drm/rockchip: vop2: Fix the windows switch between different layers
[drm/drm-misc.git] / kernel / irq / manage.c
blobf0803d6bd2969820443f25b5b508ec553f4cb9a2
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4 * Copyright (C) 2005-2006 Thomas Gleixner
6 * This file contains driver APIs to the irq subsystem.
7 */
9 #define pr_fmt(fmt) "genirq: " fmt
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
25 #include "internals.h"
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
30 static int __init setup_forced_irqthreads(char *arg)
32 static_branch_enable(&force_irqthreads_key);
33 return 0;
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
40 struct irq_data *irqd = irq_desc_get_irq_data(desc);
41 bool inprogress;
43 do {
44 unsigned long flags;
47 * Wait until we're out of the critical section. This might
48 * give the wrong answer due to the lack of memory barriers.
50 while (irqd_irq_inprogress(&desc->irq_data))
51 cpu_relax();
53 /* Ok, that indicated we're done: double-check carefully. */
54 raw_spin_lock_irqsave(&desc->lock, flags);
55 inprogress = irqd_irq_inprogress(&desc->irq_data);
58 * If requested and supported, check at the chip whether it
59 * is in flight at the hardware level, i.e. already pending
60 * in a CPU and waiting for service and acknowledge.
62 if (!inprogress && sync_chip) {
64 * Ignore the return code. inprogress is only updated
65 * when the chip supports it.
67 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68 &inprogress);
70 raw_spin_unlock_irqrestore(&desc->lock, flags);
72 /* Oops, that failed? */
73 } while (inprogress);
76 /**
77 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78 * @irq: interrupt number to wait for
80 * This function waits for any pending hard IRQ handlers for this
81 * interrupt to complete before returning. If you use this
82 * function while holding a resource the IRQ handler may need you
83 * will deadlock. It does not take associated threaded handlers
84 * into account.
86 * Do not use this for shutdown scenarios where you must be sure
87 * that all parts (hardirq and threaded handler) have completed.
89 * Returns: false if a threaded handler is active.
91 * This function may be called - with care - from IRQ context.
93 * It does not check whether there is an interrupt in flight at the
94 * hardware level, but not serviced yet, as this might deadlock when
95 * called with interrupts disabled and the target CPU of the interrupt
96 * is the current CPU.
98 bool synchronize_hardirq(unsigned int irq)
100 struct irq_desc *desc = irq_to_desc(irq);
102 if (desc) {
103 __synchronize_hardirq(desc, false);
104 return !atomic_read(&desc->threads_active);
107 return true;
109 EXPORT_SYMBOL(synchronize_hardirq);
111 static void __synchronize_irq(struct irq_desc *desc)
113 __synchronize_hardirq(desc, true);
115 * We made sure that no hardirq handler is running. Now verify that no
116 * threaded handlers are active.
118 wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active));
122 * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
123 * @irq: interrupt number to wait for
125 * This function waits for any pending IRQ handlers for this interrupt
126 * to complete before returning. If you use this function while
127 * holding a resource the IRQ handler may need you will deadlock.
129 * Can only be called from preemptible code as it might sleep when
130 * an interrupt thread is associated to @irq.
132 * It optionally makes sure (when the irq chip supports that method)
133 * that the interrupt is not pending in any CPU and waiting for
134 * service.
136 void synchronize_irq(unsigned int irq)
138 struct irq_desc *desc = irq_to_desc(irq);
140 if (desc)
141 __synchronize_irq(desc);
143 EXPORT_SYMBOL(synchronize_irq);
145 #ifdef CONFIG_SMP
146 cpumask_var_t irq_default_affinity;
148 static bool __irq_can_set_affinity(struct irq_desc *desc)
150 if (!desc || !irqd_can_balance(&desc->irq_data) ||
151 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
152 return false;
153 return true;
157 * irq_can_set_affinity - Check if the affinity of a given irq can be set
158 * @irq: Interrupt to check
161 int irq_can_set_affinity(unsigned int irq)
163 return __irq_can_set_affinity(irq_to_desc(irq));
167 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
168 * @irq: Interrupt to check
170 * Like irq_can_set_affinity() above, but additionally checks for the
171 * AFFINITY_MANAGED flag.
173 bool irq_can_set_affinity_usr(unsigned int irq)
175 struct irq_desc *desc = irq_to_desc(irq);
177 return __irq_can_set_affinity(desc) &&
178 !irqd_affinity_is_managed(&desc->irq_data);
182 * irq_set_thread_affinity - Notify irq threads to adjust affinity
183 * @desc: irq descriptor which has affinity changed
185 * We just set IRQTF_AFFINITY and delegate the affinity setting
186 * to the interrupt thread itself. We can not call
187 * set_cpus_allowed_ptr() here as we hold desc->lock and this
188 * code can be called from hard interrupt context.
190 void irq_set_thread_affinity(struct irq_desc *desc)
192 struct irqaction *action;
194 for_each_action_of_desc(desc, action) {
195 if (action->thread) {
196 set_bit(IRQTF_AFFINITY, &action->thread_flags);
197 wake_up_process(action->thread);
199 if (action->secondary && action->secondary->thread) {
200 set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags);
201 wake_up_process(action->secondary->thread);
206 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
207 static void irq_validate_effective_affinity(struct irq_data *data)
209 const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
210 struct irq_chip *chip = irq_data_get_irq_chip(data);
212 if (!cpumask_empty(m))
213 return;
214 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
215 chip->name, data->irq);
217 #else
218 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
219 #endif
221 static DEFINE_PER_CPU(struct cpumask, __tmp_mask);
223 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
224 bool force)
226 struct cpumask *tmp_mask = this_cpu_ptr(&__tmp_mask);
227 struct irq_desc *desc = irq_data_to_desc(data);
228 struct irq_chip *chip = irq_data_get_irq_chip(data);
229 const struct cpumask *prog_mask;
230 int ret;
232 if (!chip || !chip->irq_set_affinity)
233 return -EINVAL;
236 * If this is a managed interrupt and housekeeping is enabled on
237 * it check whether the requested affinity mask intersects with
238 * a housekeeping CPU. If so, then remove the isolated CPUs from
239 * the mask and just keep the housekeeping CPU(s). This prevents
240 * the affinity setter from routing the interrupt to an isolated
241 * CPU to avoid that I/O submitted from a housekeeping CPU causes
242 * interrupts on an isolated one.
244 * If the masks do not intersect or include online CPU(s) then
245 * keep the requested mask. The isolated target CPUs are only
246 * receiving interrupts when the I/O operation was submitted
247 * directly from them.
249 * If all housekeeping CPUs in the affinity mask are offline, the
250 * interrupt will be migrated by the CPU hotplug code once a
251 * housekeeping CPU which belongs to the affinity mask comes
252 * online.
254 if (irqd_affinity_is_managed(data) &&
255 housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
256 const struct cpumask *hk_mask;
258 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
260 cpumask_and(tmp_mask, mask, hk_mask);
261 if (!cpumask_intersects(tmp_mask, cpu_online_mask))
262 prog_mask = mask;
263 else
264 prog_mask = tmp_mask;
265 } else {
266 prog_mask = mask;
270 * Make sure we only provide online CPUs to the irqchip,
271 * unless we are being asked to force the affinity (in which
272 * case we do as we are told).
274 cpumask_and(tmp_mask, prog_mask, cpu_online_mask);
275 if (!force && !cpumask_empty(tmp_mask))
276 ret = chip->irq_set_affinity(data, tmp_mask, force);
277 else if (force)
278 ret = chip->irq_set_affinity(data, mask, force);
279 else
280 ret = -EINVAL;
282 switch (ret) {
283 case IRQ_SET_MASK_OK:
284 case IRQ_SET_MASK_OK_DONE:
285 cpumask_copy(desc->irq_common_data.affinity, mask);
286 fallthrough;
287 case IRQ_SET_MASK_OK_NOCOPY:
288 irq_validate_effective_affinity(data);
289 irq_set_thread_affinity(desc);
290 ret = 0;
293 return ret;
296 #ifdef CONFIG_GENERIC_PENDING_IRQ
297 static inline int irq_set_affinity_pending(struct irq_data *data,
298 const struct cpumask *dest)
300 struct irq_desc *desc = irq_data_to_desc(data);
302 irqd_set_move_pending(data);
303 irq_copy_pending(desc, dest);
304 return 0;
306 #else
307 static inline int irq_set_affinity_pending(struct irq_data *data,
308 const struct cpumask *dest)
310 return -EBUSY;
312 #endif
314 static int irq_try_set_affinity(struct irq_data *data,
315 const struct cpumask *dest, bool force)
317 int ret = irq_do_set_affinity(data, dest, force);
320 * In case that the underlying vector management is busy and the
321 * architecture supports the generic pending mechanism then utilize
322 * this to avoid returning an error to user space.
324 if (ret == -EBUSY && !force)
325 ret = irq_set_affinity_pending(data, dest);
326 return ret;
329 static bool irq_set_affinity_deactivated(struct irq_data *data,
330 const struct cpumask *mask)
332 struct irq_desc *desc = irq_data_to_desc(data);
335 * Handle irq chips which can handle affinity only in activated
336 * state correctly
338 * If the interrupt is not yet activated, just store the affinity
339 * mask and do not call the chip driver at all. On activation the
340 * driver has to make sure anyway that the interrupt is in a
341 * usable state so startup works.
343 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
344 irqd_is_activated(data) || !irqd_affinity_on_activate(data))
345 return false;
347 cpumask_copy(desc->irq_common_data.affinity, mask);
348 irq_data_update_effective_affinity(data, mask);
349 irqd_set(data, IRQD_AFFINITY_SET);
350 return true;
353 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
354 bool force)
356 struct irq_chip *chip = irq_data_get_irq_chip(data);
357 struct irq_desc *desc = irq_data_to_desc(data);
358 int ret = 0;
360 if (!chip || !chip->irq_set_affinity)
361 return -EINVAL;
363 if (irq_set_affinity_deactivated(data, mask))
364 return 0;
366 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
367 ret = irq_try_set_affinity(data, mask, force);
368 } else {
369 irqd_set_move_pending(data);
370 irq_copy_pending(desc, mask);
373 if (desc->affinity_notify) {
374 kref_get(&desc->affinity_notify->kref);
375 if (!schedule_work(&desc->affinity_notify->work)) {
376 /* Work was already scheduled, drop our extra ref */
377 kref_put(&desc->affinity_notify->kref,
378 desc->affinity_notify->release);
381 irqd_set(data, IRQD_AFFINITY_SET);
383 return ret;
387 * irq_update_affinity_desc - Update affinity management for an interrupt
388 * @irq: The interrupt number to update
389 * @affinity: Pointer to the affinity descriptor
391 * This interface can be used to configure the affinity management of
392 * interrupts which have been allocated already.
