1 // SPDX-License-Identifier: GPL-2.0+
3 * User-space Probes (UProbes)
5 * Copyright (C) IBM Corporation, 2008-2012
9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h> /* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/export.h>
19 #include <linux/rmap.h> /* anon_vma_prepare */
20 #include <linux/mmu_notifier.h>
21 #include <linux/swap.h> /* folio_free_swap */
22 #include <linux/ptrace.h> /* user_enable_single_step */
23 #include <linux/kdebug.h> /* notifier mechanism */
24 #include <linux/percpu-rwsem.h>
25 #include <linux/task_work.h>
26 #include <linux/shmem_fs.h>
27 #include <linux/khugepaged.h>
28 #include <linux/rcupdate_trace.h>
29 #include <linux/workqueue.h>
30 #include <linux/srcu.h>
32 #include <linux/uprobes.h>
34 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
35 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
37 static struct rb_root uprobes_tree
= RB_ROOT
;
39 * allows us to skip the uprobe_mmap if there are no uprobe events active
40 * at this time. Probably a fine grained per inode count is better?
42 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
44 static DEFINE_RWLOCK(uprobes_treelock
); /* serialize rbtree access */
45 static seqcount_rwlock_t uprobes_seqcount
= SEQCNT_RWLOCK_ZERO(uprobes_seqcount
, &uprobes_treelock
);
47 #define UPROBES_HASH_SZ 13
48 /* serialize uprobe->pending_list */
49 static struct mutex uprobes_mmap_mutex
[UPROBES_HASH_SZ
];
50 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
52 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem
);
54 /* Covers return_instance's uprobe lifetime. */
55 DEFINE_STATIC_SRCU(uretprobes_srcu
);
57 /* Have a copy of original instruction */
58 #define UPROBE_COPY_INSN 0
61 struct rb_node rb_node
; /* node in the rb tree */
63 struct rw_semaphore register_rwsem
;
64 struct rw_semaphore consumer_rwsem
;
65 struct list_head pending_list
;
66 struct list_head consumers
;
67 struct inode
*inode
; /* Also hold a ref to inode */
70 struct work_struct work
;
73 loff_t ref_ctr_offset
;
74 unsigned long flags
; /* "unsigned long" so bitops work */
77 * The generic code assumes that it has two members of unknown type
78 * owned by the arch-specific code:
80 * insn - copy_insn() saves the original instruction here for
81 * arch_uprobe_analyze_insn().
83 * ixol - potentially modified instruction to execute out of
84 * line, copied to xol_area by xol_get_insn_slot().
86 struct arch_uprobe arch
;
89 struct delayed_uprobe
{
90 struct list_head list
;
91 struct uprobe
*uprobe
;
95 static DEFINE_MUTEX(delayed_uprobe_lock
);
96 static LIST_HEAD(delayed_uprobe_list
);
99 * Execute out of line area: anonymous executable mapping installed
100 * by the probed task to execute the copy of the original instruction
101 * mangled by set_swbp().
103 * On a breakpoint hit, thread contests for a slot. It frees the
104 * slot after singlestep. Currently a fixed number of slots are
108 wait_queue_head_t wq
; /* if all slots are busy */
109 unsigned long *bitmap
; /* 0 = free slot */
113 * We keep the vma's vm_start rather than a pointer to the vma
114 * itself. The probed process or a naughty kernel module could make
115 * the vma go away, and we must handle that reasonably gracefully.
117 unsigned long vaddr
; /* Page(s) of instruction slots */
120 static void uprobe_warn(struct task_struct
*t
, const char *msg
)
122 pr_warn("uprobe: %s:%d failed to %s\n", current
->comm
, current
->pid
, msg
);
126 * valid_vma: Verify if the specified vma is an executable vma
127 * Relax restrictions while unregistering: vm_flags might have
128 * changed after breakpoint was inserted.
129 * - is_register: indicates if we are in register context.
130 * - Return 1 if the specified virtual address is in an
133 static bool valid_vma(struct vm_area_struct
*vma
, bool is_register
)
135 vm_flags_t flags
= VM_HUGETLB
| VM_MAYEXEC
| VM_MAYSHARE
;
140 return vma
->vm_file
&& (vma
->vm_flags
& flags
) == VM_MAYEXEC
;
143 static unsigned long offset_to_vaddr(struct vm_area_struct
*vma
, loff_t offset
)
145 return vma
->vm_start
+ offset
- ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
);
148 static loff_t
vaddr_to_offset(struct vm_area_struct
*vma
, unsigned long vaddr
)
150 return ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
) + (vaddr
- vma
->vm_start
);
154 * __replace_page - replace page in vma by new page.
155 * based on replace_page in mm/ksm.c
157 * @vma: vma that holds the pte pointing to page
158 * @addr: address the old @page is mapped at
159 * @old_page: the page we are replacing by new_page
160 * @new_page: the modified page we replace page by
162 * If @new_page is NULL, only unmap @old_page.
164 * Returns 0 on success, negative error code otherwise.
166 static int __replace_page(struct vm_area_struct
*vma
, unsigned long addr
,
167 struct page
*old_page
, struct page
*new_page
)
169 struct folio
*old_folio
= page_folio(old_page
);
170 struct folio
*new_folio
;
171 struct mm_struct
*mm
= vma
->vm_mm
;
172 DEFINE_FOLIO_VMA_WALK(pvmw
, old_folio
, vma
, addr
, 0);
174 struct mmu_notifier_range range
;
176 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, mm
, addr
,
180 new_folio
= page_folio(new_page
);
181 err
= mem_cgroup_charge(new_folio
, vma
->vm_mm
, GFP_KERNEL
);
186 /* For folio_free_swap() below */
187 folio_lock(old_folio
);
189 mmu_notifier_invalidate_range_start(&range
);
191 if (!page_vma_mapped_walk(&pvmw
))
193 VM_BUG_ON_PAGE(addr
!= pvmw
.address
, old_page
);
196 folio_get(new_folio
);
197 folio_add_new_anon_rmap(new_folio
, vma
, addr
, RMAP_EXCLUSIVE
);
198 folio_add_lru_vma(new_folio
, vma
);
200 /* no new page, just dec_mm_counter for old_page */
201 dec_mm_counter(mm
, MM_ANONPAGES
);
203 if (!folio_test_anon(old_folio
)) {
204 dec_mm_counter(mm
, mm_counter_file(old_folio
));
205 inc_mm_counter(mm
, MM_ANONPAGES
);
208 flush_cache_page(vma
, addr
, pte_pfn(ptep_get(pvmw
.pte
)));
209 ptep_clear_flush(vma
, addr
, pvmw
.pte
);
211 set_pte_at(mm
, addr
, pvmw
.pte
,
212 mk_pte(new_page
, vma
->vm_page_prot
));
214 folio_remove_rmap_pte(old_folio
, old_page
, vma
);
215 if (!folio_mapped(old_folio
))
216 folio_free_swap(old_folio
);
217 page_vma_mapped_walk_done(&pvmw
);
218 folio_put(old_folio
);
222 mmu_notifier_invalidate_range_end(&range
);
223 folio_unlock(old_folio
);
228 * is_swbp_insn - check if instruction is breakpoint instruction.
229 * @insn: instruction to be checked.
230 * Default implementation of is_swbp_insn
231 * Returns true if @insn is a breakpoint instruction.
233 bool __weak
is_swbp_insn(uprobe_opcode_t
*insn
)
235 return *insn
== UPROBE_SWBP_INSN
;
239 * is_trap_insn - check if instruction is breakpoint instruction.
240 * @insn: instruction to be checked.
241 * Default implementation of is_trap_insn
242 * Returns true if @insn is a breakpoint instruction.
244 * This function is needed for the case where an architecture has multiple
245 * trap instructions (like powerpc).
247 bool __weak
is_trap_insn(uprobe_opcode_t
*insn
)
249 return is_swbp_insn(insn
);
252 static void copy_from_page(struct page
*page
, unsigned long vaddr
, void *dst
, int len
)
254 void *kaddr
= kmap_atomic(page
);
255 memcpy(dst
, kaddr
+ (vaddr
& ~PAGE_MASK
), len
);
256 kunmap_atomic(kaddr
);
259 static void copy_to_page(struct page
*page
, unsigned long vaddr
, const void *src
, int len
)
261 void *kaddr
= kmap_atomic(page
);
262 memcpy(kaddr
+ (vaddr
& ~PAGE_MASK
), src
, len
);
263 kunmap_atomic(kaddr
);
266 static int verify_opcode(struct page
*page
, unsigned long vaddr
, uprobe_opcode_t
*new_opcode
)
268 uprobe_opcode_t old_opcode
;
272 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
273 * We do not check if it is any other 'trap variant' which could
274 * be conditional trap instruction such as the one powerpc supports.
276 * The logic is that we do not care if the underlying instruction
277 * is a trap variant; uprobes always wins over any other (gdb)
280 copy_from_page(page
, vaddr
, &old_opcode
, UPROBE_SWBP_INSN_SIZE
);
281 is_swbp
= is_swbp_insn(&old_opcode
);
283 if (is_swbp_insn(new_opcode
)) {
284 if (is_swbp
) /* register: already installed? */
287 if (!is_swbp
) /* unregister: was it changed by us? */
294 static struct delayed_uprobe
*
295 delayed_uprobe_check(struct uprobe
*uprobe
, struct mm_struct
*mm
)
297 struct delayed_uprobe
*du
;
299 list_for_each_entry(du
, &delayed_uprobe_list
, list
)
300 if (du
->uprobe
== uprobe
&& du
->mm
== mm
)
305 static int delayed_uprobe_add(struct uprobe
*uprobe
, struct mm_struct
*mm
)
307 struct delayed_uprobe
*du
;
309 if (delayed_uprobe_check(uprobe
, mm
))
312 du
= kzalloc(sizeof(*du
), GFP_KERNEL
);
318 list_add(&du
->list
, &delayed_uprobe_list
);
322 static void delayed_uprobe_delete(struct delayed_uprobe
*du
)
330 static void delayed_uprobe_remove(struct uprobe
*uprobe
, struct mm_struct
*mm
)
332 struct list_head
*pos
, *q
;
333 struct delayed_uprobe
*du
;
338 list_for_each_safe(pos
, q
, &delayed_uprobe_list
) {
339 du
= list_entry(pos
, struct delayed_uprobe
, list
);
341 if (uprobe
&& du
->uprobe
!= uprobe
)
343 if (mm
&& du
->mm
!= mm
)
346 delayed_uprobe_delete(du
);
350 static bool valid_ref_ctr_vma(struct uprobe
*uprobe
,
351 struct vm_area_struct
*vma
)
353 unsigned long vaddr
= offset_to_vaddr(vma
, uprobe
->ref_ctr_offset
);
355 return uprobe
->ref_ctr_offset
&&
357 file_inode(vma
->vm_file
) == uprobe
->inode
&&
358 (vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) == VM_WRITE
&&
359 vma
->vm_start
<= vaddr
&&
363 static struct vm_area_struct
*
364 find_ref_ctr_vma(struct uprobe
*uprobe
, struct mm_struct
*mm
)
366 VMA_ITERATOR(vmi
, mm
, 0);
367 struct vm_area_struct
*tmp
;
369 for_each_vma(vmi
, tmp
)
370 if (valid_ref_ctr_vma(uprobe
, tmp
))
377 __update_ref_ctr(struct mm_struct
*mm
, unsigned long vaddr
, short d
)
387 ret
= get_user_pages_remote(mm
, vaddr
, 1,
388 FOLL_WRITE
, &page
, NULL
);
389 if (unlikely(ret
<= 0)) {
391 * We are asking for 1 page. If get_user_pages_remote() fails,
392 * it may return 0, in that case we have to return error.
