(), but should only be used if the access and dirty bits would
992 * not be cleared by the software in the new PMD value. The function ensures
993 * that hardware changes of the access and dirty bits updates would not be lost.
995 * Doing so can allow in certain architectures to avoid a TLB flush in most
996 * cases. Yet, another TLB flush might be necessary later if the PMD update
997 * itself requires such flush (e.g., if protection was set to be stricter). Yet,
998 * even when a TLB flush is needed because of the update, the caller may be able
999 * to batch these TLB flushing operations, so fewer TLB flush operations are
1000 * needed.
1002 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
1003 unsigned long address, pmd_t *pmdp);
1004 #endif
1006 #ifndef __HAVE_ARCH_PTE_SAME
1007 static inline int pte_same(pte_t pte_a, pte_t pte_b)
1009 return pte_val(pte_a) == pte_val(pte_b);
1011 #endif
1013 #ifndef __HAVE_ARCH_PTE_UNUSED
1015 * Some architectures provide facilities to virtualization guests
1016 * so that they can flag allocated pages as unused. This allows the
1017 * host to transparently reclaim unused pages. This function returns
1018 * whether the pte's page is unused.
1020 static inline int pte_unused(pte_t pte)
1022 return 0;
1024 #endif
1026 #ifndef pte_access_permitted
1027 #define pte_access_permitted(pte, write) \
1028 (pte_present(pte) && (!(write) || pte_write(pte)))
1029 #endif
1031 #ifndef pmd_access_permitted
1032 #define pmd_access_permitted(pmd, write) \
1033 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
1034 #endif
1036 #ifndef pud_access_permitted
1037 #define pud_access_permitted(pud, write) \
1038 (pud_present(pud) && (!(write) || pud_write(pud)))
1039 #endif
1041 #ifndef p4d_access_permitted
1042 #define p4d_access_permitted(p4d, write) \
1043 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
1044 #endif
1046 #ifndef pgd_access_permitted
1047 #define pgd_access_permitted(pgd, write) \
1048 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
1049 #endif
1051 #ifndef __HAVE_ARCH_PMD_SAME
1052 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1054 return pmd_val(pmd_a) == pmd_val(pmd_b);
1056 #endif
1058 #ifndef pud_same
1059 static inline int pud_same(pud_t pud_a, pud_t pud_b)
1061 return pud_val(pud_a) == pud_val(pud_b);
1063 #define pud_same pud_same
1064 #endif
1066 #ifndef __HAVE_ARCH_P4D_SAME
1067 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
1069 return p4d_val(p4d_a) == p4d_val(p4d_b);
1071 #endif
1073 #ifndef __HAVE_ARCH_PGD_SAME
1074 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
1076 return pgd_val(pgd_a) == pgd_val(pgd_b);
1078 #endif
1080 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
1081 static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1082 struct vm_area_struct *vma,
1083 unsigned long addr,
1084 pte_t pte, pte_t oldpte,
1085 int nr)
1089 #else
1091 * Some architectures support metadata associated with a page. When a
1092 * page is being swapped out, this metadata must be saved so it can be
1093 * restored when the page is swapped back in. SPARC M7 and newer
1094 * processors support an ADI (Application Data Integrity) tag for the
1095 * page as metadata for the page. arch_do_swap_page() can restore this
1096 * metadata when a page is swapped back in.
1098 static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1099 struct vm_area_struct *vma,
1100 unsigned long addr,
1101 pte_t pte, pte_t oldpte,
1102 int nr)
1104 for (int i = 0; i < nr; i++) {
1105 arch_do_swap_page(vma->vm_mm, vma, addr + i * PAGE_SIZE,
1106 pte_advance_pfn(pte, i),
1107 pte_advance_pfn(oldpte, i));
1110 #endif
1112 #ifndef __HAVE_ARCH_UNMAP_ONE
1114 * Some architectures support metadata associated with a page. When a
1115 * page is being swapped out, this metadata must be saved so it can be
1116 * restored when the page is swapped back in. SPARC M7 and newer
1117 * processors support an ADI (Application Data Integrity) tag for the
1118 * page as metadata for the page. arch_unmap_one() can save this
1119 * metadata on a swap-out of a page.