394 * There are certain limitations on when it may be used - attempts to use it
395 * for when the kernel is configured for generic IRQ reservation mode (in
396 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
397 * managed/non-managed interrupt accounting. In addition, attempts to use it on
398 * an interrupt which is already started or which has already been configured
399 * as managed will also fail, as these mean invalid init state or double init.
401 int irq_update_affinity_desc(unsigned int irq,
402 struct irq_affinity_desc *affinity)
404 struct irq_desc *desc;
405 unsigned long flags;
406 bool activated;
407 int ret = 0;
410 * Supporting this with the reservation scheme used by x86 needs
411 * some more thought. Fail it for now.
413 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
414 return -EOPNOTSUPP;
416 desc = irq_get_desc_buslock(irq, &flags, 0);
417 if (!desc)
418 return -EINVAL;
420 /* Requires the interrupt to be shut down */
421 if (irqd_is_started(&desc->irq_data)) {
422 ret = -EBUSY;
423 goto out_unlock;
426 /* Interrupts which are already managed cannot be modified */
427 if (irqd_affinity_is_managed(&desc->irq_data)) {
428 ret = -EBUSY;
429 goto out_unlock;
433 * Deactivate the interrupt. That's required to undo
434 * anything an earlier activation has established.
436 activated = irqd_is_activated(&desc->irq_data);
437 if (activated)
438 irq_domain_deactivate_irq(&desc->irq_data);
440 if (affinity->is_managed) {
441 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
442 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
445 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
447 /* Restore the activation state */
448 if (activated)
449 irq_domain_activate_irq(&desc->irq_data, false);
451 out_unlock:
452 irq_put_desc_busunlock(desc, flags);
453 return ret;
456 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
457 bool force)
459 struct irq_desc *desc = irq_to_desc(irq);
460 unsigned long flags;
461 int ret;
463 if (!desc)
464 return -EINVAL;
466 raw_spin_lock_irqsave(&desc->lock, flags);
467 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
468 raw_spin_unlock_irqrestore(&desc->lock, flags);
469 return ret;
473 * irq_set_affinity - Set the irq affinity of a given irq
474 * @irq: Interrupt to set affinity
475 * @cpumask: cpumask
477 * Fails if cpumask does not contain an online CPU
479 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
481 return __irq_set_affinity(irq, cpumask, false);
483 EXPORT_SYMBOL_GPL(irq_set_affinity);
486 * irq_force_affinity - Force the irq affinity of a given irq
487 * @irq: Interrupt to set affinity
488 * @cpumask: cpumask
490 * Same as irq_set_affinity, but without checking the mask against
491 * online cpus.
493 * Solely for low level cpu hotplug code, where we need to make per
494 * cpu interrupts affine before the cpu becomes online.
496 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
498 return __irq_set_affinity(irq, cpumask, true);
500 EXPORT_SYMBOL_GPL(irq_force_affinity);
502 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m,
503 bool setaffinity)
505 unsigned long flags;
506 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
508 if (!desc)
509 return -EINVAL;
510 desc->affinity_hint = m;
511 irq_put_desc_unlock(desc, flags);
512 if (m && setaffinity)
513 __irq_set_affinity(irq, m, false);
514 return 0;
516 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
518 static void irq_affinity_notify(struct work_struct *work)
520 struct irq_affinity_notify *notify =
521 container_of(work, struct irq_affinity_notify, work);
522 struct irq_desc *desc = irq_to_desc(notify->irq);
523 cpumask_var_t cpumask;
524 unsigned long flags;
526 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
527 goto out;
529 raw_spin_lock_irqsave(&desc->lock, flags);
530 if (irq_move_pending(&desc->irq_data))
531 irq_get_pending(cpumask, desc);
532 else
533 cpumask_copy(cpumask, desc->irq_common_data.affinity);
534 raw_spin_unlock_irqrestore(&desc->lock, flags);
536 notify->notify(notify, cpumask);
538 free_cpumask_var(cpumask);
539 out:
540 kref_put(&notify->kref, notify->release);
544 * irq_set_affinity_notifier - control notification of IRQ affinity changes
545 * @irq: Interrupt for which to enable/disable notification
546 * @notify: Context for notification, or %NULL to disable
547 * notification. Function pointers must be initialised;
548 * the other fields will be initialised by this function.
550 * Must be called in process context. Notification may only be enabled
551 * after the IRQ is allocated and must be disabled before the IRQ is
552 * freed using free_irq().
555 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
557 struct irq_desc *desc = irq_to_desc(irq);
558 struct irq_affinity_notify *old_notify;
559 unsigned long flags;
561 /* The release function is promised process context */
562 might_sleep();
564 if (!desc || irq_is_nmi(desc))
565 return -EINVAL;
567 /* Complete initialisation of *notify */
568 if (notify) {
569 notify->irq = irq;
570 kref_init(&notify->kref);
571 INIT_WORK(&notify->work, irq_affinity_notify);
574 raw_spin_lock_irqsave(&desc->lock, flags);
575 old_notify = desc->affinity_notify;
576 desc->affinity_notify = notify;
577 raw_spin_unlock_irqrestore(&desc->lock, flags);
579 if (old_notify) {
580 if (cancel_work_sync(&old_notify->work)) {
581 /* Pending work had a ref, put that one too */
582 kref_put(&old_notify->kref, old_notify->release);
584 kref_put(&old_notify->kref, old_notify->release);
587 return 0;
589 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
591 #ifndef CONFIG_AUTO_IRQ_AFFINITY
593 * Generic version of the affinity autoselector.
595 int irq_setup_affinity(struct irq_desc *desc)
597 struct cpumask *set = irq_default_affinity;
598 int ret, node = irq_desc_get_node(desc);
599 static DEFINE_RAW_SPINLOCK(mask_lock);
600 static struct cpumask mask;
602 /* Excludes PER_CPU and NO_BALANCE interrupts */
603 if (!__irq_can_set_affinity(desc))
604 return 0;
606 raw_spin_lock(&mask_lock);
608 * Preserve the managed affinity setting and a userspace affinity
609 * setup, but make sure that one of the targets is online.
611 if (irqd_affinity_is_managed(&desc->irq_data) ||
612 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
613 if (cpumask_intersects(desc->irq_common_data.affinity,
614 cpu_online_mask))
615 set = desc->irq_common_data.affinity;
616 else
617 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
620 cpumask_and(&mask, cpu_online_mask, set);
621 if (cpumask_empty(&mask))
622 cpumask_copy(&mask, cpu_online_mask);
624 if (node != NUMA_NO_NODE) {
625 const struct cpumask *nodemask = cpumask_of_node(node);
627 /* make sure at least one of the cpus in nodemask is online */
628 if (cpumask_intersects(&mask, nodemask))
629 cpumask_and(&mask, &mask, nodemask);
631 ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
632 raw_spin_unlock(&mask_lock);
633 return ret;
635 #else
636 /* Wrapper for ALPHA specific affinity selector magic */
637 int irq_setup_affinity(struct irq_desc *desc)
639 return irq_select_affinity(irq_desc_get_irq(desc));
641 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
642 #endif /* CONFIG_SMP */
646 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
647 * @irq: interrupt number to set affinity
648 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
649 * specific data for percpu_devid interrupts
651 * This function uses the vCPU specific data to set the vCPU
652 * affinity for an irq. The vCPU specific data is passed from
653 * outside, such as KVM. One example code path is as below:
654 * KVM -> IOMMU -> irq_set_vcpu_affinity().
656 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
658 unsigned long flags;
659 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
660 struct irq_data *data;
661 struct irq_chip *chip;
662 int ret = -ENOSYS;
664 if (!desc)
665 return -EINVAL;
667 data = irq_desc_get_irq_data(desc);
668 do {
669 chip = irq_data_get_irq_chip(data);
670 if (chip && chip->irq_set_vcpu_affinity)
671 break;
672 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
673 data = data->parent_data;
674 #else
675 data = NULL;
676 #endif
677 } while (data);
679 if (data)
680 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
681 irq_put_desc_unlock(desc, flags);
683 return ret;
685 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
687 void __disable_irq(struct irq_desc *desc)
689 if (!desc->depth++)
690 irq_disable(desc);
693 static int __disable_irq_nosync(unsigned int irq)
695 unsigned long flags;
696 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
698 if (!desc)
699 return -EINVAL;
700 __disable_irq(desc);
701 irq_put_desc_busunlock(desc, flags);
702 return 0;
706 * disable_irq_nosync - disable an irq without waiting
707 * @irq: Interrupt to disable
709 * Disable the selected interrupt line. Disables and Enables are
710 * nested.
711 * Unlike disable_irq(), this function does not ensure existing
712 * instances of the IRQ handler have completed before returning.
714 * This function may be called from IRQ context.
716 void disable_irq_nosync(unsigned int irq)
718 __disable_irq_nosync(irq);
720 EXPORT_SYMBOL(disable_irq_nosync);
723 * disable_irq - disable an irq and wait for completion
724 * @irq: Interrupt to disable
726 * Disable the selected interrupt line. Enables and Disables are
727 * nested.
728 * This function waits for any pending IRQ handlers for this interrupt
729 * to complete before returning. If you use this function while
730 * holding a resource the IRQ handler may need you will deadlock.
732 * Can only be called from preemptible code as it might sleep when
733 * an interrupt thread is associated to @irq.
736 void disable_irq(unsigned int irq)
738 might_sleep();
739 if (!__disable_irq_nosync(irq))
740 synchronize_irq(irq);
742 EXPORT_SYMBOL(disable_irq);
745 * disable_hardirq - disables an irq and waits for hardirq completion
746 * @irq: Interrupt to disable
748 * Disable the selected interrupt line. Enables and Disables are
749 * nested.