394 return ret
== 0 ? -EBUSY
: ret
;
397 kaddr
= kmap_atomic(page
);
398 ptr
= kaddr
+ (vaddr
& ~PAGE_MASK
);
400 if (unlikely(*ptr
+ d
< 0)) {
401 pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
402 "curr val: %d, delta: %d\n", vaddr
, *ptr
, d
);
410 kunmap_atomic(kaddr
);
415 static void update_ref_ctr_warn(struct uprobe
*uprobe
,
416 struct mm_struct
*mm
, short d
)
418 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
419 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
420 d
> 0 ? "increment" : "decrement", uprobe
->inode
->i_ino
,
421 (unsigned long long) uprobe
->offset
,
422 (unsigned long long) uprobe
->ref_ctr_offset
, mm
);
425 static int update_ref_ctr(struct uprobe
*uprobe
, struct mm_struct
*mm
,
428 struct vm_area_struct
*rc_vma
;
429 unsigned long rc_vaddr
;
432 rc_vma
= find_ref_ctr_vma(uprobe
, mm
);
435 rc_vaddr
= offset_to_vaddr(rc_vma
, uprobe
->ref_ctr_offset
);
436 ret
= __update_ref_ctr(mm
, rc_vaddr
, d
);
438 update_ref_ctr_warn(uprobe
, mm
, d
);
444 mutex_lock(&delayed_uprobe_lock
);
446 ret
= delayed_uprobe_add(uprobe
, mm
);
448 delayed_uprobe_remove(uprobe
, mm
);
449 mutex_unlock(&delayed_uprobe_lock
);
456 * Expect the breakpoint instruction to be the smallest size instruction for
457 * the architecture. If an arch has variable length instruction and the
458 * breakpoint instruction is not of the smallest length instruction
459 * supported by that architecture then we need to modify is_trap_at_addr and
460 * uprobe_write_opcode accordingly. This would never be a problem for archs
461 * that have fixed length instructions.
463 * uprobe_write_opcode - write the opcode at a given virtual address.
464 * @auprobe: arch specific probepoint information.
465 * @mm: the probed process address space.
466 * @vaddr: the virtual address to store the opcode.
467 * @opcode: opcode to be written at @vaddr.
469 * Called with mm->mmap_lock held for read or write.
470 * Return 0 (success) or a negative errno.
472 int uprobe_write_opcode(struct arch_uprobe
*auprobe
, struct mm_struct
*mm
,
473 unsigned long vaddr
, uprobe_opcode_t opcode
)
475 struct uprobe
*uprobe
;
476 struct page
*old_page
, *new_page
;
477 struct vm_area_struct
*vma
;
478 int ret
, is_register
, ref_ctr_updated
= 0;
479 bool orig_page_huge
= false;
480 unsigned int gup_flags
= FOLL_FORCE
;
482 is_register
= is_swbp_insn(&opcode
);
483 uprobe
= container_of(auprobe
, struct uprobe
, arch
);
487 gup_flags
|= FOLL_SPLIT_PMD
;
488 /* Read the page with vaddr into memory */
489 old_page
= get_user_page_vma_remote(mm
, vaddr
, gup_flags
, &vma
);
490 if (IS_ERR(old_page
))
491 return PTR_ERR(old_page
);
493 ret
= verify_opcode(old_page
, vaddr
, &opcode
);
497 if (WARN(!is_register
&& PageCompound(old_page
),
498 "uprobe unregister should never work on compound page\n")) {
503 /* We are going to replace instruction, update ref_ctr. */
504 if (!ref_ctr_updated
&& uprobe
->ref_ctr_offset
) {
505 ret
= update_ref_ctr(uprobe
, mm
, is_register
? 1 : -1);
513 if (!is_register
&& !PageAnon(old_page
))
516 ret
= anon_vma_prepare(vma
);
521 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, vaddr
);
525 __SetPageUptodate(new_page
);
526 copy_highpage(new_page
, old_page
);
527 copy_to_page(new_page
, vaddr
, &opcode
, UPROBE_SWBP_INSN_SIZE
);
530 struct page
*orig_page
;
533 VM_BUG_ON_PAGE(!PageAnon(old_page
), old_page
);
535 index
= vaddr_to_offset(vma
, vaddr
& PAGE_MASK
) >> PAGE_SHIFT
;
536 orig_page
= find_get_page(vma
->vm_file
->f_inode
->i_mapping
,
540 if (PageUptodate(orig_page
) &&
541 pages_identical(new_page
, orig_page
)) {
542 /* let go new_page */
546 if (PageCompound(orig_page
))
547 orig_page_huge
= true;
553 ret
= __replace_page(vma
, vaddr
& PAGE_MASK
, old_page
, new_page
);
559 if (unlikely(ret
== -EAGAIN
))
562 /* Revert back reference counter if instruction update failed. */
563 if (ret
&& is_register
&& ref_ctr_updated
)
564 update_ref_ctr(uprobe
, mm
, -1);
566 /* try collapse pmd for compound page */
567 if (!ret
&& orig_page_huge
)
568 collapse_pte_mapped_thp(mm
, vaddr
, false);
574 * set_swbp - store breakpoint at a given address.
575 * @auprobe: arch specific probepoint information.
576 * @mm: the probed process address space.
577 * @vaddr: the virtual address to insert the opcode.
579 * For mm @mm, store the breakpoint instruction at @vaddr.
580 * Return 0 (success) or a negative errno.
582 int __weak
set_swbp(struct arch_uprobe
*auprobe
, struct mm_struct
*mm
, unsigned long vaddr
)
584 return uprobe_write_opcode(auprobe
, mm
, vaddr
, UPROBE_SWBP_INSN
);
588 * set_orig_insn - Restore the original instruction.
589 * @mm: the probed process address space.
590 * @auprobe: arch specific probepoint information.
591 * @vaddr: the virtual address to insert the opcode.
593 * For mm @mm, restore the original opcode (opcode) at @vaddr.
594 * Return 0 (success) or a negative errno.
597 set_orig_insn(struct arch_uprobe
*auprobe
, struct mm_struct
*mm
, unsigned long vaddr
)
599 return uprobe_write_opcode(auprobe
, mm
, vaddr
,
600 *(uprobe_opcode_t
*)&auprobe
->insn
);
603 /* uprobe should have guaranteed positive refcount */
604 static struct uprobe
*get_uprobe(struct uprobe
*uprobe
)
606 refcount_inc(&uprobe
->ref
);
611 * uprobe should have guaranteed lifetime, which can be either of:
612 * - caller already has refcount taken (and wants an extra one);
613 * - uprobe is RCU protected and won't be freed until after grace period;
614 * - we are holding uprobes_treelock (for read or write, doesn't matter).
616 static struct uprobe
*try_get_uprobe(struct uprobe
*uprobe
)
618 if (refcount_inc_not_zero(&uprobe
->ref
))
623 static inline bool uprobe_is_active(struct uprobe
*uprobe
)
625 return !RB_EMPTY_NODE(&uprobe
->rb_node
);
628 static void uprobe_free_rcu_tasks_trace(struct rcu_head
*rcu
)
630 struct uprobe
*uprobe
= container_of(rcu
, struct uprobe
, rcu
);
635 static void uprobe_free_srcu(struct rcu_head
*rcu
)
637 struct uprobe
*uprobe
= container_of(rcu
, struct uprobe
, rcu
);
639 call_rcu_tasks_trace(&uprobe
->rcu
, uprobe_free_rcu_tasks_trace
);
642 static void uprobe_free_deferred(struct work_struct
*work
)
644 struct uprobe
*uprobe
= container_of(work
, struct uprobe
, work
);
646 write_lock(&uprobes_treelock
);
648 if (uprobe_is_active(uprobe
)) {
649 write_seqcount_begin(&uprobes_seqcount
);
650 rb_erase(&uprobe
->rb_node
, &uprobes_tree
);
651 write_seqcount_end(&uprobes_seqcount
);
654 write_unlock(&uprobes_treelock
);
657 * If application munmap(exec_vma) before uprobe_unregister()
658 * gets called, we don't get a chance to remove uprobe from
659 * delayed_uprobe_list from remove_breakpoint(). Do it here.