1121 static inline int arch_unmap_one(struct mm_struct *mm,
1122 struct vm_area_struct *vma,
1123 unsigned long addr,
1124 pte_t orig_pte)
1126 return 0;
1128 #endif
1131 * Allow architectures to preserve additional metadata associated with
1132 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
1133 * prototypes must be defined in the arch-specific asm/pgtable.h file.
1135 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
1136 static inline int arch_prepare_to_swap(struct folio *folio)
1138 return 0;
1140 #endif
1142 #ifndef __HAVE_ARCH_SWAP_INVALIDATE
1143 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1147 static inline void arch_swap_invalidate_area(int type)
1150 #endif
1152 #ifndef __HAVE_ARCH_SWAP_RESTORE
1153 static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
1156 #endif
1158 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
1159 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
1160 #endif
1162 #ifndef __HAVE_ARCH_MOVE_PTE
1163 #define move_pte(pte, old_addr, new_addr) (pte)
1164 #endif
1166 #ifndef pte_accessible
1167 # define pte_accessible(mm, pte) ((void)(pte), 1)
1168 #endif
1170 #ifndef flush_tlb_fix_spurious_fault
1171 #define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
1172 #endif
1175 * When walking page tables, get the address of the next boundary,
1176 * or the end address of the range if that comes earlier. Although no
1177 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1180 #define pgd_addr_end(addr, end) \
1181 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
1182 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1185 #ifndef p4d_addr_end
1186 #define p4d_addr_end(addr, end) \
1187 ({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
1188 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1190 #endif
1192 #ifndef pud_addr_end
1193 #define pud_addr_end(addr, end) \
1194 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
1195 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1197 #endif
1199 #ifndef pmd_addr_end
1200 #define pmd_addr_end(addr, end) \
1201 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
1202 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1204 #endif
1207 * When walking page tables, we usually want to skip any p?d_none entries;
1208 * and any p?d_bad entries - reporting the error before resetting to none.
1209 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
1211 void pgd_clear_bad(pgd_t *);
1213 #ifndef __PAGETABLE_P4D_FOLDED
1214 void p4d_clear_bad(p4d_t *);
1215 #else
1216 #define p4d_clear_bad(p4d) do { } while (0)
1217 #endif
1219 #ifndef __PAGETABLE_PUD_FOLDED
1220 void pud_clear_bad(pud_t *);
1221 #else
1222 #define pud_clear_bad(p4d) do { } while (0)
1223 #endif
1225 void pmd_clear_bad(pmd_t *);
1227 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
1229 if (pgd_none(*pgd))
1230 return 1;
1231 if (unlikely(pgd_bad(*pgd))) {
1232 pgd_clear_bad(pgd);
1233 return 1;
1235 return 0;
1238 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
1240 if (p4d_none(*p4d))
1241 return 1;
1242 if (unlikely(p4d_bad(*p4d))) {
1243 p4d_clear_bad(p4d);
1244 return 1;
1246 return 0;
1249 static inline int pud_none_or_clear_bad(pud_t *pud)
1251 if (pud_none(*pud))
1252 return 1;
1253 if (unlikely(pud_bad(*pud))) {
1254 pud_clear_bad(pud);
1255 return 1;
1257 return 0;
1260 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
1262 if (pmd_none(*pmd))
1263 return 1;
1264 if (unlikely(pmd_bad(*pmd))) {
1265 pmd_clear_bad(pmd);
1266 return 1;
1268 return 0;
1271 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
1272 unsigned long addr,
1273 pte_t *ptep)
1276 * Get the current pte state, but zero it out to make it
1277 * non-present, preventing the hardware from asynchronously
1278 * updating it.
1280 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1283 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
1284 unsigned long addr,
1285 pte_t *ptep, pte_t pte)
1288 * The pte is non-present, so there's no hardware state to
1289 * preserve.
1291 set_pte_at(vma->vm_mm, addr, ptep, pte);
1294 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1296 * Start a pte protection read-modify-write transaction, which
1297 * protects against asynchronous hardware modifications to the pte.
1298 * The intention is not to prevent the hardware from making pte
1299 * updates, but to prevent any updates it may make from being lost.
1301 * This does not protect against other software modifications of the
1302 * pte; the appropriate pte lock must be held over the transaction.