750 * This function waits for any pending hard IRQ handlers for this
751 * interrupt to complete before returning. If you use this function while
752 * holding a resource the hard IRQ handler may need you will deadlock.
754 * When used to optimistically disable an interrupt from atomic context
755 * the return value must be checked.
757 * Returns: false if a threaded handler is active.
759 * This function may be called - with care - from IRQ context.
761 bool disable_hardirq(unsigned int irq)
763 if (!__disable_irq_nosync(irq))
764 return synchronize_hardirq(irq);
766 return false;
768 EXPORT_SYMBOL_GPL(disable_hardirq);
771 * disable_nmi_nosync - disable an nmi without waiting
772 * @irq: Interrupt to disable
774 * Disable the selected interrupt line. Disables and enables are
775 * nested.
776 * The interrupt to disable must have been requested through request_nmi.
777 * Unlike disable_nmi(), this function does not ensure existing
778 * instances of the IRQ handler have completed before returning.
780 void disable_nmi_nosync(unsigned int irq)
782 disable_irq_nosync(irq);
785 void __enable_irq(struct irq_desc *desc)
787 switch (desc->depth) {
788 case 0:
789 err_out:
790 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
791 irq_desc_get_irq(desc));
792 break;
793 case 1: {
794 if (desc->istate & IRQS_SUSPENDED)
795 goto err_out;
796 /* Prevent probing on this irq: */
797 irq_settings_set_noprobe(desc);
799 * Call irq_startup() not irq_enable() here because the
800 * interrupt might be marked NOAUTOEN so irq_startup()
801 * needs to be invoked when it gets enabled the first time.
802 * This is also required when __enable_irq() is invoked for
803 * a managed and shutdown interrupt from the S3 resume
804 * path.
806 * If it was already started up, then irq_startup() will
807 * invoke irq_enable() under the hood.
809 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
810 break;
812 default:
813 desc->depth--;
818 * enable_irq - enable handling of an irq
819 * @irq: Interrupt to enable
821 * Undoes the effect of one call to disable_irq(). If this
822 * matches the last disable, processing of interrupts on this
823 * IRQ line is re-enabled.
825 * This function may be called from IRQ context only when
826 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
828 void enable_irq(unsigned int irq)
830 unsigned long flags;
831 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
833 if (!desc)
834 return;
835 if (WARN(!desc->irq_data.chip,
836 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
837 goto out;
839 __enable_irq(desc);
840 out:
841 irq_put_desc_busunlock(desc, flags);
843 EXPORT_SYMBOL(enable_irq);
846 * enable_nmi - enable handling of an nmi
847 * @irq: Interrupt to enable
849 * The interrupt to enable must have been requested through request_nmi.
850 * Undoes the effect of one call to disable_nmi(). If this
851 * matches the last disable, processing of interrupts on this
852 * IRQ line is re-enabled.
854 void enable_nmi(unsigned int irq)
856 enable_irq(irq);
859 static int set_irq_wake_real(unsigned int irq, unsigned int on)
861 struct irq_desc *desc = irq_to_desc(irq);
862 int ret = -ENXIO;
864 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
865 return 0;
867 if (desc->irq_data.chip->irq_set_wake)
868 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
870 return ret;
874 * irq_set_irq_wake - control irq power management wakeup
875 * @irq: interrupt to control
876 * @on: enable/disable power management wakeup
878 * Enable/disable power management wakeup mode, which is
879 * disabled by default. Enables and disables must match,
880 * just as they match for non-wakeup mode support.
882 * Wakeup mode lets this IRQ wake the system from sleep
883 * states like "suspend to RAM".
885 * Note: irq enable/disable state is completely orthogonal
886 * to the enable/disable state of irq wake. An irq can be
887 * disabled with disable_irq() and still wake the system as
888 * long as the irq has wake enabled. If this does not hold,
889 * then the underlying irq chip and the related driver need
890 * to be investigated.
892 int irq_set_irq_wake(unsigned int irq, unsigned int on)
894 unsigned long flags;
895 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
896 int ret = 0;
898 if (!desc)
899 return -EINVAL;
901 /* Don't use NMIs as wake up interrupts please */
902 if (irq_is_nmi(desc)) {
903 ret = -EINVAL;
904 goto out_unlock;
907 /* wakeup-capable irqs can be shared between drivers that
908 * don't need to have the same sleep mode behaviors.
910 if (on) {
911 if (desc->wake_depth++ == 0) {
912 ret = set_irq_wake_real(irq, on);
913 if (ret)
914 desc->wake_depth = 0;
915 else
916 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
918 } else {
919 if (desc->wake_depth == 0) {
920 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
921 } else if (--desc->wake_depth == 0) {
922 ret = set_irq_wake_real(irq, on);
923 if (ret)
924 desc->wake_depth = 1;
925 else
926 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
930 out_unlock:
931 irq_put_desc_busunlock(desc, flags);
932 return ret;
934 EXPORT_SYMBOL(irq_set_irq_wake);
937 * Internal function that tells the architecture code whether a
938 * particular irq has been exclusively allocated or is available
939 * for driver use.
941 int can_request_irq(unsigned int irq, unsigned long irqflags)
943 unsigned long flags;
944 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
945 int canrequest = 0;
947 if (!desc)
948 return 0;
950 if (irq_settings_can_request(desc)) {
951 if (!desc->action ||
952 irqflags & desc->action->flags & IRQF_SHARED)
953 canrequest = 1;
955 irq_put_desc_unlock(desc, flags);
956 return canrequest;
959 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
961 struct irq_chip *chip = desc->irq_data.chip;
962 int ret, unmask = 0;
964 if (!chip || !chip->irq_set_type) {
966 * IRQF_TRIGGER_* but the PIC does not support multiple
967 * flow-types?
969 pr_debug("No set_type function for IRQ %d (%s)\n",
970 irq_desc_get_irq(desc),
971 chip ? (chip->name ? : "unknown") : "unknown");
972 return 0;
975 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
976 if (!irqd_irq_masked(&desc->irq_data))
977 mask_irq(desc);
978 if (!irqd_irq_disabled(&desc->irq_data))
979 unmask = 1;
982 /* Mask all flags except trigger mode */
983 flags &= IRQ_TYPE_SENSE_MASK;
984 ret = chip->irq_set_type(&desc->irq_data, flags);
986 switch (ret) {
987 case IRQ_SET_MASK_OK:
988 case IRQ_SET_MASK_OK_DONE:
989 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
990 irqd_set(&desc->irq_data, flags);
991 fallthrough;
993 case IRQ_SET_MASK_OK_NOCOPY:
994 flags = irqd_get_trigger_type(&desc->irq_data);
995 irq_settings_set_trigger_mask(desc, flags);
996 irqd_clear(&desc->irq_data, IRQD_LEVEL);
997 irq_settings_clr_level(desc);
998 if (flags & IRQ_TYPE_LEVEL_MASK) {
999 irq_settings_set_level(desc);
1000 irqd_set(&desc->irq_data, IRQD_LEVEL);
1003 ret = 0;
1004 break;
1005 default:
1006 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
1007 flags, irq_desc_get_irq(desc), chip->irq_set_type);
1009 if (unmask)
1010 unmask_irq(desc);
1011 return ret;
1014 #ifdef CONFIG_HARDIRQS_SW_RESEND
1015 int irq_set_parent(int irq, int parent_irq)
1017 unsigned long flags;
1018 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1020 if (!desc)
1021 return -EINVAL;
1023 desc->parent_irq = parent_irq;
1025 irq_put_desc_unlock(desc, flags);
1026 return 0;
1028 EXPORT_SYMBOL_GPL(irq_set_parent);
1029 #endif
1032 * Default primary interrupt handler for threaded interrupts. Is
1033 * assigned as primary handler when request_threaded_irq is called
1034 * with handler == NULL. Useful for oneshot interrupts.
1036 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1038 return IRQ_WAKE_THREAD;
1042 * Primary handler for nested threaded interrupts. Should never be
1043 * called.
1045 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1047 WARN(1, "Primary handler called for nested irq %d\n", irq);
1048 return IRQ_NONE;
1051 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1053 WARN(1, "Secondary action handler called for irq %d\n", irq);
1054 return IRQ_NONE;
1057 #ifdef CONFIG_SMP
1059 * Check whether we need to change the affinity of the interrupt thread.
1061 static void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1063 cpumask_var_t mask;
1064 bool valid = false;
1066 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1067 return;
1069 __set_current_state(TASK_RUNNING);
1072 * In case we are out of memory we set IRQTF_AFFINITY again and
1073 * try again next time
1075 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1076 set_bit(IRQTF_AFFINITY, &action->thread_flags);
1077 return;
1080 raw_spin_lock_irq(&desc->lock);
1082 * This code is triggered unconditionally. Check the affinity
1083 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1085 if (cpumask_available(desc->irq_common_data.affinity)) {
1086 const struct cpumask *m;
1088 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1089 cpumask_copy(mask, m);
1090 valid = true;
1092 raw_spin_unlock_irq(&desc->lock);
1094 if (valid)
1095 set_cpus_allowed_ptr(current, mask);
1096 free_cpumask_var(mask);
1098 #else
1099 static inline void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1100 #endif
1102 static int irq_wait_for_interrupt(struct irq_desc *desc,
1103 struct irqaction *action)
1105 for (;;) {
1106 set_current_state(TASK_INTERRUPTIBLE);
1107 irq_thread_check_affinity(desc, action);
1109 if (kthread_should_stop()) {
1110 /* may need to run one last time */
1111 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1112 &action->thread_flags)) {
1113 __set_current_state(TASK_RUNNING);
1114 return 0;
1116 __set_current_state(TASK_RUNNING);
1117 return -1;
1120 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1121 &action->thread_flags)) {
1122 __set_current_state(TASK_RUNNING);
1123 return 0;
1125 schedule();
1130 * Oneshot interrupts keep the irq line masked until the threaded
1131 * handler finished. unmask if the interrupt has not been disabled and
1132 * is marked MASKED.
