1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/freezer.h>
29 #include <linux/binfmts.h>
30 #include <linux/nsproxy.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/ptrace.h>
33 #include <linux/profile.h>
34 #include <linux/mount.h>
35 #include <linux/proc_fs.h>
36 #include <linux/kthread.h>
37 #include <linux/mempolicy.h>
38 #include <linux/taskstats_kern.h>
39 #include <linux/delayacct.h>
40 #include <linux/cgroup.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <linux/posix-timers.h>
44 #include <linux/cn_proc.h>
45 #include <linux/mutex.h>
46 #include <linux/futex.h>
47 #include <linux/pipe_fs_i.h>
48 #include <linux/audit.h> /* for audit_free() */
49 #include <linux/resource.h>
50 #include <linux/task_io_accounting_ops.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_work.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/kmsan.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 #include <linux/kprobes.h>
68 #include <linux/rethook.h>
69 #include <linux/sysfs.h>
70 #include <linux/user_events.h>
71 #include <linux/uaccess.h>
73 #include <uapi/linux/wait.h>
75 #include <asm/unistd.h>
76 #include <asm/mmu_context.h>
81 * The default value should be high enough to not crash a system that randomly
82 * crashes its kernel from time to time, but low enough to at least not permit
83 * overflowing 32-bit refcounts or the ldsem writer count.
85 static unsigned int oops_limit
= 10000;
88 static struct ctl_table kern_exit_table
[] = {
90 .procname
= "oops_limit",
92 .maxlen
= sizeof(oops_limit
),
94 .proc_handler
= proc_douintvec
,
98 static __init
int kernel_exit_sysctls_init(void)
100 register_sysctl_init("kernel", kern_exit_table
);
103 late_initcall(kernel_exit_sysctls_init
);
106 static atomic_t oops_count
= ATOMIC_INIT(0);
109 static ssize_t
oops_count_show(struct kobject
*kobj
, struct kobj_attribute
*attr
,
112 return sysfs_emit(page
, "%d\n", atomic_read(&oops_count
));
115 static struct kobj_attribute oops_count_attr
= __ATTR_RO(oops_count
);
117 static __init
int kernel_exit_sysfs_init(void)
119 sysfs_add_file_to_group(kernel_kobj
, &oops_count_attr
.attr
, NULL
);
122 late_initcall(kernel_exit_sysfs_init
);
125 static void __unhash_process(struct task_struct
*p
, bool group_dead
)
128 detach_pid(p
, PIDTYPE_PID
);
130 detach_pid(p
, PIDTYPE_TGID
);
131 detach_pid(p
, PIDTYPE_PGID
);
132 detach_pid(p
, PIDTYPE_SID
);
134 list_del_rcu(&p
->tasks
);
135 list_del_init(&p
->sibling
);
136 __this_cpu_dec(process_counts
);
138 list_del_rcu(&p
->thread_node
);
142 * This function expects the tasklist_lock write-locked.
144 static void __exit_signal(struct task_struct
*tsk
)
146 struct signal_struct
*sig
= tsk
->signal
;
147 bool group_dead
= thread_group_leader(tsk
);
148 struct sighand_struct
*sighand
;
149 struct tty_struct
*tty
;
152 sighand
= rcu_dereference_check(tsk
->sighand
,
153 lockdep_tasklist_lock_is_held());
154 spin_lock(&sighand
->siglock
);
156 #ifdef CONFIG_POSIX_TIMERS
157 posix_cpu_timers_exit(tsk
);
159 posix_cpu_timers_exit_group(tsk
);
167 * If there is any task waiting for the group exit
170 if (sig
->notify_count
> 0 && !--sig
->notify_count
)
171 wake_up_process(sig
->group_exec_task
);
173 if (tsk
== sig
->curr_target
)
174 sig
->curr_target
= next_thread(tsk
);
177 add_device_randomness((const void*) &tsk
->se
.sum_exec_runtime
,
178 sizeof(unsigned long long));
181 * Accumulate here the counters for all threads as they die. We could
182 * skip the group leader because it is the last user of signal_struct,
183 * but we want to avoid the race with thread_group_cputime() which can
184 * see the empty ->thread_head list.
186 task_cputime(tsk
, &utime
, &stime
);
187 write_seqlock(&sig
->stats_lock
);
190 sig
->gtime
+= task_gtime(tsk
);
191 sig
->min_flt
+= tsk
->min_flt
;
192 sig
->maj_flt
+= tsk
->maj_flt
;
193 sig
->nvcsw
+= tsk
->nvcsw
;
194 sig
->nivcsw
+= tsk
->nivcsw
;
195 sig
->inblock
+= task_io_get_inblock(tsk
);
196 sig
->oublock
+= task_io_get_oublock(tsk
);
197 task_io_accounting_add(&sig
->ioac
, &tsk
->ioac
);
198 sig
->sum_sched_runtime
+= tsk
->se
.sum_exec_runtime
;
200 __unhash_process(tsk
, group_dead
);
201 write_sequnlock(&sig
->stats_lock
);
204 * Do this under ->siglock, we can race with another thread
205 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
207 flush_sigqueue(&tsk
->pending
);
209 spin_unlock(&sighand
->siglock
);
211 __cleanup_sighand(sighand
);
212 clear_tsk_thread_flag(tsk
, TIF_SIGPENDING
);
214 flush_sigqueue(&sig
->shared_pending
);
219 static void delayed_put_task_struct(struct rcu_head
*rhp
)
221 struct task_struct
*tsk
= container_of(rhp
, struct task_struct
, rcu
);
223 kprobe_flush_task(tsk
);
224 rethook_flush_task(tsk
);
225 perf_event_delayed_put(tsk
);
226 trace_sched_process_free(tsk
);
227 put_task_struct(tsk
);
230 void put_task_struct_rcu_user(struct task_struct
*task
)
232 if (refcount_dec_and_test(&task
->rcu_users
))
233 call_rcu(&task
->rcu
, delayed_put_task_struct
);
236 void __weak
release_thread(struct task_struct
*dead_task
)
240 void release_task(struct task_struct
*p
)
242 struct task_struct
*leader
;
243 struct pid
*thread_pid
;
246 /* don't need to get the RCU readlock here - the process is dead and
247 * can't be modifying its own credentials. But shut RCU-lockdep up */
249 dec_rlimit_ucounts(task_ucounts(p
), UCOUNT_RLIMIT_NPROC
, 1);
254 write_lock_irq(&tasklist_lock
);
255 ptrace_release_task(p
);
256 thread_pid
= get_pid(p
->thread_pid
);
260 * If we are the last non-leader member of the thread
261 * group, and the leader is zombie, then notify the
262 * group leader's parent process. (if it wants notification.)