1304 * Note that this interface is intended to be batchable, meaning that
1305 * ptep_modify_prot_commit may not actually update the pte, but merely
1306 * queue the update to be done at some later time. The update must be
1307 * actually committed before the pte lock is released, however.
1309 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1310 unsigned long addr,
1311 pte_t *ptep)
1313 return __ptep_modify_prot_start(vma, addr, ptep);
1317 * Commit an update to a pte, leaving any hardware-controlled bits in
1318 * the PTE unmodified.
1320 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
1321 unsigned long addr,
1322 pte_t *ptep, pte_t old_pte, pte_t pte)
1324 __ptep_modify_prot_commit(vma, addr, ptep, pte);
1326 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
1327 #endif /* CONFIG_MMU */
1330 * No-op macros that just return the current protection value. Defined here
1331 * because these macros can be used even if CONFIG_MMU is not defined.
1334 #ifndef pgprot_nx
1335 #define pgprot_nx(prot) (prot)
1336 #endif
1338 #ifndef pgprot_noncached
1339 #define pgprot_noncached(prot) (prot)
1340 #endif
1342 #ifndef pgprot_writecombine
1343 #define pgprot_writecombine pgprot_noncached
1344 #endif
1346 #ifndef pgprot_writethrough
1347 #define pgprot_writethrough pgprot_noncached
1348 #endif
1350 #ifndef pgprot_device
1351 #define pgprot_device pgprot_noncached
1352 #endif
1354 #ifndef pgprot_mhp
1355 #define pgprot_mhp(prot) (prot)
1356 #endif
1358 #ifdef CONFIG_MMU
1359 #ifndef pgprot_modify
1360 #define pgprot_modify pgprot_modify
1361 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1363 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1364 newprot = pgprot_noncached(newprot);
1365 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1366 newprot = pgprot_writecombine(newprot);
1367 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1368 newprot = pgprot_device(newprot);
1369 return newprot;
1371 #endif
1372 #endif /* CONFIG_MMU */
1374 #ifndef pgprot_encrypted
1375 #define pgprot_encrypted(prot) (prot)
1376 #endif
1378 #ifndef pgprot_decrypted
1379 #define pgprot_decrypted(prot) (prot)
1380 #endif
1383 * A facility to provide batching of the reload of page tables and
1384 * other process state with the actual context switch code for
1385 * paravirtualized guests. By convention, only one of the batched
1386 * update (lazy) modes (CPU, MMU) should be active at any given time,
1387 * entry should never be nested, and entry and exits should always be
1388 * paired. This is for sanity of maintaining and reasoning about the
1389 * kernel code. In this case, the exit (end of the context switch) is
1390 * in architecture-specific code, and so doesn't need a generic
1391 * definition.
1393 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1394 #define arch_start_context_switch(prev) do {} while (0)
1395 #endif
1397 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1398 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1399 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1401 return pmd;
1404 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1406 return 0;
1409 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1411 return pmd;
1413 #endif
1414 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1415 static inline int pte_soft_dirty(pte_t pte)
1417 return 0;
1420 static inline int pmd_soft_dirty(pmd_t pmd)
1422 return 0;
1425 static inline pte_t pte_mksoft_dirty(pte_t pte)
1427 return pte;
1430 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1432 return pmd;
1435 static inline pte_t pte_clear_soft_dirty(pte_t pte)
1437 return pte;
1440 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1442 return pmd;
1445 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1447 return pte;
1450 static inline int pte_swp_soft_dirty(pte_t pte)
1452 return 0;
1455 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1457 return pte;
1460 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1462 return pmd;
1465 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1467 return 0;
1470 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1472 return pmd;
1474 #endif
1476 #ifndef __HAVE_PFNMAP_TRACKING
1478 * Interfaces that can be used by architecture code to keep track of
1479 * memory type of pfn mappings specified by the remap_pfn_range,
1480 * vmf_insert_pfn.
1484 * track_pfn_remap is called when a _new_ pfn mapping is being established
1485 * by remap_pfn_range() for physical range indicated by pfn and size.
1487 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1488 unsigned long pfn, unsigned long addr,
1489 unsigned long size)
1491 return 0;
1495 * track_pfn_insert is called when a _new_ single pfn is established
1496 * by vmf_insert_pfn().
1498 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1499 pfn_t pfn)
1504 * track_pfn_copy is called when vma that is covering the pfnmap gets
1505 * copied through copy_page_range().