1134 static void irq_finalize_oneshot(struct irq_desc *desc,
1135 struct irqaction *action)
1137 if (!(desc->istate & IRQS_ONESHOT) ||
1138 action->handler == irq_forced_secondary_handler)
1139 return;
1140 again:
1141 chip_bus_lock(desc);
1142 raw_spin_lock_irq(&desc->lock);
1145 * Implausible though it may be we need to protect us against
1146 * the following scenario:
1148 * The thread is faster done than the hard interrupt handler
1149 * on the other CPU. If we unmask the irq line then the
1150 * interrupt can come in again and masks the line, leaves due
1151 * to IRQS_INPROGRESS and the irq line is masked forever.
1153 * This also serializes the state of shared oneshot handlers
1154 * versus "desc->threads_oneshot |= action->thread_mask;" in
1155 * irq_wake_thread(). See the comment there which explains the
1156 * serialization.
1158 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1159 raw_spin_unlock_irq(&desc->lock);
1160 chip_bus_sync_unlock(desc);
1161 cpu_relax();
1162 goto again;
1166 * Now check again, whether the thread should run. Otherwise
1167 * we would clear the threads_oneshot bit of this thread which
1168 * was just set.
1170 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1171 goto out_unlock;
1173 desc->threads_oneshot &= ~action->thread_mask;
1175 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1176 irqd_irq_masked(&desc->irq_data))
1177 unmask_threaded_irq(desc);
1179 out_unlock:
1180 raw_spin_unlock_irq(&desc->lock);
1181 chip_bus_sync_unlock(desc);
1185 * Interrupts which are not explicitly requested as threaded
1186 * interrupts rely on the implicit bh/preempt disable of the hard irq
1187 * context. So we need to disable bh here to avoid deadlocks and other
1188 * side effects.
1190 static irqreturn_t
1191 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1193 irqreturn_t ret;
1195 local_bh_disable();
1196 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1197 local_irq_disable();
1198 ret = action->thread_fn(action->irq, action->dev_id);
1199 if (ret == IRQ_HANDLED)
1200 atomic_inc(&desc->threads_handled);
1202 irq_finalize_oneshot(desc, action);
1203 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1204 local_irq_enable();
1205 local_bh_enable();
1206 return ret;
1210 * Interrupts explicitly requested as threaded interrupts want to be
1211 * preemptible - many of them need to sleep and wait for slow busses to
1212 * complete.
1214 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1215 struct irqaction *action)
1217 irqreturn_t ret;
1219 ret = action->thread_fn(action->irq, action->dev_id);
1220 if (ret == IRQ_HANDLED)
1221 atomic_inc(&desc->threads_handled);
1223 irq_finalize_oneshot(desc, action);
1224 return ret;
1227 void wake_threads_waitq(struct irq_desc *desc)
1229 if (atomic_dec_and_test(&desc->threads_active))
1230 wake_up(&desc->wait_for_threads);
1233 static void irq_thread_dtor(struct callback_head *unused)
1235 struct task_struct *tsk = current;
1236 struct irq_desc *desc;
1237 struct irqaction *action;
1239 if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1240 return;
1242 action = kthread_data(tsk);
1244 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1245 tsk->comm, tsk->pid, action->irq);
1248 desc = irq_to_desc(action->irq);
1250 * If IRQTF_RUNTHREAD is set, we need to decrement
1251 * desc->threads_active and wake possible waiters.
1253 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1254 wake_threads_waitq(desc);
1256 /* Prevent a stale desc->threads_oneshot */
1257 irq_finalize_oneshot(desc, action);
1260 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1262 struct irqaction *secondary = action->secondary;
1264 if (WARN_ON_ONCE(!secondary))
1265 return;
1267 raw_spin_lock_irq(&desc->lock);
1268 __irq_wake_thread(desc, secondary);
1269 raw_spin_unlock_irq(&desc->lock);
1273 * Internal function to notify that a interrupt thread is ready.
1275 static void irq_thread_set_ready(struct irq_desc *desc,
1276 struct irqaction *action)
1278 set_bit(IRQTF_READY, &action->thread_flags);
1279 wake_up(&desc->wait_for_threads);
1283 * Internal function to wake up a interrupt thread and wait until it is
1284 * ready.
1286 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1287 struct irqaction *action)
1289 if (!action || !action->thread)
1290 return;
1292 wake_up_process(action->thread);
1293 wait_event(desc->wait_for_threads,
1294 test_bit(IRQTF_READY, &action->thread_flags));
1298 * Interrupt handler thread
1300 static int irq_thread(void *data)
1302 struct callback_head on_exit_work;
1303 struct irqaction *action = data;
1304 struct irq_desc *desc = irq_to_desc(action->irq);
1305 irqreturn_t (*handler_fn)(struct irq_desc *desc,
1306 struct irqaction *action);
1308 irq_thread_set_ready(desc, action);
1310 sched_set_fifo(current);
1312 if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1313 &action->thread_flags))
1314 handler_fn = irq_forced_thread_fn;
1315 else
1316 handler_fn = irq_thread_fn;
1318 init_task_work(&on_exit_work, irq_thread_dtor);
1319 task_work_add(current, &on_exit_work, TWA_NONE);
1321 while (!irq_wait_for_interrupt(desc, action)) {
1322 irqreturn_t action_ret;
1324 action_ret = handler_fn(desc, action);
1325 if (action_ret == IRQ_WAKE_THREAD)
1326 irq_wake_secondary(desc, action);
1328 wake_threads_waitq(desc);
1332 * This is the regular exit path. __free_irq() is stopping the
1333 * thread via kthread_stop() after calling
1334 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1335 * oneshot mask bit can be set.
1337 task_work_cancel_func(current, irq_thread_dtor);
1338 return 0;
1342 * irq_wake_thread - wake the irq thread for the action identified by dev_id
1343 * @irq: Interrupt line
1344 * @dev_id: Device identity for which the thread should be woken
1347 void irq_wake_thread(unsigned int irq, void *dev_id)
1349 struct irq_desc *desc = irq_to_desc(irq);
1350 struct irqaction *action;
1351 unsigned long flags;
1353 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1354 return;
1356 raw_spin_lock_irqsave(&desc->lock, flags);
1357 for_each_action_of_desc(desc, action) {
1358 if (action->dev_id == dev_id) {
1359 if (action->thread)
1360 __irq_wake_thread(desc, action);
1361 break;
1364 raw_spin_unlock_irqrestore(&desc->lock, flags);
1366 EXPORT_SYMBOL_GPL(irq_wake_thread);
1368 static int irq_setup_forced_threading(struct irqaction *new)
1370 if (!force_irqthreads())
1371 return 0;
1372 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1373 return 0;
1376 * No further action required for interrupts which are requested as
1377 * threaded interrupts already
1379 if (new->handler == irq_default_primary_handler)
1380 return 0;
1382 new->flags |= IRQF_ONESHOT;
1385 * Handle the case where we have a real primary handler and a
1386 * thread handler. We force thread them as well by creating a
1387 * secondary action.
1389 if (new->handler && new->thread_fn) {
1390 /* Allocate the secondary action */
1391 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1392 if (!new->secondary)
1393 return -ENOMEM;
1394 new->secondary->handler = irq_forced_secondary_handler;
1395 new->secondary->thread_fn = new->thread_fn;
1396 new->secondary->dev_id = new->dev_id;
1397 new->secondary->irq = new->irq;
1398 new->secondary->name = new->name;
1400 /* Deal with the primary handler */
1401 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1402 new->thread_fn = new->handler;
1403 new->handler = irq_default_primary_handler;
1404 return 0;
1407 static int irq_request_resources(struct irq_desc *desc)
1409 struct irq_data *d = &desc->irq_data;
1410 struct irq_chip *c = d->chip;
1412 return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1415 static void irq_release_resources(struct irq_desc *desc)
1417 struct irq_data *d = &desc->irq_data;
1418 struct irq_chip *c = d->chip;
1420 if (c->irq_release_resources)
1421 c->irq_release_resources(d);
1424 static bool irq_supports_nmi(struct irq_desc *desc)
1426 struct irq_data *d = irq_desc_get_irq_data(desc);
1428 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1429 /* Only IRQs directly managed by the root irqchip can be set as NMI */
1430 if (d->parent_data)
1431 return false;
1432 #endif
1433 /* Don't support NMIs for chips behind a slow bus */
1434 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1435 return false;
1437 return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1440 static int irq_nmi_setup(struct irq_desc *desc)
1442 struct irq_data *d = irq_desc_get_irq_data(desc);
1443 struct irq_chip *c = d->chip;
1445 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1448 static void irq_nmi_teardown(struct irq_desc *desc)
1450 struct irq_data *d = irq_desc_get_irq_data(desc);
1451 struct irq_chip *c = d->chip;
1453 if (c->irq_nmi_teardown)
1454 c->irq_nmi_teardown(d);
1457 static int
1458 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1460 struct task_struct *t;
1462 if (!secondary) {
1463 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1464 new->name);
1465 } else {
1466 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1467 new->name);
1470 if (IS_ERR(t))
1471 return PTR_ERR(t);
1474 * We keep the reference to the task struct even if
1475 * the thread dies to avoid that the interrupt code
1476 * references an already freed task_struct.
1478 new->thread = get_task_struct(t);
1480 * Tell the thread to set its affinity. This is
1481 * important for shared interrupt handlers as we do
1482 * not invoke setup_affinity() for the secondary
1483 * handlers as everything is already set up. Even for
1484 * interrupts marked with IRQF_NO_BALANCE this is
1485 * correct as we want the thread to move to the cpu(s)
1486 * on which the requesting code placed the interrupt.
1488 set_bit(IRQTF_AFFINITY, &new->thread_flags);
1489 return 0;
1493 * Internal function to register an irqaction - typically used to
1494 * allocate special interrupts that are part of the architecture.
1496 * Locking rules:
1498 * desc->request_mutex Provides serialization against a concurrent free_irq()
1499 * chip_bus_lock Provides serialization for slow bus operations
1500 * desc->lock Provides serialization against hard interrupts
1502 * chip_bus_lock and desc->lock are sufficient for all other management and
1503 * interrupt related functions. desc->request_mutex solely serializes
1504 * request/free_irq().
1506 static int
1507 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1509 struct irqaction *old, **old_ptr;
1510 unsigned long flags, thread_mask = 0;
1511 int ret, nested, shared = 0;
1513 if (!desc)
1514 return -EINVAL;
1516 if (desc->irq_data.chip == &no_irq_chip)
1517 return -ENOSYS;
1518 if (!try_module_get(desc->owner))
1519 return -ENODEV;
1521 new->irq = irq;
1524 * If the trigger type is not specified by the caller,
1525 * then use the default for this interrupt.