661 mutex_lock(&delayed_uprobe_lock
);
662 delayed_uprobe_remove(uprobe
, NULL
);
663 mutex_unlock(&delayed_uprobe_lock
);
665 /* start srcu -> rcu_tasks_trace -> kfree chain */
666 call_srcu(&uretprobes_srcu
, &uprobe
->rcu
, uprobe_free_srcu
);
669 static void put_uprobe(struct uprobe
*uprobe
)
671 if (!refcount_dec_and_test(&uprobe
->ref
))
674 INIT_WORK(&uprobe
->work
, uprobe_free_deferred
);
675 schedule_work(&uprobe
->work
);
678 /* Initialize hprobe as SRCU-protected "leased" uprobe */
679 static void hprobe_init_leased(struct hprobe
*hprobe
, struct uprobe
*uprobe
, int srcu_idx
)
682 hprobe
->state
= HPROBE_LEASED
;
683 hprobe
->uprobe
= uprobe
;
684 hprobe
->srcu_idx
= srcu_idx
;
687 /* Initialize hprobe as refcounted ("stable") uprobe (uprobe can be NULL). */
688 static void hprobe_init_stable(struct hprobe
*hprobe
, struct uprobe
*uprobe
)
690 hprobe
->state
= uprobe
? HPROBE_STABLE
: HPROBE_GONE
;
691 hprobe
->uprobe
= uprobe
;
692 hprobe
->srcu_idx
= -1;
696 * hprobe_consume() fetches hprobe's underlying uprobe and detects whether
697 * uprobe is SRCU protected or is refcounted. hprobe_consume() can be
698 * used only once for a given hprobe.
700 * Caller has to call hprobe_finalize() and pass previous hprobe_state, so
701 * that hprobe_finalize() can perform SRCU unlock or put uprobe, whichever
704 static inline struct uprobe
*hprobe_consume(struct hprobe
*hprobe
, enum hprobe_state
*hstate
)
706 *hstate
= xchg(&hprobe
->state
, HPROBE_CONSUMED
);
710 return hprobe
->uprobe
;
711 case HPROBE_GONE
: /* uprobe is NULL, no SRCU */
712 case HPROBE_CONSUMED
: /* uprobe was finalized already, do nothing */
715 WARN(1, "hprobe invalid state %d", *hstate
);
721 * Reset hprobe state and, if hprobe was LEASED, release SRCU lock.
722 * hprobe_finalize() can only be used from current context after
723 * hprobe_consume() call (which determines uprobe and hstate value).
725 static void hprobe_finalize(struct hprobe
*hprobe
, enum hprobe_state hstate
)
729 __srcu_read_unlock(&uretprobes_srcu
, hprobe
->srcu_idx
);
732 put_uprobe(hprobe
->uprobe
);
735 case HPROBE_CONSUMED
:
738 WARN(1, "hprobe invalid state %d", hstate
);
744 * Attempt to switch (atomically) uprobe from being SRCU protected (LEASED)
745 * to refcounted (STABLE) state. Competes with hprobe_consume(); only one of
746 * them can win the race to perform SRCU unlocking. Whoever wins must perform
749 * Returns underlying valid uprobe or NULL, if there was no underlying uprobe
750 * to begin with or we failed to bump its refcount and it's going away.
752 * Returned non-NULL uprobe can be still safely used within an ongoing SRCU
753 * locked region. If `get` is true, it's guaranteed that non-NULL uprobe has
754 * an extra refcount for caller to assume and use. Otherwise, it's not
755 * guaranteed that returned uprobe has a positive refcount, so caller has to
756 * attempt try_get_uprobe(), if it needs to preserve uprobe beyond current
757 * SRCU lock region. See dup_utask().
759 static struct uprobe
*hprobe_expire(struct hprobe
*hprobe
, bool get
)
761 enum hprobe_state hstate
;
764 * return_instance's hprobe is protected by RCU.
765 * Underlying uprobe is itself protected from reuse by SRCU.
767 lockdep_assert(rcu_read_lock_held() && srcu_read_lock_held(&uretprobes_srcu
));
769 hstate
= READ_ONCE(hprobe
->state
);
772 /* uprobe has positive refcount, bump refcount, if necessary */
773 return get
? get_uprobe(hprobe
->uprobe
) : hprobe
->uprobe
;
776 * SRCU was unlocked earlier and we didn't manage to take
777 * uprobe refcnt, so it's effectively NULL
780 case HPROBE_CONSUMED
:
782 * uprobe was consumed, so it's effectively NULL as far as
783 * uretprobe processing logic is concerned
786 case HPROBE_LEASED
: {
787 struct uprobe
*uprobe
= try_get_uprobe(hprobe
->uprobe
);
789 * Try to switch hprobe state, guarding against
790 * hprobe_consume() or another hprobe_expire() racing with us.
791 * Note, if we failed to get uprobe refcount, we use special
792 * HPROBE_GONE state to signal that hprobe->uprobe shouldn't
793 * be used as it will be freed after SRCU is unlocked.
795 if (try_cmpxchg(&hprobe
->state
, &hstate
, uprobe
? HPROBE_STABLE
: HPROBE_GONE
)) {
796 /* We won the race, we are the ones to unlock SRCU */
797 __srcu_read_unlock(&uretprobes_srcu
, hprobe
->srcu_idx
);
798 return get
? get_uprobe(uprobe
) : uprobe
;
802 * We lost the race, undo refcount bump (if it ever happened),
803 * unless caller would like an extra refcount anyways.
808 * Even if hprobe_consume() or another hprobe_expire() wins
809 * the state update race and unlocks SRCU from under us, we
810 * still have a guarantee that underyling uprobe won't be
811 * freed due to ongoing caller's SRCU lock region, so we can
812 * return it regardless. Also, if `get` was true, we also have
813 * an extra ref for the caller to own. This is used in dup_utask().
818 WARN(1, "unknown hprobe state %d", hstate
);
823 static __always_inline
824 int uprobe_cmp(const struct inode
*l_inode
, const loff_t l_offset
,
825 const struct uprobe
*r
)
827 if (l_inode
< r
->inode
)
830 if (l_inode
> r
->inode
)
833 if (l_offset
< r
->offset
)
836 if (l_offset
> r
->offset
)
842 #define __node_2_uprobe(node) \
843 rb_entry((node), struct uprobe, rb_node)
845 struct __uprobe_key
{
850 static inline int __uprobe_cmp_key(const void *key
, const struct rb_node
*b
)
852 const struct __uprobe_key
*a
= key
;
853 return uprobe_cmp(a
->inode
, a
->offset
, __node_2_uprobe(b
));
856 static inline int __uprobe_cmp(struct rb_node
*a
, const struct rb_node
*b
)
858 struct uprobe
*u
= __node_2_uprobe(a
);
859 return uprobe_cmp(u
->inode
, u
->offset
, __node_2_uprobe(b
));
863 * Assumes being inside RCU protected region.
864 * No refcount is taken on returned uprobe.
866 static struct uprobe
*find_uprobe_rcu(struct inode
*inode
, loff_t offset
)
868 struct __uprobe_key key
= {
872 struct rb_node
*node
;
875 lockdep_assert(rcu_read_lock_trace_held());
878 seq
= read_seqcount_begin(&uprobes_seqcount
);
879 node
= rb_find_rcu(&key
, &uprobes_tree
, __uprobe_cmp_key
);
881 * Lockless RB-tree lookups can result only in false negatives.
882 * If the element is found, it is correct and can be returned
883 * under RCU protection. If we find nothing, we need to
884 * validate that seqcount didn't change. If it did, we have to
885 * try again as we might have missed the element (false
886 * negative). If seqcount is unchanged, search truly failed.
889 return __node_2_uprobe(node
);
890 } while (read_seqcount_retry(&uprobes_seqcount
, seq
));
896 * Attempt to insert a new uprobe into uprobes_tree.
898 * If uprobe already exists (for given inode+offset), we just increment
899 * refcount of previously existing uprobe.
901 * If not, a provided new instance of uprobe is inserted into the tree (with
902 * assumed initial refcount == 1).
904 * In any case, we return a uprobe instance that ends up being in uprobes_tree.
905 * Caller has to clean up new uprobe instance, if it ended up not being
906 * inserted into the tree.
908 * We assume that uprobes_treelock is held for writing.
910 static struct uprobe
*__insert_uprobe(struct uprobe
*uprobe
)
912 struct rb_node
*node
;
914 node
= rb_find_add_rcu(&uprobe
->rb_node
, &uprobes_tree
, __uprobe_cmp
);
916 struct uprobe
*u
= __node_2_uprobe(node
);
918 if (!try_get_uprobe(u
)) {
919 rb_erase(node
, &uprobes_tree
);
920 RB_CLEAR_NODE(&u
->rb_node
);
931 * Acquire uprobes_treelock and insert uprobe into uprobes_tree
932 * (or reuse existing one, see __insert_uprobe() comments above).
934 static struct uprobe
*insert_uprobe(struct uprobe
*uprobe
)
938 write_lock(&uprobes_treelock
);
939 write_seqcount_begin(&uprobes_seqcount
);
940 u
= __insert_uprobe(uprobe
);
941 write_seqcount_end(&uprobes_seqcount
);
942 write_unlock(&uprobes_treelock
);
948 ref_ctr_mismatch_warn(struct uprobe
*cur_uprobe
, struct uprobe
*uprobe
)
950 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
951 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
952 uprobe
->inode
->i_ino
, (unsigned long long) uprobe
->offset
,
953 (unsigned long long) cur_uprobe
->ref_ctr_offset
,
954 (unsigned long long) uprobe
->ref_ctr_offset
);
957 static struct uprobe
*alloc_uprobe(struct inode
*inode
, loff_t offset
,
958 loff_t ref_ctr_offset
)
960 struct uprobe
*uprobe
, *cur_uprobe
;
962 uprobe
= kzalloc(sizeof(struct uprobe
), GFP_KERNEL
);
964 return ERR_PTR(-ENOMEM
);
966 uprobe
->inode
= inode
;
967 uprobe
->offset
= offset
;
968 uprobe
->ref_ctr_offset
= ref_ctr_offset
;
969 INIT_LIST_HEAD(&uprobe
->consumers
);
970 init_rwsem(&uprobe
->register_rwsem
);
971 init_rwsem(&uprobe
->consumer_rwsem
);
972 RB_CLEAR_NODE(&uprobe
->rb_node
);
973 refcount_set(&uprobe
->ref
, 1);
975 /* add to uprobes_tree, sorted on inode:offset */
976 cur_uprobe
= insert_uprobe(uprobe
);
977 /* a uprobe exists for this inode:offset combination */
978 if (cur_uprobe
!= uprobe
) {
979 if (cur_uprobe
->ref_ctr_offset
!= uprobe
->ref_ctr_offset
) {
980 ref_ctr_mismatch_warn(cur_uprobe
, uprobe
);
981 put_uprobe(cur_uprobe
);
983 return ERR_PTR(-EINVAL
);
992 static void consumer_add(struct uprobe
*uprobe
, struct uprobe_consumer
*uc
)
994 static atomic64_t id
;
996 down_write(&uprobe
->consumer_rwsem
);
997 list_add_rcu(&uc
->cons_node
, &uprobe
->consumers
);
998 uc
->id
= (__u64
) atomic64_inc_return(&id
);
999 up_write(&uprobe
->consumer_rwsem
);
1003 * For uprobe @uprobe, delete the consumer @uc.