1507 static inline int track_pfn_copy(struct vm_area_struct *vma)
1509 return 0;
1513 * untrack_pfn is called while unmapping a pfnmap for a region.
1514 * untrack can be called for a specific region indicated by pfn and size or
1515 * can be for the entire vma (in which case pfn, size are zero).
1517 static inline void untrack_pfn(struct vm_area_struct *vma,
1518 unsigned long pfn, unsigned long size,
1519 bool mm_wr_locked)
1524 * untrack_pfn_clear is called while mremapping a pfnmap for a new region
1525 * or fails to copy pgtable during duplicate vm area.
1527 static inline void untrack_pfn_clear(struct vm_area_struct *vma)
1530 #else
1531 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1532 unsigned long pfn, unsigned long addr,
1533 unsigned long size);
1534 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1535 pfn_t pfn);
1536 extern int track_pfn_copy(struct vm_area_struct *vma);
1537 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1538 unsigned long size, bool mm_wr_locked);
1539 extern void untrack_pfn_clear(struct vm_area_struct *vma);
1540 #endif
1542 #ifdef CONFIG_MMU
1543 #ifdef __HAVE_COLOR_ZERO_PAGE
1544 static inline int is_zero_pfn(unsigned long pfn)
1546 extern unsigned long zero_pfn;
1547 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1548 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1551 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1553 #else
1554 static inline int is_zero_pfn(unsigned long pfn)
1556 extern unsigned long zero_pfn;
1557 return pfn == zero_pfn;
1560 static inline unsigned long my_zero_pfn(unsigned long addr)
1562 extern unsigned long zero_pfn;
1563 return zero_pfn;
1565 #endif
1566 #else
1567 static inline int is_zero_pfn(unsigned long pfn)
1569 return 0;
1572 static inline unsigned long my_zero_pfn(unsigned long addr)
1574 return 0;
1576 #endif /* CONFIG_MMU */
1578 #ifdef CONFIG_MMU
1580 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
1581 static inline int pmd_trans_huge(pmd_t pmd)
1583 return 0;
1585 #ifndef pmd_write
1586 static inline int pmd_write(pmd_t pmd)
1588 BUG();
1589 return 0;
1591 #endif /* pmd_write */
1592 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1594 #ifndef pud_write
1595 static inline int pud_write(pud_t pud)
1597 BUG();
1598 return 0;
1600 #endif /* pud_write */
1602 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1603 static inline int pmd_devmap(pmd_t pmd)
1605 return 0;
1607 static inline int pud_devmap(pud_t pud)
1609 return 0;
1611 static inline int pgd_devmap(pgd_t pgd)
1613 return 0;
1615 #endif
1617 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1618 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1619 static inline int pud_trans_huge(pud_t pud)
1621 return 0;
1623 #endif
1625 static inline int pud_trans_unstable(pud_t *pud)
1627 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1628 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1629 pud_t pudval = READ_ONCE(*pud);
1631 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1632 return 1;
1633 if (unlikely(pud_bad(pudval))) {
1634 pud_clear_bad(pud);
1635 return 1;
1637 #endif
1638 return 0;
1641 #ifndef CONFIG_NUMA_BALANCING
1643 * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is
1644 * perfectly valid to indicate "no" in that case, which is why our default
1645 * implementation defaults to "always no".
1647 * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE
1648 * page protection due to NUMA hinting. NUMA hinting faults only apply in
1649 * accessible VMAs.
1651 * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault,
1652 * looking at the VMA accessibility is sufficient.