1527 if (!(new->flags & IRQF_TRIGGER_MASK))
1528 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1531 * Check whether the interrupt nests into another interrupt
1532 * thread.
1534 nested = irq_settings_is_nested_thread(desc);
1535 if (nested) {
1536 if (!new->thread_fn) {
1537 ret = -EINVAL;
1538 goto out_mput;
1541 * Replace the primary handler which was provided from
1542 * the driver for non nested interrupt handling by the
1543 * dummy function which warns when called.
1545 new->handler = irq_nested_primary_handler;
1546 } else {
1547 if (irq_settings_can_thread(desc)) {
1548 ret = irq_setup_forced_threading(new);
1549 if (ret)
1550 goto out_mput;
1555 * Create a handler thread when a thread function is supplied
1556 * and the interrupt does not nest into another interrupt
1557 * thread.
1559 if (new->thread_fn && !nested) {
1560 ret = setup_irq_thread(new, irq, false);
1561 if (ret)
1562 goto out_mput;
1563 if (new->secondary) {
1564 ret = setup_irq_thread(new->secondary, irq, true);
1565 if (ret)
1566 goto out_thread;
1571 * Drivers are often written to work w/o knowledge about the
1572 * underlying irq chip implementation, so a request for a
1573 * threaded irq without a primary hard irq context handler
1574 * requires the ONESHOT flag to be set. Some irq chips like
1575 * MSI based interrupts are per se one shot safe. Check the
1576 * chip flags, so we can avoid the unmask dance at the end of
1577 * the threaded handler for those.
1579 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1580 new->flags &= ~IRQF_ONESHOT;
1583 * Protects against a concurrent __free_irq() call which might wait
1584 * for synchronize_hardirq() to complete without holding the optional
1585 * chip bus lock and desc->lock. Also protects against handing out
1586 * a recycled oneshot thread_mask bit while it's still in use by
1587 * its previous owner.
1589 mutex_lock(&desc->request_mutex);
1592 * Acquire bus lock as the irq_request_resources() callback below
1593 * might rely on the serialization or the magic power management
1594 * functions which are abusing the irq_bus_lock() callback,
1596 chip_bus_lock(desc);
1598 /* First installed action requests resources. */
1599 if (!desc->action) {
1600 ret = irq_request_resources(desc);
1601 if (ret) {
1602 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1603 new->name, irq, desc->irq_data.chip->name);
1604 goto out_bus_unlock;
1609 * The following block of code has to be executed atomically
1610 * protected against a concurrent interrupt and any of the other
1611 * management calls which are not serialized via
1612 * desc->request_mutex or the optional bus lock.
1614 raw_spin_lock_irqsave(&desc->lock, flags);
1615 old_ptr = &desc->action;
1616 old = *old_ptr;
1617 if (old) {
1619 * Can't share interrupts unless both agree to and are
1620 * the same type (level, edge, polarity). So both flag
1621 * fields must have IRQF_SHARED set and the bits which
1622 * set the trigger type must match. Also all must
1623 * agree on ONESHOT.
1624 * Interrupt lines used for NMIs cannot be shared.
1626 unsigned int oldtype;
1628 if (irq_is_nmi(desc)) {
1629 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1630 new->name, irq, desc->irq_data.chip->name);
1631 ret = -EINVAL;
1632 goto out_unlock;
1636 * If nobody did set the configuration before, inherit
1637 * the one provided by the requester.
1639 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1640 oldtype = irqd_get_trigger_type(&desc->irq_data);
1641 } else {
1642 oldtype = new->flags & IRQF_TRIGGER_MASK;
1643 irqd_set_trigger_type(&desc->irq_data, oldtype);
1646 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1647 (oldtype != (new->flags & IRQF_TRIGGER_MASK)))
1648 goto mismatch;
1650 if ((old->flags & IRQF_ONESHOT) &&
1651 (new->flags & IRQF_COND_ONESHOT))
1652 new->flags |= IRQF_ONESHOT;
1653 else if ((old->flags ^ new->flags) & IRQF_ONESHOT)
1654 goto mismatch;
1656 /* All handlers must agree on per-cpuness */
1657 if ((old->flags & IRQF_PERCPU) !=
1658 (new->flags & IRQF_PERCPU))
1659 goto mismatch;
1661 /* add new interrupt at end of irq queue */
1662 do {
1664 * Or all existing action->thread_mask bits,
1665 * so we can find the next zero bit for this
1666 * new action.
1668 thread_mask |= old->thread_mask;
1669 old_ptr = &old->next;
1670 old = *old_ptr;
1671 } while (old);
1672 shared = 1;
1676 * Setup the thread mask for this irqaction for ONESHOT. For
1677 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1678 * conditional in irq_wake_thread().
1680 if (new->flags & IRQF_ONESHOT) {
1682 * Unlikely to have 32 resp 64 irqs sharing one line,
1683 * but who knows.
1685 if (thread_mask == ~0UL) {
1686 ret = -EBUSY;
1687 goto out_unlock;
1690 * The thread_mask for the action is or'ed to
1691 * desc->thread_active to indicate that the
1692 * IRQF_ONESHOT thread handler has been woken, but not
1693 * yet finished. The bit is cleared when a thread
1694 * completes. When all threads of a shared interrupt
1695 * line have completed desc->threads_active becomes
1696 * zero and the interrupt line is unmasked. See
1697 * handle.c:irq_wake_thread() for further information.
1699 * If no thread is woken by primary (hard irq context)
1700 * interrupt handlers, then desc->threads_active is
1701 * also checked for zero to unmask the irq line in the
1702 * affected hard irq flow handlers
1703 * (handle_[fasteoi|level]_irq).
1705 * The new action gets the first zero bit of
1706 * thread_mask assigned. See the loop above which or's
1707 * all existing action->thread_mask bits.
1709 new->thread_mask = 1UL << ffz(thread_mask);
1711 } else if (new->handler == irq_default_primary_handler &&
1712 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1714 * The interrupt was requested with handler = NULL, so
1715 * we use the default primary handler for it. But it
1716 * does not have the oneshot flag set. In combination
1717 * with level interrupts this is deadly, because the
1718 * default primary handler just wakes the thread, then
1719 * the irq lines is reenabled, but the device still
1720 * has the level irq asserted. Rinse and repeat....
1722 * While this works for edge type interrupts, we play
1723 * it safe and reject unconditionally because we can't
1724 * say for sure which type this interrupt really
1725 * has. The type flags are unreliable as the
1726 * underlying chip implementation can override them.
1728 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1729 new->name, irq);
1730 ret = -EINVAL;
1731 goto out_unlock;
1734 if (!shared) {
1735 /* Setup the type (level, edge polarity) if configured: */
1736 if (new->flags & IRQF_TRIGGER_MASK) {
1737 ret = __irq_set_trigger(desc,
1738 new->flags & IRQF_TRIGGER_MASK);
1740 if (ret)
1741 goto out_unlock;
1745 * Activate the interrupt. That activation must happen
1746 * independently of IRQ_NOAUTOEN. request_irq() can fail
1747 * and the callers are supposed to handle
1748 * that. enable_irq() of an interrupt requested with
1749 * IRQ_NOAUTOEN is not supposed to fail. The activation
1750 * keeps it in shutdown mode, it merily associates
1751 * resources if necessary and if that's not possible it
1752 * fails. Interrupts which are in managed shutdown mode
1753 * will simply ignore that activation request.
1755 ret = irq_activate(desc);
1756 if (ret)
1757 goto out_unlock;
1759 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1760 IRQS_ONESHOT | IRQS_WAITING);
1761 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1763 if (new->flags & IRQF_PERCPU) {
1764 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1765 irq_settings_set_per_cpu(desc);
1766 if (new->flags & IRQF_NO_DEBUG)
1767 irq_settings_set_no_debug(desc);
1770 if (noirqdebug)
1771 irq_settings_set_no_debug(desc);
1773 if (new->flags & IRQF_ONESHOT)
1774 desc->istate |= IRQS_ONESHOT;
1776 /* Exclude IRQ from balancing if requested */
1777 if (new->flags & IRQF_NOBALANCING) {
1778 irq_settings_set_no_balancing(desc);
1779 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1782 if (!(new->flags & IRQF_NO_AUTOEN) &&
1783 irq_settings_can_autoenable(desc)) {
1784 irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1785 } else {
1787 * Shared interrupts do not go well with disabling
1788 * auto enable. The sharing interrupt might request
1789 * it while it's still disabled and then wait for
1790 * interrupts forever.
1792 WARN_ON_ONCE(new->flags & IRQF_SHARED);
1793 /* Undo nested disables: */
1794 desc->depth = 1;
1797 } else if (new->flags & IRQF_TRIGGER_MASK) {
1798 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1799 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1801 if (nmsk != omsk)
1802 /* hope the handler works with current trigger mode */
1803 pr_warn("irq %d uses trigger mode %u; requested %u\n",
1804 irq, omsk, nmsk);
1807 *old_ptr = new;
1809 irq_pm_install_action(desc, new);
1811 /* Reset broken irq detection when installing new handler */
1812 desc->irq_count = 0;
1813 desc->irqs_unhandled = 0;
1816 * Check whether we disabled the irq via the spurious handler
1817 * before. Reenable it and give it another chance.
1819 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1820 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1821 __enable_irq(desc);
1824 raw_spin_unlock_irqrestore(&desc->lock, flags);
1825 chip_bus_sync_unlock(desc);
1826 mutex_unlock(&desc->request_mutex);
1828 irq_setup_timings(desc, new);
1830 wake_up_and_wait_for_irq_thread_ready(desc, new);
1831 wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1833 register_irq_proc(irq, desc);
1834 new->dir = NULL;
1835 register_handler_proc(irq, new);
1836 return 0;
1838 mismatch:
1839 if (!(new->flags & IRQF_PROBE_SHARED)) {
1840 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1841 irq, new->flags, new->name, old->flags, old->name);
1842 #ifdef CONFIG_DEBUG_SHIRQ
1843 dump_stack();
1844 #endif
1846 ret = -EBUSY;
1848 out_unlock:
1849 raw_spin_unlock_irqrestore(&desc->lock, flags);
1851 if (!desc->action)
1852 irq_release_resources(desc);
1853 out_bus_unlock:
1854 chip_bus_sync_unlock(desc);
1855 mutex_unlock(&desc->request_mutex);
1857 out_thread:
1858 if (new->thread) {
1859 struct task_struct *t = new->thread;
1861 new->thread = NULL;
1862 kthread_stop_put(t);
1864 if (new->secondary && new->secondary->thread) {
1865 struct task_struct *t = new->secondary->thread;
1867 new->secondary->thread = NULL;
1868 kthread_stop_put(t);
1870 out_mput:
1871 module_put(desc->owner);
1872 return ret;
1876 * Internal function to unregister an irqaction - used to free
1877 * regular and special interrupts that are part of the architecture.