1004 * Should never be called with consumer that's not part of @uprobe->consumers.
1006 static void consumer_del(struct uprobe
*uprobe
, struct uprobe_consumer
*uc
)
1008 down_write(&uprobe
->consumer_rwsem
);
1009 list_del_rcu(&uc
->cons_node
);
1010 up_write(&uprobe
->consumer_rwsem
);
1013 static int __copy_insn(struct address_space
*mapping
, struct file
*filp
,
1014 void *insn
, int nbytes
, loff_t offset
)
1018 * Ensure that the page that has the original instruction is populated
1019 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(),
1020 * see uprobe_register().
1022 if (mapping
->a_ops
->read_folio
)
1023 page
= read_mapping_page(mapping
, offset
>> PAGE_SHIFT
, filp
);
1025 page
= shmem_read_mapping_page(mapping
, offset
>> PAGE_SHIFT
);
1027 return PTR_ERR(page
);
1029 copy_from_page(page
, offset
, insn
, nbytes
);
1035 static int copy_insn(struct uprobe
*uprobe
, struct file
*filp
)
1037 struct address_space
*mapping
= uprobe
->inode
->i_mapping
;
1038 loff_t offs
= uprobe
->offset
;
1039 void *insn
= &uprobe
->arch
.insn
;
1040 int size
= sizeof(uprobe
->arch
.insn
);
1041 int len
, err
= -EIO
;
1043 /* Copy only available bytes, -EIO if nothing was read */
1045 if (offs
>= i_size_read(uprobe
->inode
))
1048 len
= min_t(int, size
, PAGE_SIZE
- (offs
& ~PAGE_MASK
));
1049 err
= __copy_insn(mapping
, filp
, insn
, len
, offs
);
1061 static int prepare_uprobe(struct uprobe
*uprobe
, struct file
*file
,
1062 struct mm_struct
*mm
, unsigned long vaddr
)
1066 if (test_bit(UPROBE_COPY_INSN
, &uprobe
->flags
))
1069 /* TODO: move this into _register, until then we abuse this sem. */
1070 down_write(&uprobe
->consumer_rwsem
);
1071 if (test_bit(UPROBE_COPY_INSN
, &uprobe
->flags
))
1074 ret
= copy_insn(uprobe
, file
);
1079 if (is_trap_insn((uprobe_opcode_t
*)&uprobe
->arch
.insn
))
1082 ret
= arch_uprobe_analyze_insn(&uprobe
->arch
, mm
, vaddr
);
1086 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
1087 set_bit(UPROBE_COPY_INSN
, &uprobe
->flags
);
1090 up_write(&uprobe
->consumer_rwsem
);
1095 static inline bool consumer_filter(struct uprobe_consumer
*uc
, struct mm_struct
*mm
)
1097 return !uc
->filter
|| uc
->filter(uc
, mm
);
1100 static bool filter_chain(struct uprobe
*uprobe
, struct mm_struct
*mm
)
1102 struct uprobe_consumer
*uc
;
1105 down_read(&uprobe
->consumer_rwsem
);
1106 list_for_each_entry_rcu(uc
, &uprobe
->consumers
, cons_node
, rcu_read_lock_trace_held()) {
1107 ret
= consumer_filter(uc
, mm
);
1111 up_read(&uprobe
->consumer_rwsem
);
1117 install_breakpoint(struct uprobe
*uprobe
, struct mm_struct
*mm
,
1118 struct vm_area_struct
*vma
, unsigned long vaddr
)
1123 ret
= prepare_uprobe(uprobe
, vma
->vm_file
, mm
, vaddr
);
1128 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
1129 * the task can hit this breakpoint right after __replace_page().
1131 first_uprobe
= !test_bit(MMF_HAS_UPROBES
, &mm
->flags
);
1133 set_bit(MMF_HAS_UPROBES
, &mm
->flags
);
1135 ret
= set_swbp(&uprobe
->arch
, mm
, vaddr
);
1137 clear_bit(MMF_RECALC_UPROBES
, &mm
->flags
);
1138 else if (first_uprobe
)
1139 clear_bit(MMF_HAS_UPROBES
, &mm
->flags
);
1145 remove_breakpoint(struct uprobe
*uprobe
, struct mm_struct
*mm
, unsigned long vaddr
)
1147 set_bit(MMF_RECALC_UPROBES
, &mm
->flags
);
1148 return set_orig_insn(&uprobe
->arch
, mm
, vaddr
);
1152 struct map_info
*next
;
1153 struct mm_struct
*mm
;
1154 unsigned long vaddr
;
1157 static inline struct map_info
*free_map_info(struct map_info
*info
)
1159 struct map_info
*next
= info
->next
;
1164 static struct map_info
*
1165 build_map_info(struct address_space
*mapping
, loff_t offset
, bool is_register
)
1167 unsigned long pgoff
= offset
>> PAGE_SHIFT
;
1168 struct vm_area_struct
*vma
;
1169 struct map_info
*curr
= NULL
;
1170 struct map_info
*prev
= NULL
;
1171 struct map_info
*info
;
1175 i_mmap_lock_read(mapping
);
1176 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1177 if (!valid_vma(vma
, is_register
))
1180 if (!prev
&& !more
) {
1182 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
1183 * reclaim. This is optimistic, no harm done if it fails.
1185 prev
= kmalloc(sizeof(struct map_info
),
1186 GFP_NOWAIT
| __GFP_NOMEMALLOC
| __GFP_NOWARN
);
1195 if (!mmget_not_zero(vma
->vm_mm
))
1203 info
->mm
= vma
->vm_mm
;
1204 info
->vaddr
= offset_to_vaddr(vma
, offset
);
1206 i_mmap_unlock_read(mapping
);
1218 info
= kmalloc(sizeof(struct map_info
), GFP_KERNEL
);
1220 curr
= ERR_PTR(-ENOMEM
);
1230 prev
= free_map_info(prev
);
1235 register_for_each_vma(struct uprobe
*uprobe
, struct uprobe_consumer
*new)
1237 bool is_register
= !!new;
1238 struct map_info
*info
;
1241 percpu_down_write(&dup_mmap_sem
);
1242 info
= build_map_info(uprobe
->inode
->i_mapping
,
1243 uprobe
->offset
, is_register
);
1245 err
= PTR_ERR(info
);
1250 struct mm_struct
*mm
= info
->mm
;
1251 struct vm_area_struct
*vma
;
1253 if (err
&& is_register
)
1256 * We take mmap_lock for writing to avoid the race with
1257 * find_active_uprobe_rcu() which takes mmap_lock for reading.
1258 * Thus this install_breakpoint() can not make
1259 * is_trap_at_addr() true right after find_uprobe_rcu()
1260 * returns NULL in find_active_uprobe_rcu().
1262 mmap_write_lock(mm
);
1263 vma
= find_vma(mm
, info
->vaddr
);
1264 if (!vma
|| !valid_vma(vma
, is_register
) ||
1265 file_inode(vma
->vm_file
) != uprobe
->inode
)
1268 if (vma
->vm_start
> info
->vaddr
||
1269 vaddr_to_offset(vma
, info
->vaddr
) != uprobe
->offset
)
1273 /* consult only the "caller", new consumer. */
1274 if (consumer_filter(new, mm
))
1275 err
= install_breakpoint(uprobe
, mm
, vma
, info
->vaddr
);
1276 } else if (test_bit(MMF_HAS_UPROBES
, &mm
->flags
)) {
1277 if (!filter_chain(uprobe
, mm
))
1278 err
|= remove_breakpoint(uprobe
, mm
, info
->vaddr
);
1282 mmap_write_unlock(mm
);
1285 info
= free_map_info(info
);
1288 percpu_up_write(&dup_mmap_sem
);
1293 * uprobe_unregister_nosync - unregister an already registered probe.
1294 * @uprobe: uprobe to remove
1295 * @uc: identify which probe if multiple probes are colocated.
1297 void uprobe_unregister_nosync(struct uprobe
*uprobe
, struct uprobe_consumer
*uc
)
1301 down_write(&uprobe
->register_rwsem
);
1302 consumer_del(uprobe
, uc
);
1303 err
= register_for_each_vma(uprobe
, NULL
);
1304 up_write(&uprobe
->register_rwsem
);
1306 /* TODO : cant unregister? schedule a worker thread */
1307 if (unlikely(err
)) {
1308 uprobe_warn(current
, "unregister, leaking uprobe");
1314 EXPORT_SYMBOL_GPL(uprobe_unregister_nosync
);
1316 void uprobe_unregister_sync(void)
1319 * Now that handler_chain() and handle_uretprobe_chain() iterate over
1320 * uprobe->consumers list under RCU protection without holding
1321 * uprobe->register_rwsem, we need to wait for RCU grace period to
1322 * make sure that we can't call into just unregistered
1323 * uprobe_consumer's callbacks anymore. If we don't do that, fast and
1324 * unlucky enough caller can free consumer's memory and cause
1325 * handler_chain() or handle_uretprobe_chain() to do an use-after-free.
1327 synchronize_rcu_tasks_trace();
1328 synchronize_srcu(&uretprobes_srcu
);
1330 EXPORT_SYMBOL_GPL(uprobe_unregister_sync
);
1333 * uprobe_register - register a probe
1334 * @inode: the file in which the probe has to be placed.
1335 * @offset: offset from the start of the file.
1336 * @ref_ctr_offset: offset of SDT marker / reference counter
1337 * @uc: information on howto handle the probe..
1339 * Apart from the access refcount, uprobe_register() takes a creation
1340 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1341 * inserted into the rbtree (i.e first consumer for a @inode:@offset
1342 * tuple). Creation refcount stops uprobe_unregister from freeing the
1343 * @uprobe even before the register operation is complete. Creation
1344 * refcount is released when the last @uc for the @uprobe
1345 * unregisters. Caller of uprobe_register() is required to keep @inode
1346 * (and the containing mount) referenced.