265 leader
= p
->group_leader
;
266 if (leader
!= p
&& thread_group_empty(leader
)
267 && leader
->exit_state
== EXIT_ZOMBIE
) {
269 * If we were the last child thread and the leader has
270 * exited already, and the leader's parent ignores SIGCHLD,
271 * then we are the one who should release the leader.
273 zap_leader
= do_notify_parent(leader
, leader
->exit_signal
);
275 leader
->exit_state
= EXIT_DEAD
;
278 write_unlock_irq(&tasklist_lock
);
279 proc_flush_pid(thread_pid
);
282 put_task_struct_rcu_user(p
);
285 if (unlikely(zap_leader
))
289 int rcuwait_wake_up(struct rcuwait
*w
)
292 struct task_struct
*task
;
297 * Order condition vs @task, such that everything prior to the load
298 * of @task is visible. This is the condition as to why the user called
299 * rcuwait_wake() in the first place. Pairs with set_current_state()
300 * barrier (A) in rcuwait_wait_event().
303 * [S] tsk = current [S] cond = true
309 task
= rcu_dereference(w
->task
);
311 ret
= wake_up_process(task
);
316 EXPORT_SYMBOL_GPL(rcuwait_wake_up
);
319 * Determine if a process group is "orphaned", according to the POSIX
320 * definition in 2.2.2.52. Orphaned process groups are not to be affected
321 * by terminal-generated stop signals. Newly orphaned process groups are
322 * to receive a SIGHUP and a SIGCONT.
324 * "I ask you, have you ever known what it is to be an orphan?"
326 static int will_become_orphaned_pgrp(struct pid
*pgrp
,
327 struct task_struct
*ignored_task
)
329 struct task_struct
*p
;
331 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
332 if ((p
== ignored_task
) ||
333 (p
->exit_state
&& thread_group_empty(p
)) ||
334 is_global_init(p
->real_parent
))
337 if (task_pgrp(p
->real_parent
) != pgrp
&&
338 task_session(p
->real_parent
) == task_session(p
))
340 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
345 int is_current_pgrp_orphaned(void)
349 read_lock(&tasklist_lock
);
350 retval
= will_become_orphaned_pgrp(task_pgrp(current
), NULL
);
351 read_unlock(&tasklist_lock
);
356 static bool has_stopped_jobs(struct pid
*pgrp
)
358 struct task_struct
*p
;
360 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
361 if (p
->signal
->flags
& SIGNAL_STOP_STOPPED
)
363 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
369 * Check to see if any process groups have become orphaned as
370 * a result of our exiting, and if they have any stopped jobs,
371 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
374 kill_orphaned_pgrp(struct task_struct
*tsk
, struct task_struct
*parent
)
376 struct pid
*pgrp
= task_pgrp(tsk
);
377 struct task_struct
*ignored_task
= tsk
;
380 /* exit: our father is in a different pgrp than
381 * we are and we were the only connection outside.
383 parent
= tsk
->real_parent
;
385 /* reparent: our child is in a different pgrp than
386 * we are, and it was the only connection outside.
390 if (task_pgrp(parent
) != pgrp
&&
391 task_session(parent
) == task_session(tsk
) &&
392 will_become_orphaned_pgrp(pgrp
, ignored_task
) &&
393 has_stopped_jobs(pgrp
)) {
394 __kill_pgrp_info(SIGHUP
, SEND_SIG_PRIV
, pgrp
);
395 __kill_pgrp_info(SIGCONT
, SEND_SIG_PRIV
, pgrp
);
399 static void coredump_task_exit(struct task_struct
*tsk
)
401 struct core_state
*core_state
;
404 * Serialize with any possible pending coredump.
405 * We must hold siglock around checking core_state
406 * and setting PF_POSTCOREDUMP. The core-inducing thread
407 * will increment ->nr_threads for each thread in the
408 * group without PF_POSTCOREDUMP set.
410 spin_lock_irq(&tsk
->sighand
->siglock
);
411 tsk
->flags
|= PF_POSTCOREDUMP
;
412 core_state
= tsk
->signal
->core_state
;
413 spin_unlock_irq(&tsk
->sighand
->siglock
);
415 struct core_thread self
;
418 if (self
.task
->flags
& PF_SIGNALED
)
419 self
.next
= xchg(&core_state
->dumper
.next
, &self
);
423 * Implies mb(), the result of xchg() must be visible
424 * to core_state->dumper.
426 if (atomic_dec_and_test(&core_state
->nr_threads
))
427 complete(&core_state
->startup
);
430 set_current_state(TASK_IDLE
|TASK_FREEZABLE
);
431 if (!self
.task
) /* see coredump_finish() */
435 __set_current_state(TASK_RUNNING
);
440 /* drops tasklist_lock if succeeds */
441 static bool __try_to_set_owner(struct task_struct
*tsk
, struct mm_struct
*mm
)
446 if (likely(tsk
->mm
== mm
)) {
447 /* tsk can't pass exit_mm/exec_mmap and exit */
448 read_unlock(&tasklist_lock
);
449 WRITE_ONCE(mm
->owner
, tsk
);
450 lru_gen_migrate_mm(mm
);
457 static bool try_to_set_owner(struct task_struct
*g
, struct mm_struct
*mm
)
459 struct task_struct
*t
;
461 for_each_thread(g
, t
) {
462 struct mm_struct
*t_mm
= READ_ONCE(t
->mm
);
464 if (__try_to_set_owner(t
, mm
))
474 * A task is exiting. If it owned this mm, find a new owner for the mm.
476 void mm_update_next_owner(struct mm_struct
*mm
)
478 struct task_struct
*g
, *p
= current
;
481 * If the exiting or execing task is not the owner, it's
482 * someone else's problem.
487 * The current owner is exiting/execing and there are no other
488 * candidates. Do not leave the mm pointing to a possibly
489 * freed task structure.
491 if (atomic_read(&mm
->mm_users
) <= 1) {
492 WRITE_ONCE(mm
->owner
, NULL
);
496 read_lock(&tasklist_lock
);
498 * Search in the children
500 list_for_each_entry(g
, &p
->children
, sibling
) {
501 if (try_to_set_owner(g
, mm
))
505 * Search in the siblings
507 list_for_each_entry(g
, &p
->real_parent
->children
, sibling
) {
508 if (try_to_set_owner(g
, mm
))
512 * Search through everything else, we should not get here often.