1879 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1881 unsigned irq = desc->irq_data.irq;
1882 struct irqaction *action, **action_ptr;
1883 unsigned long flags;
1885 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1887 mutex_lock(&desc->request_mutex);
1888 chip_bus_lock(desc);
1889 raw_spin_lock_irqsave(&desc->lock, flags);
1892 * There can be multiple actions per IRQ descriptor, find the right
1893 * one based on the dev_id:
1895 action_ptr = &desc->action;
1896 for (;;) {
1897 action = *action_ptr;
1899 if (!action) {
1900 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1901 raw_spin_unlock_irqrestore(&desc->lock, flags);
1902 chip_bus_sync_unlock(desc);
1903 mutex_unlock(&desc->request_mutex);
1904 return NULL;
1907 if (action->dev_id == dev_id)
1908 break;
1909 action_ptr = &action->next;
1912 /* Found it - now remove it from the list of entries: */
1913 *action_ptr = action->next;
1915 irq_pm_remove_action(desc, action);
1917 /* If this was the last handler, shut down the IRQ line: */
1918 if (!desc->action) {
1919 irq_settings_clr_disable_unlazy(desc);
1920 /* Only shutdown. Deactivate after synchronize_hardirq() */
1921 irq_shutdown(desc);
1924 #ifdef CONFIG_SMP
1925 /* make sure affinity_hint is cleaned up */
1926 if (WARN_ON_ONCE(desc->affinity_hint))
1927 desc->affinity_hint = NULL;
1928 #endif
1930 raw_spin_unlock_irqrestore(&desc->lock, flags);
1932 * Drop bus_lock here so the changes which were done in the chip
1933 * callbacks above are synced out to the irq chips which hang
1934 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1936 * Aside of that the bus_lock can also be taken from the threaded
1937 * handler in irq_finalize_oneshot() which results in a deadlock
1938 * because kthread_stop() would wait forever for the thread to
1939 * complete, which is blocked on the bus lock.
1941 * The still held desc->request_mutex() protects against a
1942 * concurrent request_irq() of this irq so the release of resources
1943 * and timing data is properly serialized.
1945 chip_bus_sync_unlock(desc);
1947 unregister_handler_proc(irq, action);
1950 * Make sure it's not being used on another CPU and if the chip
1951 * supports it also make sure that there is no (not yet serviced)
1952 * interrupt in flight at the hardware level.
1954 __synchronize_irq(desc);
1956 #ifdef CONFIG_DEBUG_SHIRQ
1958 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1959 * event to happen even now it's being freed, so let's make sure that
1960 * is so by doing an extra call to the handler ....
1962 * ( We do this after actually deregistering it, to make sure that a
1963 * 'real' IRQ doesn't run in parallel with our fake. )
1965 if (action->flags & IRQF_SHARED) {
1966 local_irq_save(flags);
1967 action->handler(irq, dev_id);
1968 local_irq_restore(flags);
1970 #endif
1973 * The action has already been removed above, but the thread writes
1974 * its oneshot mask bit when it completes. Though request_mutex is
1975 * held across this which prevents __setup_irq() from handing out
1976 * the same bit to a newly requested action.
1978 if (action->thread) {
1979 kthread_stop_put(action->thread);
1980 if (action->secondary && action->secondary->thread)
1981 kthread_stop_put(action->secondary->thread);
1984 /* Last action releases resources */
1985 if (!desc->action) {
1987 * Reacquire bus lock as irq_release_resources() might
1988 * require it to deallocate resources over the slow bus.
1990 chip_bus_lock(desc);
1992 * There is no interrupt on the fly anymore. Deactivate it
1993 * completely.
1995 raw_spin_lock_irqsave(&desc->lock, flags);
1996 irq_domain_deactivate_irq(&desc->irq_data);
1997 raw_spin_unlock_irqrestore(&desc->lock, flags);
1999 irq_release_resources(desc);
2000 chip_bus_sync_unlock(desc);
2001 irq_remove_timings(desc);
2004 mutex_unlock(&desc->request_mutex);
2006 irq_chip_pm_put(&desc->irq_data);
2007 module_put(desc->owner);
2008 kfree(action->secondary);
2009 return action;
2013 * free_irq - free an interrupt allocated with request_irq
2014 * @irq: Interrupt line to free
2015 * @dev_id: Device identity to free
2017 * Remove an interrupt handler. The handler is removed and if the
2018 * interrupt line is no longer in use by any driver it is disabled.
2019 * On a shared IRQ the caller must ensure the interrupt is disabled
2020 * on the card it drives before calling this function. The function
2021 * does not return until any executing interrupts for this IRQ
2022 * have completed.
2024 * This function must not be called from interrupt context.
2026 * Returns the devname argument passed to request_irq.
2028 const void *free_irq(unsigned int irq, void *dev_id)
2030 struct irq_desc *desc = irq_to_desc(irq);
2031 struct irqaction *action;
2032 const char *devname;
2034 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2035 return NULL;
2037 #ifdef CONFIG_SMP
2038 if (WARN_ON(desc->affinity_notify))
2039 desc->affinity_notify = NULL;
2040 #endif
2042 action = __free_irq(desc, dev_id);
2044 if (!action)
2045 return NULL;
2047 devname = action->name;
2048 kfree(action);
2049 return devname;
2051 EXPORT_SYMBOL(free_irq);
2053 /* This function must be called with desc->lock held */
2054 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2056 const char *devname = NULL;
2058 desc->istate &= ~IRQS_NMI;
2060 if (!WARN_ON(desc->action == NULL)) {
2061 irq_pm_remove_action(desc, desc->action);
2062 devname = desc->action->name;
2063 unregister_handler_proc(irq, desc->action);
2065 kfree(desc->action);
2066 desc->action = NULL;
2069 irq_settings_clr_disable_unlazy(desc);
2070 irq_shutdown_and_deactivate(desc);
2072 irq_release_resources(desc);
2074 irq_chip_pm_put(&desc->irq_data);
2075 module_put(desc->owner);
2077 return devname;
2080 const void *free_nmi(unsigned int irq, void *dev_id)
2082 struct irq_desc *desc = irq_to_desc(irq);
2083 unsigned long flags;
2084 const void *devname;
2086 if (!desc || WARN_ON(!irq_is_nmi(desc)))
2087 return NULL;
2089 if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2090 return NULL;
2092 /* NMI still enabled */
2093 if (WARN_ON(desc->depth == 0))
2094 disable_nmi_nosync(irq);
2096 raw_spin_lock_irqsave(&desc->lock, flags);
2098 irq_nmi_teardown(desc);
2099 devname = __cleanup_nmi(irq, desc);
2101 raw_spin_unlock_irqrestore(&desc->lock, flags);
2103 return devname;
2107 * request_threaded_irq - allocate an interrupt line
2108 * @irq: Interrupt line to allocate
2109 * @handler: Function to be called when the IRQ occurs.
2110 * Primary handler for threaded interrupts.
2111 * If handler is NULL and thread_fn != NULL
2112 * the default primary handler is installed.
2113 * @thread_fn: Function called from the irq handler thread
2114 * If NULL, no irq thread is created
2115 * @irqflags: Interrupt type flags
2116 * @devname: An ascii name for the claiming device
2117 * @dev_id: A cookie passed back to the handler function
2119 * This call allocates interrupt resources and enables the
2120 * interrupt line and IRQ handling. From the point this
2121 * call is made your handler function may be invoked. Since
2122 * your handler function must clear any interrupt the board
2123 * raises, you must take care both to initialise your hardware
2124 * and to set up the interrupt handler in the right order.
2126 * If you want to set up a threaded irq handler for your device
2127 * then you need to supply @handler and @thread_fn. @handler is
2128 * still called in hard interrupt context and has to check
2129 * whether the interrupt originates from the device. If yes it
2130 * needs to disable the interrupt on the device and return
2131 * IRQ_WAKE_THREAD which will wake up the handler thread and run
2132 * @thread_fn. This split handler design is necessary to support
2133 * shared interrupts.
2135 * Dev_id must be globally unique. Normally the address of the
2136 * device data structure is used as the cookie. Since the handler
2137 * receives this value it makes sense to use it.
2139 * If your interrupt is shared you must pass a non NULL dev_id
2140 * as this is required when freeing the interrupt.
2142 * Flags:
2144 * IRQF_SHARED Interrupt is shared
2145 * IRQF_TRIGGER_* Specify active edge(s) or level
2146 * IRQF_ONESHOT Run thread_fn with interrupt line masked
2148 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2149 irq_handler_t thread_fn, unsigned long irqflags,
2150 const char *devname, void *dev_id)
2152 struct irqaction *action;
2153 struct irq_desc *desc;
2154 int retval;
2156 if (irq == IRQ_NOTCONNECTED)
2157 return -ENOTCONN;
2160 * Sanity-check: shared interrupts must pass in a real dev-ID,
2161 * otherwise we'll have trouble later trying to figure out
2162 * which interrupt is which (messes up the interrupt freeing
2163 * logic etc).
2165 * Also shared interrupts do not go well with disabling auto enable.
2166 * The sharing interrupt might request it while it's still disabled
2167 * and then wait for interrupts forever.
2169 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2170 * it cannot be set along with IRQF_NO_SUSPEND.