1348 * Return: pointer to the new uprobe on success or an ERR_PTR on failure.
1350 struct uprobe
*uprobe_register(struct inode
*inode
,
1351 loff_t offset
, loff_t ref_ctr_offset
,
1352 struct uprobe_consumer
*uc
)
1354 struct uprobe
*uprobe
;
1357 /* Uprobe must have at least one set consumer */
1358 if (!uc
->handler
&& !uc
->ret_handler
)
1359 return ERR_PTR(-EINVAL
);
1361 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1362 if (!inode
->i_mapping
->a_ops
->read_folio
&&
1363 !shmem_mapping(inode
->i_mapping
))
1364 return ERR_PTR(-EIO
);
1365 /* Racy, just to catch the obvious mistakes */
1366 if (offset
> i_size_read(inode
))
1367 return ERR_PTR(-EINVAL
);
1370 * This ensures that copy_from_page(), copy_to_page() and
1371 * __update_ref_ctr() can't cross page boundary.
1373 if (!IS_ALIGNED(offset
, UPROBE_SWBP_INSN_SIZE
))
1374 return ERR_PTR(-EINVAL
);
1375 if (!IS_ALIGNED(ref_ctr_offset
, sizeof(short)))
1376 return ERR_PTR(-EINVAL
);
1378 uprobe
= alloc_uprobe(inode
, offset
, ref_ctr_offset
);
1382 down_write(&uprobe
->register_rwsem
);
1383 consumer_add(uprobe
, uc
);
1384 ret
= register_for_each_vma(uprobe
, uc
);
1385 up_write(&uprobe
->register_rwsem
);
1388 uprobe_unregister_nosync(uprobe
, uc
);
1390 * Registration might have partially succeeded, so we can have
1391 * this consumer being called right at this time. We need to
1392 * sync here. It's ok, it's unlikely slow path.
1394 uprobe_unregister_sync();
1395 return ERR_PTR(ret
);
1400 EXPORT_SYMBOL_GPL(uprobe_register
);
1403 * uprobe_apply - add or remove the breakpoints according to @uc->filter
1404 * @uprobe: uprobe which "owns" the breakpoint
1405 * @uc: consumer which wants to add more or remove some breakpoints
1406 * @add: add or remove the breakpoints
1407 * Return: 0 on success or negative error code.
1409 int uprobe_apply(struct uprobe
*uprobe
, struct uprobe_consumer
*uc
, bool add
)
1411 struct uprobe_consumer
*con
;
1414 down_write(&uprobe
->register_rwsem
);
1416 rcu_read_lock_trace();
1417 list_for_each_entry_rcu(con
, &uprobe
->consumers
, cons_node
, rcu_read_lock_trace_held()) {
1419 ret
= register_for_each_vma(uprobe
, add
? uc
: NULL
);
1423 rcu_read_unlock_trace();
1425 up_write(&uprobe
->register_rwsem
);
1430 static int unapply_uprobe(struct uprobe
*uprobe
, struct mm_struct
*mm
)
1432 VMA_ITERATOR(vmi
, mm
, 0);
1433 struct vm_area_struct
*vma
;
1437 for_each_vma(vmi
, vma
) {
1438 unsigned long vaddr
;
1441 if (!valid_vma(vma
, false) ||
1442 file_inode(vma
->vm_file
) != uprobe
->inode
)
1445 offset
= (loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
;
1446 if (uprobe
->offset
< offset
||
1447 uprobe
->offset
>= offset
+ vma
->vm_end
- vma
->vm_start
)
1450 vaddr
= offset_to_vaddr(vma
, uprobe
->offset
);
1451 err
|= remove_breakpoint(uprobe
, mm
, vaddr
);
1453 mmap_read_unlock(mm
);
1458 static struct rb_node
*
1459 find_node_in_range(struct inode
*inode
, loff_t min
, loff_t max
)
1461 struct rb_node
*n
= uprobes_tree
.rb_node
;
1464 struct uprobe
*u
= rb_entry(n
, struct uprobe
, rb_node
);
1466 if (inode
< u
->inode
) {
1468 } else if (inode
> u
->inode
) {
1471 if (max
< u
->offset
)
1473 else if (min
> u
->offset
)
1484 * For a given range in vma, build a list of probes that need to be inserted.
1486 static void build_probe_list(struct inode
*inode
,
1487 struct vm_area_struct
*vma
,
1488 unsigned long start
, unsigned long end
,
1489 struct list_head
*head
)
1492 struct rb_node
*n
, *t
;
1495 INIT_LIST_HEAD(head
);
1496 min
= vaddr_to_offset(vma
, start
);
1497 max
= min
+ (end
- start
) - 1;
1499 read_lock(&uprobes_treelock
);
1500 n
= find_node_in_range(inode
, min
, max
);
1502 for (t
= n
; t
; t
= rb_prev(t
)) {
1503 u
= rb_entry(t
, struct uprobe
, rb_node
);
1504 if (u
->inode
!= inode
|| u
->offset
< min
)
1506 /* if uprobe went away, it's safe to ignore it */
1507 if (try_get_uprobe(u
))
1508 list_add(&u
->pending_list
, head
);
1510 for (t
= n
; (t
= rb_next(t
)); ) {
1511 u
= rb_entry(t
, struct uprobe
, rb_node
);
1512 if (u
->inode
!= inode
|| u
->offset
> max
)
1514 /* if uprobe went away, it's safe to ignore it */
1515 if (try_get_uprobe(u
))
1516 list_add(&u
->pending_list
, head
);
1519 read_unlock(&uprobes_treelock
);
1522 /* @vma contains reference counter, not the probed instruction. */
1523 static int delayed_ref_ctr_inc(struct vm_area_struct
*vma
)
1525 struct list_head
*pos
, *q
;
1526 struct delayed_uprobe
*du
;
1527 unsigned long vaddr
;
1528 int ret
= 0, err
= 0;
1530 mutex_lock(&delayed_uprobe_lock
);
1531 list_for_each_safe(pos
, q
, &delayed_uprobe_list
) {
1532 du
= list_entry(pos
, struct delayed_uprobe
, list
);
1534 if (du
->mm
!= vma
->vm_mm
||
1535 !valid_ref_ctr_vma(du
->uprobe
, vma
))
1538 vaddr
= offset_to_vaddr(vma
, du
->uprobe
->ref_ctr_offset
);
1539 ret
= __update_ref_ctr(vma
->vm_mm
, vaddr
, 1);
1541 update_ref_ctr_warn(du
->uprobe
, vma
->vm_mm
, 1);
1545 delayed_uprobe_delete(du
);
1547 mutex_unlock(&delayed_uprobe_lock
);
1552 * Called from mmap_region/vma_merge with mm->mmap_lock acquired.
1554 * Currently we ignore all errors and always return 0, the callers
1555 * can't handle the failure anyway.
1557 int uprobe_mmap(struct vm_area_struct
*vma
)
1559 struct list_head tmp_list
;
1560 struct uprobe
*uprobe
, *u
;
1561 struct inode
*inode
;
1563 if (no_uprobe_events())
1567 (vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) == VM_WRITE
&&
1568 test_bit(MMF_HAS_UPROBES
, &vma
->vm_mm
->flags
))
1569 delayed_ref_ctr_inc(vma
);
1571 if (!valid_vma(vma
, true))
1574 inode
= file_inode(vma
->vm_file
);
1578 mutex_lock(uprobes_mmap_hash(inode
));
1579 build_probe_list(inode
, vma
, vma
->vm_start
, vma
->vm_end
, &tmp_list
);
1581 * We can race with uprobe_unregister(), this uprobe can be already
1582 * removed. But in this case filter_chain() must return false, all
1583 * consumers have gone away.
1585 list_for_each_entry_safe(uprobe
, u
, &tmp_list
, pending_list
) {
1586 if (!fatal_signal_pending(current
) &&
1587 filter_chain(uprobe
, vma
->vm_mm
)) {
1588 unsigned long vaddr
= offset_to_vaddr(vma
, uprobe
->offset
);
1589 install_breakpoint(uprobe
, vma
->vm_mm
, vma
, vaddr
);
1593 mutex_unlock(uprobes_mmap_hash(inode
));
1599 vma_has_uprobes(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1602 struct inode
*inode
;
1605 inode
= file_inode(vma
->vm_file
);
1607 min
= vaddr_to_offset(vma
, start
);
1608 max
= min
+ (end
- start
) - 1;
1610 read_lock(&uprobes_treelock
);
1611 n
= find_node_in_range(inode
, min
, max
);
1612 read_unlock(&uprobes_treelock
);
1618 * Called in context of a munmap of a vma.