514 for_each_process(g
) {
515 if (atomic_read(&mm
->mm_users
) <= 1)
517 if (g
->flags
& PF_KTHREAD
)
519 if (try_to_set_owner(g
, mm
))
522 read_unlock(&tasklist_lock
);
524 * We found no owner yet mm_users > 1: this implies that we are
525 * most likely racing with swapoff (try_to_unuse()) or /proc or
526 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
528 WRITE_ONCE(mm
->owner
, NULL
);
533 #endif /* CONFIG_MEMCG */
536 * Turn us into a lazy TLB process if we
539 static void exit_mm(void)
541 struct mm_struct
*mm
= current
->mm
;
543 exit_mm_release(current
, mm
);
548 BUG_ON(mm
!= current
->active_mm
);
549 /* more a memory barrier than a real lock */
552 * When a thread stops operating on an address space, the loop
553 * in membarrier_private_expedited() may not observe that
554 * tsk->mm, and the loop in membarrier_global_expedited() may
555 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
556 * rq->membarrier_state, so those would not issue an IPI.
557 * Membarrier requires a memory barrier after accessing
558 * user-space memory, before clearing tsk->mm or the
559 * rq->membarrier_state.
561 smp_mb__after_spinlock();
564 membarrier_update_current_mm(NULL
);
565 enter_lazy_tlb(mm
, current
);
567 task_unlock(current
);
568 mmap_read_unlock(mm
);
569 mm_update_next_owner(mm
);
571 if (test_thread_flag(TIF_MEMDIE
))
575 static struct task_struct
*find_alive_thread(struct task_struct
*p
)
577 struct task_struct
*t
;
579 for_each_thread(p
, t
) {
580 if (!(t
->flags
& PF_EXITING
))
586 static struct task_struct
*find_child_reaper(struct task_struct
*father
,
587 struct list_head
*dead
)
588 __releases(&tasklist_lock
)
589 __acquires(&tasklist_lock
)
591 struct pid_namespace
*pid_ns
= task_active_pid_ns(father
);
592 struct task_struct
*reaper
= pid_ns
->child_reaper
;
593 struct task_struct
*p
, *n
;
595 if (likely(reaper
!= father
))
598 reaper
= find_alive_thread(father
);
600 pid_ns
->child_reaper
= reaper
;
604 write_unlock_irq(&tasklist_lock
);
606 list_for_each_entry_safe(p
, n
, dead
, ptrace_entry
) {
607 list_del_init(&p
->ptrace_entry
);
611 zap_pid_ns_processes(pid_ns
);
612 write_lock_irq(&tasklist_lock
);
618 * When we die, we re-parent all our children, and try to:
619 * 1. give them to another thread in our thread group, if such a member exists
620 * 2. give it to the first ancestor process which prctl'd itself as a
621 * child_subreaper for its children (like a service manager)
622 * 3. give it to the init process (PID 1) in our pid namespace
624 static struct task_struct
*find_new_reaper(struct task_struct
*father
,
625 struct task_struct
*child_reaper
)
627 struct task_struct
*thread
, *reaper
;
629 thread
= find_alive_thread(father
);
633 if (father
->signal
->has_child_subreaper
) {
634 unsigned int ns_level
= task_pid(father
)->level
;
636 * Find the first ->is_child_subreaper ancestor in our pid_ns.
637 * We can't check reaper != child_reaper to ensure we do not
638 * cross the namespaces, the exiting parent could be injected
639 * by setns() + fork().
640 * We check pid->level, this is slightly more efficient than
641 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
643 for (reaper
= father
->real_parent
;
644 task_pid(reaper
)->level
== ns_level
;
645 reaper
= reaper
->real_parent
) {
646 if (reaper
== &init_task
)
648 if (!reaper
->signal
->is_child_subreaper
)
650 thread
= find_alive_thread(reaper
);
660 * Any that need to be release_task'd are put on the @dead list.
662 static void reparent_leader(struct task_struct
*father
, struct task_struct
*p
,
663 struct list_head
*dead
)
665 if (unlikely(p
->exit_state
== EXIT_DEAD
))
668 /* We don't want people slaying init. */
669 p
->exit_signal
= SIGCHLD
;
671 /* If it has exited notify the new parent about this child's death. */
673 p
->exit_state
== EXIT_ZOMBIE
&& thread_group_empty(p
)) {
674 if (do_notify_parent(p
, p
->exit_signal
)) {
675 p
->exit_state
= EXIT_DEAD
;
676 list_add(&p
->ptrace_entry
, dead
);
680 kill_orphaned_pgrp(p
, father
);
684 * This does two things:
686 * A. Make init inherit all the child processes
687 * B. Check to see if any process groups have become orphaned
688 * as a result of our exiting, and if they have any stopped
689 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
691 static void forget_original_parent(struct task_struct
*father
,
692 struct list_head
*dead
)
694 struct task_struct
*p
, *t
, *reaper
;
696 if (unlikely(!list_empty(&father
->ptraced
)))
697 exit_ptrace(father
, dead
);
699 /* Can drop and reacquire tasklist_lock */
700 reaper
= find_child_reaper(father
, dead
);
701 if (list_empty(&father
->children
))
704 reaper
= find_new_reaper(father
, reaper
);
705 list_for_each_entry(p
, &father
->children
, sibling
) {
706 for_each_thread(p
, t
) {
707 RCU_INIT_POINTER(t
->real_parent
, reaper
);
708 BUG_ON((!t
->ptrace
) != (rcu_access_pointer(t
->parent
) == father
));
709 if (likely(!t
->ptrace
))
710 t
->parent
= t
->real_parent
;
711 if (t
->pdeath_signal
)
712 group_send_sig_info(t
->pdeath_signal
,
717 * If this is a threaded reparent there is no need to
718 * notify anyone anything has happened.
720 if (!same_thread_group(reaper
, father
))
721 reparent_leader(father
, p
, dead
);
723 list_splice_tail_init(&father
->children
, &reaper
->children
);
727 * Send signals to all our closest relatives so that they know
728 * to properly mourn us..
730 static void exit_notify(struct task_struct
*tsk
, int group_dead
)
733 struct task_struct
*p
, *n
;
736 write_lock_irq(&tasklist_lock
);
737 forget_original_parent(tsk
, &dead
);
740 kill_orphaned_pgrp(tsk
->group_leader
, NULL
);
742 tsk
->exit_state
= EXIT_ZOMBIE
;
744 * sub-thread or delay_group_leader(), wake up the
745 * PIDFD_THREAD waiters.
747 if (!thread_group_empty(tsk
))
748 do_notify_pidfd(tsk
);
750 if (unlikely(tsk
->ptrace
)) {
751 int sig
= thread_group_leader(tsk
) &&
752 thread_group_empty(tsk
) &&
753 !ptrace_reparented(tsk
) ?