2172 if (((irqflags & IRQF_SHARED) && !dev_id) ||
2173 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2174 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2175 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2176 return -EINVAL;
2178 desc = irq_to_desc(irq);
2179 if (!desc)
2180 return -EINVAL;
2182 if (!irq_settings_can_request(desc) ||
2183 WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2184 return -EINVAL;
2186 if (!handler) {
2187 if (!thread_fn)
2188 return -EINVAL;
2189 handler = irq_default_primary_handler;
2192 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2193 if (!action)
2194 return -ENOMEM;
2196 action->handler = handler;
2197 action->thread_fn = thread_fn;
2198 action->flags = irqflags;
2199 action->name = devname;
2200 action->dev_id = dev_id;
2202 retval = irq_chip_pm_get(&desc->irq_data);
2203 if (retval < 0) {
2204 kfree(action);
2205 return retval;
2208 retval = __setup_irq(irq, desc, action);
2210 if (retval) {
2211 irq_chip_pm_put(&desc->irq_data);
2212 kfree(action->secondary);
2213 kfree(action);
2216 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2217 if (!retval && (irqflags & IRQF_SHARED)) {
2219 * It's a shared IRQ -- the driver ought to be prepared for it
2220 * to happen immediately, so let's make sure....
2221 * We disable the irq to make sure that a 'real' IRQ doesn't
2222 * run in parallel with our fake.
2224 unsigned long flags;
2226 disable_irq(irq);
2227 local_irq_save(flags);
2229 handler(irq, dev_id);
2231 local_irq_restore(flags);
2232 enable_irq(irq);
2234 #endif
2235 return retval;
2237 EXPORT_SYMBOL(request_threaded_irq);
2240 * request_any_context_irq - allocate an interrupt line
2241 * @irq: Interrupt line to allocate
2242 * @handler: Function to be called when the IRQ occurs.
2243 * Threaded handler for threaded interrupts.
2244 * @flags: Interrupt type flags
2245 * @name: An ascii name for the claiming device
2246 * @dev_id: A cookie passed back to the handler function
2248 * This call allocates interrupt resources and enables the
2249 * interrupt line and IRQ handling. It selects either a
2250 * hardirq or threaded handling method depending on the
2251 * context.
2253 * On failure, it returns a negative value. On success,
2254 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2256 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2257 unsigned long flags, const char *name, void *dev_id)
2259 struct irq_desc *desc;
2260 int ret;
2262 if (irq == IRQ_NOTCONNECTED)
2263 return -ENOTCONN;
2265 desc = irq_to_desc(irq);
2266 if (!desc)
2267 return -EINVAL;
2269 if (irq_settings_is_nested_thread(desc)) {
2270 ret = request_threaded_irq(irq, NULL, handler,
2271 flags, name, dev_id);
2272 return !ret ? IRQC_IS_NESTED : ret;
2275 ret = request_irq(irq, handler, flags, name, dev_id);
2276 return !ret ? IRQC_IS_HARDIRQ : ret;
2278 EXPORT_SYMBOL_GPL(request_any_context_irq);
2281 * request_nmi - allocate an interrupt line for NMI delivery
2282 * @irq: Interrupt line to allocate
2283 * @handler: Function to be called when the IRQ occurs.
2284 * Threaded handler for threaded interrupts.
2285 * @irqflags: Interrupt type flags
2286 * @name: An ascii name for the claiming device
2287 * @dev_id: A cookie passed back to the handler function
2289 * This call allocates interrupt resources and enables the
2290 * interrupt line and IRQ handling. It sets up the IRQ line
2291 * to be handled as an NMI.
2293 * An interrupt line delivering NMIs cannot be shared and IRQ handling
2294 * cannot be threaded.
2296 * Interrupt lines requested for NMI delivering must produce per cpu
2297 * interrupts and have auto enabling setting disabled.
2299 * Dev_id must be globally unique. Normally the address of the
2300 * device data structure is used as the cookie. Since the handler
2301 * receives this value it makes sense to use it.
2303 * If the interrupt line cannot be used to deliver NMIs, function
2304 * will fail and return a negative value.
2306 int request_nmi(unsigned int irq, irq_handler_t handler,
2307 unsigned long irqflags, const char *name, void *dev_id)
2309 struct irqaction *action;
2310 struct irq_desc *desc;
2311 unsigned long flags;
2312 int retval;
2314 if (irq == IRQ_NOTCONNECTED)
2315 return -ENOTCONN;
2317 /* NMI cannot be shared, used for Polling */
2318 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2319 return -EINVAL;
2321 if (!(irqflags & IRQF_PERCPU))
2322 return -EINVAL;
2324 if (!handler)
2325 return -EINVAL;
2327 desc = irq_to_desc(irq);
2329 if (!desc || (irq_settings_can_autoenable(desc) &&
2330 !(irqflags & IRQF_NO_AUTOEN)) ||
2331 !irq_settings_can_request(desc) ||
2332 WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2333 !irq_supports_nmi(desc))
2334 return -EINVAL;
2336 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2337 if (!action)
2338 return -ENOMEM;
2340 action->handler = handler;
2341 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2342 action->name = name;
2343 action->dev_id = dev_id;
2345 retval = irq_chip_pm_get(&desc->irq_data);
2346 if (retval < 0)
2347 goto err_out;
2349 retval = __setup_irq(irq, desc, action);
2350 if (retval)
2351 goto err_irq_setup;
2353 raw_spin_lock_irqsave(&desc->lock, flags);
2355 /* Setup NMI state */
2356 desc->istate |= IRQS_NMI;
2357 retval = irq_nmi_setup(desc);
2358 if (retval) {
2359 __cleanup_nmi(irq, desc);
2360 raw_spin_unlock_irqrestore(&desc->lock, flags);
2361 return -EINVAL;
2364 raw_spin_unlock_irqrestore(&desc->lock, flags);
2366 return 0;
2368 err_irq_setup:
2369 irq_chip_pm_put(&desc->irq_data);
2370 err_out:
2371 kfree(action);
2373 return retval;
2376 void enable_percpu_irq(unsigned int irq, unsigned int type)
2378 unsigned int cpu = smp_processor_id();
2379 unsigned long flags;
2380 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2382 if (!desc)
2383 return;
2386 * If the trigger type is not specified by the caller, then
2387 * use the default for this interrupt.
2389 type &= IRQ_TYPE_SENSE_MASK;
2390 if (type == IRQ_TYPE_NONE)
2391 type = irqd_get_trigger_type(&desc->irq_data);
2393 if (type != IRQ_TYPE_NONE) {
2394 int ret;
2396 ret = __irq_set_trigger(desc, type);
2398 if (ret) {
2399 WARN(1, "failed to set type for IRQ%d\n", irq);
2400 goto out;
2404 irq_percpu_enable(desc, cpu);
2405 out:
2406 irq_put_desc_unlock(desc, flags);
2408 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2410 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2412 enable_percpu_irq(irq, type);
2416 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2417 * @irq: Linux irq number to check for
2419 * Must be called from a non migratable context. Returns the enable
2420 * state of a per cpu interrupt on the current cpu.
2422 bool irq_percpu_is_enabled(unsigned int irq)
2424 unsigned int cpu = smp_processor_id();
2425 struct irq_desc *desc;
2426 unsigned long flags;
2427 bool is_enabled;
2429 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2430 if (!desc)
2431 return false;
2433 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2434 irq_put_desc_unlock(desc, flags);
2436 return is_enabled;
2438 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2440 void disable_percpu_irq(unsigned int irq)
2442 unsigned int cpu = smp_processor_id();
2443 unsigned long flags;
2444 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2446 if (!desc)
2447 return;
2449 irq_percpu_disable(desc, cpu);
2450 irq_put_desc_unlock(desc, flags);
2452 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2454 void disable_percpu_nmi(unsigned int irq)
2456 disable_percpu_irq(irq);
2460 * Internal function to unregister a percpu irqaction.
2462 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2464 struct irq_desc *desc = irq_to_desc(irq);
2465 struct irqaction *action;
2466 unsigned long flags;
2468 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2470 if (!desc)
2471 return NULL;
2473 raw_spin_lock_irqsave(&desc->lock, flags);
2475 action = desc->action;
2476 if (!action || action->percpu_dev_id != dev_id) {
2477 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2478 goto bad;
2481 if (!cpumask_empty(desc->percpu_enabled)) {
2482 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2483 irq, cpumask_first(desc->percpu_enabled));
2484 goto bad;
2487 /* Found it - now remove it from the list of entries: */
2488 desc->action = NULL;
2490 desc->istate &= ~IRQS_NMI;
2492 raw_spin_unlock_irqrestore(&desc->lock, flags);
2494 unregister_handler_proc(irq, action);
2496 irq_chip_pm_put(&desc->irq_data);
2497 module_put(desc->owner);
2498 return action;
2500 bad:
2501 raw_spin_unlock_irqrestore(&desc->lock, flags);
2502 return NULL;
2506 * remove_percpu_irq - free a per-cpu interrupt
2507 * @irq: Interrupt line to free
2508 * @act: irqaction for the interrupt
2510 * Used to remove interrupts statically setup by the early boot process.
2512 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2514 struct irq_desc *desc = irq_to_desc(irq);
2516 if (desc && irq_settings_is_per_cpu_devid(desc))
2517 __free_percpu_irq(irq, act->percpu_dev_id);
2521 * free_percpu_irq - free an interrupt allocated with request_percpu_irq
2522 * @irq: Interrupt line to free
2523 * @dev_id: Device identity to free
2525 * Remove a percpu interrupt handler. The handler is removed, but
2526 * the interrupt line is not disabled. This must be done on each
2527 * CPU before calling this function. The function does not return
2528 * until any executing interrupts for this IRQ have completed.
2530 * This function must not be called from interrupt context.
2532 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2534 struct irq_desc *desc = irq_to_desc(irq);
2536 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2537 return;
2539 chip_bus_lock(desc);
2540 kfree(__free_percpu_irq(irq, dev_id));
2541 chip_bus_sync_unlock(desc);
2543 EXPORT_SYMBOL_GPL(free_percpu_irq);
2545 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2547 struct irq_desc *desc = irq_to_desc(irq);
2549 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2550 return;
2552 if (WARN_ON(!irq_is_nmi(desc)))
2553 return;
2555 kfree(__free_percpu_irq(irq, dev_id));
2559 * setup_percpu_irq - setup a per-cpu interrupt
2560 * @irq: Interrupt line to setup
2561 * @act: irqaction for the interrupt
2563 * Used to statically setup per-cpu interrupts in the early boot process.