1620 void uprobe_munmap(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1622 if (no_uprobe_events() || !valid_vma(vma
, false))
1625 if (!atomic_read(&vma
->vm_mm
->mm_users
)) /* called by mmput() ? */
1628 if (!test_bit(MMF_HAS_UPROBES
, &vma
->vm_mm
->flags
) ||
1629 test_bit(MMF_RECALC_UPROBES
, &vma
->vm_mm
->flags
))
1632 if (vma_has_uprobes(vma
, start
, end
))
1633 set_bit(MMF_RECALC_UPROBES
, &vma
->vm_mm
->flags
);
1636 static vm_fault_t
xol_fault(const struct vm_special_mapping
*sm
,
1637 struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1639 struct xol_area
*area
= vma
->vm_mm
->uprobes_state
.xol_area
;
1641 vmf
->page
= area
->page
;
1642 get_page(vmf
->page
);
1646 static int xol_mremap(const struct vm_special_mapping
*sm
, struct vm_area_struct
*new_vma
)
1651 static const struct vm_special_mapping xol_mapping
= {
1652 .name
= "[uprobes]",
1654 .mremap
= xol_mremap
,
1657 /* Slot allocation for XOL */
1658 static int xol_add_vma(struct mm_struct
*mm
, struct xol_area
*area
)
1660 struct vm_area_struct
*vma
;
1663 if (mmap_write_lock_killable(mm
))
1666 if (mm
->uprobes_state
.xol_area
) {
1672 /* Try to map as high as possible, this is only a hint. */
1673 area
->vaddr
= get_unmapped_area(NULL
, TASK_SIZE
- PAGE_SIZE
,
1675 if (IS_ERR_VALUE(area
->vaddr
)) {
1681 vma
= _install_special_mapping(mm
, area
->vaddr
, PAGE_SIZE
,
1682 VM_EXEC
|VM_MAYEXEC
|VM_DONTCOPY
|VM_IO
,
1690 /* pairs with get_xol_area() */
1691 smp_store_release(&mm
->uprobes_state
.xol_area
, area
); /* ^^^ */
1693 mmap_write_unlock(mm
);
1698 void * __weak
arch_uprobe_trampoline(unsigned long *psize
)
1700 static uprobe_opcode_t insn
= UPROBE_SWBP_INSN
;
1702 *psize
= UPROBE_SWBP_INSN_SIZE
;
1706 static struct xol_area
*__create_xol_area(unsigned long vaddr
)
1708 struct mm_struct
*mm
= current
->mm
;
1709 unsigned long insns_size
;
1710 struct xol_area
*area
;
1713 area
= kzalloc(sizeof(*area
), GFP_KERNEL
);
1714 if (unlikely(!area
))
1717 area
->bitmap
= kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE
), sizeof(long),
1722 area
->page
= alloc_page(GFP_HIGHUSER
| __GFP_ZERO
);
1726 area
->vaddr
= vaddr
;
1727 init_waitqueue_head(&area
->wq
);
1728 /* Reserve the 1st slot for get_trampoline_vaddr() */
1729 set_bit(0, area
->bitmap
);
1730 insns
= arch_uprobe_trampoline(&insns_size
);
1731 arch_uprobe_copy_ixol(area
->page
, 0, insns
, insns_size
);
1733 if (!xol_add_vma(mm
, area
))
1736 __free_page(area
->page
);
1738 kfree(area
->bitmap
);
1746 * get_xol_area - Allocate process's xol_area if necessary.
1747 * This area will be used for storing instructions for execution out of line.
1749 * Returns the allocated area or NULL.
1751 static struct xol_area
*get_xol_area(void)
1753 struct mm_struct
*mm
= current
->mm
;
1754 struct xol_area
*area
;
1756 if (!mm
->uprobes_state
.xol_area
)
1757 __create_xol_area(0);
1759 /* Pairs with xol_add_vma() smp_store_release() */
1760 area
= READ_ONCE(mm
->uprobes_state
.xol_area
); /* ^^^ */
1765 * uprobe_clear_state - Free the area allocated for slots.
1767 void uprobe_clear_state(struct mm_struct
*mm
)
1769 struct xol_area
*area
= mm
->uprobes_state
.xol_area
;
1771 mutex_lock(&delayed_uprobe_lock
);
1772 delayed_uprobe_remove(NULL
, mm
);
1773 mutex_unlock(&delayed_uprobe_lock
);
1778 put_page(area
->page
);
1779 kfree(area
->bitmap
);
1783 void uprobe_start_dup_mmap(void)
1785 percpu_down_read(&dup_mmap_sem
);
1788 void uprobe_end_dup_mmap(void)
1790 percpu_up_read(&dup_mmap_sem
);
1793 void uprobe_dup_mmap(struct mm_struct
*oldmm
, struct mm_struct
*newmm
)
1795 if (test_bit(MMF_HAS_UPROBES
, &oldmm
->flags
)) {
1796 set_bit(MMF_HAS_UPROBES
, &newmm
->flags
);
1797 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1798 set_bit(MMF_RECALC_UPROBES
, &newmm
->flags
);
1802 static unsigned long xol_get_slot_nr(struct xol_area
*area
)
1804 unsigned long slot_nr
;
1806 slot_nr
= find_first_zero_bit(area
->bitmap
, UINSNS_PER_PAGE
);
1807 if (slot_nr
< UINSNS_PER_PAGE
) {
1808 if (!test_and_set_bit(slot_nr
, area
->bitmap
))
1812 return UINSNS_PER_PAGE
;
1816 * xol_get_insn_slot - allocate a slot for xol.
1818 static bool xol_get_insn_slot(struct uprobe
*uprobe
, struct uprobe_task
*utask
)
1820 struct xol_area
*area
= get_xol_area();
1821 unsigned long slot_nr
;
1826 wait_event(area
->wq
, (slot_nr
= xol_get_slot_nr(area
)) < UINSNS_PER_PAGE
);
1828 utask
->xol_vaddr
= area
->vaddr
+ slot_nr
* UPROBE_XOL_SLOT_BYTES
;
1829 arch_uprobe_copy_ixol(area
->page
, utask
->xol_vaddr
,
1830 &uprobe
->arch
.ixol
, sizeof(uprobe
->arch
.ixol
));
1835 * xol_free_insn_slot - free the slot allocated by xol_get_insn_slot()
1837 static void xol_free_insn_slot(struct uprobe_task
*utask
)
1839 struct xol_area
*area
= current
->mm
->uprobes_state
.xol_area
;
1840 unsigned long offset
= utask
->xol_vaddr
- area
->vaddr
;
1841 unsigned int slot_nr
;
1843 utask
->xol_vaddr
= 0;
1844 /* xol_vaddr must fit into [area->vaddr, area->vaddr + PAGE_SIZE) */
1845 if (WARN_ON_ONCE(offset
>= PAGE_SIZE
))
1848 slot_nr
= offset
/ UPROBE_XOL_SLOT_BYTES
;
1849 clear_bit(slot_nr
, area
->bitmap
);
1850 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1851 if (waitqueue_active(&area
->wq
))
1855 void __weak
arch_uprobe_copy_ixol(struct page
*page
, unsigned long vaddr
,
1856 void *src
, unsigned long len
)
1858 /* Initialize the slot */
1859 copy_to_page(page
, vaddr
, src
, len
);
1862 * We probably need flush_icache_user_page() but it needs vma.
1863 * This should work on most of architectures by default. If
1864 * architecture needs to do something different it can define
1865 * its own version of the function.
1867 flush_dcache_page(page
);
1871 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1872 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1874 * Return the address of the breakpoint instruction.
1876 unsigned long __weak
uprobe_get_swbp_addr(struct pt_regs
*regs
)
1878 return instruction_pointer(regs
) - UPROBE_SWBP_INSN_SIZE
;
1881 unsigned long uprobe_get_trap_addr(struct pt_regs
*regs
)
1883 struct uprobe_task
*utask
= current
->utask
;
1885 if (unlikely(utask
&& utask
->active_uprobe
))
1886 return utask
->vaddr
;
1888 return instruction_pointer(regs
);
1891 static struct return_instance
*free_ret_instance(struct return_instance
*ri
, bool cleanup_hprobe
)
1893 struct return_instance
*next
= ri
->next
;
1895 if (cleanup_hprobe
) {
1896 enum hprobe_state hstate
;
1898 (void)hprobe_consume(&ri
->hprobe
, &hstate
);
1899 hprobe_finalize(&ri
->hprobe
, hstate
);
1907 * Called with no locks held.
1908 * Called in context of an exiting or an exec-ing thread.
1910 void uprobe_free_utask(struct task_struct
*t
)
1912 struct uprobe_task
*utask
= t
->utask
;
1913 struct return_instance
*ri
;
1918 WARN_ON_ONCE(utask
->active_uprobe
|| utask
->xol_vaddr
);
1920 timer_delete_sync(&utask
->ri_timer
);
1922 ri
= utask
->return_instances
;
1924 ri
= free_ret_instance(ri
, true /* cleanup_hprobe */);
1930 #define RI_TIMER_PERIOD (HZ / 10) /* 100 ms */
1932 #define for_each_ret_instance_rcu(pos, head) \
1933 for (pos = rcu_dereference_raw(head); pos; pos = rcu_dereference_raw(pos->next))
1935 static void ri_timer(struct timer_list
*timer
)
1937 struct uprobe_task
*utask
= container_of(timer
, struct uprobe_task
, ri_timer
);
1938 struct return_instance
*ri
;
1940 /* SRCU protects uprobe from reuse for the cmpxchg() inside hprobe_expire(). */
1941 guard(srcu
)(&uretprobes_srcu
);
1942 /* RCU protects return_instance from freeing. */
1945 for_each_ret_instance_rcu(ri
, utask
->return_instances
)
1946 hprobe_expire(&ri
->hprobe
, false);
1949 static struct uprobe_task
*alloc_utask(void)
1951 struct uprobe_task
*utask
;
1953 utask
= kzalloc(sizeof(*utask
), GFP_KERNEL
);
1957 timer_setup(&utask
->ri_timer
, ri_timer
, 0);
1963 * Allocate a uprobe_task object for the task if necessary.
1964 * Called when the thread hits a breakpoint.
1967 * - pointer to new uprobe_task on success
1970 static struct uprobe_task
*get_utask(void)
1972 if (!current
->utask
)
1973 current
->utask
= alloc_utask();
1974 return current
->utask
;
1977 static size_t ri_size(int consumers_cnt
)
1979 struct return_instance
*ri
;
1981 return sizeof(*ri
) + sizeof(ri
->consumers
[0]) * consumers_cnt
;
1986 static struct return_instance
*alloc_return_instance(void)
1988 struct return_instance
*ri
;
1990 ri
= kzalloc(ri_size(DEF_CNT
), GFP_KERNEL
);
1992 return ZERO_SIZE_PTR
;
1994 ri
->consumers_cnt
= DEF_CNT
;
1998 static struct return_instance
*dup_return_instance(struct return_instance
*old
)
2000 size_t size
= ri_size(old
->consumers_cnt
);
2002 return kmemdup(old
, size
, GFP_KERNEL
);
2005 static int dup_utask(struct task_struct
*t
, struct uprobe_task
*o_utask
)
2007 struct uprobe_task
*n_utask
;
2008 struct return_instance
**p
, *o
, *n
;
2009 struct uprobe
*uprobe
;
2011 n_utask
= alloc_utask();
2016 /* protect uprobes from freeing, we'll need try_get_uprobe() them */
2017 guard(srcu
)(&uretprobes_srcu
);
2019 p
= &n_utask
->return_instances
;
2020 for (o
= o_utask
->return_instances
; o
; o
= o
->next
) {
2021 n
= dup_return_instance(o
);
2025 /* if uprobe is non-NULL, we'll have an extra refcount for uprobe */
2026 uprobe
= hprobe_expire(&o
->hprobe
, true);
2029 * New utask will have stable properly refcounted uprobe or
2030 * NULL. Even if we failed to get refcounted uprobe, we still
2031 * need to preserve full set of return_instances for proper
2032 * uretprobe handling and nesting in forked task.