1654 static inline int pte_protnone(pte_t pte)
1656 return 0;
1659 static inline int pmd_protnone(pmd_t pmd)
1661 return 0;
1663 #endif /* CONFIG_NUMA_BALANCING */
1665 #endif /* CONFIG_MMU */
1667 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1669 #ifndef __PAGETABLE_P4D_FOLDED
1670 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1671 void p4d_clear_huge(p4d_t *p4d);
1672 #else
1673 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1675 return 0;
1677 static inline void p4d_clear_huge(p4d_t *p4d) { }
1678 #endif /* !__PAGETABLE_P4D_FOLDED */
1680 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1681 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1682 int pud_clear_huge(pud_t *pud);
1683 int pmd_clear_huge(pmd_t *pmd);
1684 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1685 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1686 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1687 #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1688 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1690 return 0;
1692 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1694 return 0;
1696 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1698 return 0;
1700 static inline void p4d_clear_huge(p4d_t *p4d) { }
1701 static inline int pud_clear_huge(pud_t *pud)
1703 return 0;
1705 static inline int pmd_clear_huge(pmd_t *pmd)
1707 return 0;
1709 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1711 return 0;
1713 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1715 return 0;
1717 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1719 return 0;
1721 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1723 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1724 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1726 * ARCHes with special requirements for evicting THP backing TLB entries can
1727 * implement this. Otherwise also, it can help optimize normal TLB flush in
1728 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1729 * entire TLB if flush span is greater than a threshold, which will
1730 * likely be true for a single huge page. Thus a single THP flush will
1731 * invalidate the entire TLB which is not desirable.
1732 * e.g. see arch/arc: flush_pmd_tlb_range
1734 #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1735 #define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1736 #else
1737 #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1738 #define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1739 #endif
1740 #endif
1742 struct file;
1743 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1744 unsigned long size, pgprot_t *vma_prot);
1746 #ifndef CONFIG_X86_ESPFIX64
1747 static inline void init_espfix_bsp(void) { }
1748 #endif
1750 extern void __init pgtable_cache_init(void);
1752 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1753 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1755 return true;
1758 static inline bool arch_has_pfn_modify_check(void)
1760 return false;
1762 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1765 * Architecture PAGE_KERNEL_* fallbacks
1767 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1768 * because they really don't support them, or the port needs to be updated to
1769 * reflect the required functionality. Below are a set of relatively safe
1770 * fallbacks, as best effort, which we can count on in lieu of the architectures
1771 * not defining them on their own yet.
1774 #ifndef PAGE_KERNEL_RO
1775 # define PAGE_KERNEL_RO PAGE_KERNEL
1776 #endif
1778 #ifndef PAGE_KERNEL_EXEC
1779 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1780 #endif
1783 * Page Table Modification bits for pgtbl_mod_mask.
1785 * These are used by the p?d_alloc_track*() set of functions an in the generic
1786 * vmalloc/ioremap code to track at which page-table levels entries have been
1787 * modified. Based on that the code can better decide when vmalloc and ioremap
1788 * mapping changes need to be synchronized to other page-tables in the system.
1790 #define __PGTBL_PGD_MODIFIED 0
1791 #define __PGTBL_P4D_MODIFIED 1
1792 #define __PGTBL_PUD_MODIFIED 2
1793 #define __PGTBL_PMD_MODIFIED 3
1794 #define __PGTBL_PTE_MODIFIED 4
1796 #define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1797 #define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1798 #define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1799 #define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1800 #define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1802 /* Page-Table Modification Mask */
1803 typedef unsigned int pgtbl_mod_mask;
1805 #endif /* !__ASSEMBLY__ */
1807 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1808 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1810 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1811 * with physical address space extension, but falls back to
1812 * BITS_PER_LONG otherwise.
1814 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1815 #else
1816 #define MAX_POSSIBLE_PHYSMEM_BITS 32
1817 #endif
1818 #endif
1820 #ifndef has_transparent_hugepage
1821 #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1822 #endif
1824 #ifndef has_transparent_pud_hugepage
1825 #define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1826 #endif
1828 * On some architectures it depends on the mm if the p4d/pud or pmd
1829 * layer of the page table hierarchy is folded or not.
1831 #ifndef mm_p4d_folded
1832 #define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1833 #endif
1835 #ifndef mm_pud_folded
1836 #define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1837 #endif
1839 #ifndef mm_pmd_folded
1840 #define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1841 #endif
1843 #ifndef p4d_offset_lockless
1844 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1845 #endif
1846 #ifndef pud_offset_lockless
1847 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1848 #endif
1849 #ifndef pmd_offset_lockless
1850 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1851 #endif
1854 * pXd_leaf() is the API to check whether a pgtable entry is a huge page
1855 * mapping. It should work globally across all archs, without any
1856 * dependency on CONFIG_* options. For architectures that do not support
1857 * huge mappings on specific levels, below fallbacks will be used.