2565 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2567 struct irq_desc *desc = irq_to_desc(irq);
2568 int retval;
2570 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2571 return -EINVAL;
2573 retval = irq_chip_pm_get(&desc->irq_data);
2574 if (retval < 0)
2575 return retval;
2577 retval = __setup_irq(irq, desc, act);
2579 if (retval)
2580 irq_chip_pm_put(&desc->irq_data);
2582 return retval;
2586 * __request_percpu_irq - allocate a percpu interrupt line
2587 * @irq: Interrupt line to allocate
2588 * @handler: Function to be called when the IRQ occurs.
2589 * @flags: Interrupt type flags (IRQF_TIMER only)
2590 * @devname: An ascii name for the claiming device
2591 * @dev_id: A percpu cookie passed back to the handler function
2593 * This call allocates interrupt resources and enables the
2594 * interrupt on the local CPU. If the interrupt is supposed to be
2595 * enabled on other CPUs, it has to be done on each CPU using
2596 * enable_percpu_irq().
2598 * Dev_id must be globally unique. It is a per-cpu variable, and
2599 * the handler gets called with the interrupted CPU's instance of
2600 * that variable.
2602 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2603 unsigned long flags, const char *devname,
2604 void __percpu *dev_id)
2606 struct irqaction *action;
2607 struct irq_desc *desc;
2608 int retval;
2610 if (!dev_id)
2611 return -EINVAL;
2613 desc = irq_to_desc(irq);
2614 if (!desc || !irq_settings_can_request(desc) ||
2615 !irq_settings_is_per_cpu_devid(desc))
2616 return -EINVAL;
2618 if (flags && flags != IRQF_TIMER)
2619 return -EINVAL;
2621 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2622 if (!action)
2623 return -ENOMEM;
2625 action->handler = handler;
2626 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2627 action->name = devname;
2628 action->percpu_dev_id = dev_id;
2630 retval = irq_chip_pm_get(&desc->irq_data);
2631 if (retval < 0) {
2632 kfree(action);
2633 return retval;
2636 retval = __setup_irq(irq, desc, action);
2638 if (retval) {
2639 irq_chip_pm_put(&desc->irq_data);
2640 kfree(action);
2643 return retval;
2645 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2648 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2649 * @irq: Interrupt line to allocate
2650 * @handler: Function to be called when the IRQ occurs.
2651 * @name: An ascii name for the claiming device
2652 * @dev_id: A percpu cookie passed back to the handler function
2654 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2655 * have to be setup on each CPU by calling prepare_percpu_nmi() before
2656 * being enabled on the same CPU by using enable_percpu_nmi().
2658 * Dev_id must be globally unique. It is a per-cpu variable, and
2659 * the handler gets called with the interrupted CPU's instance of
2660 * that variable.
2662 * Interrupt lines requested for NMI delivering should have auto enabling
2663 * setting disabled.
2665 * If the interrupt line cannot be used to deliver NMIs, function
2666 * will fail returning a negative value.
2668 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2669 const char *name, void __percpu *dev_id)
2671 struct irqaction *action;
2672 struct irq_desc *desc;
2673 unsigned long flags;
2674 int retval;
2676 if (!handler)
2677 return -EINVAL;
2679 desc = irq_to_desc(irq);
2681 if (!desc || !irq_settings_can_request(desc) ||
2682 !irq_settings_is_per_cpu_devid(desc) ||
2683 irq_settings_can_autoenable(desc) ||
2684 !irq_supports_nmi(desc))
2685 return -EINVAL;
2687 /* The line cannot already be NMI */
2688 if (irq_is_nmi(desc))
2689 return -EINVAL;
2691 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2692 if (!action)
2693 return -ENOMEM;
2695 action->handler = handler;
2696 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2697 | IRQF_NOBALANCING;
2698 action->name = name;
2699 action->percpu_dev_id = dev_id;
2701 retval = irq_chip_pm_get(&desc->irq_data);
2702 if (retval < 0)
2703 goto err_out;
2705 retval = __setup_irq(irq, desc, action);
2706 if (retval)
2707 goto err_irq_setup;
2709 raw_spin_lock_irqsave(&desc->lock, flags);
2710 desc->istate |= IRQS_NMI;
2711 raw_spin_unlock_irqrestore(&desc->lock, flags);
2713 return 0;
2715 err_irq_setup:
2716 irq_chip_pm_put(&desc->irq_data);
2717 err_out:
2718 kfree(action);
2720 return retval;
2724 * prepare_percpu_nmi - performs CPU local setup for NMI delivery
2725 * @irq: Interrupt line to prepare for NMI delivery
2727 * This call prepares an interrupt line to deliver NMI on the current CPU,
2728 * before that interrupt line gets enabled with enable_percpu_nmi().
2730 * As a CPU local operation, this should be called from non-preemptible
2731 * context.
2733 * If the interrupt line cannot be used to deliver NMIs, function
2734 * will fail returning a negative value.
2736 int prepare_percpu_nmi(unsigned int irq)
2738 unsigned long flags;
2739 struct irq_desc *desc;
2740 int ret = 0;
2742 WARN_ON(preemptible());
2744 desc = irq_get_desc_lock(irq, &flags,
2745 IRQ_GET_DESC_CHECK_PERCPU);
2746 if (!desc)
2747 return -EINVAL;
2749 if (WARN(!irq_is_nmi(desc),
2750 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2751 irq)) {
2752 ret = -EINVAL;
2753 goto out;
2756 ret = irq_nmi_setup(desc);
2757 if (ret) {
2758 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2759 goto out;
2762 out:
2763 irq_put_desc_unlock(desc, flags);
2764 return ret;
2768 * teardown_percpu_nmi - undoes NMI setup of IRQ line
2769 * @irq: Interrupt line from which CPU local NMI configuration should be
2770 * removed
2772 * This call undoes the setup done by prepare_percpu_nmi().
2774 * IRQ line should not be enabled for the current CPU.
2776 * As a CPU local operation, this should be called from non-preemptible
2777 * context.
2779 void teardown_percpu_nmi(unsigned int irq)
2781 unsigned long flags;
2782 struct irq_desc *desc;
2784 WARN_ON(preemptible());
2786 desc = irq_get_desc_lock(irq, &flags,
2787 IRQ_GET_DESC_CHECK_PERCPU);
2788 if (!desc)
2789 return;
2791 if (WARN_ON(!irq_is_nmi(desc)))
2792 goto out;
2794 irq_nmi_teardown(desc);
2795 out:
2796 irq_put_desc_unlock(desc, flags);
2799 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2800 bool *state)
2802 struct irq_chip *chip;
2803 int err = -EINVAL;
2805 do {
2806 chip = irq_data_get_irq_chip(data);
2807 if (WARN_ON_ONCE(!chip))
2808 return -ENODEV;
2809 if (chip->irq_get_irqchip_state)
2810 break;
2811 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2812 data = data->parent_data;
2813 #else
2814 data = NULL;
2815 #endif
2816 } while (data);
2818 if (data)
2819 err = chip->irq_get_irqchip_state(data, which, state);
2820 return err;
2824 * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2825 * @irq: Interrupt line that is forwarded to a VM
2826 * @which: One of IRQCHIP_STATE_* the caller wants to know about
2827 * @state: a pointer to a boolean where the state is to be stored
2829 * This call snapshots the internal irqchip state of an
2830 * interrupt, returning into @state the bit corresponding to
2831 * stage @which
2833 * This function should be called with preemption disabled if the
2834 * interrupt controller has per-cpu registers.
2836 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2837 bool *state)
2839 struct irq_desc *desc;
2840 struct irq_data *data;
2841 unsigned long flags;
2842 int err = -EINVAL;
2844 desc = irq_get_desc_buslock(irq, &flags, 0);
2845 if (!desc)
2846 return err;
2848 data = irq_desc_get_irq_data(desc);
2850 err = __irq_get_irqchip_state(data, which, state);
2852 irq_put_desc_busunlock(desc, flags);
2853 return err;
2855 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2858 * irq_set_irqchip_state - set the state of a forwarded interrupt.
2859 * @irq: Interrupt line that is forwarded to a VM
2860 * @which: State to be restored (one of IRQCHIP_STATE_*)
2861 * @val: Value corresponding to @which
2863 * This call sets the internal irqchip state of an interrupt,
2864 * depending on the value of @which.
2866 * This function should be called with migration disabled if the
2867 * interrupt controller has per-cpu registers.
2869 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2870 bool val)
2872 struct irq_desc *desc;
2873 struct irq_data *data;
2874 struct irq_chip *chip;
2875 unsigned long flags;
2876 int err = -EINVAL;
2878 desc = irq_get_desc_buslock(irq, &flags, 0);
2879 if (!desc)
2880 return err;
2882 data = irq_desc_get_irq_data(desc);
2884 do {
2885 chip = irq_data_get_irq_chip(data);
2886 if (WARN_ON_ONCE(!chip)) {
2887 err = -ENODEV;
2888 goto out_unlock;
2890 if (chip->irq_set_irqchip_state)
2891 break;
2892 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2893 data = data->parent_data;
2894 #else
2895 data = NULL;
2896 #endif
2897 } while (data);
2899 if (data)
2900 err = chip->irq_set_irqchip_state(data, which, val);
2902 out_unlock:
2903 irq_put_desc_busunlock(desc, flags);
2904 return err;
2906 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2909 * irq_has_action - Check whether an interrupt is requested
2910 * @irq: The linux irq number
2912 * Returns: A snapshot of the current state
2914 bool irq_has_action(unsigned int irq)
2916 bool res;
2918 rcu_read_lock();
2919 res = irq_desc_has_action(irq_to_desc(irq));
2920 rcu_read_unlock();
2921 return res;
2923 EXPORT_SYMBOL_GPL(irq_has_action);
2926 * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2927 * @irq: The linux irq number
2928 * @bitmask: The bitmask to evaluate
2930 * Returns: True if one of the bits in @bitmask is set
2932 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2934 struct irq_desc *desc;
2935 bool res = false;
2937 rcu_read_lock();
2938 desc = irq_to_desc(irq);
2939 if (desc)
2940 res = !!(desc->status_use_accessors & bitmask);
2941 rcu_read_unlock();
2942 return res;
2944 EXPORT_SYMBOL_GPL(irq_check_status_bit);