2034 hprobe_init_stable(&n
->hprobe
, uprobe
);
2037 rcu_assign_pointer(*p
, n
);
2046 static void dup_xol_work(struct callback_head
*work
)
2048 if (current
->flags
& PF_EXITING
)
2051 if (!__create_xol_area(current
->utask
->dup_xol_addr
) &&
2052 !fatal_signal_pending(current
))
2053 uprobe_warn(current
, "dup xol area");
2057 * Called in context of a new clone/fork from copy_process.
2059 void uprobe_copy_process(struct task_struct
*t
, unsigned long flags
)
2061 struct uprobe_task
*utask
= current
->utask
;
2062 struct mm_struct
*mm
= current
->mm
;
2063 struct xol_area
*area
;
2067 if (!utask
|| !utask
->return_instances
)
2070 if (mm
== t
->mm
&& !(flags
& CLONE_VFORK
))
2073 if (dup_utask(t
, utask
))
2074 return uprobe_warn(t
, "dup ret instances");
2076 /* The task can fork() after dup_xol_work() fails */
2077 area
= mm
->uprobes_state
.xol_area
;
2079 return uprobe_warn(t
, "dup xol area");
2084 t
->utask
->dup_xol_addr
= area
->vaddr
;
2085 init_task_work(&t
->utask
->dup_xol_work
, dup_xol_work
);
2086 task_work_add(t
, &t
->utask
->dup_xol_work
, TWA_RESUME
);
2090 * Current area->vaddr notion assume the trampoline address is always
2091 * equal area->vaddr.
2093 * Returns -1 in case the xol_area is not allocated.
2095 unsigned long uprobe_get_trampoline_vaddr(void)
2097 struct xol_area
*area
;
2098 unsigned long trampoline_vaddr
= -1;
2100 /* Pairs with xol_add_vma() smp_store_release() */
2101 area
= READ_ONCE(current
->mm
->uprobes_state
.xol_area
); /* ^^^ */
2103 trampoline_vaddr
= area
->vaddr
;
2105 return trampoline_vaddr
;
2108 static void cleanup_return_instances(struct uprobe_task
*utask
, bool chained
,
2109 struct pt_regs
*regs
)
2111 struct return_instance
*ri
= utask
->return_instances
;
2112 enum rp_check ctx
= chained
? RP_CHECK_CHAIN_CALL
: RP_CHECK_CALL
;
2114 while (ri
&& !arch_uretprobe_is_alive(ri
, ctx
, regs
)) {
2115 ri
= free_ret_instance(ri
, true /* cleanup_hprobe */);
2118 rcu_assign_pointer(utask
->return_instances
, ri
);
2121 static void prepare_uretprobe(struct uprobe
*uprobe
, struct pt_regs
*regs
,
2122 struct return_instance
*ri
)
2124 struct uprobe_task
*utask
= current
->utask
;
2125 unsigned long orig_ret_vaddr
, trampoline_vaddr
;
2129 if (!get_xol_area())
2132 if (utask
->depth
>= MAX_URETPROBE_DEPTH
) {
2133 printk_ratelimited(KERN_INFO
"uprobe: omit uretprobe due to"
2134 " nestedness limit pid/tgid=%d/%d\n",
2135 current
->pid
, current
->tgid
);
2139 trampoline_vaddr
= uprobe_get_trampoline_vaddr();
2140 orig_ret_vaddr
= arch_uretprobe_hijack_return_addr(trampoline_vaddr
, regs
);
2141 if (orig_ret_vaddr
== -1)
2144 /* drop the entries invalidated by longjmp() */
2145 chained
= (orig_ret_vaddr
== trampoline_vaddr
);
2146 cleanup_return_instances(utask
, chained
, regs
);
2149 * We don't want to keep trampoline address in stack, rather keep the
2150 * original return address of first caller thru all the consequent
2151 * instances. This also makes breakpoint unwrapping easier.
2154 if (!utask
->return_instances
) {
2156 * This situation is not possible. Likely we have an
2157 * attack from user-space.
2159 uprobe_warn(current
, "handle tail call");
2162 orig_ret_vaddr
= utask
->return_instances
->orig_ret_vaddr
;
2165 /* __srcu_read_lock() because SRCU lock survives switch to user space */
2166 srcu_idx
= __srcu_read_lock(&uretprobes_srcu
);
2168 ri
->func
= instruction_pointer(regs
);
2169 ri
->stack
= user_stack_pointer(regs
);
2170 ri
->orig_ret_vaddr
= orig_ret_vaddr
;
2171 ri
->chained
= chained
;
2175 hprobe_init_leased(&ri
->hprobe
, uprobe
, srcu_idx
);
2176 ri
->next
= utask
->return_instances
;
2177 rcu_assign_pointer(utask
->return_instances
, ri
);
2179 mod_timer(&utask
->ri_timer
, jiffies
+ RI_TIMER_PERIOD
);
2186 /* Prepare to single-step probed instruction out of line. */
2188 pre_ssout(struct uprobe
*uprobe
, struct pt_regs
*regs
, unsigned long bp_vaddr
)
2190 struct uprobe_task
*utask
= current
->utask
;
2193 if (!try_get_uprobe(uprobe
))
2196 if (!xol_get_insn_slot(uprobe
, utask
)) {
2201 utask
->vaddr
= bp_vaddr
;
2202 err
= arch_uprobe_pre_xol(&uprobe
->arch
, regs
);
2203 if (unlikely(err
)) {
2204 xol_free_insn_slot(utask
);
2208 utask
->active_uprobe
= uprobe
;
2209 utask
->state
= UTASK_SSTEP
;
2217 * If we are singlestepping, then ensure this thread is not connected to
2218 * non-fatal signals until completion of singlestep. When xol insn itself
2219 * triggers the signal, restart the original insn even if the task is
2220 * already SIGKILL'ed (since coredump should report the correct ip). This
2221 * is even more important if the task has a handler for SIGSEGV/etc, The
2222 * _same_ instruction should be repeated again after return from the signal
2223 * handler, and SSTEP can never finish in this case.
2225 bool uprobe_deny_signal(void)
2227 struct task_struct
*t
= current
;
2228 struct uprobe_task
*utask
= t
->utask
;
2230 if (likely(!utask
|| !utask
->active_uprobe
))
2233 WARN_ON_ONCE(utask
->state
!= UTASK_SSTEP
);
2235 if (task_sigpending(t
)) {
2236 spin_lock_irq(&t
->sighand
->siglock
);
2237 clear_tsk_thread_flag(t
, TIF_SIGPENDING
);
2238 spin_unlock_irq(&t
->sighand
->siglock
);
2240 if (__fatal_signal_pending(t
) || arch_uprobe_xol_was_trapped(t
)) {
2241 utask
->state
= UTASK_SSTEP_TRAPPED
;
2242 set_tsk_thread_flag(t
, TIF_UPROBE
);
2249 static void mmf_recalc_uprobes(struct mm_struct
*mm
)
2251 VMA_ITERATOR(vmi
, mm
, 0);
2252 struct vm_area_struct
*vma
;
2254 for_each_vma(vmi
, vma
) {
2255 if (!valid_vma(vma
, false))
2258 * This is not strictly accurate, we can race with
2259 * uprobe_unregister() and see the already removed
2260 * uprobe if delete_uprobe() was not yet called.
2261 * Or this uprobe can be filtered out.
2263 if (vma_has_uprobes(vma
, vma
->vm_start
, vma
->vm_end
))
2267 clear_bit(MMF_HAS_UPROBES
, &mm
->flags
);
2270 static int is_trap_at_addr(struct mm_struct
*mm
, unsigned long vaddr
)
2273 uprobe_opcode_t opcode
;
2276 if (WARN_ON_ONCE(!IS_ALIGNED(vaddr
, UPROBE_SWBP_INSN_SIZE
)))
2279 pagefault_disable();
2280 result
= __get_user(opcode
, (uprobe_opcode_t __user
*)vaddr
);
2283 if (likely(result
== 0))
2286 result
= get_user_pages(vaddr
, 1, FOLL_FORCE
, &page
);
2290 copy_from_page(page
, vaddr
, &opcode
, UPROBE_SWBP_INSN_SIZE
);
2293 /* This needs to return true for any variant of the trap insn */
2294 return is_trap_insn(&opcode
);
2297 /* assumes being inside RCU protected region */
2298 static struct uprobe
*find_active_uprobe_rcu(unsigned long bp_vaddr
, int *is_swbp
)
2300 struct mm_struct
*mm
= current
->mm
;
2301 struct uprobe
*uprobe
= NULL
;
2302 struct vm_area_struct
*vma
;
2305 vma
= vma_lookup(mm
, bp_vaddr
);
2307 if (valid_vma(vma
, false)) {
2308 struct inode
*inode
= file_inode(vma
->vm_file
);
2309 loff_t offset
= vaddr_to_offset(vma
, bp_vaddr
);
2311 uprobe
= find_uprobe_rcu(inode
, offset
);
2315 *is_swbp
= is_trap_at_addr(mm
, bp_vaddr
);
2320 if (!uprobe
&& test_and_clear_bit(MMF_RECALC_UPROBES
, &mm
->flags
))
2321 mmf_recalc_uprobes(mm
);
2322 mmap_read_unlock(mm
);
2327 static struct return_instance
*
2328 push_consumer(struct return_instance
*ri
, int idx
, __u64 id
, __u64 cookie
)
2330 if (unlikely(ri
== ZERO_SIZE_PTR
))
2333 if (unlikely(idx
>= ri
->consumers_cnt
)) {
2334 struct return_instance
*old_ri
= ri
;
2336 ri
->consumers_cnt
+= DEF_CNT
;
2337 ri
= krealloc(old_ri
, ri_size(old_ri
->consumers_cnt
), GFP_KERNEL
);
2340 return ZERO_SIZE_PTR
;
2344 ri
->consumers
[idx
].id
= id
;
2345 ri
->consumers
[idx
].cookie
= cookie
;
2349 static struct return_consumer
*
2350 return_consumer_find(struct return_instance
*ri
, int *iter
, int id
)
2352 struct return_consumer
*ric
;
2355 for (ric
= &ri
->consumers
[idx
]; idx
< ri
->consumers_cnt
; idx
++, ric
++) {
2356 if (ric
->id
== id
) {
2364 static bool ignore_ret_handler(int rc
)
2366 return rc
== UPROBE_HANDLER_REMOVE
|| rc
== UPROBE_HANDLER_IGNORE
;
2369 static void handler_chain(struct uprobe
*uprobe
, struct pt_regs
*regs
)
2371 struct uprobe_consumer
*uc
;
2372 bool has_consumers
= false, remove
= true;
2373 struct return_instance
*ri
= NULL
;
2376 current
->utask
->auprobe
= &uprobe
->arch
;
2378 list_for_each_entry_rcu(uc
, &uprobe
->consumers
, cons_node
, rcu_read_lock_trace_held()) {
2379 bool session
= uc
->handler
&& uc
->ret_handler
;
2384 rc
= uc
->handler(uc
, regs
, &cookie
);
2385 WARN(rc
< 0 || rc
> 2,
2386 "bad rc=0x%x from %ps()\n", rc
, uc
->handler
);
2389 remove
&= rc
== UPROBE_HANDLER_REMOVE
;
2390 has_consumers
= true;
2392 if (!uc
->ret_handler
|| ignore_ret_handler(rc
))
2396 ri
= alloc_return_instance();
2399 ri
= push_consumer(ri
, push_idx
++, uc
->id
, cookie
);
2401 current
->utask
->auprobe
= NULL
;
2403 if (!ZERO_OR_NULL_PTR(ri
)) {
2405 * The push_idx value has the final number of return consumers,
2406 * and ri->consumers_cnt has number of allocated consumers.