754 tsk
->exit_signal
: SIGCHLD
;
755 autoreap
= do_notify_parent(tsk
, sig
);
756 } else if (thread_group_leader(tsk
)) {
757 autoreap
= thread_group_empty(tsk
) &&
758 do_notify_parent(tsk
, tsk
->exit_signal
);
764 tsk
->exit_state
= EXIT_DEAD
;
765 list_add(&tsk
->ptrace_entry
, &dead
);
768 /* mt-exec, de_thread() is waiting for group leader */
769 if (unlikely(tsk
->signal
->notify_count
< 0))
770 wake_up_process(tsk
->signal
->group_exec_task
);
771 write_unlock_irq(&tasklist_lock
);
773 list_for_each_entry_safe(p
, n
, &dead
, ptrace_entry
) {
774 list_del_init(&p
->ptrace_entry
);
779 #ifdef CONFIG_DEBUG_STACK_USAGE
780 unsigned long stack_not_used(struct task_struct
*p
)
782 unsigned long *n
= end_of_stack(p
);
784 do { /* Skip over canary */
785 # ifdef CONFIG_STACK_GROWSUP
792 # ifdef CONFIG_STACK_GROWSUP
793 return (unsigned long)end_of_stack(p
) - (unsigned long)n
;
795 return (unsigned long)n
- (unsigned long)end_of_stack(p
);
799 /* Count the maximum pages reached in kernel stacks */
800 static inline void kstack_histogram(unsigned long used_stack
)
802 #ifdef CONFIG_VM_EVENT_COUNTERS
803 if (used_stack
<= 1024)
804 count_vm_event(KSTACK_1K
);
805 #if THREAD_SIZE > 1024
806 else if (used_stack
<= 2048)
807 count_vm_event(KSTACK_2K
);
809 #if THREAD_SIZE > 2048
810 else if (used_stack
<= 4096)
811 count_vm_event(KSTACK_4K
);
813 #if THREAD_SIZE > 4096
814 else if (used_stack
<= 8192)
815 count_vm_event(KSTACK_8K
);
817 #if THREAD_SIZE > 8192
818 else if (used_stack
<= 16384)
819 count_vm_event(KSTACK_16K
);
821 #if THREAD_SIZE > 16384
822 else if (used_stack
<= 32768)
823 count_vm_event(KSTACK_32K
);
825 #if THREAD_SIZE > 32768
826 else if (used_stack
<= 65536)
827 count_vm_event(KSTACK_64K
);
829 #if THREAD_SIZE > 65536
831 count_vm_event(KSTACK_REST
);
833 #endif /* CONFIG_VM_EVENT_COUNTERS */
836 static void check_stack_usage(void)
838 static DEFINE_SPINLOCK(low_water_lock
);
839 static int lowest_to_date
= THREAD_SIZE
;
842 free
= stack_not_used(current
);
843 kstack_histogram(THREAD_SIZE
- free
);
845 if (free
>= lowest_to_date
)
848 spin_lock(&low_water_lock
);
849 if (free
< lowest_to_date
) {
850 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
851 current
->comm
, task_pid_nr(current
), free
);
852 lowest_to_date
= free
;
854 spin_unlock(&low_water_lock
);
857 static inline void check_stack_usage(void) {}
860 static void synchronize_group_exit(struct task_struct
*tsk
, long code
)
862 struct sighand_struct
*sighand
= tsk
->sighand
;
863 struct signal_struct
*signal
= tsk
->signal
;
865 spin_lock_irq(&sighand
->siglock
);
866 signal
->quick_threads
--;
867 if ((signal
->quick_threads
== 0) &&
868 !(signal
->flags
& SIGNAL_GROUP_EXIT
)) {
869 signal
->flags
= SIGNAL_GROUP_EXIT
;
870 signal
->group_exit_code
= code
;
871 signal
->group_stop_count
= 0;
873 spin_unlock_irq(&sighand
->siglock
);
876 void __noreturn
do_exit(long code
)
878 struct task_struct
*tsk
= current
;
881 WARN_ON(irqs_disabled());
883 synchronize_group_exit(tsk
, code
);
888 kmsan_task_exit(tsk
);
890 coredump_task_exit(tsk
);
891 ptrace_event(PTRACE_EVENT_EXIT
, code
);
892 user_events_exit(tsk
);
894 io_uring_files_cancel();
895 exit_signals(tsk
); /* sets PF_EXITING */
897 seccomp_filter_release(tsk
);
899 acct_update_integrals(tsk
);
900 group_dead
= atomic_dec_and_test(&tsk
->signal
->live
);
903 * If the last thread of global init has exited, panic
904 * immediately to get a useable coredump.
906 if (unlikely(is_global_init(tsk
)))
907 panic("Attempted to kill init! exitcode=0x%08x\n",
908 tsk
->signal
->group_exit_code
?: (int)code
);
910 #ifdef CONFIG_POSIX_TIMERS
911 hrtimer_cancel(&tsk
->signal
->real_timer
);
915 setmax_mm_hiwater_rss(&tsk
->signal
->maxrss
, tsk
->mm
);
917 acct_collect(code
, group_dead
);
922 tsk
->exit_code
= code
;
923 taskstats_exit(tsk
, group_dead
);
929 trace_sched_process_exit(tsk
);
936 disassociate_ctty(1);
937 exit_task_namespaces(tsk
);
942 * Flush inherited counters to the parent - before the parent
943 * gets woken up by child-exit notifications.
945 * because of cgroup mode, must be called before cgroup_exit()
947 perf_event_exit_task(tsk
);
949 sched_autogroup_exit_task(tsk
);
953 * FIXME: do that only when needed, using sched_exit tracepoint
955 flush_ptrace_hw_breakpoint(tsk
);
957 exit_tasks_rcu_start();
958 exit_notify(tsk
, group_dead
);
959 proc_exit_connector(tsk
);
960 mpol_put_task_policy(tsk
);
962 if (unlikely(current
->pi_state_cache
))
963 kfree(current
->pi_state_cache
);
966 * Make sure we are holding no locks:
968 debug_check_no_locks_held();
971 exit_io_context(tsk
);
973 if (tsk
->splice_pipe
)
974 free_pipe_info(tsk
->splice_pipe
);
976 if (tsk
->task_frag
.page
)
977 put_page(tsk
->task_frag
.page
);
979 exit_task_stack_account(tsk
);
984 __this_cpu_add(dirty_throttle_leaks
, tsk
->nr_dirtied
);
986 exit_tasks_rcu_finish();
988 lockdep_free_task(tsk
);
992 void __noreturn
make_task_dead(int signr
)
995 * Take the task off the cpu after something catastrophic has
998 * We can get here from a kernel oops, sometimes with preemption off.
999 * Start by checking for critical errors.
1000 * Then fix up important state like USER_DS and preemption.
1001 * Then do everything else.