1859 * A leaf pgtable entry should always imply the following:
1861 * - It is a "present" entry. IOW, before using this API, please check it
1862 * with pXd_present() first. NOTE: it may not always mean the "present
1863 * bit" is set. For example, PROT_NONE entries are always "present".
1865 * - It should _never_ be a swap entry of any type. Above "present" check
1866 * should have guarded this, but let's be crystal clear on this.
1868 * - It should contain a huge PFN, which points to a huge page larger than
1869 * PAGE_SIZE of the platform. The PFN format isn't important here.
1871 * - It should cover all kinds of huge mappings (e.g., pXd_trans_huge(),
1872 * pXd_devmap(), or hugetlb mappings).
1874 #ifndef pgd_leaf
1875 #define pgd_leaf(x) false
1876 #endif
1877 #ifndef p4d_leaf
1878 #define p4d_leaf(x) false
1879 #endif
1880 #ifndef pud_leaf
1881 #define pud_leaf(x) false
1882 #endif
1883 #ifndef pmd_leaf
1884 #define pmd_leaf(x) false
1885 #endif
1887 #ifndef pgd_leaf_size
1888 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1889 #endif
1890 #ifndef p4d_leaf_size
1891 #define p4d_leaf_size(x) P4D_SIZE
1892 #endif
1893 #ifndef pud_leaf_size
1894 #define pud_leaf_size(x) PUD_SIZE
1895 #endif
1896 #ifndef pmd_leaf_size
1897 #define pmd_leaf_size(x) PMD_SIZE
1898 #endif
1899 #ifndef __pte_leaf_size
1900 #ifndef pte_leaf_size
1901 #define pte_leaf_size(x) PAGE_SIZE
1902 #endif
1903 #define __pte_leaf_size(x,y) pte_leaf_size(y)
1904 #endif
1907 * We always define pmd_pfn for all archs as it's used in lots of generic
1908 * code. Now it happens too for pud_pfn (and can happen for larger
1909 * mappings too in the future; we're not there yet). Instead of defining
1910 * it for all archs (like pmd_pfn), provide a fallback.
1912 * Note that returning 0 here means any arch that didn't define this can
1913 * get severely wrong when it hits a real pud leaf. It's arch's
1914 * responsibility to properly define it when a huge pud is possible.
1916 #ifndef pud_pfn
1917 #define pud_pfn(x) 0
1918 #endif
1921 * Some architectures have MMUs that are configurable or selectable at boot
1922 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1923 * helps to have a static maximum value.
1926 #ifndef MAX_PTRS_PER_PTE
1927 #define MAX_PTRS_PER_PTE PTRS_PER_PTE
1928 #endif
1930 #ifndef MAX_PTRS_PER_PMD
1931 #define MAX_PTRS_PER_PMD PTRS_PER_PMD
1932 #endif
1934 #ifndef MAX_PTRS_PER_PUD
1935 #define MAX_PTRS_PER_PUD PTRS_PER_PUD
1936 #endif
1938 #ifndef MAX_PTRS_PER_P4D
1939 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
1940 #endif
1942 #ifndef pte_pgprot
1943 #define pte_pgprot(x) ((pgprot_t) {0})
1944 #endif
1946 #ifndef pmd_pgprot
1947 #define pmd_pgprot(x) ((pgprot_t) {0})
1948 #endif
1950 #ifndef pud_pgprot
1951 #define pud_pgprot(x) ((pgprot_t) {0})
1952 #endif
1954 /* description of effects of mapping type and prot in current implementation.
1955 * this is due to the limited x86 page protection hardware. The expected
1956 * behavior is in parens:
1958 * map_type prot
1959 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
1960 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1961 * w: (no) no w: (no) no w: (yes) yes w: (no) no
1962 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1964 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1965 * w: (no) no w: (no) no w: (copy) copy w: (no) no
1966 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1968 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1969 * MAP_PRIVATE (with Enhanced PAN supported):
1970 * r: (no) no
1971 * w: (no) no
1972 * x: (yes) yes
1974 #define DECLARE_VM_GET_PAGE_PROT \
1975 pgprot_t vm_get_page_prot(unsigned long vm_flags) \
1977 return protection_map[vm_flags & \
1978 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \
1980 EXPORT_SYMBOL(vm_get_page_prot);
1982 #endif /* _LINUX_PGTABLE_H */