2408 ri
->consumers_cnt
= push_idx
;
2409 prepare_uretprobe(uprobe
, regs
, ri
);
2412 if (remove
&& has_consumers
) {
2413 down_read(&uprobe
->register_rwsem
);
2415 /* re-check that removal is still required, this time under lock */
2416 if (!filter_chain(uprobe
, current
->mm
)) {
2417 WARN_ON(!uprobe_is_active(uprobe
));
2418 unapply_uprobe(uprobe
, current
->mm
);
2421 up_read(&uprobe
->register_rwsem
);
2426 handle_uretprobe_chain(struct return_instance
*ri
, struct uprobe
*uprobe
, struct pt_regs
*regs
)
2428 struct return_consumer
*ric
;
2429 struct uprobe_consumer
*uc
;
2432 /* all consumers unsubscribed meanwhile */
2433 if (unlikely(!uprobe
))
2436 rcu_read_lock_trace();
2437 list_for_each_entry_rcu(uc
, &uprobe
->consumers
, cons_node
, rcu_read_lock_trace_held()) {
2438 bool session
= uc
->handler
&& uc
->ret_handler
;
2440 if (uc
->ret_handler
) {
2441 ric
= return_consumer_find(ri
, &ric_idx
, uc
->id
);
2442 if (!session
|| ric
)
2443 uc
->ret_handler(uc
, ri
->func
, regs
, ric
? &ric
->cookie
: NULL
);
2446 rcu_read_unlock_trace();
2449 static struct return_instance
*find_next_ret_chain(struct return_instance
*ri
)
2454 chained
= ri
->chained
;
2455 ri
= ri
->next
; /* can't be NULL if chained */
2461 void uprobe_handle_trampoline(struct pt_regs
*regs
)
2463 struct uprobe_task
*utask
;
2464 struct return_instance
*ri
, *next
;
2465 struct uprobe
*uprobe
;
2466 enum hprobe_state hstate
;
2469 utask
= current
->utask
;
2473 ri
= utask
->return_instances
;
2479 * We should throw out the frames invalidated by longjmp().
2480 * If this chain is valid, then the next one should be alive
2481 * or NULL; the latter case means that nobody but ri->func
2482 * could hit this trampoline on return. TODO: sigaltstack().
2484 next
= find_next_ret_chain(ri
);
2485 valid
= !next
|| arch_uretprobe_is_alive(next
, RP_CHECK_RET
, regs
);
2487 instruction_pointer_set(regs
, ri
->orig_ret_vaddr
);
2489 /* pop current instance from the stack of pending return instances,
2490 * as it's not pending anymore: we just fixed up original
2491 * instruction pointer in regs and are about to call handlers;
2492 * this allows fixup_uretprobe_trampoline_entries() to properly fix up
2493 * captured stack traces from uretprobe handlers, in which pending
2494 * trampoline addresses on the stack are replaced with correct
2495 * original return addresses
2497 rcu_assign_pointer(utask
->return_instances
, ri
->next
);
2499 uprobe
= hprobe_consume(&ri
->hprobe
, &hstate
);
2501 handle_uretprobe_chain(ri
, uprobe
, regs
);
2502 hprobe_finalize(&ri
->hprobe
, hstate
);
2504 /* We already took care of hprobe, no need to waste more time on that. */
2505 ri
= free_ret_instance(ri
, false /* !cleanup_hprobe */);
2507 } while (ri
!= next
);
2513 uprobe_warn(current
, "handle uretprobe, sending SIGILL.");
2517 bool __weak
arch_uprobe_ignore(struct arch_uprobe
*aup
, struct pt_regs
*regs
)
2522 bool __weak
arch_uretprobe_is_alive(struct return_instance
*ret
, enum rp_check ctx
,
2523 struct pt_regs
*regs
)
2529 * Run handler and ask thread to singlestep.
2530 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2532 static void handle_swbp(struct pt_regs
*regs
)
2534 struct uprobe
*uprobe
;
2535 unsigned long bp_vaddr
;
2538 bp_vaddr
= uprobe_get_swbp_addr(regs
);
2539 if (bp_vaddr
== uprobe_get_trampoline_vaddr())
2540 return uprobe_handle_trampoline(regs
);
2542 rcu_read_lock_trace();
2544 uprobe
= find_active_uprobe_rcu(bp_vaddr
, &is_swbp
);
2547 /* No matching uprobe; signal SIGTRAP. */
2551 * Either we raced with uprobe_unregister() or we can't
2552 * access this memory. The latter is only possible if
2553 * another thread plays with our ->mm. In both cases
2554 * we can simply restart. If this vma was unmapped we
2555 * can pretend this insn was not executed yet and get
2556 * the (correct) SIGSEGV after restart.
2558 instruction_pointer_set(regs
, bp_vaddr
);
2563 /* change it in advance for ->handler() and restart */
2564 instruction_pointer_set(regs
, bp_vaddr
);
2567 * TODO: move copy_insn/etc into _register and remove this hack.
2568 * After we hit the bp, _unregister + _register can install the
2569 * new and not-yet-analyzed uprobe at the same address, restart.
2571 if (unlikely(!test_bit(UPROBE_COPY_INSN
, &uprobe
->flags
)))
2575 * Pairs with the smp_wmb() in prepare_uprobe().
2577 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2578 * we must also see the stores to &uprobe->arch performed by the
2579 * prepare_uprobe() call.
2583 /* Tracing handlers use ->utask to communicate with fetch methods */
2587 if (arch_uprobe_ignore(&uprobe
->arch
, regs
))
2590 handler_chain(uprobe
, regs
);
2592 if (arch_uprobe_skip_sstep(&uprobe
->arch
, regs
))
2595 if (pre_ssout(uprobe
, regs
, bp_vaddr
))
2599 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2600 rcu_read_unlock_trace();
2604 * Perform required fix-ups and disable singlestep.
2605 * Allow pending signals to take effect.
2607 static void handle_singlestep(struct uprobe_task
*utask
, struct pt_regs
*regs
)
2609 struct uprobe
*uprobe
;
2612 uprobe
= utask
->active_uprobe
;
2613 if (utask
->state
== UTASK_SSTEP_ACK
)
2614 err
= arch_uprobe_post_xol(&uprobe
->arch
, regs
);
2615 else if (utask
->state
== UTASK_SSTEP_TRAPPED
)
2616 arch_uprobe_abort_xol(&uprobe
->arch
, regs
);
2621 utask
->active_uprobe
= NULL
;
2622 utask
->state
= UTASK_RUNNING
;
2623 xol_free_insn_slot(utask
);
2625 spin_lock_irq(¤t
->sighand
->siglock
);
2626 recalc_sigpending(); /* see uprobe_deny_signal() */
2627 spin_unlock_irq(¤t
->sighand
->siglock
);
2629 if (unlikely(err
)) {
2630 uprobe_warn(current
, "execute the probed insn, sending SIGILL.");
2636 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2637 * allows the thread to return from interrupt. After that handle_swbp()
2638 * sets utask->active_uprobe.
2640 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2641 * and allows the thread to return from interrupt.
2643 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2644 * uprobe_notify_resume().
2646 void uprobe_notify_resume(struct pt_regs
*regs
)
2648 struct uprobe_task
*utask
;
2650 clear_thread_flag(TIF_UPROBE
);
2652 utask
= current
->utask
;
2653 if (utask
&& utask
->active_uprobe
)
2654 handle_singlestep(utask
, regs
);
2660 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2661 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2663 int uprobe_pre_sstep_notifier(struct pt_regs
*regs
)
2668 if (!test_bit(MMF_HAS_UPROBES
, ¤t
->mm
->flags
) &&
2669 (!current
->utask
|| !current
->utask
->return_instances
))
2672 set_thread_flag(TIF_UPROBE
);
2677 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2678 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2680 int uprobe_post_sstep_notifier(struct pt_regs
*regs
)
2682 struct uprobe_task
*utask
= current
->utask
;
2684 if (!current
->mm
|| !utask
|| !utask
->active_uprobe
)
2685 /* task is currently not uprobed */
2688 utask
->state
= UTASK_SSTEP_ACK
;
2689 set_thread_flag(TIF_UPROBE
);
2693 static struct notifier_block uprobe_exception_nb
= {
2694 .notifier_call
= arch_uprobe_exception_notify
,
2695 .priority
= INT_MAX
-1, /* notified after kprobes, kgdb */
2698 void __init
uprobes_init(void)
2702 for (i
= 0; i
< UPROBES_HASH_SZ
; i
++)
2703 mutex_init(&uprobes_mmap_mutex
[i
]);
2705 BUG_ON(register_die_notifier(&uprobe_exception_nb
));