1003 struct task_struct
*tsk
= current
;
1006 if (unlikely(in_interrupt()))
1007 panic("Aiee, killing interrupt handler!");
1008 if (unlikely(!tsk
->pid
))
1009 panic("Attempted to kill the idle task!");
1011 if (unlikely(irqs_disabled())) {
1012 pr_info("note: %s[%d] exited with irqs disabled\n",
1013 current
->comm
, task_pid_nr(current
));
1016 if (unlikely(in_atomic())) {
1017 pr_info("note: %s[%d] exited with preempt_count %d\n",
1018 current
->comm
, task_pid_nr(current
),
1020 preempt_count_set(PREEMPT_ENABLED
);
1024 * Every time the system oopses, if the oops happens while a reference
1025 * to an object was held, the reference leaks.
1026 * If the oops doesn't also leak memory, repeated oopsing can cause
1027 * reference counters to wrap around (if they're not using refcount_t).
1028 * This means that repeated oopsing can make unexploitable-looking bugs
1029 * exploitable through repeated oopsing.
1030 * To make sure this can't happen, place an upper bound on how often the
1031 * kernel may oops without panic().
1033 limit
= READ_ONCE(oops_limit
);
1034 if (atomic_inc_return(&oops_count
) >= limit
&& limit
)
1035 panic("Oopsed too often (kernel.oops_limit is %d)", limit
);
1038 * We're taking recursive faults here in make_task_dead. Safest is to just
1039 * leave this task alone and wait for reboot.
1041 if (unlikely(tsk
->flags
& PF_EXITING
)) {
1042 pr_alert("Fixing recursive fault but reboot is needed!\n");
1043 futex_exit_recursive(tsk
);
1044 tsk
->exit_state
= EXIT_DEAD
;
1045 refcount_inc(&tsk
->rcu_users
);
1052 SYSCALL_DEFINE1(exit
, int, error_code
)
1054 do_exit((error_code
&0xff)<<8);
1058 * Take down every thread in the group. This is called by fatal signals
1059 * as well as by sys_exit_group (below).
1062 do_group_exit(int exit_code
)
1064 struct signal_struct
*sig
= current
->signal
;
1066 if (sig
->flags
& SIGNAL_GROUP_EXIT
)
1067 exit_code
= sig
->group_exit_code
;
1068 else if (sig
->group_exec_task
)
1071 struct sighand_struct
*const sighand
= current
->sighand
;
1073 spin_lock_irq(&sighand
->siglock
);
1074 if (sig
->flags
& SIGNAL_GROUP_EXIT
)
1075 /* Another thread got here before we took the lock. */
1076 exit_code
= sig
->group_exit_code
;
1077 else if (sig
->group_exec_task
)
1080 sig
->group_exit_code
= exit_code
;
1081 sig
->flags
= SIGNAL_GROUP_EXIT
;
1082 zap_other_threads(current
);
1084 spin_unlock_irq(&sighand
->siglock
);
1092 * this kills every thread in the thread group. Note that any externally
1093 * wait4()-ing process will get the correct exit code - even if this
1094 * thread is not the thread group leader.
1096 SYSCALL_DEFINE1(exit_group
, int, error_code
)
1098 do_group_exit((error_code
& 0xff) << 8);
1103 static int eligible_pid(struct wait_opts
*wo
, struct task_struct
*p
)
1105 return wo
->wo_type
== PIDTYPE_MAX
||
1106 task_pid_type(p
, wo
->wo_type
) == wo
->wo_pid
;
1110 eligible_child(struct wait_opts
*wo
, bool ptrace
, struct task_struct
*p
)
1112 if (!eligible_pid(wo
, p
))
1116 * Wait for all children (clone and not) if __WALL is set or
1117 * if it is traced by us.
1119 if (ptrace
|| (wo
->wo_flags
& __WALL
))
1123 * Otherwise, wait for clone children *only* if __WCLONE is set;
1124 * otherwise, wait for non-clone children *only*.
1126 * Note: a "clone" child here is one that reports to its parent
1127 * using a signal other than SIGCHLD, or a non-leader thread which
1128 * we can only see if it is traced by us.
1130 if ((p
->exit_signal
!= SIGCHLD
) ^ !!(wo
->wo_flags
& __WCLONE
))
1137 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1138 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1139 * the lock and this task is uninteresting. If we return nonzero, we have
1140 * released the lock and the system call should return.
1142 static int wait_task_zombie(struct wait_opts
*wo
, struct task_struct
*p
)
1145 pid_t pid
= task_pid_vnr(p
);
1146 uid_t uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
1147 struct waitid_info
*infop
;
1149 if (!likely(wo
->wo_flags
& WEXITED
))
1152 if (unlikely(wo
->wo_flags
& WNOWAIT
)) {
1153 status
= (p
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1154 ? p
->signal
->group_exit_code
: p
->exit_code
;
1156 read_unlock(&tasklist_lock
);
1157 sched_annotate_sleep();
1159 getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
);
1164 * Move the task's state to DEAD/TRACE, only one thread can do this.
1166 state
= (ptrace_reparented(p
) && thread_group_leader(p
)) ?
1167 EXIT_TRACE
: EXIT_DEAD
;
1168 if (cmpxchg(&p
->exit_state
, EXIT_ZOMBIE
, state
) != EXIT_ZOMBIE
)
1171 * We own this thread, nobody else can reap it.
1173 read_unlock(&tasklist_lock
);
1174 sched_annotate_sleep();
1177 * Check thread_group_leader() to exclude the traced sub-threads.
1179 if (state
== EXIT_DEAD
&& thread_group_leader(p
)) {
1180 struct signal_struct
*sig
= p
->signal
;
1181 struct signal_struct
*psig
= current
->signal
;
1182 unsigned long maxrss
;
1183 u64 tgutime
, tgstime
;
1186 * The resource counters for the group leader are in its
1187 * own task_struct. Those for dead threads in the group
1188 * are in its signal_struct, as are those for the child
1189 * processes it has previously reaped. All these
1190 * accumulate in the parent's signal_struct c* fields.
1192 * We don't bother to take a lock here to protect these
1193 * p->signal fields because the whole thread group is dead
1194 * and nobody can change them.
1196 * psig->stats_lock also protects us from our sub-threads
1197 * which can reap other children at the same time.
1199 * We use thread_group_cputime_adjusted() to get times for
1200 * the thread group, which consolidates times for all threads
1201 * in the group including the group leader.
1203 thread_group_cputime_adjusted(p
, &tgutime
, &tgstime
);
1204 write_seqlock_irq(&psig
->stats_lock
);
1205 psig
->cutime
+= tgutime
+ sig
->cutime
;
1206 psig
->cstime
+= tgstime
+ sig
->cstime
;
1207 psig
->cgtime
+= task_gtime(p
) + sig
->gtime
+ sig
->cgtime
;
1209 p
->min_flt
+ sig
->min_flt
+ sig
->cmin_flt
;
1211 p
->maj_flt
+ sig
->maj_flt
+ sig
->cmaj_flt
;
1213 p
->nvcsw
+ sig
->nvcsw
+ sig
->cnvcsw
;
1215 p
->nivcsw
+ sig
->nivcsw
+ sig
->cnivcsw
;
1217 task_io_get_inblock(p
) +
1218 sig
->inblock
+ sig
->cinblock
;
1220 task_io_get_oublock(p
) +
1221 sig
->oublock
+ sig
->coublock
;
1222 maxrss
= max(sig
->maxrss
, sig
->cmaxrss
);
1223 if (psig
->cmaxrss
< maxrss
)
1224 psig
->cmaxrss
= maxrss
;
1225 task_io_accounting_add(&psig
->ioac
, &p
->ioac
);
1226 task_io_accounting_add(&psig
->ioac
, &sig
->ioac
);
1227 write_sequnlock_irq(&psig
->stats_lock
);
1231 getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
);
1232 status
= (p
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1233 ? p
->signal
->group_exit_code
: p
->exit_code
;
1234 wo
->wo_stat
= status
;
1236 if (state
== EXIT_TRACE
) {
1237 write_lock_irq(&tasklist_lock
);
1238 /* We dropped tasklist, ptracer could die and untrace */
1241 /* If parent wants a zombie, don't release it now */
1242 state
= EXIT_ZOMBIE
;
1243 if (do_notify_parent(p
, p
->exit_signal
))
1245 p
->exit_state
= state
;
1246 write_unlock_irq(&tasklist_lock
);
1248 if (state
== EXIT_DEAD
)
1252 infop
= wo
->wo_info
;
1254 if ((status
& 0x7f) == 0) {
1255 infop
->cause
= CLD_EXITED
;
1256 infop
->status
= status
>> 8;
1258 infop
->cause
= (status
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1259 infop
->status
= status
& 0x7f;
1268 static int *task_stopped_code(struct task_struct
*p
, bool ptrace
)
1271 if (task_is_traced(p
) && !(p
->jobctl
& JOBCTL_LISTENING
))
1272 return &p
->exit_code
;
1274 if (p
->signal
->flags
& SIGNAL_STOP_STOPPED
)
1275 return &p
->signal
->group_exit_code
;
1281 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1283 * @ptrace: is the wait for ptrace
1284 * @p: task to wait for
1286 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1289 * read_lock(&tasklist_lock), which is released if return value is
1290 * non-zero. Also, grabs and releases @p->sighand->siglock.
1293 * 0 if wait condition didn't exist and search for other wait conditions
1294 * should continue. Non-zero return, -errno on failure and @p's pid on
1295 * success, implies that tasklist_lock is released and wait condition
1296 * search should terminate.
1298 static int wait_task_stopped(struct wait_opts
*wo
,
1299 int ptrace
, struct task_struct
*p
)
1301 struct waitid_info
*infop
;
1302 int exit_code
, *p_code
, why
;
1303 uid_t uid
= 0; /* unneeded, required by compiler */
1307 * Traditionally we see ptrace'd stopped tasks regardless of options.
1309 if (!ptrace
&& !(wo
->wo_flags
& WUNTRACED
))
1312 if (!task_stopped_code(p
, ptrace
))
1316 spin_lock_irq(&p
->sighand
->siglock
);
1318 p_code
= task_stopped_code(p
, ptrace
);
1319 if (unlikely(!p_code
))
1322 exit_code
= *p_code
;
1326 if (!unlikely(wo
->wo_flags
& WNOWAIT
))
1329 uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
1331 spin_unlock_irq(&p
->sighand
->siglock
);
1336 * Now we are pretty sure this task is interesting.
1337 * Make sure it doesn't get reaped out from under us while we
1338 * give up the lock and then examine it below. We don't want to
1339 * keep holding onto the tasklist_lock while we call getrusage and
1340 * possibly take page faults for user memory.
1343 pid
= task_pid_vnr(p
);
1344 why
= ptrace
? CLD_TRAPPED
: CLD_STOPPED
;
1345 read_unlock(&tasklist_lock
);
1346 sched_annotate_sleep();
1348 getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
);
1351 if (likely(!(wo
->wo_flags
& WNOWAIT
)))
1352 wo
->wo_stat
= (exit_code
<< 8) | 0x7f;
1354 infop
= wo
->wo_info
;
1357 infop
->status
= exit_code
;
1365 * Handle do_wait work for one task in a live, non-stopped state.
1366 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1367 * the lock and this task is uninteresting. If we return nonzero, we have
1368 * released the lock and the system call should return.
1370 static int wait_task_continued(struct wait_opts
*wo
, struct task_struct
*p
)
1372 struct waitid_info
*infop
;
1376 if (!unlikely(wo
->wo_flags
& WCONTINUED
))
1379 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
))
1382 spin_lock_irq(&p
->sighand
->siglock
);
1383 /* Re-check with the lock held. */
1384 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
)) {
1385 spin_unlock_irq(&p
->sighand
->siglock
);
1388 if (!unlikely(wo
->wo_flags
& WNOWAIT
))
1389 p
->signal
->flags
&= ~SIGNAL_STOP_CONTINUED
;
1390 uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
1391 spin_unlock_irq(&p
->sighand
->siglock
);
1393 pid
= task_pid_vnr(p
);
1395 read_unlock(&tasklist_lock
);
1396 sched_annotate_sleep();
1398 getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
);
1401 infop
= wo
->wo_info
;
1403 wo
->wo_stat
= 0xffff;
1405 infop
->cause
= CLD_CONTINUED
;
1408 infop
->status
= SIGCONT
;
1414 * Consider @p for a wait by @parent.
1416 * -ECHILD should be in ->notask_error before the first call.
1417 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1418 * Returns zero if the search for a child should continue;
1419 * then ->notask_error is 0 if @p is an eligible child,
1422 static int wait_consider_task(struct wait_opts
*wo
, int ptrace
,
1423 struct task_struct
*p
)
1426 * We can race with wait_task_zombie() from another thread.
1427 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1428 * can't confuse the checks below.
1430 int exit_state
= READ_ONCE(p
->exit_state
);
1433 if (unlikely(exit_state
== EXIT_DEAD
))
1436 ret
= eligible_child(wo
, ptrace
, p
);
1440 if (unlikely(exit_state
== EXIT_TRACE
)) {
1442 * ptrace == 0 means we are the natural parent. In this case
1443 * we should clear notask_error, debugger will notify us.
1445 if (likely(!ptrace
))
1446 wo
->notask_error
= 0;
1450 if (likely(!ptrace
) && unlikely(p
->ptrace
)) {
1452 * If it is traced by its real parent's group, just pretend
1453 * the caller is ptrace_do_wait() and reap this child if it
1456 * This also hides group stop state from real parent; otherwise
1457 * a single stop can be reported twice as group and ptrace stop.
1458 * If a ptracer wants to distinguish these two events for its
1459 * own children it should create a separate process which takes
1460 * the role of real parent.
1462 if (!ptrace_reparented(p
))
1467 if (exit_state
== EXIT_ZOMBIE
) {
1468 /* we don't reap group leaders with subthreads */
1469 if (!delay_group_leader(p
)) {
1471 * A zombie ptracee is only visible to its ptracer.
1472 * Notification and reaping will be cascaded to the
1473 * real parent when the ptracer detaches.
1475 if (unlikely(ptrace
) || likely(!p
->ptrace
))
1476 return wait_task_zombie(wo
, p
);
1480 * Allow access to stopped/continued state via zombie by
1481 * falling through. Clearing of notask_error is complex.
1485 * If WEXITED is set, notask_error should naturally be
1486 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1487 * so, if there are live subthreads, there are events to
1488 * wait for. If all subthreads are dead, it's still safe
1489 * to clear - this function will be called again in finite
1490 * amount time once all the subthreads are released and
1491 * will then return without clearing.
1495 * Stopped state is per-task and thus can't change once the
1496 * target task dies. Only continued and exited can happen.
1497 * Clear notask_error if WCONTINUED | WEXITED.
1499 if (likely(!ptrace
) || (wo
->wo_flags
& (WCONTINUED
| WEXITED
)))
1500 wo
->notask_error
= 0;
1503 * @p is alive and it's gonna stop, continue or exit, so
1504 * there always is something to wait for.
1506 wo
->notask_error
= 0;
1510 * Wait for stopped. Depending on @ptrace, different stopped state
1511 * is used and the two don't interact with each other.
1513 ret
= wait_task_stopped(wo
, ptrace
, p
);
1518 * Wait for continued. There's only one continued state and the
1519 * ptracer can consume it which can confuse the real parent. Don't
1520 * use WCONTINUED from ptracer. You don't need or want it.
1522 return wait_task_continued(wo
, p
);
1526 * Do the work of do_wait() for one thread in the group, @tsk.
1528 * -ECHILD should be in ->notask_error before the first call.
1529 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1530 * Returns zero if the search for a child should continue; then
1531 * ->notask_error is 0 if there were any eligible children,
1534 static int do_wait_thread(struct wait_opts
*wo
, struct task_struct
*tsk
)
1536 struct task_struct
*p
;
1538 list_for_each_entry(p
, &tsk
->children
, sibling
) {
1539 int ret
= wait_consider_task(wo
, 0, p
);
1548 static int ptrace_do_wait(struct wait_opts
*wo
, struct task_struct
*tsk
)
1550 struct task_struct
*p
;
1552 list_for_each_entry(p
, &tsk
->ptraced
, ptrace_entry
) {
1553 int ret
= wait_consider_task(wo
, 1, p
);
1562 bool pid_child_should_wake(struct wait_opts
*wo
, struct task_struct
*p
)
1564 if (!eligible_pid(wo
, p
))
1567 if ((wo
->wo_flags
& __WNOTHREAD
) && wo
->child_wait
.private != p
->parent
)
1573 static int child_wait_callback(wait_queue_entry_t
*wait
, unsigned mode
,
1574 int sync
, void *key
)
1576 struct wait_opts
*wo
= container_of(wait
, struct wait_opts
,
1578 struct task_struct
*p
= key
;
1580 if (pid_child_should_wake(wo
, p
))
1581 return default_wake_function(wait
, mode
, sync
, key
);
1586 void __wake_up_parent(struct task_struct
*p
, struct task_struct
*parent
)
1588 __wake_up_sync_key(&parent
->signal
->wait_chldexit
,
1589 TASK_INTERRUPTIBLE
, p
);
1592 static bool is_effectively_child(struct wait_opts
*wo
, bool ptrace
,
1593 struct task_struct
*target
)
1595 struct task_struct
*parent
=
1596 !ptrace
? target
->real_parent
: target
->parent
;
1598 return current
== parent
|| (!(wo
->wo_flags
& __WNOTHREAD
) &&
1599 same_thread_group(current
, parent
));
1603 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1604 * and tracee lists to find the target task.
1606 static int do_wait_pid(struct wait_opts
*wo
)
1609 struct task_struct
*target
;
1613 target
= pid_task(wo
->wo_pid
, PIDTYPE_TGID
);
1614 if (target
&& is_effectively_child(wo
, ptrace
, target
)) {
1615 retval
= wait_consider_task(wo
, ptrace
, target
);
1621 target
= pid_task(wo
->wo_pid
, PIDTYPE_PID
);
1622 if (target
&& target
->ptrace
&&
1623 is_effectively_child(wo
, ptrace
, target
)) {
1624 retval
= wait_consider_task(wo
, ptrace
, target
);
1632 long __do_wait(struct wait_opts
*wo
)
1637 * If there is nothing that can match our criteria, just get out.
1638 * We will clear ->notask_error to zero if we see any child that
1639 * might later match our criteria, even if we are not able to reap
1642 wo
->notask_error
= -ECHILD
;
1643 if ((wo
->wo_type
< PIDTYPE_MAX
) &&
1644 (!wo
->wo_pid
|| !pid_has_task(wo
->wo_pid
, wo
->wo_type
)))
1647 read_lock(&tasklist_lock
);
1649 if (wo
->wo_type
== PIDTYPE_PID
) {
1650 retval
= do_wait_pid(wo
);
1654 struct task_struct
*tsk
= current
;
1657 retval
= do_wait_thread(wo
, tsk
);
1661 retval
= ptrace_do_wait(wo
, tsk
);
1665 if (wo
->wo_flags
& __WNOTHREAD
)
1667 } while_each_thread(current
, tsk
);
1669 read_unlock(&tasklist_lock
);
1672 retval
= wo
->notask_error
;
1673 if (!retval
&& !(wo
->wo_flags
& WNOHANG
))
1674 return -ERESTARTSYS
;
1679 static long do_wait(struct wait_opts
*wo
)
1683 trace_sched_process_wait(wo
->wo_pid
);
1685 init_waitqueue_func_entry(&wo
->child_wait
, child_wait_callback
);
1686 wo
->child_wait
.private = current
;
1687 add_wait_queue(¤t
->signal
->wait_chldexit
, &wo
->child_wait
);
1690 set_current_state(TASK_INTERRUPTIBLE
);
1691 retval
= __do_wait(wo
);
1692 if (retval
!= -ERESTARTSYS
)
1694 if (signal_pending(current
))
1699 __set_current_state(TASK_RUNNING
);
1700 remove_wait_queue(¤t
->signal
->wait_chldexit
, &wo
->child_wait
);
1704 int kernel_waitid_prepare(struct wait_opts
*wo
, int which
, pid_t upid
,
1705 struct waitid_info
*infop
, int options
,
1708 unsigned int f_flags
= 0;
1709 struct pid
*pid
= NULL
;
1712 if (options
& ~(WNOHANG
|WNOWAIT
|WEXITED
|WSTOPPED
|WCONTINUED
|
1713 __WNOTHREAD
|__WCLONE
|__WALL
))
1715 if (!(options
& (WEXITED
|WSTOPPED
|WCONTINUED
)))
1727 pid
= find_get_pid(upid
);
1730 type
= PIDTYPE_PGID
;
1735 pid
= find_get_pid(upid
);
1737 pid
= get_task_pid(current
, PIDTYPE_PGID
);
1744 pid
= pidfd_get_pid(upid
, &f_flags
);
1746 return PTR_ERR(pid
);
1755 wo
->wo_flags
= options
;
1756 wo
->wo_info
= infop
;
1758 if (f_flags
& O_NONBLOCK
)
1759 wo
->wo_flags
|= WNOHANG
;
1764 static long kernel_waitid(int which
, pid_t upid
, struct waitid_info
*infop
,
1765 int options
, struct rusage
*ru
)
1767 struct wait_opts wo
;
1770 ret
= kernel_waitid_prepare(&wo
, which
, upid
, infop
, options
, ru
);
1775 if (!ret
&& !(options
& WNOHANG
) && (wo
.wo_flags
& WNOHANG
))
1782 SYSCALL_DEFINE5(waitid
, int, which
, pid_t
, upid
, struct siginfo __user
*,
1783 infop
, int, options
, struct rusage __user
*, ru
)
1786 struct waitid_info info
= {.status
= 0};
1787 long err
= kernel_waitid(which
, upid
, &info
, options
, ru
? &r
: NULL
);
1793 if (ru
&& copy_to_user(ru
, &r
, sizeof(struct rusage
)))
1799 if (!user_write_access_begin(infop
, sizeof(*infop
)))
1802 unsafe_put_user(signo
, &infop
->si_signo
, Efault
);
1803 unsafe_put_user(0, &infop
->si_errno
, Efault
);
1804 unsafe_put_user(info
.cause
, &infop
->si_code
, Efault
);
1805 unsafe_put_user(info
.pid
, &infop
->si_pid
, Efault
);
1806 unsafe_put_user(info
.uid
, &infop
->si_uid
, Efault
);
1807 unsafe_put_user(info
.status
, &infop
->si_status
, Efault
);
1808 user_write_access_end();
1811 user_write_access_end();
1815 long kernel_wait4(pid_t upid
, int __user
*stat_addr
, int options
,
1818 struct wait_opts wo
;
1819 struct pid
*pid
= NULL
;
1823 if (options
& ~(WNOHANG
|WUNTRACED
|WCONTINUED
|
1824 __WNOTHREAD
|__WCLONE
|__WALL
))
1827 /* -INT_MIN is not defined */
1828 if (upid
== INT_MIN
)
1833 else if (upid
< 0) {
1834 type
= PIDTYPE_PGID
;
1835 pid
= find_get_pid(-upid
);
1836 } else if (upid
== 0) {
1837 type
= PIDTYPE_PGID
;
1838 pid
= get_task_pid(current
, PIDTYPE_PGID
);
1839 } else /* upid > 0 */ {
1841 pid
= find_get_pid(upid
);
1846 wo
.wo_flags
= options
| WEXITED
;
1852 if (ret
> 0 && stat_addr
&& put_user(wo
.wo_stat
, stat_addr
))
1858 int kernel_wait(pid_t pid
, int *stat
)
1860 struct wait_opts wo
= {
1861 .wo_type
= PIDTYPE_PID
,
1862 .wo_pid
= find_get_pid(pid
),
1863 .wo_flags
= WEXITED
,
1868 if (ret
> 0 && wo
.wo_stat
)
1874 SYSCALL_DEFINE4(wait4
, pid_t
, upid
, int __user
*, stat_addr
,
1875 int, options
, struct rusage __user
*, ru
)
1878 long err
= kernel_wait4(upid
, stat_addr
, options
, ru
? &r
: NULL
);
1881 if (ru
&& copy_to_user(ru
, &r
, sizeof(struct rusage
)))
1887 #ifdef __ARCH_WANT_SYS_WAITPID
1890 * sys_waitpid() remains for compatibility. waitpid() should be
1891 * implemented by calling sys_wait4() from libc.a.
1893 SYSCALL_DEFINE3(waitpid
, pid_t
, pid
, int __user
*, stat_addr
, int, options
)
1895 return kernel_wait4(pid
, stat_addr
, options
, NULL
);
1900 #ifdef CONFIG_COMPAT
1901 COMPAT_SYSCALL_DEFINE4(wait4
,
1903 compat_uint_t __user
*, stat_addr
,
1905 struct compat_rusage __user
*, ru
)
1908 long err
= kernel_wait4(pid
, stat_addr
, options
, ru
? &r
: NULL
);
1910 if (ru
&& put_compat_rusage(&r
, ru
))
1916 COMPAT_SYSCALL_DEFINE5(waitid
,
1917 int, which
, compat_pid_t
, pid
,
1918 struct compat_siginfo __user
*, infop
, int, options
,
1919 struct compat_rusage __user
*, uru
)
1922 struct waitid_info info
= {.status
= 0};
1923 long err
= kernel_waitid(which
, pid
, &info
, options
, uru
? &ru
: NULL
);
1929 /* kernel_waitid() overwrites everything in ru */
1930 if (COMPAT_USE_64BIT_TIME
)
1931 err
= copy_to_user(uru
, &ru
, sizeof(ru
));
1933 err
= put_compat_rusage(&ru
, uru
);
1942 if (!user_write_access_begin(infop
, sizeof(*infop
)))
1945 unsafe_put_user(signo
, &infop
->si_signo
, Efault
);
1946 unsafe_put_user(0, &infop
->si_errno
, Efault
);
1947 unsafe_put_user(info
.cause
, &infop
->si_code
, Efault
);
1948 unsafe_put_user(info
.pid
, &infop
->si_pid
, Efault
);
1949 unsafe_put_user(info
.uid
, &infop
->si_uid
, Efault
);
1950 unsafe_put_user(info
.status
, &infop
->si_status
, Efault
);
1951 user_write_access_end();
1954 user_write_access_end();
1960 * This needs to be __function_aligned as GCC implicitly makes any
1961 * implementation of abort() cold and drops alignment specified by
1962 * -falign-functions=N.
1964 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1966 __weak __function_aligned
void abort(void)
1970 /* if that doesn't kill us, halt */
1971 panic("Oops failed to kill thread");
1973 EXPORT_SYMBOL(abort
);